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In this article, we propose a framework for small area estimation with multiply imputed
survey data. Many statistical surveys suffer from (a) high nonresponse rates due to sensitive
questions and response burden and (b) too small sample sizes to allow for reliable estimates on
(unplanned) disaggregated levels due to budget constraints. One way to deal with missing
values is to replace them by several plausible/imputed values based on a model. Small area
estimation, such as the model by Fay and Herriot, is applied to estimate regionally
disaggregated indicators when direct estimates are imprecise. The framework presented
tackles simultaneously multiply imputed values and imprecise direct estimates. In particular,
we extend the general class of transformed Fay-Herriot models to account for the additional
uncertainty from multiple imputation. We derive three special cases of the Fay-Herriot model
with particular transformations and provide point and mean squared error estimators.
Depending on the case, the mean squared error is estimated by analytic solutions or
resampling methods. Comprehensive simulations in a controlled environment show that the
proposed methodology leads to reliable and precise results in terms of bias and mean squared
error. The methodology is illustrated by a real data example using European wealth data.

Key words: Fay-Herriot model; mean squared error; multiple imputation; nonresponse;
survey statistics.

1. Motivation

Financial reports based on asset data can provide insights into a wide range of issues of

major importance for political decisions and can help in the precise allocation of funds. In

addition, wealth data can give an overview of the distribution of assets and liabilities,

which can be highly relevant for financial stability and play a central role in assessing

inequality. For this reason, survey data on wealth are of particular importance. Since

questions about assets and income are sensitive issues, such surveys often suffer from high

item nonresponse (Riphahn and Serfling 2005). For example, the Household Finance and

Consumption Survey (HFCS) reports for France item nonresponse rates of nearly 30% for

value of saving accounts and largest mortgage on household main residence and almost

80% for current value of household main residence (HFCN 2020a).

Listwise deletion, retaining only records with no items missing, leads to a loss of

information, and the remaining units in this dataset are not a good representation of the

population, which can lead to biased estimates. Missing values are a problem because the
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incomplete data do not have the regular (matrix) form needed in almost any statistical

method, and therefore handling missing values is necessary. In the literature there are

various approaches for dealing with missing data in studies, such as in Rubin (1987) or

Longford (2005). Van Buuren (2018) gives an extended overview of approaches to

handling and imputing of missing data. Rubin (1976) formulated for the first time the

concept of missing data mechanisms by using the indicators of the missing values as

random variables and posited a model for them. Methods for missing data are generally

based on the assumption that the probability of the missing data does not depend on the

missing values after conditioning on the observed values (MAR). To obtain valid

statistical inferences, appropriate assumptions about the mechanism of missing values

must be made (Van Buuren 2018). Two approaches to handling incomplete data are single

imputation, where each missing value is imputed once, and multiple imputation (MI),

where the missing values are replaced by a small number of plausible values. The

advantage of MI is that it reflects the uncertainty of missing data, which is then taken into

account in the estimation. There are several surveys of income and wealth data where MI

is used, including the Consumer Expenditure Survey, where the income variable is

imputed five times (Fisher 2006), and the HFCS, where also five imputations of the data

sets are provided to the user (HFCN 2020a).

Of particular interest may be subpopulations of households, either regionally

disaggregated or sociodemographic such as households with particular composition (of

ages, gender, labor market status, or educational levels). Various political decisions or

global events, such as the financial crisis of 2007/2008 or the COVID-19 pandemic in

2020/2021, may affect these subgroups, usually referred to as areas or domains, to varying

degrees. Some of these domains may be represented by very few units in the sample and

direct estimators (based only on these subjects) result in a large variance. This issue may

be solved by small area estimation (SAE) methods. The model-based estimators used in

SAE supplement information from other areas and other data sources. Pfeffermann (2013),

Rao and Molina (2015) and Jiang and Rao (2020) give compact overviews and Tzavidis

et al. (2018) propose a general framework for the production of small area statistics. SAE

methods can be distinguished in unit-level (e.g., Battese et al. 1988) and area-level (Fay

and Herriot 1979) models. Unit-level models have the greater information content, but can

only be used when unit-level covariate data are available. In addition, area-level models

are often used because they are better suited to account for complex survey designs for

point and variance estimates. Therefore, we focus on the Fay-Herriot model in this article.

The Fay-Herriot model can be applied to transformed direct estimators to attain normality

of the error terms or to ensure that the resulting estimates are within an appropriate range.

Slud and Maiti (2006) and Chandra et al. (2017) study the log-transformed Fay-Herriot

model and Sugasawa and Kubokawa (2017) consider a general parametric transformation

of the response values. Schmid et al. (2017) use an arcsine transformation to estimate

literacy rates of Senegal and Casas-Cordero et al. (2016) to estimate poverty rates of Chile.

In the context of SAE, nonresponse rates in combination with small sample sizes could

have significant influence on the estimates especially with sensitive data such as income

and wealth data. The investigation of the integration of the imputation uncertainty into

small area estimators has received some attention. Among the publications are, for

example, Longford (2004), who uses a multiple hot-deck imputation method in the UK
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Labour Force Survey to estimate unemployment rates using a small area multivariate

shrinkage method. Longford (2005) presents methods for dealing with incomplete data

and making inferences using small area estimation methods. An approach to modeling the

non-missing at random mechanism in SAE under informative sampling and nonresponse

can be found in Sverchkov and Pfeffermann (2018). Kreutzmann et al. (2022) and Bijlsma

et al. (2020) use a Fay-Herriot model with pooled direct estimators after multiple

imputation and take into account the additional uncertainty due to the missing values in the

sampling variance. However, both ignore the additional uncertainty in the regression-

synthetic part of the model. We extend this approach to address the latter problem in

addition to extending the methodology to ratios.

We present an approach in which we combine MI with the transformed Fay-Herriot

model. We take the multiply imputed values of the missing values as given by the data

provider. To account for the additional uncertainty from imputation, pooled components

of the direct estimator are used, as well as pooled components of the regression-synthetic

part of the Fay-Herriot model. In particular, the components (direct and regression-

synthetic part) are combined for a given transformation in such a way that the resulting MI

adjusted model has the known structure of Fay-Herriot models. This approach exploits the

existing knowledge about transformations, back-transformations and mean squared error

(MSE) approximations of the transformed Fay-Herriot model. We apply the general

approach to three special cases relevant to practice and additionally discuss MSE

estimators for these special cases:

1. For the general Fay-Herriot model for a mean value, we adapt the Prasad-Rao MSE

estimator (Prasad and Rao 1990) to account for the uncertainty owing to missing

values.

2. If the distribution of the target indicator is right-skewed, a log transformation can be

used. For this case, we use the adapted Prasad-Rao MSE estimator and apply a back-

transformation similar to that presented in Rao and Molina (2015).

3. For the Fay-Herriot model for a ratio with an arcsine transformation, we use insights

from Hadam et al. (2023) for the back-transformation of the point estimator, as well

as for a parametric bootstrap MSE estimator that can reflect the uncertainty due to the

missing values.

The validity of the presented point estimators is demonstrated for the three cases outlined

above in a simulation study. It is also shown that the additional uncertainty caused by the

missing values is accounted for by the proposed MSE estimators.

The article is structured as follows. Sections 2, 3, and 4 describe the statistical

methodology. In Section 2, the transformed Fay-Herriot model is presented, which serves

as the basis for the combination with MI. Section 3 describes how the direct and

regression-synthetic components of the transformed Fay-Herriot model are combined after

MI, which leads to a MI adjusted Fay-Herriot model. In Section 4, we consider three

common special cases of the model from Section 3 and present associated uncertainty

measures. The proposed methodology is evaluated in simulation experiments in Section 5

and then applied to HFCS data in Section 6. Section 7 summarizes the main findings,

discusses limitations of the approach and outlines further research potential.
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2. Transformed Fay-Herriot Model

In the following the transformed Fay-Herriot model is introduced, where the

transformation is described by a known function h. Let N be the size of a finite

population which is partitioned into d ¼ 1; :::;D domains and n the sample size with

i ¼ 1; :::; nd units per domain so that n ¼
PD

d¼1nd. The Fay-Herriot model involves in the

first stage a sampling model in which it is supposed that the direct estimator consists of the

true domain-specific population indicator ud and a sampling error ed:

ûDir
d ¼ ud þ ed; ed ,ind

N
�
0;s2

ed

�
:

It is assumed that the sampling errors ed are independently normally distributed with

known variance s 2
ed

. Although the sampling variances s 2
ed

are assumed to be known, in

practice they are estimated by unit-level data (Rivest and Vandal 2002; Wang and Fuller

2003: You and Chapman 2006). Another unit-level approach to address the problem of

unknown sampling variances is proposed by Maiti et al. (2014) and Sugasawa et al. (2017)

by shrinking and simultaneous modeling of small area means and variances. When the

indicator of interest is a mean value, a domain specific direct estimator is the weighted

average of the sampled values:

ûDir
d ¼

S
nd

i¼1widyid

S
nd

i¼1wid

:

The incorporation of sampling weights wid makes the point estimator design unbiased.

Note that the population and the outcomes yid are assumed to be fixed, and the sampling

mechanism is the only source of uncertainty. The sampling weights reflect a complex

design in the estimation of the associated variance. The second stage of the Fay-Herriot

model is a linking model, which links covariate information to the population indicator. xd

is a p £ 1 vector with area-level population covariates and b is the corresponding p £ 1

vector with regression coefficients. yd are normally distributed domain specific random

effects:

ud ¼ xT
dbþ y d; y d ,iid N 0;s 2

v

� �
: ð1Þ

Combining the sampling and the linking model results in:

ûDir
d ¼ xT

dbþ y d þ ed; y d ,iid N 0;s2
v

� �
; ed ,ind

N 0;s 2
ed

� �
: ð2Þ

If a smooth and monotone transformation function h is applied to the direct estimator,

ûDir
d is replaced by ûDir*

d :¼ h
�
ûDir

d

�
in Equation (2) and we want to predict h21ðudÞ:

The transformed Fay-Herriot model is then defined, for example, as in Sugasawa and

Kubokawa (2017):

h û
Dir

d

� �
¼ xT

dbþ y d þ ed; y d ,iid N 0;s 2
v

� �
; ed ,ind

N 0;s 2*
ed

� �
: ð3Þ

In the following, * always refers to the transformed scale of the direct estimator, its

variance and the Fay-Herriot estimator presented at the end of this section. The model

parameters, the model variance s2
y and the regression coefficients b are not known and
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must be estimated. There are various methods to obtain estimates of s2
y , for example,

restricted maximum likelihood (REML), maximum likelihood (ML) and the FH method-

of-moments. More details on the estimation methods of the model variance can be found in

Chapter 6 in Rao and Molina (2015). A drawback of ML is that it does not account for the

loss in degrees of freedom arising from the estimation of the regression coefficients b (Rao

and Molina 2015). Therefore, we use in this article the REML method. The regression

coefficients b and the random effects yd are estimated by:

b̂ ¼ b̂ ŝ2
y

� �
¼

XD

d¼1

xdxT
d

s2*

ed
þ ŝ2

y

 !21
XD

d¼1

xdû
Dir *

d

s2*

ed
þ ŝ2

y

 !

; ð4Þ

ŷ d ¼
ŝ2
y

s2*

ed
þ ŝ2

y

û
Dir *

d 2 xT
d b̂

� �
: ð5Þ

Plugging those predictors into Equation (1) leads to the empirical best linear unbiased

predictor (EBLUP), that is, the transformed Fay-Herriot estimator:

ûFH*
d ¼ xT

d b̂þ ŷ d: ð6Þ

This estimator can be expressed as a convex combination of the direct estimator and the

regressionsynthetic component, resulting in an optimal combination of the two

components. If the variance of the direct estimator is large, more weight is given to the

synthetic component, and vice versa:

û
FH *

d ¼ ĝdû
Dir *

d þ 1 2 ĝd

� �
xT

d b̂ with ĝd ¼
ŝ2
y

ŝ2*

ed
þ ŝ2

y

: ð7Þ

At this point û
FH *

d is still on the transformed scale and has to be transformed to the

original scale to obtain û
FH *

d .

3. Combining Transformed Fay-Herriot Models after Multiple Imputation

An often applied technique to handle missing values is MI, where the missing values are

replaced by several plausible values. To obtain these values, an imputation model is

required. It is not sufficient to generate only one imputation, since the imputation is treated

as if it were true, and the uncertainties arising from the nonresponse are ignored. On the

contrary, a large number of imputations is usually not necessary, and M between 5 and 20

is sufficient, but it may be advantageous to choose a higher value (20–100) if the non-

response is high and there is a large uncertainty about the estimand (Van Buuren 2018).

The procedure for MI involves two steps: the imputation step and the analysis step. In the

former, the imputer, usually the data provider, generates the M replicate completions of the

survey data using a suitable imputation model and provides them to the analyst. In the

second step, the analyst applies a statistical model suitable for the complete data separately

to each imputed data set. The focus of this article is on the latter. If u is the indicator of

interest and û its estimator, the analysis model is calculated with each imputed data set, so

we obtain ûm and dVarVar (ûm) for m ¼ 1; :::;M: The results are then combined with the

application of pooling rules developed by Rubin (1987) for point estimates and their
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variances, which include the additional variability and uncertainty induced by the missing

data. Rubin’s rules (RR) are defined as follows. The pooled estimator of u is the mean

value of the M estimators:

ûRR ¼
1

M

XM

m¼1

ûm: ð8Þ

The variance of the pooled estimator ŝ2RR is composed by the mean value of the

individual variances of each estimator (within-variance) and the variance between the M

estimates (between-variance) with an correction due to the finite sample size:

ŝ2RR

¼dVarVar ûRR
� �

¼
1

M

XM

m¼1

dVarVar ûm

� �
þ

M þ 1

M

1

M 2 1

XM

m¼1

ûm 2 ûRR
� �2

: ð9Þ

In the next sections, we describe how the combining rules are applied to the components

of the transformed Fay-Herriot model from Section 2.

3.1. Component Pooling

With the M multiply imputed sampling values yid;m of each unit i ¼ 1; :::; nd and domains

d ¼ 1; :::;D; the transformed direct estimators û
Dir *

d;m ¼ h
�
û

Dir

d;m

�
of the target indicator and their

corresponding sample variances s 2*

ed;m
are calculated for each domain d ¼ 1; ::::;D and m ¼

1; :::;M: Rubin’s rules are based on asymptotic theory, and the resulting combined estimate is

more accurate if the distribution of the indicator of interest is better approximated by the normal

distribution (Rubin 1987). Van Buuren (2018) states that to promote approximate normality,

target indicators can be transformed, then pooled and back-transformed. Therefore, the M direct

estimators û
Dir *

d;m and their variancess 2*

ed;m
are pooled on the transformed scale and substituted in

Equations (8) and (9). Kreutzmann et al. (2022) present a Fay-Herriot estimator which uses

pooled direct components on the original scale, which are substituted in the (log transformed)

Fay-Herriot model. We extend this approach and transform the direct components of each

imputed data set to estimate the regression-synthetic components. This allows the uncertainty of

the missing values to be included not only in the direct components, but also in those of the

linking model. The model components of the linking model are estimated for each imputed data

set. The estimated variances of the random effects ŷ d;m are combined according to Rubin’s rule:

W ¼
1

M

XM

m¼1

ŝ2
ym

and Bd ¼
M þ 1

M

1

M 2 1

XM

m¼1

ŷ d;m 2
1

M

XM

m¼1

ŷ d;m

 !2

: ð10Þ

The mean squared distance of the random effects of the domains of the M imputed data sets

and the pooled random effects per domain is different between the areas. In order to guarantee

that the random effects have a common variance, further pooling has to be applied. Therefore,

the mean value of the between variance is taken. Together with Equation (10) this leads to the

pooled model variance:

ŝ2RR

y ¼ W þ
1

D

XD

d¼1

Bd: ð11Þ
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The pooled model variance ŝ2RR

y and the pooled direct components are now used to obtain MI

adjusted estimates of the regression coefficients and random effects ŝ2RR

y , ŝ2RR *

ed
and û

Dir:RR *

d are

inserted into Equation (4) to obtain the MI adjusted regression coefficients b̂ and then together

into Equation (5) to obtain the MI adjusted random effects ŷd.

3.2. MI Adjusted Fay-Herriot Model

The pooled direct components together with the pooled and MI adjusted regression-

synthetic parts of the model lead to the MI adjusted Fay-Herriot model, which preserves

the structure of the transformed Fay-Herriot model. The area-level population auxiliary

information xd, obtained from external sources, such as the census, is fixed and complete

as in Equation (1). The model can be written analogously to Equation (3) with pooled

direct components and the pooled model variance. Using the estimators of unknown model

parameters as elaborated in Subsection 3.1 leads to the proposed FH.MI estimator û
FH:MI *

d ,

which can be written analogously to Equation (7) with û
Dir:RR *

ed
, ŝ2RR *

ed
and ŝ2RR

y plugged in:

û
FH:MI *

d ¼ ĝdû
Dir:RR *

d þ ð1 2 ĝdÞx
T
d b̂ with ĝd ¼

ŝ2RR

y

ŝ2RR *

ed
þ ŝ2RR

y

: ð12Þ

The presented û
FH:MI *

d estimator preserves the representations of the Fay-Herriot

estimator. As û
FH:MI *

d is on the transformed scale, a suitable back transformation

depending on h has to be applied to obtain û
FH:MI

d .

Small area estimators with multiply imputed data can be derived in two ways: 1. Fit the

Fay-Herriot model to each of the M imputed data sets and combine the Fay-Herriot

estimators with Rubin’s rule. 2. Estimate the direct and the regression synthetic

components M times and combine them using Rubin’s rules as described in Subsection 3.1

and then estimate the shrinkage estimator in Equation (12). The advantage of the first

approach is that it is simple. However, it loses the structure of the Fay-Herriot model and

the representation of the estimator as a weighted combination of the direct and regression

synthetic components. In addition, it is unclear how the uncertainty of the M Fay-Herriot

estimators is combined, since Rubin’s rule is commonly used for variances and it is

unclear how this rule can be applied to the MSE. The advantage of the second (the

proposed) approach and the resulting FH.MI estimator is that the model structure of the

Fay-Herriot model is preserved, the interpretability of the components is maintained, and

the existing knowledge about MSE estimators is directly transferable and extensible. The

estimator of the first approach is used as a benchmark in the model-based simulation study

in Section 5 and is denoted by FH.RR.

4. MI Adjusted Fay-Herriot Estimators with Uncertainty Measures

In the following sections, we focus on three special cases of the transformed MI adjusted

Fay-Herriot estimator (12). For each case we specify the FH.MI point estimator and an

associated MSE estimator.
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4.1. Estimator for a Mean

The (population) mean of a quantity of interest for domain d is estimated by the weighted

sample average per imputed data set m:

û
Dir

d;m ¼

Xnd

i¼1
widyid;m

Xnd

i¼1
wid

for d ¼ 1; ::;D and m ¼ 1; :::;M: ð13Þ

If no transformation is required for the direct estimator, û
FH:MI *

d is on the original scale

such that û
FH:MI

d ¼ û
FH:MI *

d . With the pooled and MI adjusted estimators presented in

Section 3, the FH.MI estimator û
FH:MI

d can be calculated according to Equation (12). As a

measure of uncertainty which captures the additional uncertainty due to multiple

imputation, we adapt the MSE estimator of Prasad and Rao (1990) in the following. The

second-order approximation of the MSE of û
FH

d is given by:

MSE û
FH

d

� �
< g1d s2

y

� �
þ g2d s2

y

� �
þ g3d s2

y

� �
:

The first component g1d is based on the prediction of the random effects and g2d reflects

the variability arising from the estimation of the regression coefficients. g1d and g2d are

independent of the estimation method of the model variance s2
y , whereas, g3d reflects the

uncertainty caused by the estimation of s2
y and depends on the estimation method through

its asymptotic variance �V ŝ2
y

� �
(as D ! 1) (see e.g., Rao and Molina 2015). According to

Prasad and Rao (1990) a second-order unbiased estimator of MSE (û
FH

d ) is:

dMSEMSE û
FH

d

� �
¼ g1d ŝ2

y

� �
þ g2d ŝ2

y

� �
þ 2g3d ŝ2

y

� �
:

The components of the Prasad-Rao estimator using REML are defined as follows:

g1d ŝ2
y

� �
¼ ĝ2

ds
2
ed
; ð14Þ

g2d ŝ2
v

� �
¼ ð1 2 ĝdÞ

2xT
d

XD

d¼1

xdxT
d

s2
ed
þ ŝ2

y

( )21

xd; ð15Þ

g3d ŝ2
v

� �
¼ ðs2

ed
Þ2ðs2

ed
þ ŝ2

vÞ
23 �Vðŝ2

vÞ; ð16Þ

�Vðŝ2
vÞ ¼ 2

XD

d¼1

1

s2
ed
þ ŝ2

v

� �2

8
><

>:

9
>=

>;

21

:

In the same way as in Subsection 3.1, where we obtain M estimates of the model

variance, that is, ŝ2
vm

for m ¼ 1; :::;M; we obtain M corresponding asymptotic ðD ! 1Þ

variances �Vmðŝ
2
ym
Þ for m ¼ 1; :::;M: To adjust the MSE estimator for this additional

uncertainty, the asymptotic variances are pooled with Rubin’s rule for variances (9):
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�VRR ŝ2RR

y

� �
¼

1

M

XM

m¼1

�Vm ŝ2
ym

� �
þ

M þ 1

M

1

M 2 1

XM

m¼1

ŝ2
ym

2 ŝ2RR

y

� �2

with �V ŝ2
ym

� �
¼ 2

XD

d¼1

1

s2
ed;m
þ ŝ2

ym

� �2

8
><

>:

9
>=

>;

21

for m ¼ 1; :::;M:

ð17Þ

Using ŝ2RR

y and s2RR

ed
in Equations (14), (15), and (16) together with the pooled

asymptotic variance (17) takes into account the uncertainty about the missing values.

Note that instead of plugging the pooled variance terms into the asymptotic variance

formula, the pooled asymptotic variance �VRR
�
ŝ2RR

y

�
is used, introducing an additional

term into the estimator due to the between-variation. This leads to the proposed MSE

estimator for û
FH:MI

d , which captures the uncertainty due to missing values:

^
V û

FH:MI

d

� �
¼ g1d ŝ2RR

y

� �
þ g2d ŝ2RR

y

� �
þ 2 s2RR

ed

� �2

s2RR

ed
þ ŝ2RR

y

� �23
�VRR ŝ2RR

y

� �
: ð18Þ

4.2. Estimator for a log Mean

Domain specific mean values of income and wealth data are often skewed to the right, or

the relationship with the auxiliary information may be non-linear. In such a case, the linear

Fay-Herriot model (Subsection 4.1) may be more appropriate for the log-transformed

direct estimator. Using the direct estimator from Equation (13) and h: z ! logðzÞ the direct

components of the model for the M imputed data sets are:

û
Dir *

d;m ¼ log û
Dir

d;m

� �
with variances s2*

ed;m
< û

Dir

d;m

� �22

s2
ed;m

for d ¼ 1; ::;D; m ¼ 1; :::;M:

Using a Taylor expansion for moments, the sample variance, that is, the variance of the

direct estimator, can be moved to the logarithmic scale. Although this is an approximation

for large samples, it is used in SAE as in Neves et al. (2013). Citro and Kalton (2000) use

the same approximation with a minor modification based on the properties of the log-

normal distribution, while noting that the results do not differ considerably. Calculating

the direct and the regression-synthetic components as described in Subsection 3.1 with

h: z ! logðzÞ and together with Equation (12) leads to the Fay-Herriot-MI estimator

û
FH:MI *

d , which is still on the log-scale. The estimates can be transformed back to the

original scale by several methods. Slud and Maiti (2006) present a bias-correction under a

log-transformed Fay-Herriot model and propose a corresponding estimator for the MSE.

Chandra et al. (2017) extend this estimator by an additional bias correction that accounts

for the sampling variation of the estimator. These methods can be applied only to

observed/sampled areas. We apply a method that is suitable even for domains/areas with

no observations. To obtain the point estimator on the original scale, properties of the log-

normal distribution are used and the back-transformation for the MSE estimator is

based on a Taylor expansion similar to that presented in Rao and Molina (2015). A short
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derivation can be found in the Appendix (Section 8). The back-transformation is defined as

follows:

û
FH:MI

d ¼ exp û
FH:MI *

d þ 0:5 dMSEMSE û
FH:MI *

d

� �n o
;

dMSEMSE û
FH:MI

d

� �
¼ exp û

FH:MI *

d þ 0:5 dMSEMSE û
FH:MI *

d

� �n o2
dMSEMSE û

FH:MI *

d

� �
:

dMSEMSE
�
û

FH:MI *

d

�
denotes at this point the adapted Prasad-Rao MSE estimator defined in

Equation (18).

4.3. Estimator for an arcesine Ratio

The Fay-Herriot model is widely used for estimating poverty or literacy rates with high

regional resolution. In order to guarantee that the estimated rates are between 0 and 1

suitable transformations are frequently used. The arcsine transformation h: z ! sin21

ð
ffiffi
z
p
Þ; of which the inverse maps its values to ½0; 1�; is commonly used. Schmid et al.

(2017) compared in a design-based simulation the arcsine transformation with an

estimator based on a normal-logistic distribution. Both estimators provided very similar

results regarding bias and root mean squared error (RMSE). We concentrate on the

arcsine transformation because, unlike the logit, it is well defined even at zero and unity.

The arcsine transformation is applied to the direct ratio estimators of the M imputed data

sets:

û
Dir *

d;m ¼ sin21

ffiffiffiffiffiffiffiffi

û
Dir

d;m

q� �

with variances s2*

ed;m
¼ s2*

ed
¼

1

4~nd

for m ¼ 1; ::;M:

The effective sample size of domain d is denoted by ~nd, which takes into account the

sampling design effect (Jiang et al. 2001). The approximation of the sampling error

variance on the transformed scale is based on a Taylor expansion for moments like in

Jiang et al. (2001). The combined point estimator û
Dir:RR *

d and its variance ŝ2RR*

ed
are

calculated by applying Rubin’s rules presented in Equations (8) and (9). The components

of the regression-synthetic part of the model are calculated as described in Subsection 3.1

with the pooled direct components on the transformed scale. Afterwards û
FH:MI *

d can be

calculated as in Equation (12). The resulting estimator û
FH:MI *

d is on a sin 21 (
p

)-scale and

needs to be transferred to the original scale. A naive back-transformation is the inverse

h 21, which introduces a bias for non-linear h. For this reason, for common

transformations bias-corrected back-transformations are proposed, such as in Hadam

et al. (2023) for the arcsine transformation which is a special case of Sugasawa and

Kubokawa (2017), who present an asymptotically unbiased back-transformation for a

general parametric transformation. We apply the bias-corrected back-transformation

following Hadam et al. (2023), using the normal distribution of the transformed estimator

and the expected value (E) of a transformed variable:
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û
FH:MI

d ¼ E sin2 û
FH:MI *

d

� �h i
¼

Z 1

21

sin2ðtÞf
û

FH:MI *

d

ðtÞdt

¼

Z 1

21

sin2ðtÞ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p
ŝ2RR

y s2RR *

ed

ŝ2RR

y þ s2RR *

ed

v
u
u
t

exp 2
t 2 û

FH:MI *

d

� �2

2
ŝ2RR

y s2RR *

ed

ŝ2RR

y þ s2RR *

ed

8
>>>><

>>>>:

9
>>>>=

>>>>;

dt: ð19Þ

The integral in Equation (19) must be solved by numerical integration methods. The

MSE of û
FH:MI

d is approximated with a parametric bootstrap procedure analogue to Hadam

et al. (2023) based on Gonzalez-Manteiga et al. (2005). The bootstrap procedure

comprises the following steps:

1. Estimate the regression-synthetic components b̂ and ŝ2RR

y analogously to Subsection

3.1 using the pooled direct components û
Dir:RR *

d and ŝ2RR *

ed
on the arcsine scale.

2. For b ¼ 1,..., B

(a) Generate sampling errors eðbÞd ,ind N
�
0; ŝ2RR *

ed

�
and random effects y

ðbÞ
d ,ind N�

0; ŝ2RR

y

�
,

(b) Simulate a bootstrap sample û
Dir *ðbÞ

d ¼ xT
d b̂þ y

ðbÞ
d þ eðbÞd ,

(c) Calculate the true bootstrap population indicator u
*ðbÞ
d ¼ xT

d b̂þ y
ðbÞ
d on the

transformed scale and back-transform with u
ðbÞ
d ¼ sin2

�
u

*ðbÞ
d

�
,

(d) Calculate the bootstrap estimator of the model variance ŝ2ðbÞ
y using û

Dir *ðbÞ

d and

ŝ2RR *

ed
;

(e) Using ŝ2ðbÞ
y and û

Dir *ðbÞ

d , calculate bootstrap estimators of the regression

coefficients b̂ ðbÞand estimate the random effects ŷ
ðbÞ
d , and

(f) Determine the bootstrap estimator û
FH:MI *ðbÞ

d with Equation (12) by using the

estimates from the step before and back-transform to the original scale applying

(19) to obtain û
FH:MI *ðbÞ

d .

3. Estimate the MSE:

dMSEMSE
�
û

FH:MI

d

�
¼

1

B

XB

b¼1

û
FH:MIðbÞ

d 2 u
ðbÞ
d

� �2

:

The pooled sampling and model variances, which account for the additional uncertainty

about the missing values, are used in the initialization of the bootstrap method. Hence, the

extra uncertainty induced by the missing data is accounted for by the bootstrap MSE estimator.

5. Simulation Study

In this section, we investigate the behaviour of the estimators proposed in Sections 3 and 4

by simulation studies with suitable data models. The population is repeatedly generated

according to an underlying model. With each simulation run, a sample is taken from the

generated population, to which the methods are then applied. We evaluate the performance

in terms of bias and RMSE of the proposed point estimators and the inflation of RMSE

arising from MI.
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5.1. Data Generation

The simulation setup and data models are chosen to be consistent with those of Kreutzmann

et al. (2022). For the simulations, finite populations of size N ¼ 60,000 with D ¼ 100

domains are generated so that in each domain the population size Nd is between 200 and

1,000 for d ¼ 1,..., D. The samples were drawn via stratified random sampling, where the

strata represent the domains. To have rather small and large domains in the samples, sample

sizes nd lie within a range of 8 and 145, so that the total sample size is n ¼ 5,961. To apply

the transformations discussed in the special cases in Section 4, appropriate data models are

chosen. In the standard case, a normal data model is used, where no transformation to the

direct estimator of a mean value is necessary. Right-skewed log-normal data is generated

when investigating the proposed method with a log transformation like in Subsection 4.2. In

many applications, the indicator of interest is a ratio. In order to construct a ratio that is used

in real data applications, a wealth ratio is calculated. In publications of the Federal Statistical

Office (see e.g., Destatis 2018) it is derived by taking the percentage of households with a

household income above the 200% median household income. As data model for the ratio

the log-scale data is also used. The unit-level data models and scenarios are described in

detail in Table 1. The shapes of the distribution for one selected population can be found in

Figure 5 in the Appendix (Subsection 8.2). With a sample at the unit-level, the missing data

is generated.

As mentioned in Section 1, MAR is often plausible and assumed in most programs for

handling missing data. Therefore, in the simulation, missing values are generated using the

fully observed additional variable x, from the data models in Table 1. The MAR

mechanism is implemented as follows:

yid ¼
ymissing; xid # xq

yid; otherwise:

(

ð20Þ

xq is the q-quantile of the auxiliary information x from the sample. This results in a non-

response rate of q · 100% by definition of the q-quantile. For the selected data models, the

implemented MAR mechanism leads to missing values in the upper ends of the distribution.

When it comes to sensible data as wealth related data, item nonresponse rates can be very

high. For example, the Household Finance and Consumption Network (HFCN) reports for

2017 (HFCN 2020a) nonresponse rates for the value of savings account between 18% in

Belgium and 64% in Finland. Therefore, it is reasonable to investigate the proposed

methods under varying q [ {0.1, 0.3, 0.5} to obtain nonresponse rates of 10%, 30% and

50%. A two-level normal model is used as an imputation model for the missing yid values,

which is implemented in the R-package mice (Van Buuren and Groothius-Oudshoorn

2011). The x serve as covariate information and yd as area-specific random effects, so that

Table 1. Overview of unit-level data models in model-based simulation, i ¼ 1,..., N, d ¼ 1,..., D.

Setting yid xid md y d eid

Mean 250000–400xid þ y d þ eid Nðmd; 1502Þ U½–150; 150� Nð0; 250002Þ Nð0; 500002Þ

Logmean expð15–xid þ y d þ eidÞ Nðmd; 1Þ U½3; 5� Nð0; 0:42Þ Nð0; 0:62Þ

Ratio expð15–xid þ y d þ eidÞ Nðmd; 1Þ U½3; 5� Nð0; 0:42Þ Nð0; 0:62Þ
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the clustering is incorporated in the imputation model. According to Van Buuren (2018),

between five and 20 imputed values are often sufficient for each missing observation. The

HFCN delivers five imputed values per missing observation, hence in the simulation we set

M ¼ 5. In the log-scale setting the data was log transformed prior to the imputation to

achieve normality and back transformed with the inverse afterwards. After imputation, the

data is still on a unit-level and has to be aggregated on an area-level according to the

indicator of interest of the setting. Then the appropriate FH.MI estimators given in Section 3

with the special cases in Section 4 are calculated. Table 2 provides an overview showing for

each setting the direct estimator, the transformation used, and the section of the

corresponding FH.MI model for the special case. In Table 2, I denotes an indicator function

that is 1 if the condition is true and 0 otherwise; ~Y denotes the population median of y.

Each setting, including the generation of the population according to the data model, the

sampling, the missing data generating process, the multiple imputation and the application

of the MI adjusted FH estimators is repeated R ¼ 500 times. The steps of the simulation

can be summarized as follows: We generate the population according to a data model in

Table 1. Next a stratified random sample is selected. Then missing values are generated

according to Equation (20) and imputed to create M copies of the data. Using the M data

sets the direct estimators are calculated according to Table 2 and xid are aggregated to a

domain level by taking the mean per domain. Afterwards the indicator of interest and its

MSE are estimated by applying the methods described in Sections 3 and 4.

5.2. Performance of Point Estimators

In the simulation we assess the performance of six point estimators in the mean and log

mean setting and five in the ratio setting. For each setting direct, (Direct) and Fay-Herriot

(FH) estimators are calculated before deletion on the aggregated sample, that is, the steps

of deleting and imputing are omitted. In the case of the FH estimator, the transformation

corresponding to the setting is applied so that the Fay-Herriot estimator introduced in

Section 2 is calculated. The FH estimator before deletion serves as the gold standard in this

simulation. In addition, we compare the performance of the proposed FH.MI estimators

with the pooled Fay-Herriot estimator (FH.RR) mentioned in Section 3 and with the

estimator proposed by Kreutzmann et al. (2022) denoted by FH.DirectRR. They consider

the estimator under a normal and log-normal setting for a mean value, and so we also

examine this estimator only under these settings. Furthermore, with Rubin’s rule

combined direct estimators (Direct.RR) are calculated to show the efficiency gain of the

Fay-Herriot estimators with good covariate information after MI. All estimators are

implemented in the statistical programming language R (R Core Team 2020) and for the

Table 2. Overview of settings.

Setting û
Dir

d h
�
û

Dir

d

�
FH.MI model

Mean 1
nd

Pnd

i¼1yid û
Dir

d 4.1

Log mean 1
nd

Pnd

i¼1yid log
�
û

Dir

d

�
4.2

Ratio 1
nd

Pnd

i¼1Iðyid . 2· ~YÞ sin21
� ffiffiffiffiffiffiffiffi

û
Dir

d

q �
4.3
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standard area-level models and its components the package emdi (Kreutzmann et al.

2019) was used. The code can be obtained from the authors on request. To evaluate and

compare the performance of the estimators, the following quality measures are calculated

using the R Monte-Carlo replications. ûdr
denotes the estimator of the target indicator in

domain d and replication r, udr
is the true value of the indicator:

Bias ûd

� �
¼

1

R

XR

r¼1

ûdr
2 udr

� �
; rel: Bias ûd

� �
¼

1

R

XR

r¼1

ûdr
2 udr

udr

� �

;

RMSE ûd

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R

XR

r¼1

ûdr
2 udr

� �2

v
u
u
t ; RRMSE ûd

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

R

XR

r¼1

ûdr
2 udr

udr

� �2

:

v
u
u
t

ð21Þ

We want to evaluate the performance of the introduced methodology in terms of bias

and RMSE. For the mean and log mean setting we consider the relative bias and the

RRMSE. For the ratio setting the bias and RMSE are taken into account since the indicator

itself is already on a relative scale. The median and mean values over domains of the bias

and RMSE values for different nonresponse rates are presented in Table 3. The direct

estimators (Direct.RR) remain unbiased after multiple imputation in the mean and ratio

setting as before deletion (Direct) and almost unbiased in the log mean setting. The small

bias could be introduced by the inverse back-transformation after applying the imputation

model. Compared to the combined direct estimators (Direct.RR) and the model-based

estimators before deletion (FH), the model-based estimators FH.MI, FH.RR and

FH.DirectRR remain also unbiased in the mean and ratio setting and the results of the

model-based estimators are comparable. Only in the log mean setting does the FH.MI

estimator, like the other two model-based estimators, suffer from a small bias that

increases slightly with higher nonresponse rates. Again this bias could be due to the

inverse back-transformation in the imputation process. In terms of efficiency, we see that

the RRMSE/RMSE are the smallest before deletion and increase with higher nonresponse

rates for each estimator in each setting, reflecting the additional uncertainty about missing

values. Within each setting and nonresponse rate the order of the RRMSE/RMSE is as

expected: the RRMSE/RMSE of the direct estimators is always higher than that of the

proposed FH.MI estimator, which shows that the introduced methodology behaves the

same way as in cases without missing values (i.e., before deletion). The RRMSE/RMSE of

the FH.MI and the FH.RR are almost identical, which indicates that the proposed

methodology leads to reasonable results and is similar to the more straightforward

approach of combining the Fay-Herriot estimators. The proposed FH.MI estimator is at

least as efficient as the FH.DirectRR estimator. In the log mean setting, the superefficiency

of imputation, when more information is used than in the analysis model (Rubin 1996),

can be observed. At a nonresponse rate of 10%, Direct.RR is slightly more efficient than

the direct estimator before deletion (Direct). All summed up, the results confirm our

expectations. The presented FH.MI estimators lead to plausible results regarding bias and

efficiency in the investigated settings, in which the imputation models follow the data

structure of the generated population and thus fit the data.
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5.3. Performance of Uncertainty Measures

We now move on to the performance of the three proposed MSE estimators of the FH.MI

estimator, each corresponding to one setting. In the case of the mean and log mean setting,

we evaluate the adapted analytical Prasad-Rao estimator as described in Subsections 4.1

and 4.2 with a back-transformation when the log transformation is used. In the ratio setting

the parametric bootstrap estimator from Subsection 4.3 with B ¼ 500 replications is

evaluated. Performance is evaluated by looking at the relative bias of the MSE estimator

defined as followed:

Table 3. Relative bias and RRMSE for mean and log mean, bias and RMSE for ratio.

Nonresponse rate Before deletion 10% 30% 50%

Estimator Mean Median Mean Median Mean Median Mean Median

Mean

(rel.) Bias [%] Direct 0.0464 0.0149

Direct.RR 0.0254 0.0198 0.0390 0.0092 0.0862 0.0290

FH 0.2390 0.1812

FH.Direct.RR 0.2291 0.1691 0.2536 0.1872 0.3082 0.2583

FH.MI 0.2245 0.1615 0.2355 0.1761 0.2704 0.2186

FH.RR 0.2171 0.1568 0.2195 0.1639 0.2554 0.1840

Log mean

(rel.) Bias [%] Direct -0.2191 -0.0318

Direct.RR 0.1548 0.0342 1.1479 0.8566 2.8100 2.2903

FH -0.8797 -0.6057

FH.Direct.RR 0.0191 0.2091 1.4284 1.4639 3.1864 2.9609

FH.MI -0.2772 -0.1096 0.8383 0.8272 2.4169 2.3568

FH.RR -0.6948 -0.4258 0.0216 0.2115 1.3747 1.4485

Ratio

Bias Direct -0.0004 0.0000

Direct RR -0.0003 0.0000 -0.0000 0.0005 0.0009 0.0007

FH -0.0027 -0.0022

FH.MI -0.0016 -0.0010 0.0012 0.0012 0.0011 0.0016

FH.RR -0.0026 -0.0021 -0.0024 -0.0018 -0.0015 -0.0009

Mean

RRMSE [%] Direct 5.0318 4.2722

Direct.RR 5.1345 4.4849 5.5337 4.7889 6.1003 5.4419

FH 4.4300 3.9609

FH.Direct.RR 4.5470 4.1570 4.9845 4.5694 5.6775 5.3471

FH.MI 4.5444 4.1524 4.9643 4.5509 5.6018 5.2498

FH.RR 4.5386 4.1385 4.9517 4.5388 5.5741 5.1978

Log mean

RRMSE [%] Direct 25.5219 23.0001

Direct.RR 24.8037 22.0991 26.3014 23.1315 29.1076 26.1128

FH 20.7739 20.0316

FH.Direct.RR 21.916 21.4101 23.8789 22.5175 27.0243 25.9548

FH.MI 21.3353 20.6552 22.7919 21.3174 25.4294 23.9328

FH.RR 20.7741 19.9455 22.1078 20.6367 24.7177 23.3957

Ratio

RMSE Direct 0.0655 0.0563

Direct.RR 0.0655 0.0565 0.0663 0.0565 0.0702 0.0617

FH 0.0539 0.0506

FH.MI 0.0544 0.0510 0.0572 0.0533 0.0636 0.0607

FH.RR 0.0541 0.0507 0.0564 0.0524 0.0624 0.0590
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RBRMSEðûdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

r¼1
dMSEMSEdr 2 RMSE ûd

� �
r

RMSE ûd

� � :

Table 4 shows the median and mean values over the domains of the RBRMSE. We see a

slight underestimation in the mean setting with an increasing effect at higher nonresponse

rates. On the other hand, in the log mean setting the true RMSE is slightly overestimated at

a lower nonresponse rate of 10% and minimally underestimated at a higher nonresponse

rate of 50%. Nevertheless, the values are all close to zero. In the ratio setting, the bias of

the bootstrap RMSE estimator is close to zero at 10% nonresponse rate. At 30% and 50% it

increases and reaches almost identical values, but still at a tolerable level. In all three

settings the additional uncertainty of the FH.MI estimator can be satisfactorily addressed

and the bias is within an acceptable range. To have a closer look on the performance of the

adapted Prasad-Rao MSE estimator the estimated and true RMSE values per domain are

plotted in Figure 1 for the mean setting. First we observe that within each nonresponse rate

the estimated RMSE decreases with higher sample size, which is in line with the behaviour

of the true RMSE. Secondly, we see that per domain the estimated RMSE values increase

with increasing nonresponse rates, which is consistent with the expected behaviour. At a

nonresponse rate of 10% and 30%, the estimated RMSE tracks very well the behaviour of

the true RMSE. With a higher nonresponse rate of 50% we see that there are

underestimations in some areas, but overall the uncertainty is well accounted for. The

proposed methods are good at capturing the additional variation due to the missing

observations and imputation and also provide a realistic estimate of the uncertainty of the

FH.MI estimator in our settings.

Table 4. Relative bias (%) of estimated RMSE (RBRMSE) of FH.MI.

Nonresponse rate 10% 30% 50%

Mean Median Mean Median Mean Median

Mean -1.4198 -1.8291 -3.4427 -3.1477 -6.9352 -6.9390
Log mean 2.5119 2.5719 1.8185 2.6527 -4.0788 -3.2214
Ratio 2.9396 3.1787 8.7815 9.0866 8.1231 8.278
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Fig. 1. RMSE of FH.MI estimator per domain for mean setting and varying nonresponse rates. Domains are

ordered by increasing sample size.
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6. Application to Eurosystem’s HFCS

In the following, we provide an example of how the proposed framework can be used for

surveys with multiply imputed data in combination with small area methods. The purpose is to

show a possible application with the HFCS data for scientists or institutions from relevant

research areas rather than to discuss the estimates for each country. The HFCS is a large-scale

survey of the financial and consumption situation of European households. The first wave was

carried out in 2010 in 15 countries of the European Union (EU). The HFCS contains

household data on both economic and demographic variables such as income, wealth, private

pension, employment and consumption characteristics (HFCN 2020a). So far three waves

have been carried out, the last of which was collected in 2017 and released in March 2020. For

the application the third wave is considered. The sample contains about 91,200 households in

22 countries of the EU, between 1,000 and 14,000 households per country. The HFCS is a joint

project of several national statistical institutes, Eurosystem national central banks (NCB) and

three noneuro area NCBs (Poland, Hungary, Croatia). For these countries, all values are

converted into euros by the HFCN (HFCN 2020a). The HFCN asked very sensitive questions,

so the item nonresponse rate is high. Missing values in the HFCS data were iteratively and

sequentially imputed. The variables are imputed along a path of imputation models. Each

model is run several times, and the imputed values from the previous round are treated as given

in the subsequent iteration (HFCN 2020a). For each missing observation the HFCS data set

contains M ¼ 5 imputed values. For more information on the imputation method see HFCN

(2020a). Of interest for this application is the value of the household’s bonds, which is part of

the household’s assets and therefore relevant when considering the distribution of wealth. The

HFCN reports conditional medians for the value of bonds per EU country (HFCN 2020b). The

values are calculated conditioned on households that have bonds; households with no bonds

are discarded from the analysis. This results in partly very small sample sizes even on a

country level, so that for some countries with fewer than 25 observations direct estimates are

not reported by the HFCN. Furthermore, the rate of collected values differs between the

countries. Since some households do not even indicate whether they own bonds or not, these

values are also imputed by the HFCN. Therefore, the sample size per country, that is, the

number of households with bonds and the collected rate for these households, may differ

slightly among the five imputed data sets provided by the HFCN. We calculate the sample

sizes and collection rates based on the first imputed data sets. An overview of the sample sizes

per country and the collected rates are given in Table 5. As dependent variable we choose the

Table 5. Summary of EU-countries sample sizes, collected rates and auxiliary variables.

Min 1stQ Median Mean 3rdQ Max

Sample size 2.00 12.25 61.50 148.73 209.50 832.00
Collected rate 0.04 0.49 0.66 0.61 0.81 1.00
Total receipts from taxes
and social contributions

(% of GDP)
23.20 32.83 36.90 36.84 41.85 48.10

Final consumption expenditure
(Current prices, EUR per

capita)
5630 11710 17170 20424 29258 48140
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mean value of bonds in thousand of euros (TEUR) on a country level, resulting in D ¼ 22

domains. In 2017 the EU consisted of 28 member states. Six EU members are not included in

the HFCS as their noneuro area NCBs do not participate. These domains are considered as out-

of-sample (OOS) and model-based estimates are provided in the application. The direct

estimators of the mean value of bonds for each imputed data set û
Dir

d;m, d ¼ 1,..., 22, m ¼ 1,..., 5

are calculated according to Equation (13) using the sampling weights provided by the data

provider, which corrects for potential bias due the sampling design and unit nonresponse. The

variances s2
ed;m

are estimated with a bootstrap method following the instructions by HFCN

(2020a) using the provided replicate weights derived by the Rao-Wu rescaled bootstrap

method. As a result we obtain M ¼ 5 replicates of direct estimators and their variances, which

are then pooled according to Sections 3 and 4.

6.1. Model Selection and Validation

To obtain auxiliary information from additional sources needed for the Fay-Herriot

models, country-level data were collected from Eurostat, the statistical office of the EU

and the European Commission. Within this set, data such as real estate data,

unemployment rates, age dependency ratios, national accounts and tax aggregates from

2011 and 2017 were collected. The sources and years of this supplemental information are

shown in Table 6 in the Appendix (Subsection 8.2). Due to the small number of domains,

variables that were not available for the entire set of domains were excluded. The

remaining auxiliary information includes variables such as the old, youth and age

dependency ratio, the unemployment rate, the ratio of taxes to GDP, final consumption

expenditure, the share of consumption expenditure on GDP, GDP at market prices and a

variable indicating whether the country has a wealth tax. In addition, the number of

covariates in the model is severely limited by the small number of domains, which is why

we restricted the model to two possible auxiliary variables. In the context of area-level

data, Han (2013) transferred the conditional Akaike information in linear mixed models

from Vaida and Blanchard (2005) to a conditional Akaike information criterion for Fay-

Herriot models. Marhuenda et al. (2014) examine this criterion among Kullback

symmetric divergence criterion (KIC) and propose a bootstrap variant of the KIC (KICb2)

especially developed for FH models. They conclude that KICb2 criterion is one of the best

model selection criteria for Fay-Herriot models. Therefore, in this application the

preselection of variables was performed using the KICb2 criterion. Model selection was

carried out for each of the five imputed data sets, with no particular difference in the

results. A union of two auxiliary variables was selected for the final model, as shown in

Table 5. To obtain a model-based estimator of the mean value of household bonds, the

estimator from Subsection 4.1 is calculated with the auxiliary information in Table 5. The

model variances s2RR

v are calculated for the MI-adjusted Fay-Herriot model on the original

scale using the REML method. The distributional assumptions of the model presented in

Section 3 are checked by the Shapiro-Wilk test applied to the residuals and the random

effects. For the MI-adjusted Fay-Herriot model for a normal mean, the p-values of the tests

for the standardized residuals and the random effect are 0.223 and 0.965, respectively.

Therefore, the normality assumptions for both error terms cannot be rejected at a 5%

significance level. Consequently, all further considerations and results are based on the
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MI-adjusted Fay-Herriot model for a mean value as presented in Subsection 4.1. The

explanatory power of the model is assessed using the modified R 2 for Fay-Herriot models

according to Lahiri and Suntornchost (2015) and we obtain a value of 45%. Due to the low

number of domains, it is not possible to include more auxiliary variables to potentially

increase explanatory power. We obtain positive estimated regression coefficients for both

auxiliary variables. The impact on the tax-to-GDP ratio seems reasonable, given that tax

contributions include taxes on wealth (at least in some countries) and that high tax

revenues from income could indicate a high level of capital assets. The relationship

between consumption and wealth is not independent of income, because if income is

higher than consumption, the rest can be invested, and if consumption cannot be covered

by income, there is nothing left to invest. Nevertheless, with the given data, the model also

shows a positive effect for consumption.

6.2. Small Area Estimates

The estimates of the mean value of bonds on a country level are calculated using the

FH.MI estimator for a mean value and to estimate the MSE the MI adapted Prasad-Rao

estimator is applied as described in Subsection 4.1. To compare the model-based

estimators with a direct estimator, the direct estimators and their variance estimates are

computed for each imputed data set as described above and pooled using Rubin’s rule in

Equation (8) (Direct.RR). The point estimates of the model-based estimators (FH.MI)

should be consistent with the unbiased estimates of the direct estimator, but be more

precise. Figure 2 compares the direct and the model-based point estimates for the 22 in-

sample domains and additionally reports the estimates for the six OOS EU countries. Due

to the guidelines of the data provider, the direct estimates for domains with less than 25

observations are not reported. We observe that, for countries with large sample sizes, the

direct and model-based estimates are almost identical, consistent with the expectation that

high weight is given to the direct estimator when precision is high. An exception is

Belgium (BE), where the sample size is rather high, but the shrinkage to the mean quite

strong. For most of the direct estimates, which tend to be high, we see that the model-based

estimates are smaller, showing the shrinkage effect to the mean of the model-based

estimates. (see summary statistics of point estimates in Table 7 in the Appendix

(Subsection 8.2)). Possibly due to the low number of covariates very little shrinkage takes

place for some countries with small sample sizes (GR, SI, LI). The model-based point
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Fig. 2. Direct and model-based estimates for the mean value of bonds, own estimations. Domains are ordered

by increasing sample size, sample sizes in brackets. Direct estimates for domains with less than 25 observations

are not reported.
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estimators are furthermore reported in the map in Figure 3. The highest values are

estimated for Luxembourg (LU), followed by Denmark (DK) (OOS) and Sweden (SE)

(OOS). For eastern European countries, the estimates are rather low, followed by southern

European countries. The estimated model-based values range from EUR 3,000 to EUR

66,000 (cf. Table 7 in the Appendix (Subsection 8.2)), which seems plausible given the

median values reported by the HFCN (HFCN 2020b) between EUR 2,000 and EUR

25,000, considering that the distribution at the household level tends to be right skewed

and therefore the mean values should be higher than the median values. Figure 4 shows the

coefficients of variation (CV) for the direct and model-based estimates. We see that the

model-based estimator is at least as efficient as the direct estimator. The CVs of the model-

based estimators are mostly significantly smaller than those of the direct estimators, with

the effect decreasing with increasing sample size. For large sample sizes, the gain is barely

noticeable, but this is consistent with the expected behavior that the direct estimator is

sufficiently accurate in this case. For some domains, such as Croatia (HR) and Cyprus

(CY), the CV is almost halved. Due to the relatively small domain size of D ¼ 22 and

hence the limitation to the number of covariates in the model, the efficiency gain is limited.
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Fig. 3. Map of model-based FH.MI estimates for mean value of bonds, own estimations. Non-EU countries in

2017 are colored in white.
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A summary of the distribution of the point estimators and CVs from Figures 2 and 4 can be

found in Table 7 in the Appendix (Subsection 8.2).

7. Concluding Remarks

In this article, we derive small area indicators based on multiply imputed survey data and

present uncertainty measures for common cases that capture the additional uncertainty.

We present the transformed Fay-Herriot model calculated on each imputed data set. We

then combine the components into a MI adjusted Fay-Herriot model that retains the model

structure of the Fay-Herriot model. With this approach, results that exist for the Fay-

Herriot model regarding transformations, back-transformations and MSE estimators can

be extended. It is a general approach that can be applied to any indicator with a given

transformation and an appropriate back-transformation. We discuss common special cases

of the model (mean, log mean, arcsine ratio). For these special cases we propose MSE

estimators. For the mean and logarithmic mean, we present an analytical adaption of the

Prasad-Rao estimator and, for the arcsine ratio, we use a bootstrap estimator. We

demonstrate in simulation studies that the resulting FH.MI point estimators lead to valid

results in terms of bias and RMSE in the given settings and under different nonresponse

rates and that the proposed MSE estimators are able to capture the additional imputation

uncertainty and lead to good uncertainty measures. We carried out an application using the

proposed framework to obtain estimates for European household assets.

A limitation of the proposed approach is that it is not as straightforward for the user as it

would be if only the Fay-Herriot estimators were estimated for each imputed data set and

the mean value calculated. But, as mentioned above, it is not clear how the variance

pooling rules can be applied to the MSE. This could be part of further research.

To facilitate the application, it is planned to provide an R-package with the methodology

presented. Other open research questions are the extension from a cross-sectional to a

longitudinal analysis to provide stable estimates across panel waves (i.e., over time) when

multiple imputations are performed and sample sizes are small. If the underlying data

structure is a panel survey and individuals or households are observed over multiple time

periods, the Fay-Herriot model can be adapted to consider the correlation of the same

observations over time. To borrow strength for domain estimates, Rao and Yu (1994)

propose a model with auto-correlated random effects and assume an autoregressive

process of first order. In addition to the temporal Fay-Herriot models, a multivariate

approach could serve the requirement to consider the temporal dimension in the data.

10
20
30
40
50
60
70
80
90

100
110
120
130

LV

(2)

GR

(4)

HR

(6)

SI

(9)

LT

(11)

SK

(12)

EE

(13)

NL

(18)

CY

(21)

LU

(21)

PL

(45)

AT

(78)

BE

(85)

PT

(98)

ES

(111)

FI

(154)

MT

(228)

FR

(259)

DE

(323)

IE

(436)

HU

(506)

IT

(832)

C
V

 [
%

]

Direct.RR FH.MI

Fig. 4. CVs of direct and model-based estimates, own estimations. Domains are ordered by increasing sample

size, sample sizes in brackets.

Runge and Schmid: SAE with Multiply Imputed Survey Data 527



In the multivariate Fay-Herriot model (Benavent and Morales 2016) the domain indicators

are estimated simultaneously for the different panel waves. In this way, correlations for

both error terms can be considered. These models have not yet been investigated in

combination with multiple imputation. The approach in this article could be extended to

include correlations over time to ensure reliable estimates over time based on multiply

imputed survey data. Since asset values are usually highly skewed, more robust indicators

such as the median or other quantiles could be estimated instead of the mean. Therefore,

the estimation of small area medians using the Fay-Herriot model would be interesting for

future research.

8. Appendix

8.1. MSE Back-Transformation for a Log Mean

Let m ¼ exp(u) be the true indicator value and û be an estimate for u. Furthermore, m̂ is an

estimator for m with m̂ ¼ g(û), where g is a continuously differentiable function. For

gðûÞ ¼ exp{ûþ 0:5 dMSEMSEðûÞ}

an approximation of MSE(m̂) using a Taylor expansion can be derived as follows:

MSEðgðûÞÞ ¼ VarðgðûÞÞ þ Bias2ðgðûÞÞ

¼ E½gðûÞ2�2 E½gðûÞ�2 þ E½gðûÞ2 gðuÞ�2

< E½{gðuÞ þ g 0ðuÞðû 2 uÞ}2�2 E½{gðuÞ þ g 0ðuÞðû 2 uÞ}�2 þ E½g0ðuÞðû 2 uÞ�2

¼ g 0ðuÞ2{E½û2�2 E½û�2}þ g 0ðuÞ2E½û 2 u�2

¼ g 0ðuÞ2{VarðûÞ þ Bias2ðûÞ} ¼ g 0ðuÞ2MSEðûÞ:

A estimator of MSE(m̂) is then obtained by

dMSEMSEðm̂Þ ¼ dMSEMSEðgðûÞÞ ¼ g 0ðûÞ2 dMSEMSEðûÞ ¼ exp{ûþ 0:5 dMSEMSEðûÞg
2 dMSEMSEðûÞ}:
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8.2. Plots and Tables (Figure 5 and Tables 6–7)

Table 7. Summary of point estimators and CVs for mean value of bonds (TEUR).

Estimator Min 1stQ Median Mean 3rdQ Max

Direct.RR Point est. 2.5 19.6 36.2 41.6 49.0 165.5
FH.MI 3.1 16.4 27.3 28.6 40.0 66.2
Direct.RR CV [%] 8.3 19.3 32.8 41.9 51.7 125.0
FH.MI 8.3 18.8 27.3 31.5 35.3 87.8
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Fig. 5. Density of population target variable of one replication.

Table 6. Source and year of auxiliary information.

Year Source

Private households by type, tenure status
(Real estate)

2011 Eurostat (2011b)

Dwellings by occupancy status, type of
building (Real estate)

2011 Eurostat (2011a)

Age, Old, Young-age dependency ratios 2017 Eurostat (2017d)
Unemployment rate 2017 Eurostat (2017a)
Tax to GDP ratio 2017 Eurostat (2017c)
Final consumption expenditure 2017 Eurostat (2017b)
GDP at market prices 2017 Eurostat (2017b)
Share of consumption expenditure on GDP 2017 Eurostat (2017b)
Indicator for presence of wealth tax 2017 European Commission (2017)
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