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Introduction

To target resources and policies where they are most needed, it is essential that policy-makers

are provided with reliable socio-demographic indicators on sub-groups. These sub-groups can

be defined by regional divisions or by demographic characteristics and are referred to as areas

or domains. Information on these domains is usually obtained through surveys, often planned

at a higher level, such as the national level. As sample sizes at disaggregated levels may be-

come small or unavailable, estimates based on survey data alone may no longer be considered

reliable or may not be available. Increasing the sample size is time consuming and costly.

Small area estimation (SAE) methods aim to solve this problem and achieve higher precision.

SAE methods enrich information from survey data with data from additional sources and "bor-

row" strength from other domains (Rao and Molina, 2015; Tzavidis et al., 2018). This is done

by modeling and linking the survey data with administrative or register data and by using area-

specific structures. Auxiliary data are traditionally population data available at the micro or

aggregate level that can be used to estimate unit-level models (Battese et al., 1988; Molina and

Rao, 2010) or area-level models (Fay and Herriot, 1979). Due to strict privacy regulations, it

is often difficult to obtain these data at the micro level. Therefore, models based on aggregated

auxiliary information, such as the Fay-Herriot model and its extensions, are of great interest

for obtaining SAE estimators.

Despite the problem of small sample sizes at the disaggregated level, surveys often suffer from

high non-response. One possible solution to item non-response is multiple imputation (MI),

which replaces missing values with multiple plausible values. The missing values and their re-

placement introduce additional uncertainty into the estimate. Part I focuses on the Fay-Herriot

model, where the resulting estimator is a combination of a design-unbiased estimator based

only on the survey data (hereafter called the direct estimator) and a synthetic regression com-

ponent. Solutions are presented to account for the uncertainty introduced by missing values in

the SAE estimator using Rubin’s rules (Rubin, 1987). Since financial assets and wealth are sen-

sitive topics, surveys on this type of data suffer particularly from item non-response. Chapter

1 focuses on estimating private wealth at the regionally disaggregated level in Germany. Data

from the 2010 Household Finance and Consumption Survey (HFCS) (Household Finance and

Consumption Network, 2016b) are used for this application. In addition to the non-response

problem, income and wealth data are often right-skewed, requiring a transformation to fully

satisfy the normality assumptions of the model. Therefore, Chapter 1 presents a modified Fay-

Herriot approach that incorporates the uncertainty of missing values into the log-transformed

direct estimator of a mean. Chapter 2 complements Chapter 1 by presenting a framework that

extends the general class of transformed Fay-Herriot models to account for the additional un-
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Introduction

certainty due to MI by including it in the direct component and simultaneously in the regression

component of the Fay-Herriot estimator. In addition, the uncertainty due to missing values is

also included in the mean squared error estimator, which serves as the uncertainty measure.

The estimation of a mean, the use of the log transformation for skewed data, and the arcsine

transformation for proportions as target indicators are considered. The proposed framework is

evaluated for the three cases in a model-based simulation study. To illustrate the methodology,

2017 data from the HFCS (Household Finance and Consumption Network, 2020a) for Euro-

pean Union countries are used to estimate the average value of bonds at the national level. The

approaches presented in Chapters 1 and 2 contribute to the literature by providing solutions for

estimating SAE models in the presence of multiply imputed survey data. In particular, Chapter

2 presents a general approach that can be extended to other indicators.

To obtain the best possible SAE estimator in terms of accuracy and precision, it is important to

find the optimal model for the relationship between the target variable and the auxiliary data.

The notion of "optimal" can be multifaceted. One way to look at optimality is to find the best

transformation of the target variable to fully satisfy model assumptions or to account for non-

linearity. Another perspective is to identify the most important covariates and their relationship

to each other and to the target variable. Part II of this dissertation therefore brings together

research on optimal transformations and model selection in the context of SAE. Chapter 3 con-

siders both problems simultaneously for linear mixed models (LMM) and proposes a model

selection approach for LMM with data-driven transformations. In particular, the conditional

Akaike information criterion (Vaida and Blanchard, 2005) is adapted by introducing the Jaco-

bian into the criterion to allow comparison of models at different scales. The methodology is

evaluated in a simulation experiment comparing different transformations with different under-

lying true models. Since SAE models are LMMs, this methodology is applied to the unit-level

small-area method, the empirical best predictor (EBP) (Molina and Rao, 2010), in an applica-

tion with Mexican survey and census data (ENIGH - National Survey of Household Income and

Expenditure) and shows improvements in efficiency when the optimal (linear mixed) model and

the transformation parameters are found simultaneously. Chapter 3 bridges the gap between

model selection and optimal transformations to satisfy normality assumptions in unit-level SAE

models in particular and LMMs in general. Chapter 4 explores the problem of model selection

from a different perspective and for area-level data. To model interactions between auxiliary

variables and nonlinear relationships between them and the dependent variable, machine learn-

ing methods can be a versatile tool. For unit-level SAE models, mixed-effects random forests

(MERFs) (Hajjem et al., 2014; Krennmair and Schmid, 2022) provide a flexible solution to

account for interactions and nonlinear relationships, ensure robustness to outliers, and perform

implicit model selection. In Chapter 4, the idea of MERFs is transferred to area-level mod-

els and the linear regression synthetic part of the Fay-Herriot model is replaced by a random

forest (Breiman, 2001) to benefit from the above properties and to provide an alternative mod-

eling approach. Chapter 4 therefore contributes to the literature by proposing a first way to

combine area-level SAE models with random forests for mean estimation to allow for inter-

actions, nonlinear relationships, and implicit variable selection. Another advantage of random

forest is its non-extrapolation property, i.e. the range of predictions is limited by the lowest
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and highest observed values. This could help to avoid transformations at the area-level when

estimating indicators defined in a fixed range. The standard Fay-Herriot model was originally

developed to estimate a mean, and transformations are required when the indicator of interest

is, for example, a share or a Gini coefficient. This usually requires the development of appro-

priate back-transformations and MSE estimators. Chapter 5 presents a Fay-Herriot model for

estimating logit-transformed Gini coefficients with a bias-corrected back-transformation and a

bootstrap MSE estimator. A model-based simulation is performed to show the validity of the

methodology, and regionally disaggregated data from Germany (Socio-Economic Panel, 2019)

are used to illustrate the proposed approach. Chapter 5 contributes to the existing literature by

providing, from a frequentist perspective, an alternative to the Bayesian area-level model for

estimating Gini coefficients using a logit transformation (Fabrizi and Trivisano, 2016).

9
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Chapter 1

The Fay-Herriot model for multiply
imputed data with an application to
regional wealth estimation in Germany

This is the peer reviewed version of the following article: Kreutzmann, A.-K., Marek, P.,

Runge, M., Salvati, N. and Schmid, T. (2022) The Fay-Herriot model for multiply imputed data

with an application to regional wealth estimation in Germany, Journal of Applied Statistics,

49(13), pp. 3278-3299, which has been published in final form at https://doi.org/10

.1080/02664763.2021.1941805. Due to copyright requirements, this article has been

excluded and can be accessed at https://doi.org/10.1080/02664763.2021.19

41805.
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Chapter 2

Small area estimation with multiply
imputed survey data

This is the peer reviewed version of the following article: Runge, M. and Schmid, T. (2023)

Small area estimation with multiply imputed survey data, Journal of Official Statistics, 39(4),

pp. 507-533, which has been published in final form at https://doi.org/10.2478/

jos-2023-0024. The non-commercial use of the article will be governed by the Creative

Commons Attribution-NonCommercial-NoDerivs license as currently displayed on https:

//creativecommons.org/licenses/by-nc-nd/3.0.

2.1 Motivation

Financial reports based on asset data can provide insights into a wide range of issues of major

importance for political decisions and can help in the precise allocation of funds. In addition,

wealth data can give an overview of the distribution of assets and liabilities, which can be

highly relevant for financial stability and play a central role in assessing inequality. For this

reason, survey data on wealth are of particular importance. Since questions about assets and

income are sensitive issues, such surveys often suffer from high item non-response (Riphahn

and Serfling, 2005). For example, the Household Finance and Consumption Survey (HFCS)

reports for France item non-response rates of nearly 30% for value of saving accounts and

largest mortgage on household main residence and almost 80% for current value of household

main residence (Household Finance and Consumption Network, 2020a).

Listwise deletion, retaining only records with no items missing, leads to a loss of informa-

tion, and the remaining units in this dataset are not a good representation of the population,

which can lead to biased estimates. Missing values are a problem because the incomplete data

do not have the regular (matrix) form needed in almost any statistical method, and therefore

handling missing values is necessary. In the literature there are various approaches for deal-

ing with missing data in studies, such as in Rubin (1987) or Longford (2005). Van Buuren

(2018) gives an extended overview of approaches to handling and imputing of missing data.

Rubin (1976) formulated for the first time the concept of missing data mechanisms by using

the indicators of the missing values as random variables and posited a model for them. Meth-

ods for missing data are generally based on the assumption that the probability of the missing

39
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CHAPTER 2. SMALL AREA ESTIMATION WITH MULTIPLY IMPUTED DATA

data does not depend on the missing values after conditioning on the observed values (MAR).

To obtain valid statistical inferences, appropriate assumptions about the mechanism of missing

values must be made (Van Buuren, 2018). Two approaches to handling incomplete data are

single imputation, where each missing value is imputed once, and multiple imputation (MI),

where the missing values are replaced by a small number of plausible values. The advantage

of MI is that it reflects the uncertainty of missing data, which is then taken into account in the

estimation. There are several surveys of income and wealth data where MI is used, including

the Consumer Expenditure Survey, where the income variable is imputed five times (Fisher,

2006), and the HFCS, where also five imputations of the data sets are provided to the user

(Household Finance and Consumption Network, 2020a).

Of particular interest may be subpopulations of households, either regionally disaggregated

or socio-demographic such as households with particular composition (of ages, gender, labor

market status, or educational levels). Various political decisions or global events, such as the

financial crisis of 2007/2008 or the COVID-19 pandemic in 2020/2021, may affect these sub-

groups, usually referred to as areas or domains, to varying degrees. Some of these domains

may be represented by very few units in the sample and direct estimators (based only on these

subjects) result in a large variance. This issue may be solved by small area estimation (SAE)

methods. The model-based estimators used in SAE supplement information from other areas

and other data sources. Pfeffermann (2013), Rao and Molina (2015) and Jiang and Rao (2020)

give compact overviews and Tzavidis et al. (2018) propose a general framework for the pro-

duction of small area statistics. SAE methods can be distinguished in unit-level (e.g., Battese

et al., 1988) and area-level (Fay and Herriot, 1979) models. Unit-level models have the greater

information content, but can only be used when unit-level covariate data are available. In ad-

dition, area-level models are often used because they are better suited to account for complex

survey designs for point and variance estimates. Therefore, we focus on the Fay-Herriot model

in this paper. The Fay-Herriot model can be applied to transformed direct estimators to attain

normality of the error terms or to ensure that the resulting estimates are within an appropriate

range. Slud and Maiti (2006) and Chandra et al. (2017) study the log-transformed Fay-Herriot

model and Sugasawa and Kubokawa (2017) consider a general parametric transformation of

the response values. Schmid et al. (2017) use an arcsine transformation to estimate literacy

rates of Senegal and Casas-Cordero et al. (2016) to estimate poverty rates of Chile.

In the context of SAE, non-response rates in combination with small sample sizes could

have significant influence on the estimates especially with sensitive data such as income and

wealth data. The investigation of the integration of the imputation uncertainty into small area

estimators has received some attention. Among the publications are, for example, Longford

(2004), who uses a multiple hot-deck imputation method in the UK Labour Force Survey to

estimate unemployment rates using a small area multivariate shrinkage method. Longford

(2005) presents methods for dealing with incomplete data and making inferences using small

area estimation methods. An approach to modeling the non-missing at random mechanism in

SAE under informative sampling and non-response can be found in Sverchkov and Pfeffermann

(2018). Kreutzmann et al. (2019) and Bijlsma et al. (2020) use a Fay-Herriot model with pooled

direct estimators after multiple imputation and take into account the additional uncertainty due
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to the missing values in the sampling variance. However, both ignore the additional uncertainty

in the regression-synthetic part of the model. We extend this approach to address the latter

problem in addition to extending the methodology to ratios.

We present an approach in which we combine MI with the transformed Fay-Herriot model.

We take the multiply imputed values of the missing values as given by the data provider. To

account for the additional uncertainty from imputation, pooled components of the direct estima-

tor are used, as well as pooled components of the regression-synthetic part of the Fay-Herriot

model. In particular, the components (direct and regression-synthetic part) are combined for a

given transformation in such a way that the resulting MI adjusted model has the known structure

of Fay-Herriot models. This approach exploits the existing knowledge about transformations,

back-transformations and mean squared error (MSE) approximations of the transformed Fay-

Herriot model. We apply the general approach to three special cases relevant to practice and

additionally discuss MSE estimators for these special cases:

1. For the general Fay-Herriot model for a mean value, we adapt the Prasad-Rao MSE

estimator (Prasad and Rao, 1990) to account for the uncertainty owing to missing values.

2. If the distribution of the target indicator is right-skewed, a log transformation can be

used. For this case, we use the adapted Prasad-Rao MSE estimator and apply a back-

transformation similar to that presented in Rao and Molina (2015).

3. For the Fay-Herriot model for a ratio with an arcsine transformation, we use insights

from Hadam et al. (2020) for the back-transformation of the point estimator, as well

as for a parametric bootstrap MSE estimator that can reflect the uncertainty due to the

missing values.

The validity of the presented point estimators is demonstrated for the three cases outlined above

in a simulation study. It is also shown that the additional uncertainty caused by the missing

values is accounted for by the proposed MSE estimators.

The paper is structured as follows. Sections 2.2, 2.3, and 2.4 describe the statistical method-

ology. In Section 2.2, the transformed Fay-Herriot model is presented, which serves as the basis

for the combination with MI. Section 3 describes how the direct and regression-synthetic com-

ponents of the transformed Fay-Herriot model are combined after MI, which leads to a MI

adjusted Fay-Herriot model. In Section 2.4, we consider three common special cases of the

model from Section 2.3 and present associated uncertainty measures. The proposed method-

ology is evaluated in simulation experiments in Section 2.5 and then applied to HFCS data in

Section 2.6. Section 2.7 summarizes the main findings, discusses limitations of the approach

and outlines further research potential.

2.2 Transformed Fay-Herriot model

In the following the transformed Fay-Herriot model is introduced, where the transformation is

described by a known function h. Let N be the size of a finite population which is partitioned

into d = 1, ..., D domains and n the sample size with i = 1, ..., nd units per domain so that

n =
∑D

d=1 nd. The Fay-Herriot model involves in the first stage a sampling model in which it
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is supposed that the direct estimator consists of the true domain-specific population indicator

θd and a sampling error ed:

θ̂Dir
d = θd + ed, ed

ind∼ N
(
0, σ2

ed

)
.

It is assumed that the sampling errors ed are independently normally distributed with known

variance σ2
ed

. Although the sampling variances σ2
ed

are assumed to be known, in practice they

are estimated by unit-level data (Rivest and Vandal (2002), Wang and Fuller (2003), You and

Chapman (2006)). Another unit-level approach to address the problem of unknown sampling

variances is proposed by Maiti et al. (2014) and Sugasawa et al. (2017) by shrinking and simul-

taneous modeling of small area means and variances. When the indicator of interest is a mean

value, a domain specific direct estimator is the weighted average of the sampled values:

θ̂Dir
d =

∑nd
i=1widyid∑nd
i=1wid

.

The incorporation of sampling weights wid makes the point estimator design unbiased. Note

that the population and the outcomes yid are assumed to be fixed, and the sampling mechanism

is the only source of uncertainty. The sampling weights reflect a complex design in the estima-

tion of the associated variance. The second stage of the Fay-Herriot model is a linking model,

which links covariate information to the population indicator. xd is a p × 1 vector with area-

level population covariates and β is the corresponding p×1 vector with regression coefficients.

vd are normally distributed domain specific random effects:

θd = xTd β + vd, vd
iid∼ N

(
0, σ2

v

)
. (2.1)

Combining the sampling and the linking model results in:

θ̂Dir
d = xTd β + vd + ed, vd

iid∼ N
(
0, σ2

v

)
, ed

ind∼ N
(
0, σ2

ed

)
. (2.2)

If a smooth and monotone transformation function h is applied to the direct estimator, θ̂Dir
d

is replaced by θ̂Dir∗
d := h

(
θ̂Dir
d

)
in Equation (2.2) and we want to predict h−1(θd). The

transformed Fay-Herriot model is then defined, for example, as in Sugasawa and Kubokawa

(2017):

h
(
θ̂Dir
d

)
= xTd β + vd + ed, vd

iid∼ N
(
0, σ2

v

)
, ed

ind∼ N
(
0, σ2∗

ed

)
. (2.3)

In the following, ∗ always refers to the transformed scale of the direct estimator, its variance and

the Fay-Herriot estimator presented at the end of this section. The model parameters, the model

variance σ2
v and the regression coefficients β are not known and must be estimated. There

are various methods to obtain estimates of σ2
v , for example, restricted maximum likelihood

(REML), maximum likelihood (ML) and the FH method-of-moments. More details on the

estimation methods of the model variance can be found in Chapter 6 in Rao and Molina (2015).

A drawback of ML is that it does not account for the loss in degrees of freedom arising from

the estimation of the regression coefficients β (Rao and Molina, 2015). Therefore, we use in
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this paper the REML method. The regression coefficients β and the random effects vd are

estimated by:

β̂ = β̂
(
σ̂2
v

)
=

(
D∑

d=1

xdx
T
d

σ2∗
ed

+ σ̂2
v

)−1( D∑
d=1

xdθ̂
Dir∗
d

σ2∗
ed

+ σ̂2
v

)
, (2.4)

v̂d =
σ̂2
v

σ2∗
ed

+ σ̂2
v

(
θ̂Dir∗
d − xTd β̂

)
. (2.5)

Plugging those predictors into Equation (2.1) leads to the empirical best linear unbiased pre-

dictor (EBLUP), i.e. the transformed Fay-Herriot estimator:

θ̂FH∗
d = xTd β̂ + v̂d. (2.6)

This estimator can be expressed as a convex combination of the direct estimator and the

regression-synthetic component, resulting in an optimal combination of the two components.

If the variance of the direct estimator is large, more weight is given to the synthetic component,

and vice versa:

θ̂FH∗
d = γ̂dθ̂

Dir∗
d + (1− γ̂d)x

T
d β̂ with γ̂d =

σ̂2
v

σ2∗
ed

+ σ̂2
v

. (2.7)

At this point θ̂FH∗
d is still on the transformed scale and has to be transformed to the original

scale to obtain θ̂FH
d .

2.3 Combining transformed Fay-Herriot models after multiple im-
putation

An often applied technique to handle missing values is MI, where the missing values are re-

placed by several plausible values. To obtain these values, an imputation model is required. It

is not sufficient to generate only one imputation, since the imputation is treated as if it were

true, and the uncertainties arising from the non-response are ignored. On the contrary, a large

number of imputations is usually not necessary, and M between 5 and 20 is sufficient, but it

may be advantageous to choose a higher value (20 - 100) if the non-response is high and there

is a large uncertainty about the estimand (Van Buuren, 2018). The procedure for MI involves

two steps: the imputation step and the analysis step. In the former, the imputer, usually the data

provider, generates the M replicate completions of the survey data using a suitable imputation

model and provides them to the analyst. In the second step, the analyst applies a statistical

model suitable for the complete data separately to each imputed data set. The focus of this

paper is on the latter. If θ is the indicator of interest and θ̂ its estimator, the analysis model

is calculated with each imputed data set, so we obtain θ̂m and V̂ar
(
θ̂m

)
for m = 1, ...,M .

The results are then combined with the application of pooling rules developed by Rubin (1987)

for point estimates and their variances, which include the additional variability and uncertainty

induced by the missing data. Rubin’s rules (RR) are defined as follows. The pooled estimator
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of θ is the mean value of the M estimators:

θ̂RR =
1

M

M∑
m=1

θ̂m. (2.8)

The variance of the pooled estimator σ̂2RR
is composed by the mean value of the individ-

ual variances of each estimator (within-variance) and the variance between the M estimates

(between-variance) with an correction due to the finite sample size:

σ̂2RR
= V̂ar

(
θ̂RR

)
=

1

M

M∑
m=1

V̂ar
(
θ̂m

)
+

M + 1

M

1

M − 1

M∑
m=1

(
θ̂m − θ̂RR

)2
. (2.9)

In the next sections, we describe how the combining rules are applied to the components of the

transformed Fay-Herriot model from Section 2.2.

2.3.1 Component pooling

With the M multiply imputed sampling values yid,m of each unit i = 1, ..., nd and domains

d = 1, ..., D, the transformed direct estimators θ̂Dir∗
d,m = h

(
θ̂Dir
d,m

)
of the target indicator and

their corresponding sample variances σ2∗
ed,m

are calculated for each domain d = 1, ...., D and

m = 1, ...,M . Rubin’s rules are based on asymptotic theory, and the resulting combined esti-

mate is more accurate if the distribution of the indicator of interest is better approximated by

the normal distribution (Rubin, 1987). Van Buuren (2018) states that to promote approximate

normality, target indicators can be transformed, then pooled and back-transformed. Therefore,

the M direct estimators θ̂Dir∗
d,m and their variances σ2∗

ed,m
are pooled on the transformed scale

and substituted in Equations (2.8) and (2.9). Kreutzmann et al. (2019) present a Fay-Herriot

estimator which uses pooled direct components on the original scale, which are substituted in

the (log transformed) Fay-Herriot model. We extend this approach and transform the direct

components of each imputed data set to estimate the regression-synthetic components. This al-

lows the uncertainty of the missing values to be included not only in the direct components, but

also in those of the linking model. The model components of the linking model are estimated

for each imputed data set. The estimated variances of the random effects v̂d,m are combined

according to Rubin’s rule:

W =
1

M

M∑
m=1

σ̂2
vm and Bd =

M + 1

M

1

M − 1

M∑
m=1

(
v̂d,m − 1

M

M∑
m=1

v̂d,m

)2

. (2.10)

The mean squared distance of the random effects of the domains of the M imputed data sets

and the pooled random effects per domain is different between the areas. In order to guarantee

that the random effects have a common variance, further pooling has to be applied. Therefore,

the mean value of the between variance is taken. Together with Equation (2.10) this leads to

the pooled model variance:

σ̂2RR

v = W +
1

D

D∑
d=1

Bd. (2.11)
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The pooled model variance σ̂2RR

v and the pooled direct components are now used to obtain

MI adjusted estimates of the regression coefficients and random effects. σ̂2RR

v , σ̂2RR∗
ed

and

θ̂Dir.RR∗
d are inserted into Equation (2.4) to obtain the MI adjusted regression coefficients β̂

and then together into Equation (2.5) to obtain the MI adjusted random effects v̂d.

2.3.2 MI adjusted Fay-Herriot model

The pooled direct components together with the pooled and MI adjusted regression-synthetic

parts of the model lead to the MI adjusted Fay-Herriot model, which preserves the structure

of the transformed Fay-Herriot model. The area-level population auxiliary information xd, ob-

tained from external sources, such as the census, is fixed and complete as in Equation (2.1).

The model can be written analogously to Equation (2.3) with pooled direct components and

the pooled model variance. Using the estimators of unknown model parameters as elaborated

in Section 2.3.1 leads to the proposed FH.MI estimator θ̂FH.MI∗
d , which can be written analo-

gously to Equation (2.7) with θ̂Dir.RR∗
d , σ̂2RR∗

ed
and σ̂2RR

v plugged in:

θ̂FH.MI∗
d = γ̂dθ̂

Dir.RR∗
d + (1− γ̂d)x

T
d β̂ with γ̂d =

σ̂2RR

v

σ̂2RR∗
ed

+ σ̂2RR

v

. (2.12)

The presented θ̂FH.MI∗
d estimator preserves the representations of the Fay-Herriot estimator.

As θ̂FH.MI∗
d is on the transformed scale, a suitable back transformation depending on h has to

be applied to obtain θ̂FH.MI
d .

Small area estimators with multiply imputed data can be derived in two ways: 1. Fit the Fay-

Herriot model to each of the M imputed data sets and combine the Fay-Herriot estimators

with Rubin’s rule. 2. Estimate the direct and the regression synthetic components M times

and combine them using Rubin’s rules as described in Section 2.3.1 and then estimate the

shrinkage estimator in Equation (2.12). The advantage of the first approach is that it is simple.

However, it loses the structure of the Fay-Herriot model and the representation of the estimator

as a weighted combination of the direct and regression synthetic components. In addition, it is

unclear how the uncertainty of the M Fay-Herriot estimators is combined, since Rubin’s rule

is commonly used for variances and it is unclear how this rule can be applied to the MSE. The

advantage of the second (the proposed) approach and the resulting FH.MI estimator is that the

model structure of the Fay-Herriot model is preserved, the interpretability of the components

is maintained, and the existing knowledge about MSE estimators is directly transferable and

extensible. The estimator of the first approach is used as a benchmark in the model-based

simulation study in Section 2.5 and is denoted by FH.RR.

2.4 MI adjusted Fay-Herriot estimators with uncertainty measures

In the following sections, we focus on three special cases of the transformed MI adjusted Fay-

Herriot estimator (2.12). For each case we specify the FH.MI point estimator and an associated

MSE estimator.
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2.4.1 Estimator for a mean

The (population) mean of a quantity of interest for domain d is estimated by the weighted

sample average per imputed data set m:

θ̂Dir
d,m =

∑nd
i=1widyid,m∑nd

i=1wid
for d = 1, .., D and m = 1, ...,M. (2.13)

If no transformation is required for the direct estimator, θ̂FH.MI∗
d is on the original scale such

that θ̂FH.MI
d = θ̂FH.MI∗

d . With the pooled and MI adjusted estimators presented in Section 2.3,

the FH.MI estimator θ̂FH.MI
d can be calculated according to Equation (2.12). As a measure of

uncertainty which captures the additional uncertainty due to multiple imputation, we adapt the

MSE estimator of Prasad and Rao (1990) in the following. The second-order approximation of

the MSE of θ̂FH
d is given by:

MSE
(
θ̂FH
d

)
≈ g1d

(
σ2
v

)
+ g2d

(
σ2
v

)
+ g3d

(
σ2
v

)
.

The first component g1d is based on the prediction of the random effects and g2d reflects the

variability arising from the estimation of the regression coefficients. g1d and g2d are indepen-

dent of the estimation method of the model variance σ2
v , whereas, g3d reflects the uncertainty

caused by the estimation of σ2
v and depends on the estimation method through its asymptotic

variance V̄
(
σ̂2
v

)
(as D → ∞) (see e.g., Rao and Molina (2015)). According to Prasad and Rao

(1990) a second-order unbiased estimator of MSE
(
θ̂FH
d

)
is:

M̂SE
(
θ̂FH
d

)
= g1d

(
σ̂2
v

)
+ g2d

(
σ̂2
v

)
+ 2g3d

(
σ̂2
v

)
.

The components of the Prasad-Rao estimator using REML are defined as follows:

g1d
(
σ̂2
v

)
= γ̂2dσ

2
ed
, (2.14)

g2d
(
σ̂2
v

)
= (1− γ̂d)

2 xTd

{
D∑

d=1

xdx
T
d

σ2
ed

+ σ̂2
v

}−1

xd, (2.15)

g3d
(
σ̂2
v

)
=
(
σ2
ed

)2 (
σ2
ed

+ σ̂2
v

)−3
V̄
(
σ̂2
v

)
, (2.16)

V̄
(
σ̂2
v

)
= 2

{
D∑

d=1

1(
σ2
ed

+ σ̂2
v

)2
}−1

.

In the same way as in Section 2.3.1, where we obtain M estimates of the model variance, i.e.,

σ̂2
vm for m = 1, ...,M , we obtain M corresponding asymptotic (D → ∞) variances V̄m

(
σ̂2
vm

)
for m = 1, ...,M . To adjust the MSE estimator for this additional uncertainty, the asymptotic
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variances are pooled with Rubin’s rule for variances (2.9):

V̄ RR
(
σ̂2RR

v

)
=

1

M

M∑
m=1

V̄m

(
σ̂2
vm

)
+

M + 1

M

1

M − 1

M∑
m=1

(
σ̂2
vm − σ̂2RR

v

)2

with V̄
(
σ̂2
vm

)
= 2


D∑

d=1

1(
σ2
ed,m

+ σ̂2
vm

)2


−1

for m = 1, ...,M.

(2.17)

Using σ̂2RR

v and σ2RR

ed
in (2.14), (2.15), and (2.16) together with the pooled asymptotic vari-

ance (2.17) takes into account the uncertainty about the missing values. Note that instead of

plugging the pooled variance terms into the asymptotic variance formula, the pooled asymp-

totic variance V̄ RR
(
σ̂2RR

v

)
is used, introducing an additional term into the estimator due to

the between-variation. This leads to the proposed MSE estimator for θ̂FH.MI
d , which captures

the uncertainty due to missing values:

M̂SE
(
θ̂FH.MI
d

)
= g1d

(
σ̂2RR

v

)
+ g2d

(
σ̂2RR

v

)
+ 2

(
σ2RR

ed

)2 (
σ2RR

ed
+ σ̂2RR

v

)−3
V̄ RR

(
σ̂2RR

v

)
. (2.18)

2.4.2 Estimator for a log mean

Domain specific mean values of income and wealth data are often skewed to the right, or the

relationship with the auxiliary information may be non-linear. In such a case, the linear Fay-

Herriot model (Section 2.4.1) may be more appropriate for the log-transformed direct estimator.

Using the direct estimator from Equation (2.13) and h : z 7→ log (z) the direct components of

the model for the M imputed data sets are:

θ̂Dir∗
d,m = log

(
θ̂Dir
d,m

)
with variances σ2∗

ed,m
≈
(
θ̂Dir
d,m

)−2
σ2
ed,m

for d = 1, .., D, m = 1, ...,M.

Using a Taylor expansion for moments, the sample variance, i.e., the variance of the direct

estimator, can be moved to the logarithmic scale. Although this is an approximation for large

samples, it is used in SAE as in Neves et al. (2013). Council (2000) use the same approxi-

mation with a minor modification based on the properties of the log-normal distribution, while

noting that the results do not differ considerably. Calculating the direct and the regression-

synthetic components as described in Section 2.3.1 with h : z 7→ log (z) and together with

Equation (2.12) leads to the Fay-Herriot-MI estimator θ̂FH.MI∗
d , which is still on the log-scale.

The estimates can be transformed back to the original scale by several methods. Slud and

Maiti (2006) present a bias-correction under a log-transformed Fay-Herriot model and propose

a corresponding estimator for the MSE. Chandra et al. (2017) extend this estimator by an addi-

tional bias correction that accounts for the sampling variation of the estimator. These methods

can be applied only to observed/sampled areas. We apply a method that is suitable even for

domains/areas with no observations. To obtain the point estimator on the original scale, proper-
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ties of the log-normal distribution are used and the back-transformation for the MSE estimator

is based on a Taylor expansion similar to that presented in Rao and Molina (2015). A short

derivation can be found in the Appendix. The back-transformation is defined as follows :

θ̂FH.MI
d = exp

{
θ̂FH.MI∗
d + 0.5M̂SE

(
θ̂FH.MI∗
d

)}
,

M̂SE
(
θ̂FH.MI
d

)
= exp

{
θ̂FH.MI∗
d + 0.5M̂SE

(
θ̂FH.MI∗
d

)}2
M̂SE

(
θ̂FH.MI∗
d

)
.

M̂SE
(
θ̂FH.MI∗
d

)
denotes at this point the adapted Prasad-Rao MSE estimator defined in Equa-

tion (2.18).

2.4.3 Estimator for an arcsine ratio

The Fay-Herriot model is widely used for estimating poverty or literacy rates with high regional

resolution. In order to guarantee that the estimated rates are between 0 and 1 suitable trans-

formations are frequently used. The arcsine transformation h : z 7→ sin−1 (
√
z), of which the

inverse maps its values to [0, 1], is commonly used. Schmid et al. (2017) compared in a design-

based simulation the arcsine transformation with an estimator based on a normal-logistic dis-

tribution. Both estimators provided very similar results regarding bias and root mean squared

error (RMSE). We concentrate on the arcsine transformation because, unlike the logit, it is

well defined even at zero and unity. The arcsine transformation is applied to the direct ratio

estimators of the M imputed data sets:

θ̂Dir∗
d,m = sin−1

(√
θ̂Dir
d,m

)
with variances σ2∗

ed,m
= σ2∗

ed
=

1

4ñd
for m = 1, ..,M.

The effective sample size of domain d is denoted by ñd, which takes into account the sampling

design effect (Jiang et al., 2001). The approximation of the sampling error variance on the

transformed scale is based on a Taylor expansion for moments like in Jiang et al. (2001). The

combined point estimator θ̂Dir.RR∗
d and its variance σ̂2RR∗

ed
are calculated by applying Rubin’s

rules presented in Equations (2.8) and (2.9). The components of the regression-synthetic part of

the model are calculated as described in Section 2.3.1 with the pooled direct components on the

transformed scale. Afterwards θ̂FH.MI∗
d can be calculated as in Equation (2.12). The resulting

estimator θ̂FH.MI∗
d is on a sin−1

(√)-scale and needs to be transferred to the original scale. A

naive back-transformation is the inverse h−1, which introduces a bias for non-linear h. For this

reason, for common transformations bias-corrected back-transformations are proposed, such as

in Hadam et al. (2020) for the arcsine transformation which is a special case of Sugasawa and

Kubokawa (2017), who present an asymptotically unbiased back-transformation for a general

parametric transformation. We apply the bias-corrected back-transformation following Hadam

et al. (2020), using the normal distribution of the transformed estimator and the expected value
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(E) of a transformed variable:

θ̂FH.MI
d = E

[
sin2

(
θ̂FH.MI∗
d

)]
=

∫ ∞

−∞
sin2 (t) fθ̂FH.MI∗

d
(t) dt

=

∫ ∞

−∞
sin2 (t)

1√
2π

σ̂2RR
v σ2RR∗

ed

σ̂2RR
v +σ2RR∗

ed

exp

−

(
t− θ̂FH.MI∗

d

)2
2

σ̂2RR
v σ2RR∗

ed

σ̂2RR
v +σ2RR∗

ed

 dt.
(2.19)

The integral in Equation (2.19) must be solved by numerical integration methods. The MSE

of θ̂FH.MI
d is approximated with a parametric bootstrap procedure analogue to Hadam et al.

(2020) based on Gonzalez-Manteiga et al. (2008b). The bootstrap procedure comprises the

following steps:

1. Estimate the regression-synthetic components β̂ and σ̂2RR

v analogously to Section 2.3.1

using the pooled direct components θ̂Dir.RR∗
d and σ̂2RR∗

ed
on the arcsine scale.

2. For b = 1, ..., B

(a) Generate sampling errors e(b)d
ind∼ N

(
0, σ̂2RR∗

ed

)
and random effects v(b)d

iid∼ N
(
0, σ̂2RR

v

)
.

(b) Simulate a bootstrap sample θ̂
Dir∗(b)
d = xTd β̂ + v

(b)
d + e

(b)
d .

(c) Calculate the true bootstrap population indicator θ∗(b)d = xTd β̂ + v
(b)
d on the trans-

formed scale and back-transform with θ
(b)
d = sin2

(
θ
∗(b)
d

)
.

(d) Calculate the bootstrap estimator of the model variance σ̂
2(b)
v using θ̂

Dir∗(b)
d and

σ̂2RR∗
ed

.

(e) Using σ̂
2(b)
v and θ̂

Dir∗(b)
d , calculate bootstrap estimators of the regression coeffi-

cients β̂(b) and estimate the random effects v̂(b)d .

(f) Determine the bootstrap estimator θ̂FH.MI∗(b)
d with Equation (2.12) by using the

estimates from the step before and back-transform to the original scale applying

(2.19) to obtain θ̂
FH.MI(b)
d .

3. Estimate the MSE:

M̂SE(θ̂FH.MI
d ) =

1

B

B∑
b=1

(
θ̂
FH.MI(b)
d − θ

(b)
d

)2
.

The pooled sampling and model variances, which account for the additional uncertainty about

the missing values, are used in the initialization of the bootstrap method. Hence, the extra

uncertainty induced by the missing data is accounted for by the bootstrap MSE estimator.

2.5 Simulation study

In this section, we investigate the behaviour of the estimators proposed in Sections 2.3 and

2.4 by simulation studies with suitable data models. The population is repeatedly generated

49



CHAPTER 2. SMALL AREA ESTIMATION WITH MULTIPLY IMPUTED DATA

according to an underlying model. With each simulation run, a sample is taken from the gener-

ated population, to which the methods are then applied. We evaluate the performance in terms

of bias and RMSE of the proposed point estimators and the inflation of RMSE arising from MI.

2.5.1 Data generation

The simulation setup and data models are chosen to be consistent with those of Kreutzmann

et al. (2019). For the simulations, finite populations of size N = 60, 000 with D = 100

domains are generated so that in each domain the population size Nd is between 200 and 1000

for d = 1, ..., D. The samples were drawn via stratified random sampling, where the strata

represent the domains. To have rather small and large domains in the samples, sample sizes

nd lie within a range of 8 and 145, so that the total sample size is n = 5961. To apply

the transformations discussed in the special cases in Section 2.4, appropriate data models are

chosen. In the standard case, a normal data model is used, where no transformation to the

direct estimator of a mean value is necessary. Right-skewed log-normal data is generated when

investigating the proposed method with a log transformation like in Section 2.4.2. In many

applications, the indicator of interest is a ratio. In order to construct a ratio that is used in real

data applications, a wealth ratio is calculated. In publications of the Federal Statistical Office

(see e.g., Destatis (2018)) it is derived by taking the percentage of households with a household

income above the 200% median household income. As data model for the ratio the log-scale

data is also used. The unit-level data models and scenarios are described in detail in Table 2.1.

The shapes of the distribution for one selected population can be found in Figure B.1 in the

Appendix. With a sample at the unit-level, the missing data is generated. As mentioned in

Table 2.1: Overview of unit-level data models in model-based simulation, i = 1, ..., N, d =
1, ..., D.

Setting yid xid µd vd eid

mean 250000− 400xid + vd + eid N(µd; 150
2) U [−150, 150] N(0, 250002) N(0, 500002)

log mean exp(15− xid + vd + eid) N(µd; 1) U [3, 5] N(0, 0.42) N(0, 0.62)
ratio exp(15− xid + vd + eid) N(µd; 1) U [3, 5] N(0, 0.42) N(0, 0.62)

Section 2.1, MAR is often plausible and assumed in most programs for handling missing data.

Therefore, in the simulation, missing values are generated using the fully observed additional

variable x, from the data models in Table 2.1. The MAR mechanism is implemented as follows:

yid =

{
ymissing, xid ≤ xq

yid, otherwise.
(2.20)

xq is the q-quantile of the auxiliary information x from the sample. This results in a non-

response rate of q · 100% by definition of the q-quantile. For the selected data models, the

implemented MAR mechanism leads to missing values in the upper ends of the distribution.

When it comes to sensible data as wealth related data, item non-response rates can be very

high. For example, the Household Finance and Consumption Network (HFCN) reports for

2017 (Household Finance and Consumption Network, 2020a) non-response rates for the value

of savings account between 18% in Belgium and 64% in Finland. Therefore, it is reasonable
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to investigate the proposed methods under varying q ∈ {0.1, 0.3, 0.5} to obtain non-response

rates of 10%, 30% and 50%. A two-level normal model is used as an imputation model for the

missing yid values, which is implemented in the R-package mice (Van Buuren and Groothius-

Oudshoorn, 2011). The x serve as covariate information and vd as area-specific random effects,

so that the clustering is incorporated in the imputation model. According to Van Buuren (2018),

between five and 20 imputed values are often sufficient for each missing observation. The

HFCN delivers five imputed values per missing observation, hence in the simulation we set

M = 5. In the log-scale setting the data was log transformed prior to the imputation to achieve

normality and back transformed with the inverse afterwards. After imputation, the data is still

on a unit-level and has to be aggregated on an area-level according to the indicator of interest of

the setting. Then the appropriate FH.MI estimators given in Section 2.3 with the special cases

in Section 2.4 are calculated. Table 2.2 provides an overview showing for each setting the

direct estimator, the transformation used, and the section of the corresponding FH.MI model

for the special case. In Table 2.2, I denotes an indicator function that is 1 if the condition is

true and 0 otherwise; Ỹ denotes the population median of y.

Table 2.2: Overview of settings.

Setting θ̂Dir
d h

(
θ̂Dir
d

)
FH.MI model

mean 1
nd

∑nd
i=1 yid θ̂Dir

d 2.4.1

log mean 1
nd

∑nd
i=1 yid log

(
θ̂Dir
d

)
2.4.2

ratio 1
nd

∑nd
i=1 I

(
yid > 2 · Ỹ

)
sin−1

(√
θ̂Dir
d

)
2.4.3

Each setting, including the generation of the population according to the data model, the

sampling, the missing data generating process, the multiple imputation and the application of

the MI adjusted FH estimators is repeated R = 500 times. The steps of the simulation can be

summarized as follows: We generate the population according to a data model in Table 2.1.

Next a stratified random sample is selected. Then missing values are generated according to

Equation (2.20) and imputed to create M copies of the data. Using the M data sets the direct

estimators are calculated according to Table 2.2 and xid are aggregated to a domain level by

taking the mean per domain. Afterwards the indicator of interest and its MSE are estimated by

applying the methods described in Sections 2.3 and 2.4.

2.5.2 Performance of point estimators

In the simulation we assess the performance of six point estimators in the mean and log mean

setting and five in the ratio setting. For each setting direct, (Direct) and Fay-Herriot (FH) es-

timators are calculated before deletion on the aggregated sample, that is, the steps of deleting

and imputing are omitted. In the case of the FH estimator, the transformation corresponding to

the setting is applied so that the Fay-Herriot estimator introduced in Section 2.2 is calculated.

The FH estimator before deletion serves as the gold standard in this simulation. In addition, we

compare the performance of the proposed FH.MI estimators with the pooled Fay-Herriot esti-

mator (FH.RR) mentioned in Section 2.3 and with the estimator proposed by Kreutzmann et al.
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(2019) denoted by FH.DirectRR. They consider the estimator under a normal and log-normal

setting for a mean value, and so we also examine this estimator only under these settings. Fur-

thermore, with Rubin’s rule combined direct estimators (Direct.RR) are calculated to show the

efficiency gain of the Fay-Herriot estimators with good covariate information after MI. All es-

timators are implemented in the statistical programming language R (R Core Team, 2022) and

for the standard area-level models and its components the package emdi (Kreutzmann et al.,

2019) was used. The code can be obtained from the authors on request. To evaluate and com-

pare the performance of the estimators, the following quality measures are calculated using the

R Monte-Carlo replications. θ̂dr denotes the estimator of the target indicator in domain d and

replication r, θdr is the true value of the indicator:

Bias(θ̂d) =
1

R

R∑
r=1

(
θ̂dr − θdr

)
, rel. Bias(θ̂d) =

1

R

R∑
r=1

(
θ̂dr − θdr

θdr

)
,

RMSE(θ̂d) =

√√√√ 1

R

R∑
r=1

(
θ̂dr − θdr

)2
, RRMSE(θ̂d) =

√√√√ 1

R

R∑
r=1

(
θ̂dr − θdr

θdr

)2

.

(2.21)

We want to evaluate the performance of the introduced methodology in terms of bias and

RMSE. For the mean and log mean setting we consider the relative bias and the RRMSE. For

the ratio setting the bias and RMSE are taken into account since the indicator itself is already

on a relative scale. The median and mean values over domains of the bias and RMSE values

for different non-response rates are presented in Table 2.3. The direct estimators (Direct.RR)

remain unbiased after multiple imputation in the mean and ratio setting as before deletion (Di-

rect) and almost unbiased in the log mean setting. The small bias could be introduced by the

inverse back-transformation after applying the imputation model. Compared to the combined

direct estimators (Direct.RR) and the model-based estimators before deletion (FH), the model-

based estimators FH.MI, FH.RR and FH.DirectRR remain also unbiased in the mean and ratio

setting and the results of the model-based estimators are comparable. Only in the log mean set-

ting does the FH.MI estimator, like the other two model-based estimators, suffer from a small

bias that increases slightly with higher non-response rates. Again this bias could be due to the

inverse back-transformation in the imputation process. In terms of efficiency, we see that the

RRMSE/RMSE are the smallest before deletion and increase with higher non-response rates

for each estimator in each setting, reflecting the additional uncertainty about missing values.

Within each setting and non-response rate the order of the RRMSE/RMSE is as expected: the

RRMSE/RMSE of the direct estimators is always higher than that of the proposed FH.MI esti-

mator, which shows that the introduced methodology behaves the same way as in cases without

missing values (i.e., before deletion). The RRMSE/RMSE of the FH.MI and the FH.RR are

almost identical, which indicates that the proposed methodology leads to reasonable results and

is similar to the more straightforward approach of combining the Fay-Herriot estimators. The

proposed FH.MI estimator is at least as efficient as the FH.DirectRR estimator. In the log mean

setting, the superefficiency of imputation, when more information is used than in the analysis

model (Rubin, 1996), can be observed. At a non-response rate of 10%, Direct.RR is slightly

more efficient than the direct estimator before deletion (Direct). All summed up, the results
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confirm our expectations. The presented FH.MI estimators lead to plausible results regarding

bias and efficiency in the investigated settings, in which the imputation models follow the data

structure of the generated population and thus fit the data.

2.5.3 Performance of uncertainty measures

We now move on to the performance of the three proposed MSE estimators of the FH.MI

estimator, each corresponding to one setting. In the case of the mean and log mean setting,

we evaluate the adapted analytical Prasad-Rao estimator as described in Sections 2.4.1 and

2.4.2 with a back-transformation when the log transformation is used. In the ratio setting the

parametric bootstrap estimator from Section 2.4.3 with B = 500 replications is evaluated. Per-

formance is evaluated by looking at the relative bias of the MSE estimator defined as followed:

RBRMSE(θ̂d) =

√
1
R

∑R
r=1 M̂SEdr − RMSE(θ̂d)

RMSE(θ̂d)
.

Table 2.4 shows the median and mean values over the domains of the RBRMSE. We see a

slight underestimation in the mean setting with an increasing effect at higher non-response

rates. On the other hand, in the log mean setting the true RMSE is slightly overestimated at a

lower non-response rate of 10% and minimally underestimated at a higher non-response rate of

50%. Nevertheless, the values are all close to zero. In the ratio setting, the bias of the bootstrap

RMSE estimator is close to zero at 10% non-response rate. At 30% and 50% it increases and

reaches almost identical values, but still at a tolerable level. In all three settings the additional

uncertainty of the FH.MI estimator can be satisfactorily addressed and the bias is within an

acceptable range. To have a closer look on the performance of the adapted Prasad-Rao MSE

estimator the estimated and true RMSE values per domain are plotted in Figure 2.1 for the mean

setting. First we observe that within each non-response rate the estimated RMSE decreases

with higher sample size, which is in line with the behaviour of the true RMSE. Secondly, we

see that per domain the estimated RMSE values increase with increasing non-response rates,

which is consistent with the expected behaviour. At a non-response rate of 10% and 30%, the

estimated RMSE tracks very well the behaviour of the true RMSE. With a higher non-response

rate of 50% we see that there are underestimations in some areas, but overall the uncertainty is

well accounted for. The proposed methods are good at capturing the additional variation due to

the missing observations and imputation and also provide a realistic estimate of the uncertainty

of the FH.MI estimator in our settings.
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Figure 2.1: RMSE of FH.MI estimator per domain for mean setting and varying non-response
rates. Domains are ordered by increasing sample size.
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Table 2.3: Relative bias and RRMSE for mean and log mean, bias and RMSE for ratio

Non-response rate before deletion 10% 30% 50%

Estimator Mean Median Mean Median Mean Median Mean Median

mean

(rel.) Bias [%] Direct 0.0464 0.0149
Direct.RR 0.0254 0.0198 0.0390 0.0092 0.0862 0.0290
FH 0.2390 0.1812
FH.Direct.RR 0.2291 0.1691 0.2536 0.1872 0.3082 0.2583
FH.MI 0.2245 0.1615 0.2355 0.1761 0.2704 0.2186
FH.RR 0.2171 0.1568 0.2195 0.1639 0.2554 0.1840

log mean

(rel.) Bias [%] Direct −0.2191 −0.0318
Direct.RR 0.1548 0.0342 1.1479 0.8566 2.8100 2.2903
FH −0.8797 −0.6057
FH.Direct.RR 0.0191 0.2091 1.4284 1.4639 3.1864 2.9609
FH.MI −0.2772 −0.1096 0.8383 0.8272 2.4169 2.3568
FH.RR −0.6948 −0.4258 0.0216 0.2115 1.3747 1.4485

ratio

Bias Direct −0.0004 0.0000
Direct.RR −0.0003 0.0000 −0.0000 0.0005 0.0009 0.0007
FH −0.0027 −0.0022
FH.MI −0.0016 −0.0010 0.0012 0.0012 0.0011 0.0016
FH.RR −0.0026 −0.0021 −0.0024 −0.0018 −0.0015 −0.0009

mean

RRMSE [%] Direct 5.0318 4.2722
Direct.RR 5.1345 4.4849 5.5337 4.7889 6.1003 5.4419
FH 4.4300 3.9609
FH.Direct.RR 4.5470 4.1570 4.9845 4.5694 5.6775 5.3471
FH.MI 4.5444 4.1524 4.9643 4.5509 5.6018 5.2498
FH.RR 4.5386 4.1385 4.9517 4.5388 5.5741 5.1978

log mean

RRMSE [%] Direct 25.5219 23.0001
Direct.RR 24.8037 22.0991 26.3014 23.1315 29.1076 26.1128
FH 20.7739 20.0316
FH.Direct.RR 21.9160 21.4101 23.8789 22.5175 27.0243 25.9548
FH.MI 21.3353 20.6552 22.7919 21.3174 25.4294 23.9328
FH.RR 20.7741 19.9455 22.1078 20.6367 24.7177 23.3957

ratio

RMSE Direct 0.0655 0.0563
Direct.RR 0.0655 0.0565 0.0663 0.0565 0.0702 0.0617
FH 0.0539 0.0506
FH.MI 0.0544 0.0510 0.0572 0.0533 0.0636 0.0607
FH.RR 0.0541 0.0507 0.0564 0.0524 0.0624 0.0590

Table 2.4: Relative bias [%] of estimated RMSE (RBRMSE) of FH.MI

Non-response rate 10% 30% 50%

Mean Median Mean Median Mean Median

mean −1.4198 −1.8291 −3.4427 −3.1477 −6.9352 −6.9390
log mean 2.5119 2.5719 1.8185 2.6527 −4.0788 −3.2214
ratio 2.9396 3.1787 8.7815 9.0866 8.1231 8.2787
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2.6 Application to Eurosystem’s HFCS

In the following, we provide an example of how the proposed framework can be used for sur-

veys with multiply imputed data in combination with small area methods. The purpose is to

show a possible application with the HFCS data for scientists or institutions from relevant re-

search areas rather than to discuss the estimates for each country. The HFCS is a large-scale

survey of the financial and consumption situation of European households. The first wave

was carried out in 2010 in 15 countries of the European Union (EU). The HFCS contains

household data on both economic and demographic variables such as income, wealth, private

pension, employment and consumption characteristics (Household Finance and Consumption

Network, 2020a). So far three waves have been carried out, the last of which was collected

in 2017 and released in March 2020. For the application the third wave is considered. The

sample contains about 91,200 households in 22 countries of the EU, between 1,000 and 14,000

households per country. The HFCS is a joint project of several national statistical institutes,

Eurosystem national central banks (NCB) and three non-euro area NCBs (Poland, Hungary,

Croatia). For these countries, all values are converted into euros by the HFCN (Household

Finance and Consumption Network, 2020a). The HFCN asked very sensitive questions, so the

item non-response rate is high. Missing values in the HFCS data were iteratively and sequen-

tially imputed. The variables are imputed along a path of imputation models. Each model is

run several times, and the imputed values from the previous round are treated as given in the

subsequent iteration (Household Finance and Consumption Network, 2020a). For each missing

observation the HFCS data set contains M = 5 imputed values. For more information on the

imputation method see Household Finance and Consumption Network (2020a). Of interest for

this application is the value of the household’s bonds, which is part of the household’s assets

and therefore relevant when considering the distribution of wealth. The HFCN reports condi-

tional medians for the value of bonds per EU country (Household Finance and Consumption

Network, 2020b). The values are calculated conditioned on households that have bonds; house-

holds with no bonds are discarded from the analysis. This results in partly very small sample

sizes even on a country level, so that for some countries with fewer than 25 observations direct

estimates are not reported by the HFCN. Furthermore, the rate of collected values differs be-

tween the countries. Since some households do not even indicate whether they own bonds or

not, these values are also imputed by the HFCN. Therefore, the sample size per country, i.e.,

the number of households with bonds and the collected rate for these households, may differ

slightly among the five imputed data sets provided by the HFCN. We calculate the sample sizes

and collection rates based on the first imputed data sets. An overview of the sample sizes per

country and the collected rates are given in Table 2.5. As dependent variable we choose the

mean value of bonds in thousand of euros (TEUR) on a country level, resulting in D = 22

domains. In 2017 the EU consisted of 28 member states. 6 EU members are not included in

the HFCS as their non-euro area NCBs do not participate. These domains are considered as

out-of-sample (OOS) and model-based estimates are provided in the application. The direct es-

timators of the mean value of bonds for each imputed data set θ̂Dir
d,m, d = 1, ..., 22, m = 1, ..., 5

are calculated according to Equation (2.13) using the sampling weights provided by the data

provider, which corrects for potential bias due the sampling design and unit non-response. The
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variances σ2
ed,m

are estimated with a bootstrap method following the instructions by House-

hold Finance and Consumption Network (2020a) using the provided replicate weights derived

by the Rao-Wu rescaled bootstrap method. As a result we obtain M = 5 replicates of direct

estimators and their variances, which are then pooled according to Sections 2.3 and 2.4.

Table 2.5: Summary of EU-countries sample sizes, collected rates and auxiliary variables.

Min 1stQ Median Mean 3rdQ Max
Sample size 2.00 12.25 61.50 148.73 209.50 832.00
Collected rate 0.04 0.49 0.66 0.61 0.81 1.00
Total receipts from taxes
and social contributions [% of GDP] 23.20 32.83 36.90 36.84 41.85 48.10
Final consumption expenditure
[Current prices, EUR per capita] 5630 11710 17170 20424 29258 48140

2.6.1 Model selection and validation

To obtain auxiliary information from additional sources needed for the Fay-Herriot models,

country-level data were collected from Eurostat, the statistical office of the EU and the Eu-

ropean Commission. Within this set, data such as real estate data, unemployment rates, age

dependency ratios, national accounts and tax aggregates from 2011 and 2017 were collected.

The sources and years of this supplemental information are shown in Table B.1 in the Ap-

pendix. Due to the small number of domains, variables that were not available for the entire

set of domains were excluded. The remaining auxiliary information includes variables such

as the old, youth and age dependency ratio, the unemployment rate, the ratio of taxes to GDP,

final consumption expenditure, the share of consumption expenditure on GDP, GDP at market

prices and a variable indicating whether the country has a wealth tax. In addition, the number

of covariates in the model is severely limited by the small number of domains, which is why

we restricted the model to two possible auxiliary variables. In the context of area-level data,

Han (2013) transferred the conditional Akaike information in linear mixed models from Vaida

and Blanchard (2005) to a conditional Akaike information criterion for Fay-Herriot models.

Marhuenda et al. (2014) examine this criterion among Kullback symmetric divergence crite-

rion (KIC) and propose a bootstrap variant of the KIC (KICb2) especially developed for FH

models. They conclude that KICb2 criterion is one of the best model selection criteria for

Fay-Herriot models. Therefore, in this application the preselection of variables was performed

using the KICb2 criterion. Model selection was carried out for each of the 5 imputed datasets,

with no particular difference in the results. A union of two auxiliary variables was selected for

the final model, as shown in Table 2.5. To obtain a model-based estimator of the mean value of

household bonds, the estimator from Section 2.4.1 is calculated with the auxiliary information

in Table 2.5. The model variances σ2RR

v are calculated for the MI-adjusted Fay-Herriot model

on the original scale using the REML method. The distributional assumptions of the model

presented in Section 2.3 are checked by the Shapiro-Wilk test applied to the residuals and the

random effects. For the MI-adjusted Fay-Herriot model for a normal mean, the p-values of

the tests for the standardized residuals and the random effect are 0.223 and 0.965, respectively.

Therefore, the normality assumptions for both error terms cannot be rejected at a 5% signifi-

57



CHAPTER 2. SMALL AREA ESTIMATION WITH MULTIPLY IMPUTED DATA

0

25

50

75

100

125

150

BG 
 (0)

CZ 
 (0)

DK 
 (0)

RO 
 (0)

SE 
 (0)

UK 
 (0)

LV 
 (2)

GR 
 (4)

HR 
 (6)

SI 
 (9)

LT 
 (11)

SK 
 (12)

EE 
 (13)

NL 
 (18)

CY 
 (21)

LU 
 (21)

PL 
 (45)

AT 
 (78)

BE 
 (85)

PT 
 (98)

ES 
 (111)

FI 
 (154)

MT 
 (228)

FR 
 (259)

DE 
 (323)

IE 
 (436)

HU 
 (506)

IT 
 (832)

M
ea

n 
va

lu
e 

of
 b

on
ds

 [T
E

U
R

]

Direct.RR FH.MI Mean Direct.RR

Figure 2.2: Direct and model-based estimates for the mean value of bonds, own estimations.
Domains are ordered by increasing sample size, sample sizes in brackets. Direct estimates for
domains with less than 25 observations are not reported.

cance level. Consequently, all further considerations and results are based on the MI-adjusted

Fay-Herriot model for a mean value as presented in Section 2.4.1. The explanatory power of

the model is assessed using the modified R2 for Fay-Herriot models according to Lahiri and

Suntornchost (2015) and we obtain a value of 45%. Due to the low number of domains, it is

not possible to include more auxiliary variables to potentially increase explanatory power. We

obtain positive estimated regression coefficients for both auxiliary variables. The impact on

the tax-to-GDP ratio seems reasonable, given that tax contributions include taxes on wealth (at

least in some countries) and that high tax revenues from income could indicate a high level of

capital assets. The relationship between consumption and wealth is not independent of income,

because if income is higher than consumption, the rest can be invested, and if consumption can-

not be covered by income, there is nothing left to invest. Nevertheless, with the given data, the

model also shows a positive effect for consumption.

2.6.2 Small area estimates

The estimates of the mean value of bonds on a country level are calculated using the FH.MI

estimator for a mean value and to estimate the MSE the MI adapted Prasad-Rao estimator is

applied as described in Section 2.4.1. To compare the model-based estimators with a direct

estimator, the direct estimators and their variance estimates are computed for each imputed

data set as described above and pooled using Rubin’s rule in Equation (2.8) (Direct.RR). The

point estimates of the model-based estimators (FH.MI) should be consistent with the unbi-

ased estimates of the direct estimator, but be more precise. Figure 2.2 compares the direct

and the model-based point estimates for the 22 in-sample domains and additionally reports the

estimates for the 6 OOS EU countries. Due to the guidelines of the data provider, the direct

estimates for domains with less than 25 observations are not reported. We observe that, for

countries with large sample sizes, the direct and model-based estimates are almost identical,

consistent with the expectation that high weight is given to the direct estimator when precision

is high. An exception is Belgium (BE), where the sample size is rather high, but the shrink-

age to the mean quite strong. For most of the direct estimates, which tend to be high, we

see that the model-based estimates are smaller, showing the shrinkage effect to the mean of the
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Figure 2.3: Map of model-based FH.MI estimates for mean value of bonds, own estimations.
Non-EU countries in 2017 are colored in white.
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Figure 2.4: CVs of direct and model-based estimates, own estimations. Domains are ordered
by increasing sample size, sample sizes in brackets.

model-based estimates (see summary statistics of point estimates in Table B.2 in the appendix).

Possibly due to the low number of covariates very little shrinkage takes place for some coun-

tries with small sample sizes (GR, SI, LI). The model-based point estimators are furthermore

reported in the map in Figure 2.3. The highest values are estimated for Luxembourg (LU),

followed by Denmark (DK) (OOS) and Sweden (SE) (OOS). For eastern European countries,

the estimates are rather low, followed by southern European countries. The estimated model-

based values range from 3 to 66 thousand euros (cf. Table B.2 in the appendix), which seems

plausible given the median values reported by the HFCN (Household Finance and Consump-

tion Network, 2020b) between 2 and 25 thousand euros, considering that the distribution at

the household level tends to be right skewed and therefore the mean values should be higher

than the median values. Figure 2.4 shows the coefficients of variation (CV) for the direct and

model-based estimates. We see that the model-based estimator is at least as efficient as the

direct estimator. The CVs of the model-based estimators are mostly significantly smaller than

those of the direct estimators, with the effect decreasing with increasing sample size. For large

sample sizes, the gain is barely noticeable, but this is consistent with the expected behavior

that the direct estimator is sufficiently accurate in this case. For some domains, such as Croatia

(HR) and Cyprus (CY), the CV is almost halved. Due to the relatively small domain size of

D = 22 and hence the limitation to the number of covariates in the model, the efficiency gain

is limited. A summary of the distribution of the point estimators and CVs from Figures 2.2 and

2.4 can be found in Table B.2 in the appendix.

2.7 Concluding remarks

In this paper, we derive small area indicators based on multiply imputed survey data and present

uncertainty measures for common cases that capture the additional uncertainty. We present

the transformed Fay-Herriot model calculated on each imputed data set. We then combine

the components into a MI adjusted Fay-Herriot model that retains the model structure of the

Fay-Herriot model. With this approach, results that exist for the Fay-Herriot model regarding

transformations, back-transformations and MSE estimators can be extended. It is a general

approach that can be applied to any indicator with a given transformation and an appropriate

back-transformation. We discuss common special cases of the model (mean, log mean, arcsine
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ratio). For these special cases we propose MSE estimators. For the mean and logarithmic

mean, we present an analytical adaption of the Prasad-Rao estimator and, for the arcsine ratio,

we use a bootstrap estimator. We demonstrate in simulation studies that the resulting FH.MI

point estimators lead to valid results in terms of bias and RMSE in the given settings and

under different non-response rates and that the proposed MSE estimators are able to capture

the additional imputation uncertainty and lead to good uncertainty measures. We carried out an

application using the proposed framework to obtain estimates for European household assets.

A limitation of the proposed approach is that it is not as straightforward for the user as it

would be if only the Fay-Herriot estimators were estimated for each imputed data set and the

mean value calculated. But, as mentioned above, it is not clear how the variance pooling rules

can be applied to the MSE. This could be part of further research. To facilitate the application,

it is planned to provide an R-package with the methodology presented. Other open research

questions are the extension from a cross-sectional to a longitudinal analysis to provide stable

estimates across panel waves (i.e., over time) when multiple imputations are performed and

sample sizes are small. If the underlying data structure is a panel survey and individuals or

households are observed over multiple time periods, the Fay-Herriot model can be adapted to

consider the correlation of the same observations over time. To borrow strength for domain es-

timates, Rao and Yu (1994a) propose a model with auto-correlated random effects and assume

an auto-regressive process of first order. In addition to the temporal Fay-Herriot models, a mul-

tivariate approach could serve the requirement to consider the temporal dimension in the data.

In the multivariate Fay-Herriot model (Benavent and Morales, 2016) the domain indicators are

estimated simultaneously for the different panel waves. In this way, correlations for both error

terms can be considered. These models have not yet been investigated in combination with

multiple imputation. The approach in this paper could be extended to include correlations over

time to ensure reliable estimates over time based on multiply imputed survey data. Since asset

values are usually highly skewed, more robust indicators such as the median or other quantiles

could be estimated instead of the mean. Therefore, the estimation of small area medians using

the Fay-Herriot model would be interesting for future research.
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Appendix B

A.1 MSE back-transformation for a log mean

Let µ = exp(θ) be the true parameter value and θ̂ be an estimate for θ. Furthermore, µ̂ is an

estimator for µ with µ̂ = g(θ̂), where g is a continuously differentiable function. For

g(θ̂) = exp{θ̂ + 0.5M̂SE(θ̂)}

an approximation of MSE(µ̂) using Taylor expansion can be derived as follows:

MSE(g(θ̂)) = Var(g(θ̂)) + Bias2(g(θ̂))

= E[g(θ̂)2]− E[g(θ̂)]2 + E[g(θ̂)− g(θ)]2

≈ E[{g(θ) + g′(θ)(θ̂ − θ)}2]− E[{g(θ) + g′(θ)(θ̂ − θ)}]2 + E[g′(θ)(θ̂ − θ)]2

= g′(θ)2{E[θ̂2]− E[θ̂]2}+ g′(θ)2E[θ̂ − θ]2

= g′(θ)2{Var(θ̂) + Bias2(θ̂)} = g′(θ)2MSE(θ̂).

A estimator of MSE(µ̂) is then obtained by

M̂SE(µ̂) = M̂SE(g(θ̂)) = g′(θ̂)2M̂SE(θ̂) = exp
{
θ̂ + 0.5M̂SE(θ̂)

}2
M̂SE(θ̂).

A.2 Plots and tables

Year Source
Private households by type, tenure status (Real estate) 2011 Eurostat (2011b)
Dwellings by occupancy status, type of building (Real estate) 2011 Eurostat (2011a)
Age, Old, Young-age dependency ratios 2017 Eurostat (2017d)
Unemployment rate 2017 Eurostat (2017a)
Tax to GDP ratio 2017 Eurostat (2017c)
Final consumption expenditure 2017 Eurostat (2017b)
GDP at market prices 2017 Eurostat (2017b)
Share of consumption expenditure on GDP 2017 Eurostat (2017b)
Indicator for presence of wealth tax 2017 European Commission (2017)

Table B.1: Source and year of auxiliary information.
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Figure B.1: Density of population target variable of one replication

Table B.2: Summary of point estimators and CVs for mean value of bonds [TEUR].

Estimator Min 1stQ Median Mean 3rdQ Max

Direct.RR Point est. 2.5 19.6 36.2 41.6 49.0 165.5
FH.MI 3.1 16.4 27.3 28.6 40.0 66.2
Direct.RR CV [%] 8.3 19.3 32.8 41.9 51.7 125.0
FH.MI 8.3 18.8 27.3 31.5 35.3 87.8
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Chapter 3

Variable selection using conditional
AIC for linear mixed models with
data-driven transformations

This is the peer reviewed version of the following article: Lee, Y., Rojas-Perilla, N., Runge,

M. and Schmid, T. (2023) Variable selection using conditional AIC for linear mixed models

with data-driven transformations. Statistics and Computing 33(27), which has been published

in final form at https://doi.org/10.1007/s11222-022-10198-9. This is an

open access article distributed under the terms of the Creative Commons Attribution License

(https://creativecommons.org/licenses/by/4.0/).

3.1 Introduction

The linear mixed model is a broadly used statistical model for analyzing clustered or longitu-

dinal data. When data analysts use these models, they often face two practical problems: a)

the true model for explaining the response variable is unknown and b) the model assumptions,

especially the Gaussian assumptions of the error terms, are violated.

As the true model is unknown, data analysts find suitable/optimal models for explaining the

dependent variable by using variable selection procedures. One popular approach in this con-

text is the Akaike information criterion (AIC) introduced by Akaike (1973). For linear mixed

models, there are different versions of AIC (Müller et al., 2013). They can be divided into two

groups: marginal types of AIC (mAIC) and conditional types of AIC (cAIC). The mAIC is

the common AIC for linear mixed models which uses marginal density and is one of the most

widely used selection criteria (Müller et al., 2013). However, the mAIC is only appropriate

when the model parameters are fixed (Burnham and Anderson, 2010) and the use of mAIC as

selection criterion is problematic for linear mixed models (Han, 2013). Vaida and Blanchard

(2005) introduced the cAIC as a more proper selection criterion for linear mixed models.

cAIC uses the conditional density in contrast to mAIC. Vaida and Blanchard (2005) derive

cAIC in case that the (scaled) covariance matrix of random effects is known and recommend to

use a plug-in estimator for the covariance matrix of the random effects in practice. Liang et al.
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(2008) derive a more general cAIC that accounts for the estimation of the covariance matrix

of the random effects. However, their conditional AIC can be computationally demanding in

situations with large sample sizes and many potential variables (Greven and Kneib, 2010).

Linear mixed models regularly rely on parametric assumptions such as normality for the

random effects and the error terms. These assumptions may be violated in many applications,

for instance, with skewed variables like consumption or income. One possible way to tackle

this issue is to use robust mixed models. Such models are robust in various aspects, including

the violation of the Gaussian assumptions. They allow more flexible distributions (Verbeke and

Lesaffre, 1997; Zhang and Davidian, 2001; Sinha and Rao, 2009) or apply a Bayesian frame-

work (Rosa et al., 2003; Lachos et al., 2009). Jiang (2019) gives an overview of further models

which deal with this problem. Another way to solve this problem is to apply fixed logarith-

mic or data-driven transformations for the dependent variable. The latter transformations are

generally an adaptive transformation parameter λ that depends on the particular shape of the

data. Among different data-driven transformations, the Box-Cox transformation (Box and Cox,

1964) is widely used, as it includes various power transformations and the logarithmic trans-

formation as a special case. Gurka et al. (2006) extend the use of the Box-Cox transformation

to linear mixed models. They apply the residual maximum likelihood (REML) approach to

estimate the transformation parameter λ from the data, based on a linear mixed model with

fixed auxiliary variables.

However, the optimal data-driven transformation depends on the fixed model and the opti-

mal model depends on the selected data-driven transformation. In particular, to select the op-

timal data-driven transformation parameter λ by the REML approach, the linear mixed model

should be fixed; and to perform a variable selection based on the cAIC, the dependent vari-

able should be fixed using an appropriate (data-driven) transformation parameter λ. A first

naive approach which is typically used in applications would be to perform the transforma-

tion and variable selection in a specific order. First, find an appropriate working model on the

original/untransformed scale and keep this fixed when selecting the optimal data-driven trans-

formation parameter. However, this may not offer the best way to the variable selection as the

selected variables are not optimal on the transformed scale. In this paper, we aim to find the

optimal model and the optimal transformation parameter simultaneously. This would allow

for enjoying the advantages of both data-driven transformations and the optimal model for the

transformed data.

Hoeting and Ibrahim (1998) and Hoeting et al. (2002) discuss methods for transforma-

tion and variable selection based on posterior probabilities in linear models. They focus on

change-point transformations to transform the predictors of the linear model. Bunke et al.

(1999) discuss the selection of the optimal transformation and the optimal model based on

cross validation for the nonlinear model. To the best of our knowledge, none of the existing

literature provides a joint solution when variable selection based on the cAIC and estimation

of the data-driven transformation parameter are simultaneously applied to linear mixed mod-

els. From a theoretical perspective, we present an approach to concurrently choose the optimal

linear model and the optimal transformation parameter. Since the cAIC is scale dependent,

we can not directly compare different models with differently transformed response variables.

66



CHAPTER 3. VARIABLE SELECTION WITH DATA-DRIVEN TRANSFORMATIONS

Therefore, we adjust the cAIC using the Jacobian of the corresponding data-driven transfor-

mation such that different model candidates with differently transformed response variables

can be compared. Although the paper focuses on the Box-Cox transformation as a particular

data-driven transformation, the proposed approach is applicable to data-driven transformations

in general. From a computational perspective, we provide a step-wise selection approach based

on the proposed adjusted cAIC.

The structure of the paper is as follows: In Section 3.2 we provide an overview of lin-

ear mixed models and the cAIC. In Section 3.3, we derive the Jacobian adjusted cAIC for

transformed linear mixed models and introduce the step-wise selection approach. In Section

3.4, we examine the performance of the proposed selection approach by using model-based

simulations. In Section 3.5, the proposed selection approach is applied to data from Guerrero

in Mexico for estimating poverty and inequality indicators at the municipal level. Finally, we

discuss our results and further directions of research in Section 3.6.

3.2 Variable selection using conditional AIC for linear mixed mod-
els

In this section, we briefly introduce the existing variable selection methods for linear mixed

models. In Section 3.2.1, we present a general notation of linear mixed models and in Section

3.2.2, we introduce and compare the cAIC by Vaida and Blanchard (2005) and Liang et al.

(2008).

3.2.1 The linear mixed model

Assume there is a finite population divided into D clusters. Let yi be a vector of the response

variable for the i-th cluster for i = 1, · · · , D, which is modeled with a linear mixed model

yi = Xiβ + Ziui + εi.

Ni is the cluster size of the i-th cluster, Xi and Zi are known Ni×p and Ni×q design matrices

for the fixed and random effects, β includes p fixed effects, ui is a vector of q random effects,

and εi is a vector of errors in the i-th cluster. ui and εi are assumed to be independent and

normally distributed

ui ∼ N (0, G), εi ∼ N (0, σ2INi),

with INi , the Ni × Ni identity matrix. G is the q × q covariance matrix of random effects

in the i-th cluster and depends on a set of variance components η. Let N =
∑D

i=1Ni be the

population size and θ = (β, σ, η) be the vector of parameters in the model. The model is

described for the population as follows

y = Xβ + Zu+ ε, (3.1)
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where X = (XT
1 , · · · , XT

D)
T is a N × p matrix, Z = diag(Z1, · · · , ZD) is N × r block-

diagonal matrix with r = D · q, u = (uT1 , · · · , uTD)T and ε = (εT1 , · · · , εTD)T . ε and u

are independent and normally distributed with E(ε) = E(u) = 0, V ar(ε) = σ2IN and

V ar(u) = G0, where G0 = diagD(G) is block-diagonal matrix with D blocks of G on the

diagonal. As u ∼ N (0, G0) and ε ∼ N (0, σ2IN ), the covariance matrix of y is given by

Cov(y) = V = σ2IN + ZG0Z
T .

3.2.2 Conditional Akaike information criterion for linear mixed models

Assume there are P possible explanatory variables in the data. Since the number of all possible

combinations of P variables is M = 2P , there are M possible model candidates which can

be fitted to the data. In order to find the optimal model among them, the variable selection

should be performed based on an appropriate selection criterion. In this study, we focus on the

variable selection based on the cAIC for linear mixed models. While this study focuses on the

cAIC, the mAIC is briefly explained first to provide a better understanding of the cAIC.

The mAIC is derived from the Kullback-Leibler (K-L) divergence between the density

of the true model and the density of a candidate model (Akaike, 1973). Assume that the true

model has the same form as Equation (3.1) with true parameters. The vector of true parameters

is denoted by θ0 = (β0, σ0, η0). Let f(·) be the density function of the true generating model

and g(·|θ) be the density of the approximating model with model parameters θ for fitting the

data. If the true distribution f belongs to the class of model candidates and θ = θ0 then

g(·|θ0) = f(·). The mAIC measures the K-L divergence between f(·) and g(·|θ).
The idea behind the cAIC derivation is the same as for the mAIC. While the mAIC

measures the K-L divergence between two marginal densities, cAIC measures the K-L diver-

gence between the true conditional density and the conditional density of a model candidate.

The true conditional density is denoted by f(·|u0) with the true random effects (u0) and the

conditional density of a model candidate is denoted by g(·|θ, u). Let y∗ be generated from

the true conditional density and y be the observed data, also from the true conditional density.

They are independent conditional on random effects, which means that y∗ and y share the ran-

dom effects and only differ in error terms (i.e., y∗ = Xβ + Zu + ε∗ and y = Xβ + Zu + ε

with ε∗ ∼ N(0, σ2IN ) and ε ∼ N(0, σ2IN )). The K-L divergence between f(y∗|u0) and

g(y∗|θ, u) with respect to f(y∗|u0) is defined by

I[(θ0, u0), (θ, u)] =Ef(y∗|u0)

[
log

f(y∗|u0)
g(y∗|θ, u)

]
=Ef(y∗|u0)[log f(y

∗|u0)]

− Ef(y∗|u0)[log g(y
∗|θ, u)].

The discrepancy between the conditional generating model and the conditional approximation

model is given by

d[(θ0, u0), (θ, u)] = Ef(y∗|u0)[−2 log g(y∗|θ, u)].
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By using the given definition of the discrepancy, the K-L divergence can be written as follows

2I[(θ0, u0), (θ, u)] =2Ef(y∗|u0)[log f(y
∗|u0)]

+ d[(θ0, u0), (θ, u)].

Since 2Ef(y∗|u0)[log f(y
∗|u0)] does not depend on θ and u from the approximating model, the

ranking of candidate models based on d[(θ0, u0), (θ, u)] is equivalent to the ranking of candi-

dates based on 2I[(θ0, u0), (θ, u)]. Therefore, the fitted candidate models can be evaluated by

using the discrepancy with θ̂ and û,

d[(θ0, u0), (θ, u)] = d[(θ0, u0), (θ, u)]|θ=θ̂,u=û,

where θ̂ includes the estimates of model parameters (i.e., θ̂ = (β̂, σ̂, η̂)) and û = E(u|θ̂, y)
contains the predicted random effects based on the empirical Bayes estimation. Hence, the se-

lection problem based on K-L divergence can be solved by comparing d[(θ0, u0), (θ, u)]|θ=θ̂,u=û

values of the candidate models. As the model parameters and random effects are estimated

based on observed data, the expected estimated discrepancy should be used as the selection

criterion (Burnham and Anderson, 2010). This is also often denoted as conditional Akaike

Information (cAI) (Vaida and Blanchard, 2005; Liang et al., 2008; Han, 2013)

cAI =Ef(y,u)Ef(y∗|u)[−2 log g(y∗|θ̂, û)].

− log g(y|θ̂, û) is a biased estimator of Ef(y,u)Ef(y∗|u)[− log g(y∗|θ̂, û)]. As a conse-

quence, the cAIC consists of the conditional log-likelihood and the bias correction term K

cAIC = −2 log g(y|θ̂, û) + 2K,

where

log g(y|θ̂, û) = −N

2
log(2πσ2)− 1

2σ2
(y − ŷ)T (y − ŷ),

and ŷ is the fitted vector ŷ = Xβ̂ + Zû.

Vaida and Blanchard (2005) derive two different bias correction terms under different as-

sumptions. When σ2 and G0 are assumed to be known, the K equals ρ, which is the effective

degrees of freedom (Hodges and Sargent, 2001)

Ka =ρ = tr

[(
XTX XTZ

ZTX ZTZ + σ−2G0

)−1(XTX XTZ

ZTX ZTZ

)]
.

When it is assumed that σ2 is unknown and σ−2G0 is known, K is calculated by

KMLE =
N(N − p− 1)

(N − p)(N − p− 2)
(ρ+ 1)

+
N(p+ 1)

(N − p)(N − p− 2)
. (3.2)
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The detailed derivation of Ka and KMLE can be found in Vaida and Blanchard (2005).

Vaida and Blanchard (2005) derive the cAIC under the assumption that G0, the covariance

matrix of the random effects, or σ−2G0, the scaled covariance matrix of the random effects, are

known. However, in practice they are usually unknown. In the case of the unknown random

effects covariance matrix, Vaida and Blanchard (2005) suggest to use KMLE for the cAIC with

the estimated σ−2G0, since the derivation of the bias correction term for the case of unknown

σ−2G0 is analytically complicated and the effect of estimation can be asymptotically ignored.

Liang et al. (2008) propose a general cAIC for known σ2, regardless of whether the covari-

ance of random effects are known or unknown. Under these assumptions, Liang et al. (2008)

derive the bias correction term using the first derivatives of ŷ subject to y. In their technical re-

port, they also derive an additional bias correction term for cAIC assuming more realistically

that neither σ2 nor the covariance of random effects are known.

In practice, the true value of σ2 and the true G0 are usually unknown. Therefore, it seems

reasonable to use the cAIC of Liang et al. (2008). However, Liang et al. (2008) show in the

simulation part that their bias correction term is close to Ka and it is also shown in their tech-

nical report that the bias correction term under more realistic assumptions is close to KMLE .

Moreover, Greven and Kneib (2010) point out that the use of cAIC by Liang et al. (2008) as

a selection criterion poses severe computational difficulties, since the calculation of the bias

correction term of Liang et al. (2008) requires at least N additional model fits to calculate

derivatives. If there are M different model candidates, at least N ×M model fits are required

to calculate cAIC derived by Liang et al. (2008), which is hard to implement for large N and

M . As a result, this study focuses on the cAIC of Vaida and Blanchard (2005), and in partic-

ular on the cAIC with KMLE that allows for unknown σ2. The optimal model is the model

which has the minimum value of cAIC among all M model candidates.

3.3 Variable selection for linear mixed models with transforma-
tions

In this section, we propose a step-wise variable selection approach for linear mixed models

which allows comparing model candidates with differently transformed response variables.

First, we give a general notation of linear mixed models with the Box-Cox transformation.

Although the paper focuses on the Box-Cox transformation as a particular transformation, the

proposed approach is applicable to data-driven transformations in general. In Section 3.3.2, we

derive the Jacobian adjusted cAIC based on cAIC by Vaida and Blanchard (2005), which can

compare model candidates with differently transformed data. In Section 3.3.3., we introduce

a bootstrap method to estimate the bias correction term for Jacobian adjusted cAIC. From

a computational perspective, we suggest to use step-wise selection with adjusted cAIC in

Section 3.3.4.

3.3.1 Linear mixed models with transformations

Assume that the original y variable is non-normal and there exists a transformation parameter of

the Box-Cox transformation for which the transformed data follows the Gaussian assumption.
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The one-to-one Box-Cox transformation (Box and Cox, 1964) of y is defined by

Tλ(yij) =


(yij+s)λ−1

λ if λ ̸= 0,

log(yij + s) if λ = 0,
(3.3)

i = 1, ..., D and j = 1, ..., Ni,

where λ denotes the transformation parameter which has to be estimated and s denotes the shift

parameter s = |min(y)| + 1 only when min(y) < 0. Let ỹ be the vector of transformed y.

Then, ỹ is modeled as

Tλ(y) =ỹ = Xβ + Zu+ ε (3.4)

with u ∼ N (0, G0) and ε ∼ N (0, σ2IN ). The covariance matrix of the transformed y is

Cov(ỹ) = V = σ2IN + ZG0Z
T .

Gurka et al. (2006) use the REML approach to estimate λ, as the REML approach is recom-

mended when the focus is the estimation of variance components (Verbeke and Molenberghs,

2000). Moreover, Rojas-Perilla et al. (2020) compare the REML estimator of λ with other esti-

mators and show that the REML approach has a smaller variability than alternative estimators.

Accordingly, the optimal λ is estimated in this study with the REML approach. The optimal

λ maximizes the residual log-likelihood function of a given model. However, the estimated

optimal λ is only optimal for the given model. This means that each model candidate has its

own optimal λ. As we do not know which model candidate is the optimal and which λ is the

optimal for the corresponding model, we should select the model and the λ concurrently.

To simultaneously select the best model based on cAIC and obtain the optimal λ, we

estimate it for each potential model in a first step. With P possible x variables there are

M = 2P model candidates. The m-th model is defined by

Tλm(y) =ỹ (m) = X(m)β + Zu+ ε, (3.5)

m = 1, ...,M,

where X(m) is the design matrix of the m-th model and λm is the optimal transformation pa-

rameter for the m-th model. Based on the model in Equation (3.5) the optimal transformation

parameter is estimated using the REML approach and λ̂m denotes the estimated optimal trans-

formation parameter for the m-th model. Further details about the estimation of λm using the

REML approach are explained in Gurka et al. (2006). In the second step, all model candidates

with their own λ̂m should be compared. However, AIC-type criteria cannot compare models

with differently transformed target variable (Burnham and Anderson, 2010). Therefore, an ad-

justment with the Jacobian to the cAIC should be performed first such that these M different

models can be compared.

71



CHAPTER 3. VARIABLE SELECTION WITH DATA-DRIVEN TRANSFORMATIONS

3.3.2 Jacobian adjusted cAIC for linear mixed models

Assume that f(·|u0) is the true conditional density function with the true model parameters θ0
and the true random effects u0, while g(·|θ, u) denotes the conditional density of an approx-

imating model. Let ỹ∗ = Xβ + Zu + ε∗ be a realization from the true conditional density

function with ε∗ ∼ N(0, σ2). Then, the cAI for the transformed model is given by

cAI =Ef(ỹ,u)Ef(ỹ∗|u)[−2 log g(ỹ∗|θ̂, û)],

where θ̂ is the vector of estimated model parameters and û is the vector of predicted random

effects. − log g(ỹ|θ̂, û) is a biased estimator of Ef(ỹ,u)Ef(ỹ∗|u)[− log g(ỹ∗|θ̂, û)] = 0.5 · cAI .

The bias is obtained by

bias = Ef(ỹ,u)[− log g(ỹ|θ̂, û)]− 0.5 · cAI.

To obtain an unbiased estimator of 0.5 · cAI , the bias correction term (BC) should be added
as follows

BC =− Ef(ỹ,u)[− log g(ỹ|θ̂, û)] + 0.5 · cAI

=Ef(ỹ,u)[log g(ỹ|θ̂, û)]

− Ef(ỹ,u)Ef(ỹ∗|u)[log g(ỹ
∗|θ̂, û)]

=E

[
1

2σ2
[(ỹ∗ − ̂̃y)T (ỹ∗ − ̂̃y)− (ỹ − ̂̃y)T (ỹ − ̂̃y)]], (3.6)

where ̂̃y = Xβ̂ + Zû.
Under the assumption that σ2 is unknown, the BC in Equation (3.6) can be replaced by KMLE

from Equation (3.2). Consequently, the cAIC for the transformed model is given by

cAIC =− 2 log g(ỹ|θ̂, û) + 2KMLE , (3.7)

where

log g(ỹ|θ̂, û) = −N

2
log(2πσ̂2)− 1

2σ̂2
(ỹ − ̂̃y)T (ỹ − ̂̃y).

However, this cAIC of the transformed model cannot be used to compare differently transformed model
candidates. The cAIC measures the K-L distance between the true conditional density and a conditional
density of a model candidate. In the case of linear mixed models without a transformation, the optimal
model can be chosen using the cAIC by Vaida and Blanchard (2005), since all model candidates have
the same response variable y. The model with the smallest distance (i.e., the smallest cAIC) is the
optimal model among all candidates. However, for linear mixed models with a transformation we
estimate for each model candidate its own optimal transformation parameter. As the transformation
parameter differs from model to model, the transformed y differs too. Consequently, the response
variables of the model candidates are no longer the same (i.e., ỹ(1) ̸= ỹ(2) ̸= · · · ̸= ỹ(M)). Therefore,
the cAIC in Equation (3.7) of a model candidate is in fact not the distance of the model from the true
density of y, but the distance from the true density of ỹ. As ỹ differs from candidate to candidate
and cAIC is scale dependent, the model candidates cannot be compared with the cAIC. To allow for
comparing model candidates using the cAIC, it needs to be adjusted, so that the adjusted cAIC of a
model candidate measures the divergence of the model from the true density of y. Akaike (1978) shows
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that this adjustment can be done by adding the Jacobian of the transformation to the AIC value of time
series models.

The Jacobian adjusted cAIC denoted by JcAIC is derived from the K-L divergence between the
true conditional density and the model conditional density of the original y, and not of the transformed
y. To define the K-L divergence between the true and a candidate model of y, the true and model
conditional densities of y should be defined. As we know the conditional densities of the transformed
y, the conditional densities of y can be derived by multiplying the Jacobian of the transformation. Let
h(y|u0) be the true conditional density of y and l(y|θ, u) the conditional model density, which are
defined with the Jacobian of the Box-Cox transformation J(λ, y) as

h(y|u0) =f(ỹ|u0) · J(λ, y),

l(y|θ, u) =g(ỹ|θ, u) · J(λ, y), (3.8)

where

J(λ, y) =

∣∣∣∣∂ỹ∂y
∣∣∣∣ = D∏

i=1

Ni∏
j=1

∂ỹij
∂yij

=

D∏
i=1

Ni∏
j=1

(yij + s)λ−1. (3.9)

Let y∗ be a realization of the true conditional density h(y|u) and ỹ∗ be the vector of transformed y∗.
Then, the K-L divergence between conditional densities of y∗ becomes

I[(θ0, u0), (θ, u)] =Eh(y∗|u)

[
log

h(y∗|θ0, u0)

l(y∗|θ, u)

]
=Eh(y∗|u)[log h(y

∗|θ0, u0)]

− Eh(y∗|u)[log l(y
∗|θ, u)].

The discrepancy is defined by d[(θ0, u0), (θ, u)] = Eh(y∗|u)[−2 log l(y∗|θ, u)]. Therefore, the K-L
divergence can be formulated using discrepancies as follows

2I[(θ0, u0), (θ, u)] =2Eh(y∗|u)[log h(y
∗|θ0, u0)]

+ d[(θ0, u0), (θ, u)].

The ranking of d[(θ0, u0), (θ, u)] is equivalent to the ranking of 2I[(θ0, u0), (θ, u)], since the first term
2Eh(y∗|u)[log h(y

∗|θ0, u0)] is constant for all model candidates. The Jacobian adjusted cAI (JcAI) is

JcAI =Eh(y,u)Eh(y∗|u)[−2 log l(y∗|θ̂, û)].

− log(l(y|θ̂, û)) is a biased estimator of 0.5 · JcAI . To obtain an unbiased estimator of 0.5 · JcAI , the
bias should be corrected by the following bias correction term (BC):

BC =−
(
Eh(y,u)[− log(l(y|θ̂, û))]− 0.5 · JcAI

)
=Eh(y,u)[log(l(y|θ̂, û))]

− Eh(y,u)Eh(y∗|u)[log(l(y
∗|θ̂, û))].

l(y|θ̂, û) is defined as in Equation (3.8). Then, l(y∗|θ̂, û) can be defined by g(ỹ∗|θ̂, û) · J(λ̂, y∗) using
the same relation as in Equation (3.8). By inserting these terms into the BC, we get

BC =Eh(y,u)[log(g(ỹ|θ̂, û) · J(λ̂, y))]

− Eh(y,u)Eh(y∗|u)[log(g(ỹ
∗|θ̂, û) · J(λ̂, y∗))]
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= E

[
− N

2
log(2πσ̂2)− 1

2σ̂2
(ỹ − ̂̃y)T (ỹ − ̂̃y)

+ log(J(λ̂, y))

]
−E

[
− N

2
log(2πσ̂2)− 1

2σ̂2
(ỹ∗ − ̂̃y)T (ỹ∗ − ̂̃y)

+ log(J(λ̂, y∗))

]
. (3.10)

The Jacobian term of y is defined in Equation (3.9) and the Jacobian term for y∗ is given by
∏D

i=1

∏Ni

j=1(y
∗
ij+

s)λ−1 leading to

BC = E

[
− N

2
log(2πσ̂2)− 1

2σ̂2
(ỹ − ̂̃y)T (ỹ − ̂̃y)

+ (λ̂− 1)

D∑
i=1

Ni∑
j=1

log(yij + s))

]

−E

[
− N

2
log(2πσ̂2)− 1

2σ̂2
(ỹ∗ − ̂̃y)T (ỹ∗ − ̂̃y)

+ (λ̂− 1)
D∑
i=1

Ni∑
j=1

log(y∗ij + s)

]
. (3.11)

3.3.3 Estimation of the bias correction

We propose a parametric bootstrap - following the ideas of Donohue et al. (2011) and Rojas-Perilla
et al. (2020) - to estimate the BC for the JcAIC. The bootstrap captures not only the uncertainty due
to the estimation of the model parameters, but also the additional uncertainty due to the estimation of
the transformation parameter λ (Rojas-Perilla et al., 2020). In addition, we use a resampling approach
because the bootstrap variants of AIC are comparable with analytic approximations of the AIC (Dono-
hue et al., 2011) and perform better than analytic approximations in terms of the model choice (Shang
and Cavanaugh, 2008; Marhuenda et al., 2014).

The BC in Equation (3.11) consists of two expectation terms. Each expectation term is estimated
by averaging the values over the B bootstrap replicates. The steps of the proposed bootstrap are as
follows:

1. Estimate the optimal λ defined as λ̂ using REML for the model candidate and transform the y to
the ỹ with the estimated λ̂.

2. Fit the model in Equation (3.4) to obtain estimates of model parameters θ̂.

3. Generate u(b) ∼ N (0, Ĝ0) and ε(b) ∼ N (0, σ̂2) and create a bootstrap ỹ using ỹ(b) = Xβ̂ +

Zu(b) + ε(b).

4. Refit the model with the bootstrap sample ỹ(b) and obtain the bootstrap estimates of the model
parameters θ̂(b) and û(b).

5. Calculate the second expectation term of the BC for each bootstrap using θ̂(b) and û(b). The
unobserved (true) ỹ∗ and y∗ are replaced by ỹ and y respectively. Note that ỹ and y are treated as
realizations from the true transformed/untransformed density with corresponding λ̂.

6. Back-transform ỹ(b) using λ̂ to obtain y(b) on the original scale. Re-estimate λ̂(b) based on y(b)

and re-transform the y(b) using λ̂(b). The re-transformed bootstrap y(b) is denoted by ỹ(λ̂
(b),(b)).
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7. Refit the model with the bootstrap sample ỹ(λ̂
(b),(b)) and obtain the bootstrap estimates of the

model parameters θ̂(λ̂
(b),(b)) and û(λ̂(b),(b)). Note that the estimates depend on the re-estimated

transformation parameter indicated by the superscript λ̂(b).

8. Calculate the first expectation term of the BC for each bootstrap using θ̂(λ̂
(b),(b)), û(λ̂(b),(b)), λ̂(b),

ỹ(λ̂
(b),(b)) and y(b).

The bootstrap estimate of the BC is then obtained by
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BC =
1

B

B∑
b=1

[
− N

2
log
(
2πσ̂2(λ̂(b),(b))

)
− 1

2σ̂2(λ̂(b),(b))
·

(
ỹ(λ̂

(b),(b)) −Xβ̂(λ̂(b),(b)) − Zû(λ̂(b),(b))

)T

(
ỹ(λ̂

(b),(b)) −Xβ̂(λ̂(b),(b)) − Zû(λ̂(b),(b))

)
+
(
λ̂(b) − 1

) D∑
i=1

Ni∑
j=1

log
(
y
(b)
ij + s

)]

− 1

B

B∑
b=1

[
− N

2
log
(
2πσ̂2(b)

)
− 1

2σ̂2(b)
·

(
ỹ −Xβ̂(b) − Zû(b)

)T

(
ỹ −Xβ̂(b) − Zû(b)

)
+
(
λ̂− 1

) D∑
i=1

Ni∑
j=1

log
(
yij + s

)]
. (3.12)

Then, the JcAIC is estimated by

JcAIC =− 2 log(l(y|θ̂, û)) + 2BC

=− 2 log(g(ỹ|θ̂, û))− 2 log(J(λ̂, y))

+ 2BC (3.13)

with BC defined in Equation (3.12).
The JcAIC is the measure of the K-L divergence of a model candidate from the true model on the

original y scale. Therefore, model candidates can be compared with JcAIC despite of their different
response variable. A model with the minimum JcAIC is the optimal model with the corresponding
optimal transformation parameter.

Using the derived JcAIC for the Box-Cox transformation, we will compare model candidates
whose response variables are Box-Cox transformed with different transformation parameters. However,
JcAIC can be also derived for other types of transformations, such as a logarithmic or dual-power
transformation (Yang, 2006). The JcAIC always measures the divergence of a candidate model from
the true model on the original y scale independent of how the response variable of the model is trans-
formed. Therefore, the JcAIC can compare not only model candidates that use the same transformation
with different transformation parameters, but also the models with different types of transformations.

3.3.4 Simultaneous selection of optimal transformation and model formula

As a consequence of the previous sections, we propose the following algorithm to simultaneously select
the optimal λ of a Box-Cox transformation and the optimal model among several model candidates. As
explained above, considering all possible theoretical M model candidates is often not feasible in practice
due to the computational burden. Therefore, the usual step-wise algorithms can be applied where the
algorithm stops, if no further improvement can be achieved. In the following, we have chosen backward
elimination as the exemplary model selection direction. The exchange to forward or the extension to
forward-backward are possible without any difficulties and were done for the simulation experiment in
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Section 3.4 and the application in Section 3.5.

1) Start with the full model including all P possible x-variables in the data. For the start, the full
model is set as the optimal model. Estimate λ̂ based on the full model to initiate the backward
model selection.

2) For each step s = 1, ..., S:

i) Consider all possible model candidates which exclude an explanatory variable from the
previous optimal model.

ii) Estimate λ̂ based on the reduced model formulas and transformed y values ỹ = Tλ̂(y) for
each model candidate. Calculate the JcAIC value from Equation (3.13) with the estimated
λ̂ for each candidate.

iii) Compare all JcAIC values. The model with the smallest JcAIC value is chosen as the
new optimal model for the step.

3) Compare the JcAIC value of the new optimal model in step s with the JcAIC value of the
previous optimal model in step s − 1. If the JcAIC value of the new optimal model is smaller
than the previous one, step 2) is repeated until there is no further improvement in terms of JcAIC

values.

3.4 Model-based simulation experiment

To support our theoretical findings and the proposed framework from the previous section, we conduct
simulation studies that include several settings. The aim of the study is to show that under known
data settings with a given transformation and model formula, the presented simultaneous algorithm for
optimal model and transformation selection depicts the true model for a linear mixed model. The settings
include four scenarios: Normal (1), Normal (2), Log and Box-Cox, each with three explanatory variables.
The scenarios are oriented to the simulation study of Rojas-Perilla et al. (2020). The distributions of the
explanatory variables are chosen to be representative of both, numeric and categorical variables coded as
dummies. The first scenario with normally-distributed random effects and error terms (Normal (1)) has
an explanatory power of around 40%, and the second (Normal (2)) has an explanatory power of 85%, as
well as the Log and Box-Cox scenario. The exact definition of the data settings is given in Table 3.1. In
each simulation run (Monte Carlo replication), the explanatory variables, random intercepts and error
terms are generated by drawing from the corresponding distributions. Thus, a new pseudo population is
created in each simulation run. A total of 500 Monte Carlo replications are generated for each setting.
Each of the finite populations consists of N = 10, 000 units evenly divided into D = 50 clusters. Within
each cluster, a simple random sample is drawn. The cluster-specific sample sizes range from 0 to 29, so
that the total sample size sums up to n = 565. The distribution of yij of one population is shown in the
Appendix in Table C.1 and Figure C.1.

In addition to the explanatory variables x1,ij , x2,ij and x3,ij , the random intercepts ui and the error
terms eij , an additional variable zij ∼ N(1, 0.12) is generated in each Monte Carlo replications, which
is used to estimate the linear mixed model (but not included in the true data generating mechanism):

Tλ(yij) = ỹij = (3.14)

β0 + β1x1,ij + β2x2,ij + β3x3,ij + β4zij + ui + eij ,

where T denotes the Box-Cox transformation defined in Equation (3.3). In each simulation run, the
model selection is performed with four approaches, where the dependent variable y is on different
scales:
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Table 3.1: Overview of data settings, i = 1, ..., d, j = 1, ..., Ni.

Data setting yij x1,ij µi x2,ij x3,ij ui eij

Normal (1) 400− 10x1,ij + 100x2,ij− N (µi, 3
2) U [−3, 3] Bin(1, 0.8) N (0, 1) N (0, 302) N (0, 602)

10x3,ij + ui + eij
Normal (2) 400− 10x1,ij + 100x2,ij− N (µi, 3

2) U [−3, 3] Bin(1, 0.8) N (0, 1) N (0, 102) N (0, 202)
10x3,ij + ui + eij

Log exp(10− x1,ij + x2,ij− N (µi, 2
2) U [2, 3] Bin(1, 0.8) N (0, 1) N (0, 0.42) N (0, 0.82)

0.5x3,ij + ui + eij)
Box-Cox [(10− x1,ij + x2,ij − 0.5x3,ij+ N (µi, 2

2) U [2, 3] Bin(1, 0.8) N (0, 1) N (0, 0.42) N (0, 0.82)

ui + eij)(−0.5) + 1]
1

−0.5

• on the original scale (no transformation), so that Tλ(yij) = yij (denoted by Original),

• on the log scale, so that Tλ(yij) = log(yij + s) (λ = 0) (denoted by Log),

• on the Box-Cox scale, so that T (yij) =
(yij+s)λ−1

λ for λ ∈ [−2, 2] and λ ̸= 0; log(yi) for λ = 0

(denoted by Box-Cox Opt),

where s denotes the shift parameter s = |min(y)|+1 only when min(y) is a negative number. A naive
approach which is typically used in applications is

• to perform the model selection on the original scale and afterwards estimate the optimal λ for a
Box-Cox transformation (denoted by Box-Cox Naive).

In the Box-Cox Opt approach the optimal model and the optimal transformation parameter λ are de-
termined simultaneously as described in Section 3.3.4. For each setting, the linear mixed model from
(3.14) and a null model without covariates are estimated. The model selection is than performed with
a step-wise algorithm using backward and forward directions based on the cAIC or JcAIC. For the
Original approach (which operates on the untransformed scale), the cAIC is calculated and the JcAIC

in Equation (3.13) is calculated for the other approaches (which operate on the transformed scale). They
can be directly compared, as cAIC equals the JcAIC for the Original approach. As analytic approxi-
mations of the AIC can exhibit negative bias for small sample sizes (Marhuenda et al., 2014), we also
use bootstrap versions to estimate the bias correction in the JcAIC/cAIC when a log transformation
or no transformation is used. This ensures a fair comparison in the simulation experiment with the es-
timated JcAIC for a Box-Cox transformation. The bootstrap algorithms to estimate the cAIC for the
Original and the JcAIC for the Log approach are described in the Appendix. The bootstrap algorithms
were executed with B = 200 replications. In the following, we always refer to JcAIC, as in the case
of no transformation the cAIC equals the JcAIC.

There are three points of interest in the simulation: First, choice of the correct approach for the
model selection, second, choice of the transformation parameter and third, choice of the correct trans-
formation and correct model specification. To begin with, we want to evaluate whether the model with
the correct approach based on the JcAIC is chosen in agreement with the data setting. For this, we
look at the calculated JcAIC values and in relation to this, we also check whether in the case of the
Box-Cox transformation the correct associated λ is estimated. Then, we focus on the proportion of sim-
ulation runs where the correct transformation is selected and the proportion of correctly specified model
formula. The parameter λ of the Box-Cox transformation is estimated with the REML algorithm and
the simulation is implemented in the statistical programming language R (R Core Team, 2022). For
each combination of data settings and approaches the calculated JcAIC are compared and the model
with the minimal JcAIC is chosen as optimal. Table 3.2 contains summary statistics of the JcAIC

values over the 500 Monte Carlo replications. We observe that in the Normal (1) and Normal (2) data
settings, the calculated JcAIC values of the model with no transformation (Original), the Box-Cox
transformation (Box-Cox Opt), and the Box-Cox Naive approach are very close. Often, the calculated
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Table 3.2: Summary statistics of JcAIC over 500 Monte Carlo replications.

Data setting Approach Min 1Q Median Mean 3Q Max
Normal (1) Original 6275 6418 6478 6484 6543 6790

Box-Cox Opt 6271 6418 6478 6484 6543 6786
Box-Cox Naive 6271 6418 6478 6484 6543 6786

Normal (2) Original 5046 5185 5245 5245 5299 5559
Box-Cox Opt 5047 5184 5244 5246 5299 5562
Box-Cox Naive 5047 5184 5244 5246 5299 5562

Log Log 10350 10802 10907 10917 11036 11542
Box-Cox Opt 10351 10802 10905 10917 11037 11543
Box-Cox Naive 10435 10878 11001 10993 11101 11726

Box-Cox Original -296 2603 4497 4821 6434 19141
Log -1909 -1597 -1439 -1436 -1301 -792
Box-Cox Opt -2572 -2056 -1973 -1969 -1882 -1500
Box-Cox Naive -2280 -1961 -1866 -1866 -1775 -971

Table 3.3: Summary statistics of optimal transformation parameter λ̂ over 500 Monte Carlo
replications.

Data setting Approach Min 1Q Median Mean 3Q Max
Normal (1) Box-Cox Opt 0.4980 0.8800 0.9780 0.9810 1.0970 1.3940

Box-Cox Naive 0.4980 0.8800 0.9760 0.9810 1.0960 1.3890

Normal (2) Box-Cox Opt 0.4500 0.8830 0.9890 0.9940 1.1140 1.5620
Box-Cox Naive 0.4500 0.8830 0.9890 0.9940 1.1140 1.5620

Log Box-Cox Opt -0.0319 -0.0060 -0.0004 -0.0006 0.0051 0.0230
Box-Cox Naive -0.0312 -0.0029 0.0037 0.0034 0.0098 0.0309

Box-Cox Box-Cox Opt -0.5600 -0.4930 -0.4810 -0.4790 -0.4660 -0.3890
Box-Cox Naive -0.5510 -0.4940 -0.4810 -0.4790 -0.4650 -0.4070

JcAIC values for Box-Cox Opt and Box-Cox Naive are identical. This makes sense considering the
corresponding estimated λs in Table 3.3, which are very close to one for both approaches and the re-
sulting distribution close to normality. The deviations of the estimated parameters from one can be
explained by the finite population sample from the normal distribution. Looking at the Log data setting,
we see that the distributions of the JcAIC values using the Log and the Box-Cox Opt approach are
very close to each other. Again this makes sense as the estimated λs (see Table 3.3) are close to zero,
which results in a log transformation of the data. The JcAIC values of the Box-Cox Naive approach
are slightly higher. In the case of the Box-Cox data setting, the JcAIC values of the Box-Cox Opt ap-
proach are the smallest, followed by the Box-Cox Naive approach. Again, the corresponding estimated
λs match the true λ of −0.5 in this case. The values of the Log and Original approach are considerably
higher, which is reasonable given the underlying distribution of the data in this setting. In each setting,
the magnitudes and ordering of the values correspond to the underlying distributions of the data and
thus to our expectations. Table 3.4 shows the proportions of selected optimal approaches/transforma-
tions and model formulas. For each data setting, the model with the transformation underlying in the
data-generating process is selected mostly as optimal, i.e., has the smallest JcAIC values. In the two
Normal data settings, the calculated JcAIC are in around 64% and 69% the smallest, when no trans-
formation is used (Original), therefore it is chosen as optimal. This corresponds to the underlying data
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generating process. In the other cases, Box-Cox Opt and Box-Cox Naive are chosen as optimal with
identical JcAIC values and also very similar estimated λ’s, when looking at Table 3.3. This makes
sense due to the underlying normal distribution. For normal data, it should make no difference whether
the optimal model formula without a transformation is chosen first and then an optimal λ close to one
is estimated, or whether the model formula and transformation parameter are chosen simultaneously, as
in the Box-Cox Opt approach. In the Log setting in 71% out of the 500 samples (simulation runs) the
true underlying transformation (Log) is chosen as optimal. While in mostly the rest of the samples, the
Box-Cox Opt approach with optimal λ̂ near zero, which corresponds to a log transformation, outper-
forms the Box-Cox Naive approach. In 5.8% JcAIC values are identical for both Box-Cox approaches.
The advantage of the Box-Cox Opt approach is further illustrated in the Box-Cox data setting, where
this approach is outperforming the other approaches in 83.6% of cases. Looking at the second part of
Table 3.4, it can be seen that in settings with high explanatory power (Normal (2), Log, Box-Cox), the
correct model formula (x1 + x2 + x3) is selected in over 85% of the simulation runs. However, in the
Normal (1) setting with lower explanatory power in 60.8% of the samples the correct model formula
is selected. This result seems justifiable since, if the explanatory power of the underlying true model
is lower, it is more difficult to identify the true underlying relationship. The results emphasize that the
presented approach allows for the selection of the optimal transformation parameter for the Box-Cox
transformation and detects the true transformation. In addition, it enables the selection of the correct
model formula, whereby the degree depends on the explanatory power of the underlying model.

Table 3.4: Proportions [%] of approaches and formulas selected as optimal.

Data setting Original Log Box-Cox Opt Box-Cox Naive Box-Cox Opt & Naive x1 + x2 x1 + x2 + x3 x1 + x2 + x3 + z1 other
Normal (1) 64.1 0.8 0.0 35.1 24.4 60.8 12.0 2.8
Normal (2) 68.9 0.2 0.0 30.9 1.4 86.1 12.5 0.0
Log 70.9 23.2 0.0 5.8 0.6 83.0 14.3 2.1
Box-Cox 0.0 0.0 83.6 0.0 16.4 0.2 81.3 17.3 1.2

3.5 Case study: poverty and inequality in municipalities of Guer-
rero

In this section, the proposed selection approach is applied to data from the state Guerrero in Mexico for
estimating poverty and inequality indicators at municipal level. To provide reliable estimates of these
indicators at the municipal level, it is necessary to use small area estimation. In order to demonstrate the
proposed selection approach, we use a particular small area method - the empirical best predictor (EBP)
by Molina and Rao (2010) - which is based on a linear mixed model. In Section 3.5.1, we provide a
brief overview of the small area estimation and the EBP. In Section 3.5.2, we describe the data and the
problem of simultaneously finding the optimal (linear mixed) model and the transformation parameter.
We apply our proposed selection approach and two naive approaches and present the results of the
indicators in Section 3.5.3.

3.5.1 Small area estimation and the empirical best predictor

Many surveys are designed to study total populations. For a sample of the total population, direct
estimators, for instance the Horvitz-Thompson estimator (Horvitz and Thompson, 1952) can provide
reliable estimates due to enough observations/units in the sample. However, direct estimation methods
are appropriate only with a sufficient sample size for every domain/area of interest, which is often not the
case on a disaggregated regional level. Furthermore, estimators cannot be calculated for domains with
no sample data (i.e., out of sample domains) or estimators have too large standard errors for domains
with only few sample data (Rao and Molina, 2015). When direct estimation cannot provide adequate
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precision for a domain of interest because of insufficient data, the domain is defined as small and is
called small area/small domain (Rao and Molina, 2015; Tzavidis et al., 2018). One way to improve
direct estimates is by small area estimation. Small area methods aim to improve the efficiency of the
estimation by combining sample data with data from the census/register based on a model (Rao and Yu,
1994b; Jiang and Lahiri, 2006). The census/register contains auxiliary variables that may be correlated
with the dependent variable and may be used to improve the direct estimates. This is a more complex
task as it depends on model building and diagnostics. The model building may include the use of
transformation, the selection of the covariates, or non-normal error terms.

Since there is no proper survey data which can produce reliable direct estimates of poverty and
inequality indicators at municipal level in Guerrero, we use the EBP approach. The approach uses the
nested error linear regression model by Battese et al. (1988). This model is a special linear mixed model
which includes only random (area specific) intercepts. In the following, we briefly introduce the EBP.
Further details are available in Molina and Rao (2010) and Rojas-Perilla et al. (2020).

Assume a finite population of size N divided into D domains. Ni denotes the size of the i-th domain
for i = 1, · · · , D. Let y be the target welfare variable (e.g. income) and yij is the welfare measure of
j-th unit in i-th domain where j = 1, · · · , Ni. The sample data does not include all N units in the
population but only a part of the population. The sample has a size of n and this sample can also be
divided into D domains. ni denotes the sample size of the i-th domain and it results in n =

∑D
i=1 ni.

Then, the nested error linear regression model is given by

yij =xT
ijβ + ui + εij , (3.15)

ui
iid∼ N (0, σ2

u), εij
iid∼ N (0, σ2

ε),

where ui denotes the area random effects and εij denotes the error term. Let θ = (β, σu, σε) be a vector
of model parameters. The EBP approach is shortly outlined as follows:

1. Fit the model using the sample data to obtain θ̂ = (β̂, σ̂2
u, σ̂

2
ε) and ûi.

2. For l = 1, ..., L, generate

ϵ̃
(l)
ij ∼ N (0, σ̂2

ε), ũ
(l)
i ∼ N (0, σ̂2

u(1− γ̂i))

for in sample domains,

ϵ̃
(l)
ij ∼ N (0, σ̂2

ε), ũ
(l)
i ∼ N (0, σ̂2

u)

for out of sample domains, using θ̂ with γ̂ =
σ̂2
u

σ̂2
u+σ̂2

ε/ni
.

3. Obtain L pseudo-populations by plugging in the explanatory variables in the auxiliary data (i.e.
xij) with β̂, ûi, ũi and ε̃ij obtained in previous steps into the following model

y
(l)
ij =xT

ij β̂ + ûi + ũ
(l)
i + ε̃

(l)
ij , l = 1, ..., L

for in sample domains,

y
(l)
ij =xT

ij β̂ + ũ
(l)
i + ε̃

(l)
ij , l = 1, ..., L

for out of sample domains.

4. Calculate the poverty or inequality indicator for each domain and pseudo population I
(l)
i , i =

1, ..., D and l = 1, ..., L.
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5. Take the mean over the L Monte Carlo runs to estimate the EBP of the indicator

ÎEBP
i =

1

L

L∑
l=1

I
(l)
i .

The EBP with data-driven transformed y is obtained similarly to the described EBP above. The detailed
estimation of the EBP with data-driven transformations and corresponding uncertainty measures based
on MSE of the EBP are further explained in Rojas-Perilla et al. (2020).

3.5.2 Data and problem

This study uses survey data from the 2010 Encuesta Nacional de Ingresos y Gastos de los Hogares
(ENIGH - National Survey of Household Income and Expenditure) as sample data. This survey is
performed every two years by the Instituto Nacional de Estadistica y Geografia (INEGI - The National
Institute of Statistics and Geography) and contains socio-demographic information of households, which
are also the units of data. INEGI also performs the national population and housing census every ten
years. As auxiliary data, the census 2010 data is used for the further application.

Guerrero is located in Southwestern Mexico and borders the Pacific ocean. The state is divided into
81 municipalities. 40 municipalities are in the survey data and 41 municipalities are not in the sample.
Table 3.5 shows a summary of the number of households per domain in the survey and census data. 1801
households are observed in the sample and on average there are 45 observations per domain. The survey
and census data contain a large number of socio-demographic variables. The total household per capita
income in MXN (i.e., ictpc) is used as the measurement of welfare. As we used the linear mixed
model in Equation (3.15) to explain ictpc, the Gaussian assumptions of random effects and errors
are required. However, the histogram of ictpc in Figure 3.1 shows that the distribution of ictpc is
very right skewed. Therefore, we apply the Box-Cox transformation to the target variable ictpc, such
that the violation can be corrected/reduced. For the Box-Cox transformation the optimal transformation
parameter λ should be found.

Table 3.5: Number of households per domain in survey and census data

Min 1Q Median Mean 3Q Max
Survey 13 19 26 45 38 582
Census 585 901 1118 1925 2372 7629

In the survey data there are 34 possible explanatory variables after excluding variables which are
highly/perfectly correlated with other variables. We do not know which variables should be included
to optimally explain the response variable, therefore, a variable selection should be performed. Conse-
quently, we have two problems to solve: obtaining the optimal transformation parameter λ and finding
the optimal model. To solve these problems simultaneously, the optimal transformation parameters are
estimated by the REML approach for each model candidate and all model candidates with their own
transformed data are compared with the JcAIC introduced in Section 3.3. There are 34 possible ex-
planatory variables in the data, therefore, we theoretically have 234 model candidates. However, fitting
these models is unfeasible because of the computational intensity. Instead, a step-wise variable selection
proposed in Section 3.3.4 is applied to find the optimal model. With the chosen optimal model the EBP
of poverty and inequality indicators are estimated.

To evaluate the EBP based on our optimal model, we apply two naive approaches which are typically
used in applications. The first one takes the simple logarithmic transformation to avoid the problem of
finding the optimal transformation and performs variable selection based on cAIC on the log-scale. The
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Figure 3.1: Distribution of the total household per capita income in MXN (ictpc)

second specification performs the variable selection initially on the original y scale to find the optimal
model. Afterwards, the optimal transformation parameter is chosen based on the optimal model for
the original y. Consequently, we have three different EBP estimates: Box-Cox Opt denotes the EBP
based on our selection method based on the JcAIC as described in Section 3.3, Log denotes the first
alternative EBP approach and Box-Cox Naive denotes the second alternative EBP approach. These
three EBP estimates are compared to show that the use of our proposed selection approach based on
the JcAIC can improve the predictive power and reduce the uncertainty of the poverty and inequality
estimates.

3.5.3 Results

First, the chosen variables for the optimal model and the optimal transformation parameters of each
approach are compared. Table 3.6 shows the chosen variables of each approach and the estimated
transformation parameter for models with the Box-Cox transformation. We can see that the results
of variable selection can be strongly affected by the response variable. The Box-Cox Opt approach
performs the variable selection on Box-Cox transformed y and Log performs the variable selection on
logarithmic transformed y. For these two approaches, a transformation is used to correct the violation
of the Gaussian assumptions and then the optimal model is chosen with transformed y. As a result, the
chosen variables for the model of Box-Cox Opt and Log are very similar. In the meantime, the model of
Box-Cox Naive choose the variables on the original y despite the violation of the Gaussian assumptions
in the error terms. As a result, Box-Cox Naive has different variables in the model in comparison to the
other models. Interestingly, optimal transformation parameters for Box-Cox Opt and for Box-Cox Naive
only differ slightly even though they have many different variables in the models.

Second, in order to compare the predictive power of each model, marginal R2 and conditional
R2 (Nakagawa and Schielzeth, 2013) are calculated and summarized in Table 3.7. The marginal R2

measures the proportion of variance explained by fixed effects and the conditional R2 provides the
proportion of variance explained by both the fixed and random effects. It is shown that the models with
the Box-Cox transformation (i.e., Box-Cox Opt and Box-Cox Naive) have the higher predictive power
than the model with the logarithmic transformation (i.e., Log). When we compare Box-Cox Opt and
Box-Cox Naive, we can see that the Box-Cox Opt, whose model is optimal for transformed y, has a
higher marginal and conditional R2 than Box-Cox Naive, whose model is optimal for the original y
scale.

Since the linear mixed model relies on Gaussian assumptions and we decided to use a transformation
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Table 3.6: Chosen variables and optimal transformation parameters

EBP approach Chosen Variables λ̂

X1, X2, X3, X4, X5, X6, X7, X8, X9,
Box-Cox Opt X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, 0.1764

X20, X21, X22, X23

X1, X2, X3, X4, X5, X6, X7, X8, X9,
Log X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, -

X24, X25

Box-Cox Naive
X1, X2, X3, X4, X5, X6, X7, X8, X9, 0.1888
X20, X21, X22, X23, X26, X27, X28

Table 3.7: R2 of models used for each approach

marginal R2 conditional R2

Box-Cox Opt 0.5997 0.6244
Log 0.5538 0.5878

Box-Cox Naive 0.5630 0.6023

to correct the violation of the Gaussian assumptions, each approach should be examined concerning
whether the violation is corrected. For the examination, the skewness, kurtosis of residuals, and p-
value of the Shapiro-Wilk normality test (Shapiro and Wilk, 1965) on residuals are calculated (Table
3.8). We observe that the logarithmic transformation performs worse than the Box-Cox transformations.
For further details we provide quantile-quantile (Q-Q) plots of residuals from the three approaches in
Figure C.2 in the Appendix. The household level residuals are clearly closer to the normal distribution
with transformations. The Box-Cox transformation corrects the violation in household level residuals
rather well, however, the residuals slightly deviate in the tails. From the models with the Box-Cox
transformation we can at least observe that the municipal level residuals are very close to the normal
distribution.

Table 3.8: Skewness, kurtosis and p-value of Shapiro-Wilk test for the household and municipal
level residuals

Household level residuals Municipal level residuals
Skewness Kurtosis p-value Skewness Kurtosis p-value

Box-Cox Opt 0.2737 6.3376 0.0000 -0.0893 3.0488 0.7696
Log -1.4323 13.4906 0.0000 -1.1643 5.9753 0.0089

Box-Cox Naive 0.2329 6.0788 0.0000 -0.0837 3.1332 0.8087

Finally, we want to assess if the improvement in the predictive power of the model due to the
proposed simultaneous selection of the transformation and the covariates (Box-Cox Opt) translates to
more precise small area estimates compared to the two alternative approaches (Log and Box-Cox Naive).
Therefore, we estimate the mean income, head count ratio (HCR) (Foster et al., 1984), and Gini coeffi-
cient (Gini, 1912) for the municipalities in Guerrero. To compare the efficiency of these three different
approaches, the root mean squared error (RMSE) of the municipal indicators are estimated by a boot-
strap (Rojas-Perilla et al., 2020). The RMSE values are visualized in Figure 3.2. Figure 3.2 shows that
the Box-Cox Opt is the most efficient approach, since for all three indicators it has the smallest estimated
RMSE. When the naive approaches are compared, we cannot say which approach is more efficient be-
cause for some indicators Log has the smaller RMSE and for other indicators Box-Cox Naive has
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the smaller RMSE. It seems that the model and transformation selection is especially important for
parameters associated with the tails of the distribution.

Figure 3.2: RMSE of EBP estimates for mean income, HCR and Gini

Figure 3.3 shows EBP estimates of mean income, HCR, and Gini of municipalities in Guerrero
based on Box-Cox Opt approach. The Southwestern part of Guerrero, which resembles the coastline
(Costa Grande region and Acapulco), features a tourism industry which contributes to the municipal-
ities having a higher mean income. Furthermore, along a north-south axis between Chilpancingo in
the south and Taxco in the north, numerous industries are concentrated. These industries focus on the
production of handcrafted items using local resources. This also contributes to a higher income in these
municipalities. Consequently, the HCR and Gini coefficient in these municipalities are lower than the
others. This means, that the people in these municipalities earn more money than in other municipal-
ities and the wealth is more equally distributed compared to other municipalities. On the other hand,
the eastern part of Guerrero is suffering from higher levels of poverty and inequality. Municipalities
in the region are covered with mountains and when compared to all other regions of Guerrero, these
municipalities exhibit the highest number of indigenous people living there.

Figure 3.3: EBP estimates for mean income, HCR and Gini based on Box-Cox Opt approach.

3.6 Conclusions and future research directions

The main purpose of this study was to find a solution to two practical problems in the context of linear
mixed models: a) the true model for explaining the response variable is unknown and b) the model as-
sumptions, especially the Gaussian assumptions of the error terms, are violated. While these problems
commonly appear together, we provide a solution to find the optimal model and the optimal transfor-
mation simultaneously. We focus on one of the most commonly used transformations, the Box-Cox
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transformation. Since the cAIC is scale dependent, we provide an adjusted cAIC by using the Jaco-
bian of the transformation such that different models with differently compared transformed response
variables can be compared. As a large number of possible explanatory variables increases computa-
tional costs, we propose an optimal simultaneous selection approach based on Jacobian adjusted cAIC

(JcAIC), which is also feasible for a large number of variables. Our model-based simulation studies
show that the proposed selection approach chooses the true model with a transformation parameter close
to the true value in most cases and performs better compared to naive selection approaches. The pro-
posed simultaneous selection approach can be used in many different areas of research. As an example,
we provide a case study where we apply the selection approach for estimating poverty and inequality in-
dicators at municipal level in Mexico. We observe that the model selected by the proposed simultaneous
approach has higher predictive power than other approaches. The improvements in terms of predictive
power and model building translate to more precise small area estimates of the poverty and inequality
indicators.

Further research should be shifted towards alternative variable selection criteria. For instance,
Bunke et al. (1999) show that the cross validation selection criterion can simultaneously select the
optimal parametric model and the optimal transformation parameter of the Box-Cox transformation for
nonlinear regression models. Furthermore, Fang (2011) proves that the cAIC is asymptotically equiv-
alent to the leave-one-observation-out cross validation for linear mixed models. Therefore, deriving
the cross validation selection criterion for the linear mixed model and comparing the results with the
JcAIC might be a promising avenue for further research. The selection based on cross validation cri-
terion may improve the quality of the prediction. Moreover, it is also possible to derive the JcAIC for
other transformations which require the estimation of the transformation parameter. The use of JcAIC

as a selection criterion between different transformations with different optimal models is also a poten-
tial research direction. However, it should be noted that the use of our proposed approach is less useful
when the point of interest is to interpret the effect of the chosen explanatory variables on the original
scaled data. Gurka et al. (2006) introduce a bias corrected beta coefficient for linear mixed models un-
der the Box-Cox transformation which produces a more precise interpretation of the beta coefficients.
However, the interpretation does only hold for the transformed response variable. On the original scaled
response, it is not clear how strong the effects of the explanatory variables are. To enable interpreting
the effects of explanatory variables on the original data, further research is needed for general regression
models with the Box-Cox transformed response variable.
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Appendix C

C.0.1 Bootstrap for Original and Log approach

A. Bootstrap for Original

1. Fit the model in Equation (3.1) to obtain estimates of model parameters θ̂.

2. Generate u(b) from N (0, Ĝ0) and ε(b) from N (0, σ̂2) and create bootstrap y using

y(b) = Xβ̂ + Zu(b) + ε(b).

3. Refit the model with the bootstrap sample y(b) and obtain bootstrap estimates of model parame-
ters θ̂(b) and û(b).

4. Obtain the BC by

BC =
1

B

B∑
b=1

[
− 1

2σ̂2(b)

(
y(b) −Xβ̂(b) − Zû(b)

)T

(
y(b) −Xβ̂(b) − Zû(b)

)]

+
1

B

B∑
b=1

[
1

2σ̂2(b)

(
y −Xβ̂(b) − Zû(b)

)T

(
y −Xβ̂(b) − Zû(b)

)]
.

B. Bootstrap for Log

1. Transform the y to the ỹ using ỹ = log(y + s).

2. Fit the model with ỹ to obtain estimates of model parameters θ̂.

3. Generate u(b) from N (0, Ĝ0) and ε(b) from N (0, σ̂2) and create bootstrap ỹ using

ỹ(b) = Xβ̂ + Zu(b) + ε(b).

4. Re-fit the model with bootstrap sample ỹ(b) and obtain bootstrap estimates of model parameters
θ̂(b) and û(b).

5. Back-transform ỹ(b) to obtain y(b). y(b) is obtained by y(b) = exp(ỹ(b))− s.

6. Obtain the BC by
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BC =
1

B

B∑
b=1

[
− N

2
log
(
2πσ̂2(b)

)
− 1

2σ̂2(b)
·

(
ỹ(b) −Xβ̂(b) − Zû(b)

)T

(
ỹ(b) −Xβ̂(b) − Zû(b)

)
+ J(y(b))

]

− 1

B

B∑
b=1

[
− N

2
log
(
2πσ̂2(b)

)
− 1

2σ̂2(b)
·

(
ỹ −Xβ̂(b) − Zû(b)

)T

(
ỹ −Xβ̂(b) − Zû(b)

)
+ J(y)

]
,

with

J(y(b)) =−
D∑
i=1

Ni∑
j=1

log(y(b) + s),

J(y) =−
D∑
i=1

Ni∑
j=1

log(y + s).

C.0.2 Graphics and Tables

Table C.1: Summary statistics of the dependent variable (yij) in the first Monte Carlo popula-
tion.

Data setting Min 1Q Median Mean 3Q Max
Normal (1) 131 416 476 475 535 831
Normal (2) 247 442 484 477 517 669
Log 0 793 3732 48861 17384 15769695
Box-Cox 0.019 0.066 0.103 5.064 0.183 25978.438
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Figure C.1: Density of the dependent variable (yij) in the first Monte Carlo population. Note
that a base-10 log scale is used for the x-axis for the Log and Box-Cox setting.
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Figure C.2: Q-Q plots for household level and municipal level residuals of different EBP ap-
proaches.
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Chapter 4

Area-level small area estimation with
random forests

4.1 Introduction

For developing countries, the availability of socio-demographic indicators at a small regional level is
particularly important for targeting policy interventions where they are most needed. Moreover, there
are often large regional disparities within these countries. Increasing national growth rates and reducing
regional disparities are crucial to achieving the United Nations Sustainable Development Goals, which
aim to ensure sustainable economic, social and environmental development worldwide (United Nations,
2012). Spatially disaggregated poverty estimates therefore help to assess where the provision of public
and social services is most important. With the help of small area estimation (SAE) methods reliable
estimates of disaggregated indicators can be produced. Estimators for such disaggregated indicators
that are derived only from the domain-specific survey data (hereafter referred to as direct estimators)
tend to be unreliable because sample sizes may be insufficient and existing surveys are often designed
for higher levels, such as the national level. Since the enlargement of the sample size of surveys is cost
intensive and time consuming, SAE methods are developed to obtain estimates in a small area or domain
with adequate precision. This is done by using model-based approaches and enriching survey data by
additional information from further data sources traditionally taken from administrative data (census or
register data). A small area or domain refers to any subpopulation of the population of interest, e.g.
geographic areas or socio-demographic groups. SAE methods can be distinguished into two types: unit-
and area-level models. While unit-level models relate the unit values of a variable of interest to auxil-
iary information at the individual level (Battese et al., 1988; Molina and Rao, 2010), area-level models
use survey data and auxiliary information, both aggregated to the desired area-level (Fay and Herriot,
1979). For more detailed overviews of SAE methods, see Pfeffermann (2013); Rao and Molina (2015);
Tzavidis et al. (2018) and Jiang and Rao (2020). Even though unit-level models may lead to a gain in
precision since more information is used for the model estimation, area-level models offer a valuable
alternative. Access to auxiliary information like census or register data is due to confidentiality rea-
sons often less likely, but aggregated auxiliary information are provided more frequently. Additionally,
area-level models can take the survey design into account by integrating the sampling weights into the
direct estimation. Both types of models are based on linear mixed models (LMM), which offer a great
opportunity to model area effects that are not explained by area-specific covariates due to the random
effects of the model. To avoid biased estimates and unreliable mean squared error (MSE) estimates, the
model assumptions of LMMs have to be met. The violation of model assumptions and other problems
that might occur in practical SAE applications and possible solutions are exemplarily: To encounter

91



CHAPTER 4. AREA-LEVEL MODELING WITH RANDOM FORESTS

the violation of normally distributed random effects and error terms, transformations can be applied,
e.g. a log transformation or parametric transformations like the Box-Cox or dual power transformation
for right skewed data (Rao and Molina, 2015; Slud and Maiti, 2006; Sugasawa and Kubokawa, 2017).
Robust area-level models are developed to handle influential outlying observations (Chambers et al.,
2014; Schmid et al., 2016; Jiang and Rao, 2020). For the estimation of ratios the arcsine transformation
guarantees that the model results lie in the interval [0; 1] (Casas-Cordero et al., 2016; Schmid et al.,
2017; Sugasawa and Kubokawa, 2017; Hadam et al., 2020). For applications where the functional form
of the relationship between the response variable and the auxiliary variables is nonlinear or unknown,
Giusti et al. (2012) develop a semiparametric Fay-Herriot (FH) model based on penalized splines. An-
other problem may be that unknown interactions between explanatory variables may affect the model
estimation and in traditional (mixed) regression models interaction terms have to be included by the
practitioner. One issue that arises in traditional SAE data applications is model building. Practition-
ers have to decide which auxiliary variables should be included in the model. This decision is often
based on theoretical considerations and/or variable selection criteria like the Akaike or Bayesian in-
formation criterion or the R2 of the resulting model. For area-level models, Marhuenda et al. (2014)
derive bootstrap and bias corrected versions of the mentioned variable selection criteria and Lahiri and
Suntornchost (2015) propose an adjusted R2.
However, all the listed approaches only tackle single problems. Machine learning methods represent a
meaningful alternative to encounter several problems at the same time. In this paper, the focus lies in
particular on random forests (RF) (Breiman, 2001). The use of RFs combines many advantages: RFs
are not limited to (parametric) model assumptions, they learn predictive relations from data, meaning
that they are able to capture nonlinear relations between the response variable and the auxiliary vari-
ables and to handle higher order interactions between auxiliary variables (Hastie et al., 2008; Varian,
2014). RFs are known for an excellent predictive performance even when working with skewed data
or facing influential outliers. Since RFs cannot extrapolate, the predictions of RFs automatically lie in
a predefined range of values (dependent on the input data). In addition, RFs perform implicit variable
selection (Biau and Scornet, 2016).
The goal of this paper is to combine the advantages of area-level SAE models and RFs. In the con-
text of mixed models, there is the mixed effects random forest model (MERF) approach (Hajjem et al.,
2014). The MERF combines the method of RFs while modeling the hierarchical dependencies of mixed
models. In the field of SAE, Krennmair and Schmid (2022) adapt MERFs to unit-level SAE models.
Conceptually, we transfer the methods introduced by Krennmair and Schmid (2022) to area-level mod-
els. Even for unit-level SAE models, few studies consider tree-based methods (e.g.Mendez (2008);
Bilton et al. (2017); De Moliner and Goga (2018); McConville and Toth (2019)), and to the best of our
knowledge, there is no literature yet for area-level models. We aim to fill this gap by introducing the
area-level MERF and a corresponding nonparametric bootstrap MSE estimator to measure its uncer-
tainty. The performance of the newly introduced method is investigated and compared to the standard
and semiparametric FH estimators by model-based simulations. We illustrate the area-level MERF in
an application based on remote-sensing data. Traditionally, FH models combine survey and census data,
but there are several alternatives when no (recent) census data is available. For example, survey data
(Ybarra and Lohr, 2008), general big data sources (Marchetti et al., 2015), Google Trends data (Porter
et al., 2014), or mobile phone data (Schmid et al., 2017) have already been used in area-level SAE
applications. Other valuable auxiliary information is geospatial data that stem from remote-sensing
sources like satellite imagery. In the field of poverty estimation and estimation of socio-economic indi-
cators, Seitz (2019) applies a FH model and uses auxiliary information derived from satellite imagery
to estimate different welfare indicators for Central Asian districts. Newhouse et al. (2022) and Masaki
et al. (2022) compare unit- and area-level models based on survey and satellite data in order to estimate
monetary poverty for Mexican municipalities and non-monetary poverty in Sri Lanka and Tanzania,
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respectively. Edochie et al. (2023) adapt geospatial auxiliary data for estimating poverty rates at the
unit-level in Chad, Guinea, Mali and Niger, and additionally compare results at the unit- and area-levels
for the country of Burkina Faso. To the best of our knowledge, there are no applications in the litera-
ture that combine area-level SAE models and RFs using alternative data sources such as remote sensing
data. The newly introduced area-level MERF is applied to estimate household consumption at the km
grid-level in Mozambique based on survey and geospatial data.
Section 4.2 explains the statistical methodology: While Section 4.2.1 proposes an area-level MERF,
a nonparametric bootstrap MSE estimator is introduced as a measure of uncertainty in Section 4.2.2.
Model-based simulations are performed in Section 4.3 to evaluate the introduced methods. Section 4.4
describes the application of the area-level MERF for the estimation of consumption on a grid-level in
Mozambique. Section 4.5 concludes and gives an outlook.

4.2 Model estimation

In the following, we present the statistical methodology in which we combine an area-level model with
a RF. As usual, a direct estimator is computed with survey data and combined with a synthetic part that
uses covariate information from additional data sources. For the synthetic part, we use a RF instead of
a linear model. Before we start with the proposed model, a few remarks about RFs follow. RFs were
first introduced by Breiman (2001) and are based on the concept of bootstrap aggregation (bagging)
(Breiman, 1996). They can be used for regression or classification problems, focusing here only on
regression. For estimation, a large number of bootstrap samples are drawn with which regression trees
are computed. The predictions from the individual trees are averaged, which can reduce the noise, and
thus the bias. By using regression trees, complex interactions between covariates and nonlinear relation-
ships with the target variable can be detected. In addition, variance can be reduced by using a collection
of de-correlated trees. This is achieved by randomly selecting a set of variables for splitting. Due to
the aggregation of a large number of regression trees, RFs are outlier-robust. RFs cannot extrapolate
because their predictions are based on the input data. This can be disadvantageous in applications with
very different training and test data, but advantageous when the target variable is in a predefined range
of values. For more details on RFs see Breiman (2001) and for an overview see Hastie et al. (2008).

4.2.1 Area-level mixed effects random forest

The general underlying model for area-level SAE models is a LMM. For clustered unit-level data, Ha-
jjem et al. (2014) extend the concept of RFs to mixed effects RFs. In the context of SAE, Krennmair
and Schmid (2022) broaden this idea to SAE applications with unit-level data. For area-level data, the
methodology can be transferred as follows. A finite population of size N is assumed and partitioned
into d = 1, ..., D domains. A sample of size n with i = 1, ..., nd units per domain is drawn with
domain-specific sample sizes nd so that n =

∑D
d=1 nd. Area-level models are typically divided into

two stages: the sampling model and the linking model. The assumption of the sampling model is, that
the direct estimator based on survey data can be represented by the domain-specific true indicator θd
and a sampling error ed:

θ̂Dir
d = θd + ed, ed

ind∼ N(0, σ2
ed
).

If the indicator of interest is a mean value, a common direct estimator is the Horvitz-Thompson estimator
(Horvitz and Thompson, 1952):

θ̂Dir
d =

∑nd

i=1 wdiydi∑nd

i=1 wdi
, (4.1)
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where the wdi denote the sampling weights (inverse inclusion probabilities). The variance of the direct
estimator σ2

ed
is assumed to be known, but usually has to be estimated from the unit-level sample data

using either bootstrap methods (Alfons and Templ, 2013) or for example the Horvitz-Thompson ap-
proximation (Horvitz and Thompson, 1952). The linking model relates the covariate information from
additional (population) data sources to the true indicator:

θd = f(xd) + vd, vd
iid∼ N(0, σ2

v), (4.2)

where f() denotes a RF and vd domain-specific random effects with variance σ2
v . The domain-specific

covariate information is denoted by a p× 1 vector xd. The combination of both models leads to:

θ̂Dir
d = θd + ed = f(xd) + vd + ed, vd

iid∼ N(0, σ2
v), ed

ind∼ N(0, σ2
ed
). (4.3)

The unknown components/parameters of the model are the random effects variance σ2
v and the RF f().

Once these parameters are estimated, the final domain-specific estimator can be obtained as follows:

θ̂d = f̂(xd) + v̂d = γ̂dθ̂
Dir
d + (1− γ̂d)f̂(xd), with (4.4)

v̂d =
σ̂2
v

σ2
ed

+ σ̂2
v

[θ̂Dir
d − f̂(xd)] and γ̂d =

σ̂2
v

σ2
ed

+ σ̂2
v

.

The shrinkage factor γ̂d has the same interpretation as in the standard FH model: the smaller the model
variance σ̂2

v is compared to the total variance, which includes the direct variances, the more weight is
given to the synthetic component, and vice versa. Note that if f(xd) is replaced by xT

d β, the models
in Equations (4.2) and (4.3) and the estimator in Equation (4.4) result in the standard area-level model
and estimator introduced by Fay and Herriot (1979) (FH model/estimator). In the case of the FH model,
there are several ways to estimate the model variance σ2

v , such as maximum likelihood (ML) or restricted
ML (REML). Avila-Valdez et al. (2020) present an expectation maximization (EM) algorithm for the
FH model for ML and REML estimation of the model components. To estimate the model in Equation
(4.3), we adapt the EM algorithm for ML estimation proposed by Avila-Valdez et al. (2020). The
algorithm iteratively takes as correct the synthetic component estimated using an RF and the random
effects. For the synthetic component, as in the MERF algorithm of Hajjem et al. (2014), the out-of-
bag (OOB) predictions are used, i.e. the predictions of trees corresponding to the bootstrap sample
without the respective observation (Breiman, 2001). When estimating the synthetic component of an
area-level model, we want the direct estimates with higher reliability to have more influence. In the
Fay-Herriot model, therefore, the variances of the direct estimators are included in the calculation of
the regression coefficients in order to correctly represent the relationship between the covariates and the
direct estimators. In order to avoid bias in the RF as well, it is constructed using the inverse sample
variances σ2

ed
as case weights, and more reliable direct estimators are given a higher weight in the

estimation by being selected with a higher probability in the bootstrap sample. The proposed area-level
MERF algorithm is as follows:

1. Initialize r = 0, choose a starting value for σ̂2(0)
v and estimate a RF f̂()(0) with y ∼ X using

the inverse sampling variances as weights σ−2
e1 , .., σ−2

eD in the estimation. y is a vector with the
direct estimators y = (θ̂Dir

1 , ..., θ̂Dir
D ) and X a D× p matrix with the covariate information. Get

f̂(X)
(0)
OOB .

2. Set r = r + 1. Update the random effects v̂(r) = (v̂
(r)
1 , ..., v̂

(r)
D ), the RF f̂(X)(r) and σ̂

2(r)
v :

(a) Calculate

v̂(r) =

(
1

σ̂2(r−1)
ID +R−1

)−1

R−1(y − f̂(X)
(r−1)
OOB ),
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where R = diag(σ2
e1 , .., σ

2
eD ) and ID is the D ×D identity matrix.

(b) Estimate a RF f̂()(r) with dependent variable y−v̂(r), covariates X and weights σ−2
e1 , .., σ−2

eD

and get f̂(X)
(r)
OOB .

(c) Calculate:

σ̂2(r)
v =

1

D

(
v̂′(r)v̂(r) + tr

[(
1

σ̂
2(r−1)
v

ID +R−1

)−1])
.

3. Repeat step 2 until convergence is reached.

4. Get σ̂2
v and a final model/RF f̂().

In the EM algorithm, convergence is achieved when the log-likelihood can no longer be maximized.
Therefore, the relative change of the log-likelihood |l(r)−l(r−1)|

l(r−1) is used as convergence criterion where
l = l(σ2

v , f |θ̂Dir
d ) = −0.5

∑D
d=1 log[2π(σ

2
v + σ2

ed
)] + [θ̂Dir

d − f(xd)]
2(σ2

v + σ2
ed
)−1. Convergence

is achieved when the relative change is below a certain threshold, such as 10−5. Once the final model
is estimated, the resulting area-level MERF estimator θ̂MERF

d can be calculated according to Equation
(4.4). For domains that are not in the sample, so-called out-of-sample domains, the predictions from the
final RF are used.

4.2.2 Uncertainty estimation

In order to assess the quality of the point estimates, it is essential to determine a measure of uncertainty.
A common measure of reliability in the SAE literature is the MSE (Rao and Molina, 2015). In the case of
an area-level LMM, probably the best known analytical estimator of the MSE is that of Prasad and Rao
(1990), which is approximately unbiased. However, resampling techniques also compete with analytical
estimators (Gonzalez-Manteiga et al., 2008a). Although Giusti et al. (2012) derive an analytical MSE
estimator based on the results of Opsomer et al. (2008), they also provide a nonparametric bootstrap
estimator for the MSE that outperforms the analytical one in their simulation. Another advantage of
nonparametric bootstrap MSE estimators is that distributional assumptions can be avoided. Especially
for more complex models, such as the semiparametric FH model (Giusti et al., 2012), estimators based
on bootstrapping are an established alternative. In the context of tree-based methods methods Krennmair
and Schmid (2022) propose a bootstrap MSE estimator in the unit-level mixed-effects RF. We follow
these approaches and propose the following nonparametric bootstrap to estimate the MSE of θ̂MERF

d :

1. Estimate σ̂2
v and f̂() with the algorithm proposed in Section 4.2.1. Calculate v̂d =

σ̂2
v

σ2
ed

+σ̂2
v
[θ̂Dir

d −

f̂(xd)] using the direct estimator θ̂Dir
d and σ2

ed
for d = 1, ..., D.

2. Center and rescale the random effects v̂d for d = 1, ..., D:

v̂csd =
(v̂d − 1

D

∑D
d=1 v̂d)σ̂v√

1
D

∑D
d=1(v̂d −

1
D

∑D
d=1 v̂d)

2

3. Center and rescale the sampling errors êd for d = 1, ..., D:

êd = θ̂Dir
d − f̂(xd)− v̂d

êcsd =
(êd − 1

D

∑D
d=1 êd)σed√

1
D

∑D
d=1(êd −

1
D

∑D
d=1 êd)

2

4. For b = 1, ..., B:
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(a) Draw a simple random sample with replacement of size D from (v̂cs1 , ..., v̂csD ) to get v(b)d .

(b) Draw a simple random sample with replacement of size D from (êcs1 , ..., êcsD ) to get e(b)d .

(c) Calculate the true bootstrap population parameter: θ(b)d = f̂(xd) + v
(b)
d .

(d) Simulate the bootstrap sample: θ̂Dir(b)
d = f̂(xd) + v

(b)
d + e

(b)
d .

(e) Estimate σ̂
2(b)
v and f̂()(b) using the bootstrap sample from the previous step with the algo-

rithm proposed in Section 4.2.1.

(f) Estimate the bootstrap estimator θ̂MERF (b)
d with Equation (4.4).

5. Estimate the MSE:

M̂SE(θ̂MERF
d ) =

1

B

B∑
b=1

(
θ̂
MERF (b)
d − θ

(b)
d

)2
.

4.3 Simulation experiment

This section presents a simulation study to empirically evaluate the performance of the estimators pro-
posed in Section 4.2. We aim to investigate the performance of the point estimator in terms of bias
and efficiency. The MSE estimator proposed in Section 4.2.2 is evaluated with respect to bias. In area-
level SAE applications, the number of observations is determined by the number of domains. In many
examples, if the observation unit is an administrative area, only 100 to 300 domains may exist or be
represented in the sample. A larger number of domains from 500 to 1000 is rarely found at adminis-
trative level. However, if no administratively defined domains are considered, but rather geographical
ones, for example, defined by km grids, the number of domains can also be far above 1000. This is
the case, for example, in the application in Section 4.4 where we have 1170 km grids in Mozambique
available. In order to reflect this varying number of domains in the simulation, the scenarios are consid-
ered for different numbers of domains D, where D ∈ {200, 500, 1000, 2000}. We look at the following
scenarios/models:

linear: y = 10 + 2x1 − 2x2,

interaction: y = 10 + 2x1x2 − 2x22,

interaction noise: y = 10 + 2x1x2 − 2x22 with additional noise z1, ..., z8 ∼ U(0, 1).

In each scenario, the true parameter of interest is generated for each domain d = 1, .., D by θ =

y + v, with v ∼ N(0, 0.04). The direct estimates are then constructed as θ̂Dir = θ + e with e ∼
N(0, σ2

e). σ2
e is chosen in the same range as in Giusti et al. (2012). To ensure variation in sampling

variances at large D, we choose σ2
e ∼ U(0.08, 0.16) and keep it fixed when generating the Monte

Carlo replications per setting. The auxiliary variables x1 and x2 are distributed U(0, 1). We study the
behavior of the proposed estimator under different relationships between the dependent variable and the
auxiliary variable. Similar to Krennmair and Schmid (2022), we consider a linear model (linear) and
a model with a nonlinear relationship and interaction (interaction). In addition, we examine the same
interaction scenario with additional noise variables to see how the estimator performs with required
automatic variable selection (interaction noise). For each scenario and number of domains D, the data
is generated M = 500 times. For point estimation, we consider two competing estimators: the FH
estimator (Fay and Herriot, 1979) and a semiparametric FH (SPFH) estimator proposed by Giusti et al.
(2012). For the implementation of the simulation, R (R Core Team, 2022) is used. The FH estimator is
computed using the R-package emdi (Kreutzmann et al., 2019), while the SPFH estimator is calculated
using code provided by the authors of Giusti et al. (2012). The RF of the proposed area-level MERF
estimator is estimated using the R-package ranger (Wright and Ziegler, 2017) with default settings.
We expect that in the linear setting the FH estimator performs at least as well as the MERF, or even
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better. The effect should be seen especially with a small number of domains. When the number of
observations is small, the variation in the bootstrap samples may not be sufficient to detect complex
relationships. In the linear setting, the relationship is not complex, but corresponds exactly to the linear
structure of the FH model. This is also true for the SPFH, since a linear function is a special case of a
spline function. In the interaction scenario, the MERF should have an advantage over the FH estimator
because the interaction terms cannot be accounted for by the FH estimator. This effect should increase
as the number of domains increases. Compared to the SPFH, the MERF should be at least as efficient.
The interaction scenario contains an interaction as well as a quadratic term that is accounted for by the
penalized splines of the SPFH, while the interaction is not accounted for. The MERF should account for
both the interaction and the quadratic term. In the interaction scenario with additional noise variables
(interaction noise), variable selection is performed in advance for the FH estimator for each Monte Carlo
sample with the explanatory and noise variables using the Akaike information criterion (AIC). The FH
estimator is then estimated using only the resulting variables. The same set of variables is then used
for the SPFH estimator. Accordingly, fewer variables enter the FH and SPFH estimators in the model
estimation in the interaction noise scenario than in the MERF approach. As the MERF automatically
detects the relevant variables, both the explanatory and noise variables are passed. Therefore, we expect
the MERF to outperform the other two comparative estimators in this scenario, at least with a large
number of domains. The quality of the point estimators is evaluated using the relative bias (RB) and the
empirical root MSE (RMSE) defined in Equation (4.5). To judge the proposed bootstrap estimator in
terms of bias, the relative bias of the RMSE (RB RMSE), defined in Equation (4.6) is used.

RB(θ̂d) =
1

M

M∑
m=1

(
θ̂dr − θdr

θdr

)
, RMSE(θ̂d) =

√√√√ 1

M

M∑
m=1

(
θ̂dr − θdr

)2
, (4.5)

RB RMSE(θ̂d) =
1
R

∑M
m=1

√
M̂SEdr

− RMSE(θ̂d)

RMSE(θ̂d)
. (4.6)

Examining the results of the simulation experiment, we first look at the point estimators. The mean and
median values of the RB and RMSE are shown per scenario and domain size for the three estimators
in Table 4.1. First, we note that the MERF is unbiased in each scenario and at each domain size D.
Nevertheless, the values of the RB are higher than for the FH and SPFH estimators. This difference
decreases with higher domain sizes and even reverses for the interaction scenario at least for 1000
observations/domains. We now turn to the efficiency of the MERF approach compared to the two
benchmark estimators. Figure 4.1 shows boxplots of the distribution of RMSEs for the estimators in each
setting. In the linear setting, there is a clear efficiency advantage of the FH and SPFH estimator over the
MERF. The advantage diminishes a little with higher domain sizes, but does not disappear. As expected,
the FH estimator is the least efficient in the interaction scenario because the underlying data generation
process does not match the model. SPFH and MERF perform equally well at D = 200. At higher
domain sizes, the efficiency of the MERF overcomes that of the SPFH because the MERF accounts for
both the interaction and the quadratic term. At first glance, the results of the interaction noise scenario
are somewhat counterintuitive. However, considering that FH and SPFH are already estimated with the
covariates following a variable selection procedure so that the uncertainty of finding the true relationship
with the dependent variable is not taken into account in the estimation, the results seem plausible for
small domain sizes. We see that for D = 500 the MERF already performs better than the FH estimator
and almost on par with the SPFH. For D = 1000 and D = 2000, the MERF approach is more efficient.
We do not compare the FH and SPFH estimators with the full set of variables (explanatory variables and
noise) in the interaction noise scenario, as this would not correspond to common practice in applications
and the comparison would not be fair. Table 4.2 helps understanding the results of Figure 4.1, especially
for the linear scenario. Table 4.2 contains averages over the simulation runs of the R2 and the estimated
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Table 4.1: Mean and Median of RB[%] and RMSE for varying domain sizes D.

D 200 500 1000 2000
Mean Median Mean Median Mean Median Mean Median

RB
linear FH 0.040 0.041 0.018 0.015 0.031 0.031 0.032 0.032

SPFH 0.044 0.042 0.019 0.015 0.032 0.034 0.033 0.032
MERF 0.089 0.091 0.043 0.046 0.046 0.047 0.040 0.037

interaction FH 0.056 0.051 0.051 0.055 0.053 0.052 0.062 0.062
SPFH 0.048 0.046 0.043 0.041 0.045 0.042 0.053 0.054
MERF 0.079 0.076 0.052 0.049 0.042 0.041 0.042 0.044

interaction noise FH 0.062 0.062 0.063 0.060 0.056 0.058 0.052 0.050
SPFH 0.056 0.059 0.055 0.050 0.048 0.047 0.043 0.041
MERF 0.091 0.091 0.083 0.083 0.070 0.074 0.057 0.054

RMSE
linear FH 0.179 0.179 0.175 0.176 0.174 0.174 0.173 0.173

SPFH 0.185 0.185 0.178 0.179 0.175 0.176 0.174 0.174
MERF 0.217 0.217 0.204 0.204 0.199 0.199 0.197 0.197

interaction FH 0.229 0.230 0.227 0.228 0.226 0.227 0.226 0.227
SPFH 0.214 0.215 0.210 0.211 0.209 0.209 0.208 0.209
MERF 0.209 0.209 0.201 0.201 0.197 0.197 0.195 0.195

interaction noise FH 0.232 0.232 0.229 0.230 0.227 0.227 0.226 0.227
SPFH 0.219 0.220 0.213 0.213 0.210 0.210 0.209 0.209
MERF 0.237 0.237 0.215 0.215 0.202 0.203 0.193 0.193

model variance σ̂2
v for the FH model and the MERF approach. For the FH model, the R2 specifically

applicable to FH models (Lahiri and Suntornchost, 2015) is used and for the MERF we look at the OOB
R2 of the final random forest from the proposed algorithm in Section 4.2.1. Although the two measures
are not directly comparable, since the former evaluates the goodness of the entire model, and the latter
only the structural part, they help to understand the results as follows. For the MERF approach, the
following relationship emerges for each scenario: As the domain size D increases, the R2 increases,
which means that the explanatory power of the random forest grows. Since it is an iterative algorithm
that moves from forest building to estimating the variance of the random effects, the estimated variance
of the random effects converges to the true model variance of σ2

v = 0.04. Comparing the MERF values
to the FH values, we find that the estimated model variances of the FH are smaller than those estimated
using the MERF approach when the explanatory power of the FH model is higher, especially in the
linear scenario. Smaller model variances mean that more weight is given to the synthetic component,
leading to an increase in efficiency. In addition to these explanations, it is worth noting that the MERF
approach is not performing poorly in the linear setting. The explanatory power is even greater than in the
interaction setting, and the model variance is also very well estimated. The MERF approach is simply
not better than the less complex linear model in the simplest scenario. We proceed with the investigation
of the performance of the proposed MSE estimator resulting from the suggested nonparametric bootstrap
procedure. In each simulation run, the number of bootstrap replications is set to B = 200. Table 4.3
contains mean and median values across domains for each setting. Generally, we observe that the
proposed MSE estimator suffers from a slight overestimation. There are some differences between
the number of domains and the scenarios, and interestingly, the overestimation becomes smaller as the
complexity of the scenario increases. Due to the slight overestimation, the proposed MSE estimator can
be considered somewhat conservative. Nevertheless, all mean and median values are below 10% and
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can therefore be seen as a reasonable approximation to the uncertainty of the proposed MERF approach.
Detailed results on the RB RMSE can be found in the Appendix in Figure D.1.
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Figure 4.1: Distribution of RMSEs for varying domain sizes D.

Table 4.2: Averages of R2 and σ̂2
v over M = 500 simulation runs.

D 200 500 1000 2000
R2

linear FH 0.917 0.917 0.917 0.917
MERF 0.883 0.882 0.883 0.884

interaction FH 0.609 0.606 0.607 0.610
MERF 0.698 0.702 0.707 0.710

interaction noise FH 0.621 0.617 0.611 0.609
MERF 0.635 0.669 0.683 0.692

σ̂2
v

linear FH 0.038 0.039 0.040 0.040
MERF 0.060 0.051 0.049 0.048

interaction FH 0.086 0.088 0.089 0.089
MERF 0.054 0.049 0.047 0.046

interaction noise FH 0.082 0.086 0.088 0.089
MERF 0.093 0.069 0.058 0.052
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Table 4.3: Mean and Median of RB RMSE[%].

D 200 500 1000 2000
Mean Median Mean Median Mean Median Mean Median

linear 6.139 5.919 7.091 7.300 7.675 7.664 7.274 7.115
interaction 6.024 5.852 6.884 6.920 7.255 7.184 7.134 7.148
interaction noise 2.197 2.302 4.107 3.982 4.379 4.283 5.058 4.993

4.4 Application

The aim of this section is to illustrate the area-level MERF presented in Section 4.2 and to investi-
gate its performance using a real world example. For this, we estimate the consumption per capita for
Mozambique on a 1km square grid-level as SAE area-level. Mozambique ranks 185 out of 191 coun-
tries in the United Nations Development Program’s latest Human Development Index, which takes into
account gross national income, life expectancy and access to education (United Nations Development
Programme, 2022), making it one of the poorest countries in the world. While Mozambique’s per capita
growth rates were increasing between 2001 and 2015, the growth rate turned negative since 2016 due to
a hidden debt crisis, cyclones that mainly hit Northern and Central provinces in 2019 and the COVID-19
pandemic in 2020. A positive trend has been recorded again since 2021 (Da Maia, 2022). But even in
the times of economic growth, poverty levels differ significantly across the country. The differences
mainly persist between rural and urban regions. Southern provinces are comparatively more wealthy
than Northern and Central provinces which can be partly explained by the higher degree of urbanization
in the South. The capital Maputo also lies in the South of Mozambique.

4.4.1 Data

We use traditional survey data from a household welfare survey and, as auxiliary information, geospatial
data. Both are from 2019 and were kindly provided by the World Bank Group. Mozambique is divided
into 11 provinces. Due to a lack of reliable data, the province Niassa is not considered for this exem-
plary application. The remaining 10 provinces are Cabo Delgado, Gaza, Inhambane, Manica, Maputo
City, Maputo, Nampula, Sofala, Tete and Zambezia. As variable of interest serves the average house-
hold consumption per capita in Mozambican Metical (MZN), which is spatially deflated using estimated
local prices. We obtain the direct estimates by computing the Horvitz-Thompson estimator defined in
Equation (4.1) per grid of household-level survey data. Following Edochie et al. (2023), the variance
of the direct estimator is estimated by using the Horvitz-Thompson approximation of the R-package
sae (Molina and Marhuenda, 2015). Therefore, the sum of sample weights per grid is calculated as
approximation of the domain size. The results of the direct estimator are presented in the next section.
Of the 41137 available grids, 1170 are in-sample and 39967 are out-of-sample grids. A summary of the
sample sizes over grids is given in Table 4.4. The sample sizes of the in-sample grids range from 3 to
24 with a mean of 10.3.

Table 4.4: Distribution of sample sizes for grids

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample size 3.00 9.00 9.00 10.30 12.00 24.00

The auxiliary information stems from satellite data and includes in total 37 covariates that contain differ-
ent information about buildings, land coverage, night light and rainfall. Summaries of the distribution of
the possible auxiliary information are provided in Table D.1 in the Appendix. Since several variables for
the same type of measure, for example minimum, mean and maximum rainfall, are included, potential
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interactions between the covariates influence the model estimation.

4.4.2 Model estimation and results

The point and MSE estimates of the MERF are estimated as proposed in Section 4.2. For the RF part of
the model, the ranger function of the R-package ranger (Wright and Ziegler, 2017) is utilized with
default settings. The convergence criterion of the EM algorithm is set to 10−5. For the nonparametric
bootstrap MSE estimation, B = 200 bootstrap replications are performed. Common measures for
the interpretation of RF type models are variance importance plots and partial dependence plots for
influential covariates (Greenwell, 2017) (see Figure D.2 in the Appendix). For some of the covariates
(i.a. the land cover variables lc_shrubcoverf, lc_grasscoverf, lc_cropscoverf), nonlinear relations to the
dependent variable are recognizable. The MERF results are not only compared to the direct estimates,
but also to a traditional FH model. The normality assumptions of a standard FH model were not fulfilled,
thus we apply a log transformation. For the estimation of the FH model, the fh function of the R-
package emdi (Kreutzmann et al., 2019) is used with ML variance estimation, log transformation and
crude backtransformation which is the suggested backtransformation of package emdi in the presence
of out-of-sample domains. An analytical MSE estimator for the crude backtransformation following
Rao and Molina (2015) and Datta and Lahiri (2000) is automatically provided by emdi. For the variable
selection of the FH model, we made use of the AIC based on a linear regression model with a log
transformed target variable. We proceed with the presentation of the results. Table 4.5 contains the

Table 4.5: Distribution of direct and model-based point estimates, CVs [%] and shrinkage
factors for model-based estimates.

Min. 1st Qu. Median Mean 3rd Qu. Max.
In-sample
Point estimates Direct 1.01 28.79 43.83 66.22 75.56 2023.41

log FH 14.27 30.72 42.89 58.89 68.14 593.10
MERF 1.01 30.15 38.31 44.73 54.96 112.68

CV Direct 23.63 34.26 36.20 37.61 39.25 81.03
log FH 18.70 22.88 23.44 23.70 24.26 46.59
MERF 9.79 16.10 19.51 21.31 23.22 81.86

Shrinkage factors log FH 0.12 0.36 0.39 0.38 0.42 0.60
MERF 0.00 0.09 0.25 0.29 0.44 1.00

Out-of-sample
Point estimates log FH 0.10 27.70 31.41 35.48 37.65 722.12

MERF 18.70 27.88 30.61 32.45 34.51 117.14
CV log FH 28.57 28.77 28.86 29.11 29.02 186.66

MERF 9.65 27.35 30.58 30.58 33.95 56.62

distribution of direct and model-based point and coefficient of variation (CV) estimates, as well as
model-based shrinkage factors. Additionally, boxplots of the point estimates for in- and out-of-sample
grids are provided in the Appendix (Figure D.3). The direct point estimates range from 1.01 to 2023.41
MZN, indicating a right-skewed distribution with differing median and mean values of 43.83 and 66.22
MZN, respectively. The CVs of the direct estimator vary between 23.63 and 81.03 with a mean of 37.61
and are therefore far above a threshold of 20% that is traditionally considered reliable (Eurostat, 2023).
The median values of the point estimates of the direct and model-based estimates are very similar,
only the MERF estimates are slightly lower. The interquartile ranges (1st Qu. and 3rd Qu.) show
less variation in both SAE models, MERF and log FH, than in the direct estimates. This is a result of
shrinkage in both SAE models, where unreliable direct estimates are shrunk to the center due to very
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small sample sizes at the grid-level (see Table 4.4). Another point that becomes clear is illustrated in
Figure 4.2, which shows line plots of the (in-sample) point estimates for four provinces in Mozambique
as an example. Again, we see that the model-based estimates generally follow the direct estimates,
but with less variation. In addition, we see that the MERF smooths more than log FH, and high peaks
are not tracked. This can be explained by the robustness to outliers property of RFs (Breiman, 2001),
but might be too extreme in some situations in the area-level context. For example, if the distribution
of direct estimates is highly skewed, but the point estimates are more or less reliable. On the other
hand, if the direct estimates are not reliable, the outlier robustness of the MERF may be beneficial and
the stronger smoothing may be appropriate. Turning to the uncertainty of the point and model-based
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Figure 4.2: Line plots of the in-sample point estimates for the Provinces Cabo Delgado, Gaza,
Inhambane and Nampula. The grids are ordered by increasing sample size, with the sample
size of every 10th grid in parentheses.
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Figure 4.3: Boxplots of CVs [%] separated for in- and out-of-sample grids.

estimates, Figure 4.3 shows boxplots of the CVs for in- and out-of-sample grids. It is striking that the
use of both models significantly improves the reliability of the results compared to direct estimates, as
measured by the CV. For in-sample grids, the reduction of the CVs is the largest for the MERF, followed
by log FH. The proposed MERF is more efficient here than log FH. One reason for this lies in the fact,
that the shrinkage factors of the MERF are on average smaller than those of log FH. The median values
of the shrinkage factors are for example 0.25 and 0.38 for the MERF and log FH, respectively (Table
4.5). Smaller shrinkage factors indicate that more weight is put on the synthetic part of the model,
in this case the RF part, and less on the direct estimator with its higher variances. For out-of-sample
grids, the median of the MERF is slightly larger than that of log FH (30.58 vs. 28.86, see Table 4.5),

102



CHAPTER 4. AREA-LEVEL MODELING WITH RANDOM FORESTS

but log FH reaches much higher outlier and maximum values than the MERF. The maximum of the
MERF amounts to 56.62, while of log FH is 186.66. Finally, we discuss the actual results of the model

Figure 4.4: Available grids for the direct (left) and MERF (right) estimates for Mozambique.

estimates for Mozambique and focus on the newly proposed MERF approach. Figure 4.4 shows a great
advantage of using SAE models. The grids where the direct and MERF estimates are available for
Mozambique are plotted. Without using any model-based method, it is barely possible to draw any
conclusions on such a disaggregated level like the grid-level (left map). With the help of the MERF
approach, predictions for almost the whole country are provided (right map). The gray region at the top
of the map belongs to the province of Niassa which is excluded from the analysis. Satellite data was
not available for the remaining gray areas, which are likely uninhabited. For an easier comparison, a
geographic map of Mozambique is provided in the Appendix (Figure D.4). Figure 4.5 plots the MERF

Figure 4.5: MERF estimates of consumption [MZN] on a grid-level for Mozambique.

predictions of the average consumption per grid to help identify regional differences. While green
and yellow grids dominate the map indicating consumptions levels ranging from 30 to 55 MZN, also
wealthier regions are recognizable. The southern region around the two largest cities of Matola and
Maputo (small dotted box), the third largest city of Nampula (15◦ S, 39◦ E), and the city of Beira (19.8◦

S, 35◦ E) are characterized by consumption levels of around 85 to 120 MZN. This finding corresponds
to the poverty situation in Mozambique described at the beginning of this section. The country as a
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whole is one of the poorest in the world, but there are large differences between urban and rural areas
and between northern and southern provinces (Santos and Salvucci, 2016). Finally, Figure 4.6 provides
a closer look at the region around the capital Maputo: a) MERF estimates of consumption [MZN] for
the provinces Maputo and Maputo City and b) the corresponding Google Maps extract. The greater
Maputo Area is the prime urban agglomeration in Mozambique. Especially the southern neighborhoods
of Sommershield in Maputo report the highest levels of consumption. This finding is in line with the
World Bank Working Paper of Herzog et al. (2017) about urban poverty in the Greater Maputo Area. In
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Figure 4.6: Results and map of the provinces Maputo and Maputo City.

conclusion, in the real data SAE example, the area-level MERF represents a valuable alternative to the
traditional FH model, especially in terms of efficiency. Other advantages are that possible interactions
between the covariates and nonlinear relationships of the covariates to the target variable are taken into
account and that variables are selected automatically. A possible disadvantage is that the model smooths
more than the log FH. Nevertheless, the MERF is able to produce reasonable results and captures the
country-wide trends for consumption at the grid-level in Mozambique, which could also be confirmed
by other sources.

4.5 Concluding remarks

The purpose of this paper is to propose a first way to combine area-level SAE models with RFs to allow
for interactions, nonlinear relationships, and implicit variable selection. The results of the simulation
experiment and application to real world data are encouraging and have potential for further research.
In particular, the simulation results show that the proposed point estimator leads to unbiased estimates.
In terms of efficiency, the results highlight that the presented approach can improve the efficiency with
a large number of domains in the presence of interactions and additional noise variables that involve
automatic variable selection compared to a linear and a spline-based estimator. However, the results
also show the limitations of our methodology. For a rather small to medium number of domains (200
and 500) and in the case of linear relationships, classical SAE models such as the FH model are still
convincing and preferable to RF-based approaches. However, RFs are also applicable when the number
of covariates is too large or even exceeds the number of observations to estimate LMMs. The proposed
bootstrap scheme for estimating the MSE of the point estimator is proven in simulation and leads to
reliable uncertainty measures. An illustration of the methodology using aggregated household survey
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and satellite data from Mozambique with km grids as the unit of observation shows that the approach
leads to an improvement in efficiency compared to the direct estimator and also to the log-transformed
FH estimator. One point that stands out in the application is that the MERF smooths more than, for
example, the log-transformed FH estimator, due to the property of an RF to be robust to outliers. This
property can be advantageous in the case of unreliable direct estimators, but possibly disadvantageous
when the distribution of direct estimators is highly skewed, but the point estimators are mostly trusted.
Therefore, investigating the use of transformations of the dependent variable to achieve a more sym-
metric distribution and to move extreme observations toward the center of the distribution may be of
interest in the context of RF. In this paper the mean of an interval scaled variable is estimated. When
it comes to estimating ratios such as the head-count ratio (Foster et al., 1984) or nonlinear indicators
such as Gini coefficients (Gini, 1912), the Fay-Herriot model must be estimated using an appropriate
transformation to ensure the correct range of values for the estimates. This usually requires the devel-
opment of appropriate back-transformations and MSE estimators. Since the MERF cannot extrapolate,
the transformation can be omitted here to achieve the desired range of values. It remains part of fur-
ther research to investigate how well the MERF approach performs at the area-level in estimating other
indicators such as head-count ratios or Gini coefficients. There is an ongoing debate as to whether
area-level or unit-level models are preferable when combining household survey data and grid-level re-
mote sensing data (Masaki et al., 2022; Newhouse et al., 2022). Aggregating the resulting grid-level
estimates to a higher administrative level and comparing them with reliable direct or model-based esti-
mators could therefore be of great value for research and other applications where survey and satellite
data are available.
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Figure D.1: Distribution of RB RMSEs [%] for varying domain sizes D (x-axis).
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Figure D.2: Variable importance plot (left) and partial dependence plots (right) with consump-
tion [MZN] on the y-axis of the 16 most influential variables.
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Figure D.3: Boxplots of point estimates separated for in- and out-of-sample grids. For an
improved readability of the boxplots, some extreme values of the log FH model have been
omitted. A summary of the whole distribution of log FH is provided in Table 4.5.
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Table D.1: Distributions of possible geospatial auxiliary information on buildings (bld), land
coverage (lc), night light (ntl) and rainfall.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.
bld_cell_area 0.000 0.113 0.181 0.247 0.292 1.000
bld_count 0.367 36.667 66.601 206.132 146.871 6205.344
bld_cv_area 0.000 0.244 0.308 0.340 0.402 1.246
bld_cv_length 0.000 0.129 0.164 0.182 0.215 0.856
bld_density 119.007 270.582 350.441 543.176 589.357 6217.285
bld_mean_area 6.538 22.818 28.352 32.975 35.637 2682.253
bld_mean_length 10.419 18.696 20.748 21.599 23.199 192.342
bld_total_area 4.713 930.420 1829.879 9321.449 4425.757 384702.531
bld_total_length 5.525 729.769 1362.685 5246.629 3146.822 191125.125
bld_urban 0.000 0.000 0.000 0.086 0.000 1.000
lc_barecoverf 0.000 0.024 0.503 0.954 1.231 54.673
lc_cropscoverf 0.000 15.036 21.683 22.903 28.145 78.734
lc_grasscoverf 0.000 24.360 29.887 29.058 34.151 80.086
lc_mosscoverf 0.000 0.000 0.000 0.000 0.000 1.444
lc_shrubcoverf 0.000 17.977 21.914 20.869 24.783 47.188
lc_treecoverf 0.000 13.253 19.007 21.464 27.704 81.969
lc_urbancoverf 0.000 0.058 0.699 6.046 3.188 100.000
lc_waterpermanentcoverf 0.000 0.000 0.000 0.447 0.000 95.562
lc_waterseasonalcoverf 0.000 0.000 0.000 0.504 0.000 79.880
ntl_max 19.728 30.473 35.516 40.072 42.582 7996.105
ntl_mean 0.783 1.876 2.066 2.413 2.301 41.145
ntl_mean_bxp -3.156 0.085 0.093 0.280 0.108 12.440
ntl_mean_txp 3.790 5.124 5.658 6.105 6.274 74.458
ntl_median 0.231 0.288 0.301 0.746 0.328 49.101
ntl_min -445.389 -0.227 -0.181 -1.839 -0.135 0.880
ntl_sd 2.493 3.865 4.280 4.474 4.678 425.616
ntl_sum 276.485 662.232 729.379 851.842 812.105 14524.128
ntl_zerosub_rate 0.000 0.020 0.030 0.027 0.036 0.071
rainfall_max -9999.001 50.841 62.785 -14.840 77.560 202.355
rainfall_mean -9999.001 2.671 3.368 -77.701 3.952 6.332
rainfall_mean_bxp -9999.001 0.000 0.000 -80.995 0.000 0.000
rainfall_mean_txp -9999.001 2.671 3.369 -77.641 3.955 17.187
rainfall_median -9999.001 0.000 0.000 -80.995 0.000 0.000
rainfall_min -9999.001 0.000 0.000 -80.995 0.000 0.000
rainfall_sd 0.000 7.303 8.561 8.466 9.733 16.167
rainfall_sum -3649635.356 974.924 1229.429 -28360.823 1442.582 2311.286
rainfall_zerosub_rate 0.644 0.723 0.754 0.761 0.800 1.000
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Figure D.4: Geographic map of Mozambique. Source: GRID-Arendal,
https://www.grida.no/resources/5160
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Chapter 5

Estimating intra-regional inequality
with an application to German spatial
planning regions

This is the peer reviewed version of the following article: Runge, M. (2023) Estimating intra-regional
inequality with an application to German spatial planning regions. Journal of Official Statistics, 39(2),
pp.203-228, which has been published in final form at https://doi.org/10.2478/jos-2
023-0010. The non-commercial use of the article will be governed by the Creative Commons
Attribution-NonCommercial-NoDerivs license as currently displayed on https://creativeco

mmons.org/licenses/by-nc-nd/3.0.

5.1 Motivation

For some time now, and especially since the United Nations Sustainable Development Goals (SDGs) of
2016, the reduction of inequality within and among countries has increasingly become a focus of public
debate. Regionally differentiated indicators to measure poverty and inequality are thereby receiving
growing attention in the attempt to quantify inequality. In order to meet the demands and expand poli-
cies to reduce economic inequality, it is of great importance to provide reliable statistics that adequately
capture regional differences in income inequality. In Germany, due to its division in 1949 and reunifi-
cation in 1990, economic inequality, especially between East and West, has been a particular focus of
political and public debate. At the latest since the financial crisis of 2008/2009 regional income and
wealth disparities that go far beyond East and West have reached public awareness, and this is likely
to be reinforced with the 2020/2021 pandemic. Therefore, Goebel and Frick (2005) already considered
regional income stratification by dividing Germany into four parts. Braml and Felbermayr (2018) focus
on inequality at the county level measured by gross domestic product per capita, just as Kreutzmann
et al. (2022) consider regional heterogeneity in wealth. In both, the focus is on the difference between
regions, while an additional aspect of inequality is income differences between households within a re-
gion. Immel and Peichl (2020) combine both perspectives and look at regional income inequality at the
county level measured by the top 10% earners and the bottom 40% within regions. When examining the
regional dimension of income distributions, a distinction must be made between intra- and inter-regional
inequality, as noted before. When considering intra-regional inequality, an appropriate measure must
be used to determine the level of income inequality. A popular indicator for this purpose is the Gini
coefficient (Gini, 1912), which is defined between zero and one, where zero means perfect equality and
one maximum inequality. The presented methodology is illustrated by estimating Gini coefficients at
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a regionally dis-aggregated level for Germany, which additionally represents to best of knowledge the
first attempt to estimate Gini coefficients for Germany at a regional level lower than the federal states.

When it comes to measuring regional differences, the level of observation can become very de-
tailed and the unit sample sizes very small. A unit in this context can be a regional area, a socio-
demographically defined domain or a combination of both. In either case it is referred to as a domain or
an area and when sample sizes are small, as small area. For small sample sizes, common estimators that
use only survey data (hereafter referred to as direct estimators) are often not accurate enough to provide
reliable domain-specific estimates of an indicator of interest. In these cases, small area estimation (SAE)
methods allow for an increase in accuracy. In particular, model-based SAE methods use related addi-
tional data sources and information from other areas for this purpose. Overviews of SAE methods can be
found in Pfeffermann (2013), Rao and Molina (2015) and Jiang and Rao (2020). A general framework
for the construction of small area statistics is presented by Tzavidis et al. (2018). In Pratesi (2016) SAE
methods particularly for the analysis of poverty data are provided. The most common SAE methods
to estimate poverty and inequality indicators, such as Gini coefficients, on a dis-aggregated level are
the World Bank method proposed by Elbers et al. (2003) or the empirical best predictor (EBP) method
proposed by Molina and Rao (2010). In practice, however, this is problematic for privacy reasons.
Especially when it comes to population data on a micro/individual level that are needed as auxiliary
information. In these cases, area-level methods can help, where survey and related population data are
only needed at the aggregated level. In addition, area-level models account for complex survey designs
in the estimation of point and variance estimators. One of the most popular area-level SAE models is
that proposed by Fay and Herriot (1979), known as the Fay-Herriot (FH) model, which is the underlying
statistical model in this paper. In addition, there are empirical and hierarchical Bayesian methods, see
for a comprehensive overview for example Rao and Molina (2015). In particular, the FH model can be
estimated by a hierarchical Bayes model as well. Liu et al. (2014) use the hierarchical Bayes version of
the FH model to compare it to a normal-logistic and a beta-logistic Bayes model for the use-case of es-
timating small area proportions. Also Janicki (2020) studies a hierarchical Bayesian model with a Beta
distribution and a logit link to estimate poverty rates. The common property of proportions and Gini co-
efficients is that both are bounded in the interval (0, 1). Therefore, some of the methods can be used for
both applications. Fabrizi and Trivisano (2016) propose a hierarchical Beta mixed Bayesian regression
area-level model with a logit link to estimate Gini coefficients for small areas and Fabrizi et al. (2016)
apply this approach to jointly estimate at-risk-of-poverty rates and the Gini coefficients. The advantages
of this and more general Bayesian approaches are that from the resulting posterior distribution, which
is approximated by a Markov Chain Monte Carlo (MCMC) algorithm, the point estimates are directly
given with an uncertainty measure as well as credible intervals. The possibility to specify different
prior distributions of the model parameters also makes the model quite flexible. However, frequentist
approaches probably predominate in the SAE literature and are widely accepted in National Statistical
Institutes (NSI). From a frequentist perspective, to the best of knowledge, there is no SAE literature on
the estimation of Gini coefficients at the regional level using area-level data, and specifically with appli-
cation of the FH model. The possible advantages of using a frequentist approach are, that it is probably
easier to follow for common users who are more used to frequentist regression models and the available
software for SAE methods implements mostly frequentist methods. In addition, there are a number of
elaborated results from a frequentist perspective for the FH model that can be adapted. As the FH model
allows for the use of a transformation, it is a common approach to satisfy the normality assumptions
of the error terms or to ensure that the estimated values are within a predefined range. Slud and Maiti
(2006), for example, propose a log-transformed FH model for skewed data, and in the case of propor-
tions, for example Casas-Cordero et al. (2016) use an arcsine-transformed FH model to estimate poverty
rates and Schmid et al. (2017) for literacy rates. To estimate Gini coefficients using the FH model, in this
work the approach of Fabrizi and Trivisano (2016) is followed and a logit transformation is used to link
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the response values to the related covariate information. This is also motivated by the condition that the
estimated Gini coefficients must lie between zero and one, in addition to stabilizing the variance of the
direct estimator and to promoting the normal distribution of the sampling errors and random effects of
the model. The choice of a logit-normal rather than a beta likelihood as in Fabrizi and Trivisano (2016),
is also driven by the possibility to use already existing results, such as those of Sugasawa and Kubokawa
(2017) for the back-transformation. When using transformations the resulting point estimate is on the
transformed scale and has to be back-transformed. An application of the inverse usually introduces a
bias for nonlinear transformations, therefore Sugasawa and Kubokawa (2017) propose a bias-corrected
back-transformation for general parametric transformations. This bias-corrected back-transformation is
adopted to the logit transformation in this paper. Instead of the logit transformation, any other trans-
formation could in principle also be used, as long as the inverse maps into a range between 0 and 1.
For example, a complementary log-log or probit transformation could also be used if suitable transfor-
mations are available for the variance of the direct estimator and the back-transformation of the point
estimator. In this paper, however, the focus is on the logit transformation, since it is one of the most com-
mon. To evaluate the accuracy of model-based SAE estimators, uncertainty measures must be estimated.
As a common practice, the MSE is considered for this purpose. If analytical solutions for its estima-
tion cannot be derived, bootstrap methods are often implemented instead. Here, the uncertainty of the
estimated Gini coefficients is assessed using a bootstrap procedure following Gonzalez-Manteiga et al.
(2008b) with an additional step of applying the bias-corrected back-transformation similar to Hadam
et al. (2020). The validity of the presented point estimator using a logit-transformed FH model with
a bias-corrected back-transformation, as well as that of the uncertainty measure, is demonstrated in a
simulation study.

The paper is organized as follows. Section 5.2 describes the data used to illustrate the proposed
methodology, in particular survey data from the Socio-Economic Panel (SOEP) and auxiliary data from
administrative sources, such as the Census 2011 in Germany. The statistical methodology is introduced
in Section 5.3. The validity of the proposed methodology is assessed in a simulation study in Section 5.4.
Section 5.5 presents the application of the model-based small area method to estimate Gini coefficients
for German regions. Section 5.6 completes the paper with some concluding remarks and discusses
further potential research.

5.2 Sources of data and initial analysis

In this section, the data sources used for the analysis in Section 5.5 are described. Specifically, data from
the German SOEP (Socio-Economic Panel, 2019) are used to form the target indicator, and data from
the 2011 Census and the regional data base from the National Statistical Office are taken as auxiliary
information. To have both data sources from the same year, the SOEP data collected in 2011 are used.
Furthermore, a preliminary calculation of the Gini coefficients at a regional level is presented.

5.2.1 German Socio-Economic Panel

The German SOEP is a longitudinal study that has been running since 1984 and is conducted annually.
It currently covers about 15,000 private households in Germany and aims to represent German society.
Information is collected on various areas of life, such as demography, employment, taxes, income, ed-
ucation, health and satisfaction. The SOEP-team at the German Institute for Economic Research (DIW
Berlin) prepares and provides the survey data. The main dataset SOEP Core currently consists of 12
sub samples. The initial sample, sample A, was first surveyed in 1984 and represents the West German
population of the Federal Republic of Germany (Kara et al., 2019). In 1990, the initial sample East after
the reunification was included, representative of the East German population of the German Democratic
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Republic. Over the years (1998, 2000, 2002, 2011), four refreshment samples were added, further
enlarging the total sample. In addition to the refreshment samples, other special samples to increase
statistical power were included, such as the migration samples in 1984 and 1994/95, which oversamples
foreigners or the high income sample in 2002 to represent households at the top of the income distribu-
tion. Sampled households are surveyed every year. The SOEP questionnaires are constructed in such a
way that individuals in a SOEP household can be studied from birth to adulthood and over the rest of
their lives. The SOEP aims to measure stability and identify changes across time, so the survey method-
ology remains almost identical over time (Kara et al., 2019). In the analysis in Section 5.5, data from the
available refreshment sample in survey year 2011 is used. The sample aimed to cover a cross-section
of private German households and is based on a clustered sampling strategy. Households were drawn at
random from 307 primary sampling units (PSU) stratified by federal states, administrative regions and
a classification of municipalities by number of inhabitants (Siegers et al., 2020). A random walk proce-
dure was applied to select the addresses within each PSU. The provided household weights account for
sampling design, non-response, and panel attrition and are further post-stratified to known population
distributions based on the German microcensus.

The Gini coefficients calculated in this paper are computed with household-level data. The vari-
able to form the target indicator in this section and for the application in Section 5.5 is the equivalised
disposable household income, which is calculated using total net household income divided by equiv-
alised household size. The equivalised household size is derived using the Organisation for Economic
Co-operation and Development (OECD) modified scale first proposed by Hagenaars et al. (1994). The
distribution of the variable in the sample is reported in Table 5.1. The Gini coefficient for the equiv-
alised disposable household income reported in 2011 for Germany by OECD (2011) is 0.29. Goebel and
Frick (2005) investigate regional income inequality by estimating Gini coefficients for East and West
Germany and for a further regional stratification by dividing Germany into northern, eastern, western
and southern states. This analysis indicates that there is regional heterogeneity in income inequality. In
addition, the OECD reports Gini coefficients for the German federal states (OECD, 2013), which reveals
further regional differences in inequality ranging from 0.23 in Saxony to 0.32 in Hesse. Another spatial
dis-aggregation that enables the examination of inequality in rural and urban regions is the consideration
of 96 spatial planning regions (SPRs) of the Federal Office for Building and Regional Planning. SPRs
are composed of several administrative districts and form an intermediate regional level between these
districts and the federal states. A map showing the assignment of the SPRs and associated labels can
be found in the Appendix in Figure E.1 and Table E.1. The information to which SPR the residence of
a SOEP household is assigned to can be found in the SOEP geocodes (Goebel, 2020). The investiga-
tion of regional differences in income inequality in Germany is therefore done for the 96 SPRs. Figure
5.1 shows estimated Gini coefficients from left to right for East and West Germany, a fourfold division
of Germany into East, North, South and Central, the federal states and the SPRs. The first two maps
already show that there are regional differences, as illustrated by Goebel and Frick (2005). The map
of the federal states underlines this heterogeneity. Looking at the fourth map, the regional differences
in income inequality become even more obvious. At the same time looking at Table 5.1, for some

Table 5.1: Distribution of equivalised disposable household income [e], sample sizes for SPRs
and number of SPRs without observations.

Min 1stQ Median Mean 3rdQ Max No obs.
Equal. disp. income 0 12363 17805 20579 25270 322508

SPR sample size 4 17 27 35 47 153 7

SPRs, these estimates are based on a very small sample size, so that the reliability of the estimates can-
not be guaranteed. To improve the accuracy of estimated Gini coefficients for SPRs with small sample
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Figure 5.1: Gini coefficients for equivalised disposable income for East and West Germany
(left), a fourfold division of Germany into East, North, South and Central, the federal states
and SPRs (right). SPRs with no or less than 10 observations are colored in black.

sizes, model-based SAE methods combine direct estimates with auxiliary information from registers
by statistical models. Furthermore, those methods allow to provide estimates for regions that have no
observations in the survey, usually referred to as out-of-sample (OOS) regions. This is the case for 7
SPRs. According to the privacy agreement with the data provider, direct estimates of SPRs with less
than 10 observations cannot be reported. This applies to 11 SPRs. In the map for the SPRs (Figure 5.1),
these and the OOS SPRs are colored in black.

5.2.2 Auxiliary information

To improve the accuracy of the target indicator, the model described in Section 5.3.1 makes use of aux-
iliary information from administrative data sources as registers or census data at an aggregated level.
For the application in this work, German Census data from 2011 (Statistische Ämter des Bundes und
der Länder, 2011a) is used, which is publicly available at an administrative district level. Furthermore
data on taxes, gross domestic product (GDP), mortality and birth numbers available from the National
Statistical Offices are used (Statistische Ämter des Bundes und der Länder, 2011c). A detailed expla-
nation of the calculation of the GDP on district level can be found in Statistische Ämter der Länder
(2021). To obtain the data at the same level as the survey data, they are aggregated to SPR level. The
assignment of counties and districts to SPRs is provided by the Federal Office for Building and Regional
Planning (Bundesinstitut für Bau-, Stadt-, und Raumforschung, 2017). The objective is to find variables
in the data that are related to income inequality and could serve as possible predictors. Furceri and
Ostry (2019) examine robust drivers of income inequality and identify, among other factors, the level of
development and demographics as key determinants, as well as the extent of unemployment. Perugini
and Martino (2008) examine the factors that drive inequality within European regions. Both divide the
factors into groups of demographic, institutional and economic condition variables, among others. The
possible covariates that were able to be extracted and aggregated from the data sources available are
presented in Table 5.2 with summary statistics. Although Furceri and Ostry (2019) consider inequality
determinants between countries, this could be transferred to within country inequality and development.
When considering economic conditions, in addition to GDP, which is a measure of a region’s develop-
ment, the shares of the agricultural, industrial and social service sectors in the labor market are also an
indicator of economic development. Since the industrial sector is generally expected to generate higher
income, this could lead to a better distribution of income than a high share in the agricultural sector. In
line with Fabrizi and Trivisano (2016) and Perugini and Martino (2008) taxable income and the share
of income taxpayers can be an indirect measure of labor performance and, moreover, an indicator of
the resources that local governments could use to fund education, child care, health, etc., to foster fu-
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Table 5.2: Distributions of possible auxiliary information.

Min 1stQ Median Mean 3rdQ Max
Economic/ Institutional conditions
GDP per resident [e] 22159 72625 121001 132171 174988 381263
log(GDP per resident) 10.010 11.190 11.700 11.630 12.070 12.850
Avg. taxable income per person in Tsd. [e] 2.972 4.192 4.933 4.886 5.553 8.840
Share income tax payer 0.399 0.457 0.481 0.480 0.499 0.683
Share agricultural employment sector 0.000 0.002 0.008 0.010 0.015 0.039
Share industrial employment sector 0.100 0.181 0.216 0.219 0.253 0.359
Share service sector 0.452 0.512 0.542 0.546 0.572 0.664
Unemployment ratio 0.002 0.021 0.035 0.038 0.053 0.087
High education ratio 0.153 0.247 0.293 0.297 0.340 0.488
Demographics
Population density 44.0 117.5 178.0 330.7 274.5 3927.0
log(Population density) 3.784 4.766 5.182 5.347 5.615 8.276
Foreign residents ratio 0.009 0.033 0.054 0.060 0.085 0.153
Child dependency ratio 0.162 0.194 0.206 0.204 0.220 0.241
Elderly dependency ratio 0.263 0.291 0.316 0.318 0.338 0.415
Births rate 6.734 7.455 7.814 7.922 8.280 11.837
Mortality rate 8.000 9.701 10.691 10.778 11.677 14.358

ture growth and thus reduce inequality. The level of unemployment naturally measures the economic
situation of a region, just as the level of education is a proxy for development. An approach similar to
Fabrizi and Trivisano (2016) is used to calculate a high education ratio. Therefore the number of people
aged between 18 and 64 with at least high school diploma are divided by the number of all people aged
between 18 and 64. Following Furceri and Ostry (2019), demographic data such as dependency ratios,
birth, and death rates are also among the possible covariates, as they indirectly approximate economic
development. This is also true for the foreigner rate, as immigration could lead to an increasing wage
gap (Furceri and Ostry, 2019).

5.3 Small area estimation method

In this section, the statistical methodology is presented. The underlying model for estimating small
area means was proposed by Fay and Herriot (1979), which combines aggregate population auxiliary
variables with direct estimators based on survey data. In this work, the target indicators are area-specific
Gini coefficients. Since it is a nonlinear indicator within a specified range, a logit transformation is
applied to promote the normality assumption of the model and to ensure that the estimates are between
0 and 1. To measure the uncertainty of the point estimator, a parametric bootstrap procedure is presented.

5.3.1 Logit-transformed Fay-Herriot model

Let N be the size of a finite population divided into d = 1, ..., D domains and n the sample size with
i = 1, ..., nd units per domain so that n =

∑D
d=1 nd. The FH model is a two-level model that includes a

sampling model at the first level, assuming that the direct estimator consists of the true domain-specific
population indicator θd and sampling errors ed:

θ̂Dir
d = θd + ed, ed

ind∼ N
(
0, σ2

ed

)
. (5.1)

The sampling errors ed are assumed to be independently normally distributed with known variance
σ2
ed

. However, although the sample variance σ2
ed

is taken as known, in many applications it has to be
estimated itself, what can be done on the basis of unit-level sample data (Rivest and Vandal, 2002;
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Wang and Fuller, 2003; You and Chapman, 2006) or by bootstrap algorithms proposed in Alfons and
Templ (2013). There are several proposed direct estimators for the Gini coefficient in the literature. A
common estimator is the one proposed by Alfons and Templ (2013). Fabrizi and Trivisano (2016) show
in a simulation experiment, that this estimator can have a negative bias when sample sizes are small
and propose a corrected version with a bias reduction. The direct estimator proposed by Fabrizi and
Trivisano (2016) is defined as

θ̂Dir
d =

1

2 ˆ̄Yd

∑nd

i=1

∑nd

j=1 wdiwdj |ydi − ydj |
N̂2

d −
∑nd

i=1 w
2
di

, (5.2)

with N̂d =
∑nd

i=1 wdi and ˆ̄Yd = N̂−1
d

∑nd

i=1 wdiydi, where ydi is the income or wealth variale, in this
paper the equivalised disposable household income and wdi denote the sampling weights. By including
the sample weights in the associated variance estimate, the direct estimator incorporates the complex
design information. The variances σ2

ed
of θ̂Dir

d for d = 1, ..., D can be estimated via a naive or calibrated
bootstrap procedure described in Alfons and Templ (2013). Since the direct variance estimates are
based on small sample sizes a variance smoothing model analogous to that in Fabrizi and Trivisano
(2016) is used for stabilization. The model assumes a beta distribution for the Gini coefficient and uses
the relationship between the expected value and the variance of the beta distribution. It is defined as
follows:

θ̂Dir2

d (1− θ̂Dir2

d )

2σ2
ed

= λnd + ϵd (5.3)

where the error term is assumed to be normally distributed ϵd ∼ N (0, τ2) and λ is estimated using least
squares.

The second level of the FH model is a linking model that links covariate information to the popula-
tion indicator. xd is a p× 1 vector of domain-specific population covariates and β is the corresponding
p × 1 vector of regression coefficients. vd are domain-specific random effects, which are normally
distributed:

θd = xT
d β + vd, vd

iid∼ N
(
0, σ2

v

)
. (5.4)

To ensure that the estimated Gini coefficients lie within (0, 1), to further stabilize the variance and
following Fabrizi and Trivisano (2016), the logit function is applied to the direct estimator from Equation
(5.2):

θ̂Dir∗
d = logit(θ̂Dir

d ) = log

(
θ̂Dir
d

(1− θ̂Dir
d )

)
.

In the following, ∗ always refers to the logit-scale. To obtain the variances of the direct estimator on
the transformed scale, one can transfer the smoothed bootstrap variances to the logit scale using Taylor
expansion for moments, which leads to:

σ2∗
ed

=
σ2
ed[

θ̂Dir
d

(
1− θ̂Dir

d

)]2 . (5.5)

Using a Taylor expansion for moments to transform variances from the original scale to the transformed
scale is a common procedure in SAE as in Neves et al. (2013) and Council (2000).

The combination of the sampling model in (5.1) and the linking model in (5.4) with the logit-
transformed direct estimator results in:

logit
(
θ̂Dir
d

)
= xT

d β + vd + e∗d, vd
iid∼ N

(
0, σ2

v

)
, e∗d

ind∼ N
(
0, σ2∗

ed

)
. (5.6)

The unknown parameters of the model (5.4) to be estimated are the model variance σ2
v and the regression
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coefficients β. Methods to estimate σ2
v are for example restricted maximum likelihood (REML), maxi-

mum likelihood (ML) and the FH method-of-moments. Details on model variance estimation methods
can be found, for example, in Rao and Molina (2015). In this paper, the REML method is used, which
has the advantage over the ML method of taking into account the loss of degrees of freedom in the
estimation of the regression coefficients β (Rao and Molina, 2015). Let σ̂2

v be an unbiased estimator for
σ2
v . Then the best linear unbiased estimator (BLUE) under model (5.6) for the regression coefficients β

is given by:

β̂ = β̂
(
σ̂2
v

)
=

(
D∑

d=1

xdx
T
d

σ2∗
ed

+ σ̂2
v

)−1( D∑
d=1

xdθ̂
Dir∗
d

σ2∗
ed

+ σ̂2
v

)
.

Since the model inputs are on the logit scale, the estimated regression coefficients β̂ as well. Therefore,
only the direction of the effect on the estimated model-based Gini coefficient on the original scale can
be interpreted.

The FH estimator on the logit scale is obtained by:

θ̂FH∗
d = xT

d β̂ + v̂d = γ̂dθ̂
Dir∗
d + (1− γ̂d)x

T
d β̂ with γ̂d =

σ̂2
v

σ2∗
ed

+ σ̂2
v

. (5.7)

γ̂d is the shrinkage factor which determines an optimal balance between the direct estimator and the
synthetic component. If the variance of the direct estimator is large, more weight is given to the syn-
thetic component. The estimated model variance, i.e., the variance of the random effects σ2

v , is also on
the logit scale, as are the sampling variances. Therefore, the weighting factor can also be interpreted
as the proportion of the variation explained by the hierarchical structure of the data. For highly skewed
data, the transformation helps to better fit the linear relationship in the model, so using a transformation
on skewed data can often give more weight to the synthetic part. Since the direct estimators and their
variances of the Gini coefficients were transformed to the logit scale as model input for the FH model,
the resulting FH estimator θ̂FH∗

d of the Gini coefficients is also still on the logit scale. To obtain the esti-
mates on the original scale, a back transformation is required. As naive inverse back-transformations (in
this case the logistic function) usually introduce a bias for nonlinear functions, Sugasawa and Kubokawa
(2017) present an asymptotically unbiased back-transformation for a general parametric transformation.
Hadam et al. (2020) applies this to the arcsine transformation, for example. Following Sugasawa and
Kubokawa (2017) to obtain a bias-corrected back-transformation for θ̂FH

d , the normal distribution of
the transformed FH estimator on the logit-scale and the expected value (E) of a transformation (here the
inverse logit) are used. The bias-corrected back-transformation applied to obtain the final FH estimates
of the Gini coefficients θ̂FH

d at the original scale is as follows:

θ̂FH
d = E

[
logit−1

(
θ̂FH∗
d

)]
= E

 exp
(
θ̂FH∗
d

)
1 + exp

(
θ̂FH∗
d

)
 =

∫ ∞

−∞

exp (t)

1 + exp (t)
fθ̂FH∗

d
(t) dt

=

∫ ∞

−∞

exp (t)

1 + exp (t)

1√
2π

σ̂2
vσ

2∗
ed

σ̂2
v+σ2∗

ed

exp

−

(
t− θ̂FH∗

d

)2
2

σ̂2
vσ

2∗
ed

σ̂2
v+σ2∗

ed

 dt.

(5.8)

In Equation (5.8) the integral has to be solved by numerical integration methods. The advantage of the
bias-corrected back-transformation over the naive inverse is illustrated in the simulation experiment in
Section 5.4.
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5.3.2 Uncertainy measure

In order to evaluate the accuracy of the FH estimator with a logit transformation and to demonstrate the
benefit of model-based estimators over direct ones, it is necessary to determine the degree of uncertainty.
In the case of the FH estimator without a transformation, analytical solutions exist to estimate the MSE,
such as the MSE estimator according to Prasad and Rao (1990). In the log-transformed FH model,
Slud and Maiti (2006) also derived an analytical MSE estimator. There, the relationships between the
log-normal distribution and the normal distribution and their expected values are used. This approach
cannot be straightforwardly applied to the logit transformation and the relationship between the logit-
normal and the normal distribution, as there are no analytical solutions for the moments of the former. A
common approach to estimating the MSE if no analytical estimator can be derived is to use a bootstrap
algorithm. In line with Gonzalez-Manteiga et al. (2008b), the MSE of θ̂FH

d is approximated with the
following parametric bootstrap procedure:

1. Estimate the regression synthetic components β̂ and σ̂2
v using the direct components θ̂Dir∗

d and
σ2∗

ed
on the logit-scale.

2. For b = 1, ..., B

(a) Generate sampling errors e∗(b)d
ind∼ N

(
0, σ2∗

ed

)
and random effects v(b)d

iid∼ N
(
0, σ̂2

v

)
.

(b) Simulate a bootstrap sample θ̂
Dir∗(b)
d = xT

d β̂ + v
(b)
d + e

∗(b)
d .

(c) Calculate the true bootstrap population parameter θ∗(b)d = xT
d β̂ + v

(b)
d on the transformed

scale and back-transform with θ
(b)
d =

exp
(
θ
(b)
d

)
1+exp

(
θ
(b)
d

) .

(d) Estimate the bootstrap estimator of the model variance σ̂
2(b)
v using θ̂

Dir∗(b)
d and σ2∗

ed
.

(e) Using σ̂
2(b)
v and θ̂

Dir∗(b)
d , estimate bootstrap estimators of the regression coefficients β̂(b)

and update the random effects v(b)d .

(f) Determine the bootstrap estimator θ̂FH∗(b)
d with Equation (5.7) by using the estimates from

the previous step and back-transform to the original scale by applying the bias-corrected
back-transformation from Equation (5.8) to obtain θ̂

FH(b)
d .

3. Estimate the MSE:

M̂SE(θ̂FH
d ) =

1

B

B∑
b=1

(
θ̂
FH(b)
d − θ

(b)
d

)2
. (5.9)

The performance of the presented bootsrap MSE estimator is evaluated in the simulation experiment in
Section 5.4.

5.3.3 An alternative estimator from a Bayesian perspective

As an alternative to the proposed methodology from a frequentist perspective Fabrizi and Trivisano
(2016) presented a Bayesian Beta-regression model to get model-based estimators for the Gini concen-
tration coefficients for small regions. This estimator is used in the simulation experiment in Section 5.4
as a comparative estimator. For a better understanding it is shortly introduced in the following. The
sampling model with a Beta distribution as the underlying distribution for the direct estimator from
Equation (5.2) for d = 1, ..., D domains is defined as follows:

θ̂Dir
d ∼ Beta

(
2ϕd

1 + θd
− θd,

2ϕd − θd(1 + θd)

1 + θd

1− θd
θd

)
,

with expected value E(θ̂Dir
d |θd) = θd and variance V (θ̂Dir

d |θd) = 2ϕ̂−1
d θ2d(1 + θ2d), where ϕd is the

precision parameter of the Beta distribution and can be estimated from the survey data and the variances
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of the direct estimator θ̂Dir
d , which are assumed to be known here as well, inline with SAE literature.

Using the variance smoothing model from Equation (5.3) ϕd can be estimated by ϕ̂d = λ̂nd. For further
details it is referred to Fabrizi and Trivisano (2016). The linking model with a logit link is defined as
follows:

logit(θd) = xT
d β + vd, (5.10)

where xd is a p × 1 vector of domain-specific population covariates, β the corresponding p × 1 vector
of regression coefficients and vd are the domain-specific random effects. To estimate the model in
Equation (5.10) the specification of prior distributions for the random effects vd, their variance σ2

v and
the regression coefficients β are necessary. For β a normal prior with zero mean and large variances can
be suggested: β ∼ N(0, kI), with k = 100 and I is the p × p identity matrix. For the random effects
and their variance various prior specifications are possible. In the simulation experiment in Section 5.4
the following prior distribution is assumed because it proved to be preferable to other prior distributions
according to Fabrizi and Trivisano (2016): vd ∼ N(0, σ2

v) with σ2
v ∼ half-t(ν = 3,A = 1), where ν

are the degrees of freedom and A is the scale parameter. For the other possible specifications it is referred
to Fabrizi and Trivisano (2016). The posterior distributions of the Gini coefficients are approximated
by a MCMC algorithm, from which one directly obtains the point estimate for θd and a corresponding
uncertainty measure, usually the expected value and variance of the posterior distribution given the data.

5.4 Simulation study

To evaluate the performance of the proposed estimators in Section 5.3 in terms of bias and accuracy, a
model-based simulation experiment is conducted. In particular, the performance of the point estimator
compared to three alternative estimators is of interest, as well as the presented uncertainty measure. The
simulation setup is based on the estimated parameters from Section 5.5 and was chosen to mimic real
data. The data are created for D = 89 domains. For the data generation process of the true parameter
of interest and its direct estimator, the model variance and sampling variances from the SOEP data
from Section 5.5 are used. The true parameters of interest θd for d = 1, ..., 89 domains are derived via
logit(θd) = β0 + β1x + vd with β0 = −1.5, β1 = 1 and covariate x ∼ LN (−0.5, 0.04) generated so
that the true values lie in a range of realistic Gini coefficients. The random effects vd follow a normal
distribution N (0, 0.029), where the variance parameter equals the estimated model variance in Section
5.5.1. The direct estimates are generated as logit(θ̂Dir

d ) = β0 + β1x + vd + ed, with ed ∼ N (0, σ2
ed
)

where σ2
ed

are the direct variances on the logit-scale of the 89 observed SPRs from Section 5.5. They
are listed in Table E.2 in the Appendix. The distributions of the given and resulting parameters in the
simulation are reported in Table 5.3. The data scenario was generated for R = 1, 000 simulation runs.

Table 5.3: Summary of parameters in the simulation setting.

Min 1stQ Median Mean 3rdQ Max
θd 0.206 0.264 0.298 0.294 0.319 0.396
θ̂Dir
d 0.141 0.250 0.295 0.293 0.332 0.448
σ2
ed

0.082 0.149 0.188 0.206 0.230 0.589
γd 0.077 0.356 0.454 0.453 0.567 0.813
x 0.547 0.583 0.598 0.601 0.616 0.670

The performance of the proposed bias-corrected estimator from Equation (5.8), denoted by logit FH.bc,
is evaluated in comparison to three estimators: To a logit-transformed FH estimator with a naive back-
transformation using the inverse of the logit function (logit FH.naive), to the usual FH estimator (FH),
and to the estimator proposed by Fabrizi and Trivisano (2016) and shortly introduced in Section 5.3.3.
In the MCMC algorithm for the latter, a sample of 10,000 draws, with a preceding burn-in phase of
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20,000 draws was used and the code provided by Fabrizi et al. (2016) was utilized to implement the
estimator. The performance of the estimators is assessed by the distribution over the domains of the
domain-specific absolute bias (ABias) and root mean squared error (RMSE), given as follows:

ABias(θ̂d) =

∣∣∣∣∣ 1R
R∑

r=1

(
θ̂dr − θdr

)∣∣∣∣∣ , RMSE(θ̂d) =

√√√√ 1

R

R∑
r=1

(
θ̂dr − θdr

)2
, (5.11)

where θ̂dr
denotes the estimator of the target indicator in domain d and replication r and θdr

the true
value. Table 5.4 reports the distributions of the domain-specific ABias and RMSE over domains for

Table 5.4: Summary over domains of absolute bias and RMSE.

Estimator Min 1stQ Median Mean 3rdQ Max
103× ABias Bayesian Beta 0.005 0.241 0.528 0.690 1.126 2.398

FH 0.099 0.686 1.408 1.457 2.033 4.024
logit FH.bc 0.031 0.238 0.548 0.589 0.840 1.790
logit FH.naive 0.042 0.338 0.778 0.827 1.188 2.447

103× RMSE Bayesian Beta 15.320 23.260 26.290 26.330 28.970 34.680
FH 15.220 23.200 26.940 26.630 29.320 36.730
logit FH.bc 15.270 23.150 26.240 26.210 28.830 34.250
logit FH.naive 15.260 23.160 26.260 26.220 28.830 34.270

the evaluated estimators. Starting with the bias it can be noted that the estimators, which use a logit
transformation (Bayesian Beta, logit FH.bc and logit FH.naive) outperform the FH estimator (FH) with-
out a transformation, which is a natural result due to the data generating process. Looking specifically
at logit FH.bc and logit FH.naive, the reduction in bias due to the bias-corrected back-transformation
is noticeable across the entire range of the distribution. Comparing the two median values, the use of
logit FH.bc resulted in a 30% reduction in the median value of logit FH.naive. Further the results of
the proposed bias-corrected estimator are comparable to those of the Bayesian estimator. In terms of
efficiency, the four estimators provide very similar results with negligible differences. It is worth men-
tioning here that the bias-corrected back-transformation does not lead to a loss of efficiency and that
the performance is similar to that of the Bayesian estimator proposed by Fabrizi and Trivisano (2016).
Since in the data generating process the logit transformation is used, the comparison of the three esti-
mators which use a logit-link is in that sense fair, that this refers to their use-case. Furthermore, the
simulated direct estimators lie within a range of realistic values for the Gini coefficients, and are not at
the edges of the distribution, where a higher gain of the bias-corrected back-transformation compared to
the naive can be expected. Only the comparison to the standard FH estimator is somewhat unfair, since
the data scenario does not fit the untransformed FH model. Nevertheless, the comparison is of interest,
since this approach corresponds to the simplest and is mainly used in practice. To investigate whether
the differences between the methods are a result of the SAE estimators themselves or may be within a
simulation-induced margin of error, the Monte Carlo error (MCE) is estimated with a Jackknife estima-
tor following Koehler et al. (2009). The distributions of MCEs of the quantities of interest presented in
Equation (5.11) are given in Table E.3 in the Appendix. Since the distributions across the domains of
each method per quantity are very similar, it can be concluded that the differences from Table 5.4 are
effective and not attributable to a MCE.

Next, the bootstrap MSE estimator from Equation (5.9) is examined for the estimator defined in
Equation (5.8). It is denoted by M̂SEdr

for domain d of simulation run r. The estimator was calculated
with B = 500 bootstrap replications in each simulation run. Its performance is evaluated comparing the
estimated and the RMSE defined in Equation (5.11), which is treated as the true RMSE. As a measure
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of bias the relative bias (RB RMSE) is chosen, which is defined as follows:

RB RMSE(θ̂d) =

√
1
R

∑R
r=1 M̂SEdr − RMSE(θ̂d)

RMSE(θ̂d)
.

Table 5.5 reports the distributions of the domain-specific RB RMSE over domains. It can already be
seen that the percentage values are within an acceptable and common range for MSE estimators with a
median relative bias of -1.1%. To have a closer look on the performance of the bootstrap MSE estimator

Table 5.5: Summary over domains of relative bias of estimated RMSE of logit FH.bc.

Min 1stQ Median Mean 3rdQ Max
RB RMSE [%] -8.746 -3.434 -1.132 -0.836 1.450 8.283

with a bias-corrected back-transformation the estimated and true RMSE values per domain are plotted
in Figure 5.2. The domains are ordered by decreasing sampling variances, which were used to construct
the direct estimators. First, it can be observed that as the sampling variance decreases, the true RMSE
also decreases, since a lower sampling variance is usually associated with a higher sample size and thus
a lower RMSE. Second, the estimated RMSE tracks this behavior very well and thus captures the true
uncertainty of the estimate in this setting. In summary, the bias-correction in the back-transformation is
advantageous over the naive back-transformation in the given setting based on real data. Furthermore,
the bootstrap MSE estimator leads to good results and provides a good estimate for the uncertainty.
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Figure 5.2: Estimated and true RMSE of logit FH.bc. Domains are ordered by decreasing
sampling variances.

5.5 Application to German spatial planning regions

In this section, the methodology presented in Section 5.3 is illustrated using the data described in Section
5.2. In particular, the logit-transformed FH model with a bias-corrected back-transformation is used to
estimate Gini coefficients for German SPRs, which are the domains in this application. At the same time,
the advantage of using model-based small area methods in terms of increased accuracy is demonstrated.
The SOEP sample used here contains data for 89 out of 96 SPRs in Germany with a total sample
size of about 3,100 households. In this application the Gini coefficients for the equivalised disposable
household income are estimated. Since income distributions often have a heavy right-hand tail, the
sensitivity of inequality measures to outliers based on those variables is discussed in Alfons et al. (2013)
and Cowell and Flachaire (2007). The Gini coefficient is especially affected by extreme outliers and
Alfons et al. (2013) therefore propose a Pareto tail modeling, which is also applied here. In this case,
observations in the income distribution that are above a threshold, i.e. the scale parameter of the Pareto
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distribution determined according to Van Kerm (2007), and are additionally extreme for the Pareto
distribution are identified as outliers. These outliers are replaced by values of the underlying theoretical
Pareto distribution. This approach was implemented by Alfons and Templ (2013) in the laeken R-
package. In the whole sample, 65 households lie in the upper tail of the distribution of which in total
two households from one SPR each (Cologne, Southern Upper Rhine) are identified as outliers and
are replaced. The Gini coefficients for the SPRs are estimated using the direct estimator θ̂Dir

d from
Equation (5.2) proposed by Fabrizi and Trivisano (2016). The sampling variances σ2

ed
are estimated

with the naive bootstrap procedure according to Alfons and Templ (2013) and implemented in the R-
package laeken. Following Fabrizi and Trivisano (2016) the variance smoothing model from Equation
(5.3) was estimated to further smooth and stabilize the variances. Afterwards the smoothed sampling
variances are brought to the logit scale with Equation (5.5).

5.5.1 Model selection and validation

Before moving to the discussion of model-based estimates of Gini coefficients obtained with Equations
(5.7) and (5.8), the variable selection and testing of model assumptions using diagnostics is reviewed.
From the set of possible covariates for predicting Gini coefficients and improving accuracy given in
Table 5.2, reasonable covariates are selected using an approach developed especially for FH models.
Marhuenda et al. (2014) discuss various methods for FH model selection which are variants of common
criteria like the Akaike Information criterion (AIC) and Kullback symmetric divergence criterion (KIC)
and argue that common AIC over-parameterize FH models. They conclude, that a KIC bootstrap variant
(KICb2) is the best selection criterion for FH models. Therefore a step-wise selection procedure with
KICb2 criterion proposed by Marhuenda et al. (2014) with B = 300 bootstrap replications was applied,
which is implemented in the R-package emdi (Kreutzmann et al., 2019). The model selection was done
with logit

(
θ̂Dir
d

)
as dependent variable and the transformed direct variances σ2∗

ed
. The final model in-

cludes only the variable log(GDP per resident), which has an estimated positive effect. This is consistent
with the hypothesis of Perugini and Martino (2008) that an increase in the regional level of development,
with GDP serving as a proxy for economic development, promotes income inequality. The predictive
power of the model is evaluated using an adjusted R2 specifically for FH models proposed by Lahiri
and Suntornchost (2015), which incorporates the variability of the sampling error. The model yields
only a value of 16%, which is comparatively low, nevertheless the main goal of model-based small area
methods, namely the gain in accuracy for small sample sizes, can be achieved, as can be seen in the next
section. The model assumptions of normally distributed residuals and random effects are tested with the
Shapiro-Wilk test and yield p-values of 0.854 and 0.147, respectively, thus normality cannot be rejected
at a significance level of 5%. The model variance estimated using the REML method is σ̂2

v = 0.029 and
is used in Section 5.4 as part of the data generating process.

5.5.2 Gain in accuracy

Before looking at the model-based estimates of the Gini coefficients the gain in accuracy compared to
the direct estimator is examined. The coefficients of variation (CV) per SPR for the proposed model-
based estimator (logit FH.bc) and the direct estimator (Direct) are reported in Figure 5.3, where the
SPRs are ordered by increasing sample sizes, starting with the OOS SPRs. The uncertainty of the bias-
corrected logit-transformed FH estimator from Equation (5.8) is measured using the bootstrap algorithm
presented in Section 5.3.2 with B = 500 bootstrap replications. The gain in efficiency is achieved for
all SPRs as the CVs of the model-based estimators are always smaller than of the direct ones with a
decreasing difference with higher sample sizes. This behavior is to be expected, as direct estimates
become more reliable with higher sample sizes thus more weight is put on the direct component. For
13 of the 89 observed SPRs, the CV can be moved from above 20% to below this threshold using the
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Figure 5.3: CVs of Direct and logit FH.bc. SPRs are ordered by increasing sample sizes, OOS
SPRs first.

model-based estimator. The threshold of 20% is a common value up to which estimates are considered
reliable (Eurostat, 2023). Table 5.6 shows the distribution of the estimated Gini coefficients and the

Table 5.6: Summary of point estimators and corresponding CVs [%] over SPRs, OOS SPRs in
separate lines.

Min 1stQ Median Mean 3rdQ Max
Direct 0.1674 0.2313 0.2631 0.2706 0.3031 0.4321
logit FH.bc 0.2112 0.2484 0.2657 0.2691 0.2884 0.3568
logit FH.bc OOS 0.2428 0.2493 0.2503 0.2543 0.2614 0.2656
CV Direct 5.75 10.48 13.66 14.99 17.54 36.66
CV logit FH.bc 5.26 7.74 9.53 9.38 10.63 13.39
CV logit FH.bc OOS 12.48 12.68 12.73 12.96 13.15 13.86

corresponding CVs. The first observation is that the distribution of the direct estimator across SPRs
is wider than that of the model-based estimator, while the mean and median values of the distribution
correspond to each other. This is in line with the expectation that the model-based estimates should
be consistent with the direct estimates but more precise. The expected shrinkage to the mean effect
can additionally be seen in Figure 5.4, where the direct estimates are plotted against the model-based
estimates. It can be observed that the SPRs with a low direct estimate correspond to a higher model-
based estimate and vice versa, indicating the regression to the mean. Examination of the OOS SPRS in
Table 5.6 shows that the point estimates lie in the middle of the distribution of model-based estimates for
observed SPRs. The CVs are instead at the high end of the distribution, which makes sense considering
that these observations were not used to estimate the model. To further investigate the quality of the
model-based estimator, a closer look can be taken at Figure 5.5. There, the shrinkage factor γ̂d from
Equation (5.7), which indicates how much the direct component is weighted, is presented for each SPR
with the corresponding sample size. On the x-axis are the SPRs ordered by decreasing sample sizes. It
can be observed that in SPRs with higher sample sizes, the direct component is weighted more heavily,
so that direct estimates and model-based estimates are very similar for SPRs with larger sample sizes.
While the model-based estimator is more synthetic at smaller sample sizes.

5.5.3 Small area estimates

The regional distribution of the Gini coefficients estimated using the presented methodology for the 96
SPRs is mapped in Figure 5.6. The regional heterogeneity of income inequality within a region can be
observed similar to the map in Figure 5.1. Figure 5.6 shows a similar pattern to Goebel and Frick (2005)

123



CHAPTER 5. ESTIMATING INTRA-REGIONAL INEQUALITY

in that income inequality is still lower in eastern Germany than in the west, although different levels
of inequality are estimated within the eastern regions. In the rural SPRs of the Northeast, inequality
is lower than in the Baltic region. The estimated Gini coefficient of the SPR east of Berlin (Oderland-
Spree) is relatively high compared to neighboring SPRs. This maybe due to a mixture of rural and urban
SPRs next to Berlin and, according to Perugini and Martino (2008), to the coexistence of specific and
mobile labor segments. Furthermore, taking into account the results of Immel and Peichl (2020) that in
these regions the share of the lowest-income 40% of households is relatively high compared to the rest of
Germany. Likewise, the share of the highest-income top 10% is not exceptionally low, probably due to
proximity to Berlin. This mix could lead to higher income inequality. The estimated Gini coefficient for
Berlin is 0.26, which is similar to the value of 0.28 reported by OECD (2013) for 2013. A more general
result, that the northern regions of West Germany tend to have lower Gini coefficients than the regions in
the south and center, could be explained by Immel and Peichl (2020)’s findings that disproportionately
few of the top 10% income earners live in the north of West Germany and disproportionately many in
the south. The highest estimated Gini coefficient is for the SPR Central Rhine-Westerwald, with the city
of Koblenz at its center, surrounded by more suburban SPRs. According to Immel and Peichl (2020),
the city of Koblenz has a relatively high share of top 10% highest income households, which could be
the driver of income inequality in this region. In general, it can be noted that where Immel and Peichl
(2020) identify a high share of the highest-income 10%, income inequality also tends to be rather high.
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5.6 Concluding remarks

Measuring inequality at a regionally detailed level within counties and municipalities can provide deep
insight into the income and wealth structures of these entities and can serve policymakers to target
policies, taxation and funding to address inequality. A common indicator for measuring inequality is
the Gini coefficient, which can be applied equally to income before and after taxes or to the value of
wealth. The approach presented provides model-based estimates of the Gini coefficients at a regionally
detailed level, which entails a gain in precision for small sample sizes compared to direct estimates
based only on survey data. To achieve this, additional data sources and information from other domains
are used in addition to the survey data. As an alternative when micro-data is not available, an area-level
model, namely a logit-transformed FH model, is applied to the nonlinear indicator of interest. To avoid a
bias when transforming back from the logit scale to the original, a bias-corrected back-transformation is
used, which is also incorporated into the parametric bootstrap to measure the uncertainty of the estimate.
The methodology presented is a straightforward extension of elaborated results for the transformed FH-
model, can be easily integrated into existing SAE software, such as the R-package emdi (Kreutzmann
et al., 2019), and poses no computational challenges. The validity of the approach is demonstrated in
a model-based simulation, where the point estimator also performs similarly well to the Bayesian ap-
proach of Fabrizi and Trivisano (2016) chosen for comparison. The methodology is illustrated by means
of an example for German SPRs using survey data from the SOEP and data from the 2011 Census. The
analysis shows that there are intra-regional differences in income inequality and the proposed model-
based methodology has achieved the desired gain in precision. The approach can be readily applied to
estimate Gini coefficients for other regions, sub-populations, or survey data.

For future research, the methodology could be extended to the use of survey data where the data
have been imputed multiple times by the data provider due to item non-response. The approach of
Kreutzmann et al. (2022), which uses multiply imputed data from the Household Finance and Con-
sumption Survey to estimate wealth averages, could therefore be extended to nonlinear indicators and
appropriate transformations to allow Rubin’s pooling rules (Rubin, 1987) for multiply imputed data to
be applied. Esteban et al. (2012) study area-level time models for nonlinear indicators such as poverty
incidence and poverty gap. This approach could be transferred to also obtain time-stable estimates of
inequality measures such as the Gini coefficient. Furthermore, the multivariate FH model proposed by
Benavent and Morales (2016) could be extended for nonlinear indicators to jointly estimate Gini co-
efficients for multiple panel waves. Moreover, as mentioned in the introduction, other transformations
could be used instead of the logit transformation as long as the estimated Gini coefficients are between
zero and one. In any case, the variances of the direct estimator on the transformed scale are needed,
and a suitable back-transformation for the estimated model-based Gini coefficients is required. Deriva-
tion of methodologies for e.g. probit or complementary log-log transformation could be part of further
research.
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Figure E.1: SPR labels (Bundesinstitut für Bau-, Stadt-, und Raumforschung, 2017).
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Table E.1: Official SPR names and labels (Bundesinstitut für Bau-, Stadt-, und Raumforschung,
2017).

SPR Name SPR Name
101 Schleswig-Holstein Mitte 806 Neckar-Alb
102 Schleswig-Holstein Nord 807 Nordschwarzwald
103 Schleswig-Holstein Ost 808 Ostwürttemberg
104 Schleswig-Holstein Süd 809 Schwarzwald-Baar-Heuberg
105 Schleswig-Holstein Süd-West 810 Stuttgart
201 Hamburg 811 Südlicher Oberrhein
301 Braunschweig 812 Unterer Neckar
302 Bremen-Umland 901 Allgäu
303 Bremerhaven 902 Augsburg
304 Emsland 903 Bayerischer Untermain
305 Göttingen 904 Donau-Iller (BY)
306 Hamburg-Umland-Süd 905 Donau-Wald
307 Hannover 906 Industrieregion Mittelfranken
308 Hildesheim 907 Ingolstadt
309 Lüneburg 908 Landshut
310 Oldenburg 909 Main-Rhön
311 Osnabrück 910 München
312 Ost-Friesland 911 Oberfranken-Ost
313 Südheide 912 Oberfranken-West
401 Bremen 913 Oberland
501 Aachen 914 Oberpfalz-Nord
502 Arnsberg 915 Regensburg
503 Bielefeld 916 Südostoberbayern
504 Bochum/Hagen 917 Westmittelfranken
505 Bonn 918 Würzburg
506 Dortmund 1001 Saar
507 Duisburg/Essen 1101 Berlin
508 Düsseldorf 1201 Havelland-Fläming
509 Emscher-Lippe 1202 Lausitz-Spreewald
510 Köln 1203 Oderland-Spree
511 Münster 1204 Prignitz-Oberhavel
512 Paderborn 1205 Uckermark-Barnim
513 Siegen 1301 Mecklenburgische Seenplatte
601 Mittelhessen 1302 Mittleres Mecklenburg/Rostock
602 Nordhessen 1303 Vorpommern
603 Osthessen 1304 Westmecklenburg
604 Rhein-Main 1401 Oberes Elbtal/Osterzgebirge
605 Starkenburg 1402 Oberlausitz-Niederschlesien
701 Mittelrhein-Westerwald 1403 Südsachsen
702 Rheinhessen-Nahe 1404 Westsachsen
703 Rheinpfalz 1501 Altmark
704 Trier 1502 Anhalt-Bitterfeld-Wittenberg
705 Westpfalz 1503 Halle/S.
801 Bodensee-Oberschwaben 1504 Magdeburg
802 Donau-Iller (BW) 1601 Mittelthüringen
803 Franken 1602 Nordthüringen
804 Hochrhein-Bodensee 1603 Ostthüringen
805 Mittlerer Oberrhein 1604 Südthüringen
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Table E.2: Direct variances on logit-scale of 89 observed SPRs.

SPR σ2
ed

SPR σ2
ed

SPR σ2
ed

SPR σ2
ed

SPR σ2
ed

101 0.1949 504 0.1463 803 0.1778 911 0.1678 1404 0.1337
102 0.1036 505 0.1171 804 0.2092 912 0.4429 1501 0.2102
103 0.2641 506 0.1508 805 0.1317 914 0.1665 1502 0.1952
104 0.4305 507 0.1846 806 0.1240 915 0.3350 1503 0.1628
105 0.3098 508 0.0817 807 0.3318 916 0.1400 1504 0.1635
201 0.1679 509 0.1687 808 0.2026 917 0.2684 1601 0.1794
301 0.1987 510 0.1489 809 0.3849 918 0.2056 1602 0.4599
302 0.2580 511 0.1380 810 0.1172 1001 0.1711 1603 0.1075
304 0.1901 512 0.2584 811 0.1328 1101 0.0908 1604 0.2188
305 0.1387 601 0.2484 812 0.1767 1201 0.1984
306 0.2301 602 0.1460 901 0.1668 1202 0.1365
307 0.1931 603 0.5892 902 0.1524 1203 0.1515
308 0.2093 604 0.0953 903 0.2411 1205 0.3145
310 0.1808 605 0.1855 904 0.2236 1301 0.2276
311 0.1887 701 0.1451 905 0.2047 1302 0.1896
312 0.3857 702 0.2318 906 0.1310 1303 0.3853
401 0.2335 703 0.1867 907 0.2520 1304 0.1725
501 0.1741 704 0.2290 908 0.2093 1401 0.1997
502 0.2215 705 0.1999 909 0.1703 1402 0.1657
503 0.1334 802 0.3116 910 0.0906 1403 0.1383

Table E.3: Distributions of MCEs of the ABias and RMSE values.

Estimator Min 1stQ Median Mean 3rdQ Max

103 × M̂CE(ABias) Bayesian Beta 0.456 0.726 0.820 0.815 0.916 1.097
FH 0.480 0.734 0.849 0.841 0.926 1.155
logit FH.bc 0.483 0.732 0.823 0.826 0.910 1.084
logit FH.naive 0.483 0.733 0.830 0.827 0.910 1.083

103 × M̂CE(RMSE) Bayesian Beta 0.329 0.526 0.598 0.591 0.664 0.793
FH 0.326 0.523 0.603 0.600 0.664 0.932
logit FH.bc 0.328 0.524 0.593 0.590 0.659 0.791
logit FH.naive 0.329 0.525 0.595 0.592 0.662 0.794
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Summaries

Abstracts in English

Abstract: The Fay-Herriot model for multiply imputed data with an application
to regional wealth estimation in Germany

The increasing inequality of private income and wealth requires the redistribution of financial resources.
Thus, several financial support schemes allocate budget across countries or regions. This work shows
how to estimate private wealth at low regional levels by means of a modified Fay-Herriot approach that
deals with (a) unit and item non-response, especially with used multiple imputation, (b) the skewness
of the wealth distribution, and (c) inconsistencies of the regional estimates with the national direct
estimate. One compelling example for financial redistribution is the promoted catching-up process of
East Germany after the German reunification. This work shows that 25 years after the reunification
differences are more diverse than just between the East and the West by estimating private wealth at
two regional levels in Germany. The analysis is based on the Household Finance and Consumption
Survey (HFCS) that the European Central Bank launched for all euro area countries in 2010. Although
the application in this paper focuses particularly on Germany, the approach proposed is applicable to
the other countries participating in the HFCS as well as to other surveys that make use of multiple
imputation.
Keywords: Multiple imputation, Non-response, Small area estimation, Survey statistics

Abstract: Small area estimation with multiply imputed survey data

In this article, we propose a framework for small area estimation with multiply imputed survey data.
Many statistical surveys suffer from (a) high nonresponse rates due to sensitive questions and response
burden and (b) too small sample sizes to allow for reliable estimates on (unplanned) disaggregated
levels due to budget constraints. One way to deal with missing values is to replace them by several
plausible/imputed values based on a model. Small area estimation, such as the model by Fay and Her-
riot, is applied to estimate regionally disaggregated indicators when direct estimates are imprecise. The
framework presented tackles simultaneously multiply imputed values and imprecise direct estimates. In
particular, we extend the general class of transformed Fay-Herriot models to account for the additional
uncertainty from multiple imputation. We derive three special cases of the Fay-Herriot model with par-
ticular transformations and provide point and mean squared error estimators. Depending on the case,
the mean squared error is estimated by analytic solutions or resampling methods. Comprehensive sim-
ulations in a controlled environment show that the proposed methodology leads to reliable and precise
results in terms of bias and mean squared error. The methodology is illustrated by a real data example
using European wealth data.
Keywords: Fay-Herriot model, Mean squared error, Multiple imputation, Non-response, Survey statis-
tics
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Abstract: Variable selection using conditional AIC for linear mixed models with
data-driven transformations

When data analysts use linear mixed models, they usually encounter two practical problems: a) the true
model is unknown and b) the Gaussian assumptions of the errors do not hold. While these problems
commonly appear together, researchers tend to treat them individually by a) finding an optimal model
based on the conditional Akaike information criterion (cAIC) and b) applying transformations on the
dependent variable. However, the optimal model depends on the transformation and vice versa. In this
paper, we aim to solve both problems simultaneously. In particular, we propose an adjusted cAIC by
using the Jacobian of the particular transformation such that various model candidates with differently
transformed data can be compared. From a computational perspective, we propose a step-wise selection
approach based on the introduced adjusted cAIC. Model-based simulations are used to compare the
proposed selection approach to alternative approaches. Finally, the introduced approach is applied to
Mexican data to estimate poverty and inequality indicators for 81 municipalities.
Keywords: Box-Cox transformation, Empirical best predictor, Indicators, Small area estimation

Abstract: Area-level small area estimation with random forests

This paper presents an approach that combines a small area estimation model with tree-based meth-
ods to provide a solution when only area-level data are available. In particular, the linear regression
synthetic part of the Fay-Herriot model is replaced by a random forest to link survey data with related
administrative information or data from other sources. By using a random forest, possible interactions
among explanatory variables and nonlinear relationships between them and the dependent variable are
accounted for. Automatic variable selection and robustness to outliers are indirectly provided as a prop-
erty of the random forest. To obtain point estimates for a mean indicator, the familiar structure of the
Fay-Herriot estimator is preserved. The estimation is done by implementing an expectation maximiza-
tion algorithm. To determine the uncertainty of the point estimator, a nonparametric bootstrap method
for estimating the mean squared error is presented. To evaluate the accuracy and precision of the pro-
posed estimator and its uncertainty measure, model-based simulations are carried out. The presented
methodology is illustrated by using household survey and remote sensing data from Mozambique to
estimate average per capita consumption at a km grid-level.
Keywords: Fay-Herriot model, Remote sensing data, Survey statistics, Tree-based methods

Abstract: Estimating intra-regional inequality with an application to German
spatial planning regions

Income inequality is a persistent topic of public and political debate. In this context, the focus often
shifts from the national level to a more detailed geographical level. In particular, inequality between or
within local communities can be assessed. In this paper, the estimation of inequality within regions, i.e.
between households, is considered at a regionally dis-aggregated level. From a methodological point
of view, a small area estimation of the Gini coefficient is carried out using an area-level model linking
survey data with related administrative data. Specifically, the Fay-Herriot model is applied using a logit
transformation followed by a bias-corrected back-transformation. The uncertainty of the point estimate
is assessed using a parametric bootstrap procedure to estimate the mean squared error. The validity of the
methodology is shown in a model-based simulation for the point estimator as well as for the uncertainty
measure. The proposed methodology is illustrated by estimating model-based Gini coefficients for
spatial planning regions in Germany, using survey data from the German Socio-Economic Panel and
aggregate data from the 2011 Census. The results show that intra-regional inequality is more diverse
than an east-west perspective would suggest.
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Keywords: Fay-Herriot model, Gini coefficient, Small area estimation, Survey statistics

Kurzzusammenfassungen auf Deutsch

Zusammenfassung: Das Fay-Herriot-Modell für mehrfach imputierte Daten mit
einer Anwendung auf regionale Vermögensschätzungen in Deutschland

Die steigende Ungleichheit der privaten Einkommen und Vermögen macht eine gerechte Umvertei-
lung der finanziellen Ressourcen erforderlich. Dementsprechend werden im Rahmen verschiedener Fi-
nanzhilfeprogramme Haushaltsmittel zwischen Ländern oder Regionen umverteilt. In diesem Papier
wird gezeigt, wie das private Vermögen auf einer kleineren regionalen Ebene mithilfe eines modifi-
zierten Fay-Herriot-Ansatzes geschätzt werden kann, der folgende Aspekte berücksichtigt: a) Unit- und
Item-Non-Response, insbesondere bei der Verwendung von multiplen Imputationen, b) die Schiefe der
Vermögensverteilung, und c) Inkonsistenzen zwischen regionalen Schätzungen und nationalen direkten
Schätzungen. Ein überzeugendes Beispiel für finanzielle Umverteilung ist der geförderte Aufholprozess
Ostdeutschlands nach der deutschen Wiedervereinigung. Diese Arbeit zeigt, dass selbst 25 Jahre nach
der Wiedervereinigung weiterhin erhebliche Unterschiede zwischen Ost und West bestehen, wenn das
private Vermögen auf zwei regionalen Ebenen in Deutschland geschätzt wird. Die Analyse basiert auf
dem Household Finance and Consumption Survey (HFCS), der im Jahr 2010 von der Europäischen
Zentralbank für alle Länder der Eurozone eingeführt wurde. Obwohl sich die Anwendung in diesem Pa-
pier speziell auf Deutschland konzentriert, kann der vorgeschlagene Ansatz auch auf andere am HFCS
teilnehmende Länder sowie auf andere Erhebungen angewendet werden, die Mehrfachimputationen ver-
wenden.
Schlüssewörter: Mehrfach-Imputation, Non-Response, Small-Area-Schätzung, Survey-Statistik

Zusammenfassung: Small Area Schätzung mit mehrfach imputierten Erhebungs-
daten

Viele statistische Erhebungen stehen vor zwei Herausforderungen: a) Hohe Antwortausfallraten auf-
grund sensibler Fragen und eines aufwändigen Beantwortungsprozesses, sowie b) Budgetbeschränkun-
gen, die zu kleinen Stichproben führen und somit keine zuverlässigen Schätzungen auf disaggregierten
Ebenen ermöglichen. Ein Lösungsansatz für den Umgang mit fehlenden Werten besteht darin, diese
durch mehrere plausible/imputierte Werte zu ersetzen, die auf einem Modell basieren. Small Area Mo-
delle, wie das Fay-Herriot-Modell, werden verwendet, um regional disaggregierte Indikatoren zu schät-
zen, wenn direkte Schätzungen aufgrund kleiner Stichprobenumfänge ungenau sind. In diesem Papier
schlagen wir einen Ansatz vor, der beide Probleme gleichzeitig angeht. Konkret erweitern wir die all-
gemeine Modellklasse der transformierten Fay-Herriot-Modelle, um die zusätzliche Unsicherheit durch
multiple Imputationen zu berücksichtigen. Wir leiten drei Spezialfälle des Fay-Herriot-Modells mit spe-
zifischen Transformationen ab und liefern Punkt- und mittlere quadratische Fehlerschätzer. Je nach Fall
wird der mittlere quadratische Fehler entweder durch analytische Lösungen oder Resampling-Methoden
geschätzt. Um die Zuverlässigkeit und Genauigkeit der vorgeschlagenen Methodik zu überprüfen, füh-
ren wir umfangreiche Simulationen in einer kontrollierten Umgebung durch. Die Ergebnisse zeigen,
dass unsere Methodik verlässliche und präzise Schätzungen bezüglich Verzerrung und mittlerem qua-
dratischem Fehler liefert. Um die Anwendung der Methode in der Praxis zu demonstrieren, verwenden
wir ein reales Datenbeispiel mit europäischen Vermögensdaten.
Schlüssewörter: Fay-Herriot-Modell, Mittlerer quadratischer Fehler, Mehrfach-Imputation, Non-
Response, Survey-Statistik
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Zusammenfassung: Variablenselektion mit konditionalem AIC für lineare gemisch-
te Modelle unter Verwendung datengetriebener Transformationen

Bei der Verwendung linearer gemischter Modelle stoßen Datenanalysten üblicherweise auf zwei prak-
tische Probleme: a) Das wahre Modell ist unbekannt, und b) die Annahmen über die Fehlerterme nach
dem Gaußschen Modell sind nicht gültig. Obwohl diese Probleme oft zusammen auftreten, behandeln
Wissenschaftler sie tendenziell separat. Sie versuchen a) ein optimales Modell auf der Grundlage des
bedingten Akaike-Informationskriteriums (cAIC) zu finden und b) Transformationen auf die abhängige
Variable anzuwenden. Jedoch hängt das optimale Modell von der Transformation ab und umgekehrt. In
diesem Papier haben wir das Ziel, beide Probleme gleichzeitig anzugehen. Insbesondere schlagen wir ei-
ne angepasste Form des cAIC vor, bei der die Jacobian der jeweiligen Transformation einbezogen wird,
um verschiedene Modellkandidaten mit unterschiedlich transformierten Daten vergleichen zu können.
Um dies numerisch zu bewältigen, stellen wir ein schrittweises Auswahlverfahren vor, das auf dem ein-
geführten angepassten cAIC basiert. Wir nutzen modellbasierte Simulationen, um das vorgeschlagene
Auswahlverfahren mit alternativen Methoden zu vergleichen. Schließlich wenden wir den vorgestellten
Ansatz auf mexikanische Daten an, um Armuts- und Ungleichheitsindikatoren für 81 Gemeinden zu
schätzen und wollen dadurch demonstrieren, wie unser Ansatz in der Praxis angewendet werden kann.
Schlüssewörter: Box-Cox-Transformation, Empirischer bester Prädiktor, Indikatoren, Small-Area-
Schätzung

Zusammenfassung: Kleinräumige Schätzung mit Random Forests für Daten auf
Gebietsebene

Dieses Papier präsentiert einen innovativen Ansatz, der ein kleinräumiges Schätzmodell mit baum-
basierten Methoden kombiniert, wenn lediglich Daten auf Gebietsebene vorliegen. Speziell wird der
synthetische Teil der linearen Regressionskomponente des Fay-Herriot-Modells durch einen Random
Forest ersetzt, um Erhebungsdaten mit entsprechenden Zensus-/Registerdaten oder anderen Quellen zu
verknüpfen. Der Einsatz eines Random Forest ermöglicht die Berücksichtigung möglicher Wechsel-
wirkungen zwischen den erklärenden Variablen sowie nichtlinearer Beziehungen zwischen ihnen und
der abhängigen Variable. Darüber hinaus umfasst der Random Forest automatische Variablenselekti-
on und Robustheit gegenüber Ausreißern als implizite Eigenschaften. Die Punktschätzungen für einen
Mittelwertindikator werden unter Beibehaltung der bekannten Struktur des Fay-Herriot-Schätzers erhal-
ten. Die Schätzung erfolgt mithilfe eines Erwartungsmaximierungsalgorithmus. Um die Unsicherheit
des Punktschätzers zu bestimmen, wird ein nichtparametrisches Bootstrap-Verfahren zur Schätzung des
mittleren quadratischen Fehlers eingeführt. Modellbasierte Simulationen werden durchgeführt, um die
Genauigkeit und Präzision des vorgeschlagenen Schätzers und seines Unsicherheitsmaßes zu evaluie-
ren. Zur Veranschaulichung der Methodik wird diese anhand von Haushaltserhebungen und Fernerkun-
dungsdaten aus Mosambik angewendet, um den durchschnittlichen Pro-Kopf-Verbrauch auf einer Ebene
von km-Rastern zu schätzen.
Schlüssewörter: Baum-basierte Methoden, Fay-Herriot model, Fernerkundungsdaten, Survey-Statistik

Zusammenfassung: Schätzung intraregionaler Ungleichheit mit einer Anwendung
auf deutsche Raumordnungsregionen

Einkommensungleichheit ist ein fortlaufendes Thema in der öffentlichen und politischen Debatte. Da-
bei verschiebt sich der Fokus oft von nationalen Betrachtungen hin zu einer detaillierteren geografischen
Ebene, um die Ungleichheit zwischen oder innerhalb lokaler Gemeinschaften zu untersuchen. In die-
sem Beitrag liegt der Fokus auf der Schätzung der Ungleichheit innerhalb von Regionen, insbesondere
zwischen Haushalten, auf einer regional disaggregierten Ebene.´ Methodisch erfolgt die kleinräumige
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Summaries

Schätzung des Gini-Koeffizienten durch die Verknüpfung von Umfragedaten mit entsprechenden Ver-
waltungsdaten auf regionaler Ebene. Dazu wird das Fay-Herriot-Modell mit einer Logit-Transformation
und einer anschließenden verzerrungskorrigierten Rücktransformation verwendet. Die Unsicherheit der
Punktschätzung wird mittels eines parametrischen Bootstrap-Verfahrens zur Schätzung des mittleren
quadratischen Fehlers bewertet. Die Gültigkeit dieser Methodik wird in einer modellbasierten Simula-
tion sowohl für den Punktschätzer als auch für das Unsicherheitsmaß gezeigt. Zur Veranschaulichung
der Methodik werden modellbasierte Gini-Koeffizienten für Raumordnungsregionen in Deutschland ge-
schätzt. Dabei werden Befragungsdaten des Sozio-oekonomischen Panels und Aggregatdaten des Zen-
sus 2011 verwendet. Die Ergebnisse verdeutlichen, dass die intraregionalen Disparitäten viel facetten-
reicher sind, als es eine einfache Ost-West-Perspektive vermuten lässt.
Schlüssewörter: Fay-Herriot-Modell, Gini-Koeffizient, Small-Area-Schätzung, Survey-Statistik
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