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Abstract

We study a problem that is algebraic in nature but has certain applications in graph
theory. It can be seen as a generalization of the joint spectral radius.

Given a bilinear map ∗ : Rd × Rd → Rd and a vector s ∈ Rd, both with nonnegative
coefficients and entries, among an exponential number of ways to combine n instances of s
using n− 1 applications of ∗, we are interested in the largest possible entry in a resulting
vector. Let g(n) denote this value, the asymptotic behaviour of g(n) is investigated
through the growth rate

λ = lim sup
n→∞

n
√
g(n).

It is known that checking λ ≤ 1 is undecidable, as a consequence of the corresponding
fact for the joint spectral radius. However, efficient algorithms are available to compute
it exactly in certain cases, or approximate it to any precision in general. Furthermore,
when the vector s is positive, there exists some r so that

constn−rλn ≤ g(n) ≤ constnrλn.

It means λ is actually a limit when s > 0. However, checking if this is the case in general
is also undecidable. Some types of patterns for optimal combinations are proposed and
studied as well, with some connections to the finiteness property of a set of matrices.

The techniques that are used for our problem can be applied well for the joint spectral
radius, and they produce some stronger results by even simpler arguments. For example,
if ‖Σn‖ denotes the largest possible entry in a product of n matrices drawn from a finite
set Σ of nonnegative matrices, whose joint spectral radius is denoted by ρ(Σ), then there
exists some r so that

constnrρ(Σ)n ≤ ‖Σn‖ ≤ constnrρ(Σ)n.
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CHAPTER 1

Introduction

We study a problem that is algebraic in nature but has certain applications in graph
theory. It can be seen as a generalization of the notion of joint spectral radius.

Suppose we are given a binary operator ∗ and an operand s. For any n, there are an
exponential number of ways to combine n instances of s using n−1 applications of ∗. For
example, when n = 4, the 5 combinations are s∗ (s∗ (s∗s)), s∗ ((s∗s)∗s), (s∗s)∗ (s∗s),
(s ∗ (s ∗ s)) ∗ s, ((s ∗ s) ∗ s) ∗ s. In fact, the number of combinations is the (n − 1)-th
Catalan number. As the operator is not always commutative or associative, the results
may vary, depending on the way we group the brackets. However, in certain situations
we might still expect that the largest magnitude over all the combinations does not grow
too arbitrarily, and even follows some kind of growth rate. A problem of this type was
posed by Rote [1], where ∗ is a bilinear operator in Rd × Rd → Rd with nonnegative
coefficients and s is a nonnegative vector in Rd. Since every norm is equivalent up to a
constant factor, we can choose any norm to be the magnitude of a resulting vector. We
let the norm be the largest entry of the vectors for convenience, due to the nonnegativity
of the vector s and the coefficients of the operator ∗. In other words, we are interested
in the largest possible entry g(n) in a vector obtained by combining n instances of s. In
many cases, we have the limit

λ = lim
n→∞

n
√
g(n),

where λ is called the growth rate of the bilinear system (∗, s).
Let us give some examples of the limit. They are actually graph theoretical problems.
The first example: Consider a rooted binary tree T , a pruned tree of T is a tree

obtained from T by removing zero or more subtrees. Let f(n) be the maximum number
of pruned trees of a tree T with n leaves. The function f(n) can be defined recursively
by f(1) = 1 and for n ≥ 2,

(1.1) f(n) = 1 + max
1≤m≤n−1

f(m)f(n−m).

We can express the function in a different formulation. For the vector s = (1, 1) and
the bilinear function ∗ : R2 × R2 → R2 so that(

x1

x2

)
∗
(
y1
y2

)
=

(
x1y1 + x2y2

x2y2

)
,

the function g(n) of the bilinear system (∗, s) is identical to f(n).
The function f(n) was investigated for a different purpose in [2] where the growth rate

λ = limn→∞
n
√

f(n) was shown to be 1.502836801 . . . . A combinatorial argument shows
that the growth rate is the same as the rate limm→∞(am)

1/2m of the doubly exponential
sequence am where a0 = 1 and am = 1+ a2m−1 for m ≥ 1. Actually, the limit is expressed
in a more explicit way in [3]:

(1.2) λ = lim
m→∞

(am)
1/2m = exp

(∑
i≥1

1

2i
log

(
1 +

1

a2i

))
.

1



2 1. INTRODUCTION

The second example: The original motivation of the growth rate of the bilinear system
was to study the maximum number of minimal dominating sets in a tree of n leaves. This
number is actually of the same order as g(n) for vector s = (0, 1, 0, 0, 0, 1) and the operator
∗ so that

(1.3)


x1

x2

x3

x4

x5

x6

 ∗


y1
y2
y3
y4
y5
y6

 =


x1y1 + x1y4 + x1y6 + x2y6 + x3y6

x2y4
x2y1 + x3y1 + x3y4

x4y1 + x4y2 + x4y4 + x4y5 + x6y1 + x6y2
x5y4 + x5y5 + x6y3

x6y4 + x6y5

 .

The relation between minimal dominating sets and the setting of ∗, s is explained in detail
in the original source [1] using dynamic programming. The growth rate λ curiously has
some magic numbers:

(1.4) λ = lim
n→∞

n
√

g(n) =
13
√
95.

Note that while the proof of the first example, which spans some four pages, is already
nontrivial enough, the proof of the second example even needs the assistance of a computer
with a method we may call the “polytope method”. However, the algebraic nature of the
constants in (1.2) and (1.4) does not seem to suggest that the latter example is a more
complicated one.

Other examples: The setting of a bilinear operator and a vector was applied by
Rosenfeld to address the number of different types of dominating sets, perfect codes,
different types of matchings, and maximal irredundant sets in a tree. The readers can
check [4, Section 5] for this rich set of applications. One can find an application in graphs
other than trees in [2] where the maximum number of cycles in an outerplanar graph is
studied using the function f(n) in (1.1). We believe the flexibility of the setting allows
applications in more remote fields.

In general, the limit of n
√

g(n) is not always guaranteed to exist. Rosenfeld [5] suggests
to define the growth rate by

λ = lim sup
n→∞

n
√
g(n).

From now on, by the growth rate of the bilinear system we mean this limit superior λ.

Decidability. The problem of checking if λ ≤ 1 for a given system (∗, s) is shown
to be undecidable in [5] by reducing the problem of joint spectral radius. A simpler
reduction also using the joint spectral radius is given in Chapter 6.

Let JSR denote the problem of checking if the joint spectral radius ρ ≤ 1, the
undecidability of JSR is actually proved in [6] by

HP ≤ · · · ≤ PFAE ≤ JSR,

where HP denotes the halting problem and PFAE denotes the problem of probabilistic
finite automaton emptiness. (We denote A ≤ B if Problem A can be reduced to Problem
B.) There are several problems that can be filled into the place of the above dots.

Note that all these problems are actually Turing equivalent since we have a reduction
from JSR to HP by the joint spectral radius theorem, which states that for a finite set
Σ of matrices we have

ρ(Σ) = sup
n

max
A1,...,An∈Σ

n
√
ρ(A1 . . . An),

where ρ denotes both the joint spectral radius and the ordinary spectral radius, depending
on the argument. Indeed, we just run the program that looks for a sequence of matrices
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A1, . . . , An in Σ with increasing n whose product has the spectral radius greater than 1.
The program does not stop if and only if ρ(Σ) ≤ 1. Note that the problem of checking
ρ(A) ≤ 1 for the ordinary spectral radius (SR) is decidable by Tarski’s method [7].

On the other hand, a formula of λ in Chapter 5 allows a reduction from checking
λ ≤ 1 to the halting problem. The formula can be written in a form that looks similar
to the joint spectral radius theorem:

λ = sup
n

max
linear pattern P

|P |=n

n
√

ρ(M(P )).

We do not explain the terms in detail, which is done in Chapter 5, but we may say
roughly that a linear pattern is a sequence xn for n = 0, 1, 2, . . . so that x0 = s and xn

for n ≥ 1 is a combination of some instances of s and precisely one instance of xn−1. The
notation |P | denotes the number of instances of s and the matrix M = M(P ) represents
the linear relation xn = Mxn−1 for every n ≥ 1. The reduction from checking λ ≤ 1 to
the halting problem is done similarly to the one for the problem of checking if ρ(Σ) ≤ 1.

Let us call the problem of checking if λ ≤ 1 the problem of the growth rate of a
bilinear system (GRBS). We have established the relation of the previous problems to
GRBS. An interesting point is that using reductions of the same kind we can show that
the problem of checking the growth rate does not become harder when multiple operators
and multiple starting vectors are allowed. This was first remarked by Rosenfeld [5], see
Chapter 6 for discussion. Let us call it the problem of the joint growth rate of a bilinear
system (JGRBS). In total, we have

SR < HP = PFAE = JSR = GRBS = JGRBS,

where A < B means A ≤ B but we do not have B ≤ A, and A = B means A ≤ B and
B ≤ A, that is each of A,B is reducible to the other.

Note that we still do not yet have a natural reduction from GRBS to JSR as the
one for proving JSR ≤ GRBS. Such a reduction is very desirable and it would have
interesting consequences, as discussed in Chapter 7.

The positive setting. When the vector s is strictly positive instead of being only
nonnegative, it was shown in [8] that the limit is always guaranteed to exist:

λ = lim
n→∞

n
√
g(n).

In fact, Chapter 5 provides a simpler proof than the one in [8].
When the requirement is not met, there is chance that the limit does not exist (also

see [8] for counterexamples, which are presented in Chapter 2). The interesting point is
that the problem of checking if the limit exists when s is only nonnegative is undecidable,
as in Chapter 6. It can be seen as a corollary of the undecidability of the problem of
checking λ ≤ 1.

Let us call the setting with nonnegative s the nonnegative setting and the setting
with positive s the positive setting. In fact, it is also interesting to treat the problem
when there is no condition on the signs of the entries and the coefficients, and g(n) is the
largest possible norm of any vector obtained from combining n instances of s for some
appropriate norm. Note that the growth rate is independent of the chosen norm as two
norms are in a constant factor of each other. Let us call this setting the general setting.
However, we almost never treat the general setting in this work because the techniques
we use depend on the nonnegativity. Moreover, the nonnegative setting seems to cover
most of the applications so far, see [4, Section 5] for some instances.

The growth rate λ is computable for the nonnegative setting as shown in Chapter 5.
By computable we mean it is possible to generate converging sequences of upper bounds
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and lower bounds, that is we can approximate λ to any precision. Furthermore, we have
a fairly good bound for g(n) in the positive setting by the following result, which is also
in Chapter 5.

Theorem. There are some positive constants a, a′ and some degrees r, r′ so that they
are computed from ∗, s and for every n,

an−rλn ≤ g(n) ≤ a′nr′λn.

A corollary is the following estimate of the growth rate λ: For any n, we have

(1.5) n

√
1

a′
n−r′g(n) ≤ λ ≤ n

√
1

a
nrg(n).

Since the ratio n
√

(a′/a)nr+r′ between the upper bound and the lower bound converges
to 1, we obtain a good bound when we have g(n) for a large enough n.

We give examples where g(n) is of order nrλn for some integer r > 0 in Chapter 2,
where we also conjecture that r is at most 2d−1 for the space Rd. However, we have not
yet found any example to match the lower bound of order n−rλn. In fact, we believe that
g(n) is at least a constant times λn. Since for a matrix A there exists a number r so
that constnrρ(A)n ≤ ‖An‖ ≤ constnrρ(A)n, where ρ(A) denotes the spectral radius of
A, and a similar result also holds for the joint spectral radius of nonnegative matrices in
Chapter 4, we ask the following question.

Question 1.1. Is it true that for every ∗, s in the positive setting there always exists
a number r so that

constnrλn ≤ g(n) ≤ constnrλn?

The example of pruned trees in (1.1) was confirmed to satisfy λn− 1
4 < g(n) < λn for

n ≥ 10 in [2, Theorem 2]. The example of minimal dominating sets in (1.3) also satisfies
constλn ≤ g(n) ≤ constλn by [1, Theorem 1.1].

By (1.5), suppose λ 6= 1, one can always decide whether λ > 1 or λ < 1 (regardless of
complexity) since when n is large enough, the value 1 will be to the left or to the right
of the small interval containing λ. However, when we are not guaranteed λ 6= 1, we have
the following question.

Question 1.2. Is the problem of checking if λ 6= 1 for the positive setting decidable?

Note that checking λ 6= 1 for the nonnegative setting is undecidable since one can
reduce the problem of checking λ ≤ 1 to it by adding one extra dimension that is always
1. The same trick also applies to the positive setting, that is checking λ ≤ 1 is easier
than checking λ 6= 1 up to decidability.

Another point is that the problem of checking λ 6= 1 is not harder than the halting
problem since we can run a program to obtain smaller and smaller intervals containing
λ. The program stops when the interval does not contain 1, that is λ 6= 1. The program
never stops otherwise.

An attempt to answer this question is given in Chapter 6 when the problem of checking
λ ≤ 1 for the positive setting is shown to be undecidable under the assumption that it is
undecidable to check if ρ({A,B}) ≤ 1 for two positive matrices A,B.

Organization of the thesis. Chapter 2 deals with the formal description and gives
some easy examples for the readers get a feel of the problem. More complicated examples
can be found in Chapters 3 and 4, which present two large classes of problems. Chapter
3 is about the growth of replacements, which is a new and interesting problem on its
own. Meanwhile, Chapter 4 is about the joint spectral radius of nonnegative matrices,
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which is an old and quite established problem. However, we shed some lights to the latter
problem under the condition of nonnegativity.

In fact, Chapter 3 and Chapter 4 can be treated as a preparation for the readers
to the techniques in Chapter 5, which give a formula and some bounds for the growth
rates of bilinear systems. The arguments in all three chapters are similar in one way or
another, but the argument gets harder after each chapter. As a consequence, the result
gets weaker after each chapter. While Chapter 5 is quite complicated, it is the core of
the thesis in terms of techniques.

Chapter 6 actually confirms the fact that the joint spectral radius is an instance of
the growth of bilinear maps,1 which may be not so obvious at first. Several problems for
the latter notion are shown to be undecidable, as a consequence of the undecidability of
the corresponding problems for the former one. In fact, one can reduce the problem of
the growth of replacements to the problem of the joint spectral radius, but it is quite
meaningless since the former problem is decidable while the latter one is not. However,
it is a sign that it is easier to deal with Chapter 3 than with Chapter 4. The growth of
replacements can be even computed precisely in Chapter 3.

One may expect that we can obtain the growth rate by looking at the combinations
that follow certain patterns. Chapter 7 discusses different kinds of patterns for which we
may or may not obtain the growth rate. An interesting conjecture on the coverage of
the growth rates by all the patterns is given there. We also relate the finiteness property
of a set of matrices to a kind of patterns called “linear pattern”, which is the key tool
throughout the work.

Some related publications by the author. The thesis contains the content of
several articles by the author. The starting point is [8], which is the first study of the
problem after the introduction by Rote. We do not present most of the content of [8]
but replace it with improved approaches. The merit of [8] is the introduction of the
notion “linear pattern”, which is so critical that its analogs can be found in almost every
chapter.2 The study on the growth of replacements is already published in [9]. Part of
the chapter on the joint spectral radius is published in [10]. The remaining content of
the thesis can be found in some preprints by the author, which are subjected to changes
and improvements.

1We sometimes call the problem we are studying the growth of bilinear maps. In fact, the title “Growth
of bilinear maps” of the thesis is also the title of the paper [8], which is the starting point of the research
of the author in this subject.
2One may even title the thesis “Linear patterns and the growth of bilinear maps”.





CHAPTER 2

Definitions and examples

This chapter will give the problem statement formally and present some simple exam-
ples, to prepare the readers for other chapters, in particular for Chapter 5. In fact, the
problems in Chapters 3 and 4 are stated in their own languages and quite independent
from other chapters. The relations to the general problem of the growth of bilinear maps
are not presented until Chapter 6. However, the two problems are worth treating for
their own interests.

As Fekete’s lemma is used from place to place in the thesis, we give its statement in
this chapter. A variant of Fekete’s lemma is also introduced, which may be useful beyond
the thesis.

2.1. Problem statement

We are given a nonnegative starting vector s ∈ Rd and a bilinear map ∗ : Rd×Rd → Rd

defined by nonnegative coefficients c
(k)
i,j so that for any k and any vectors x, y, we have

(x ∗ y)k =
∑
i,j

c
(k)
i,j xiyj.

We denote by An the set of all the results obtained by applying n− 1 applications of
∗ to n instances of s, that is: A1 = {s} and for n ≥ 2,

An =
⋃

1≤m≤n−1

{x ∗ y : x ∈ Am, y ∈ An−m}.

The largest entry g(n) over all the resulting vectors can be expressed as
g(n) = max{vi : v ∈ An, 1 ≤ i ≤ d}.

We denote by gk(n) the largest k-th entry over all the resulting vectors, that is
gk(n) = max{vk : v ∈ An}.

An obvious relation between g(n) and gk(n) is g(n) = maxk gk(n).
Such pair (∗, s) is called a bilinear system. The following limit superior λ is called the

growth rate of the system:
λ = lim sup

n→∞

n
√
g(n).

The growth rate is a well-defined number due to the boundedness of n
√
g(n). Indeed,

let s∗ be the maximal entry of s and c∗ be the maximal coefficient of ∗, the readers can
verify by induction that

g(n) ≤ (s∗)n(d2c∗)n−1.

In general, we do not treat the degenerate cases where the starting vector s is zero
or all the coefficients of ∗ are zero. Further, we assume that there is no degenerate
dimension, where a dimension k is said to be degenerate if gk(n) = 0 for every n. In
case the assumption is not met, we can safely discard the degenerate dimensions and the
involved coefficients without affecting g(n). The readers may take the question of how to
check if a given k is a degenerate dimension as an exercise.

7



8 2. DEFINITIONS AND EXAMPLES

Note that the growth rate λ actually depends on the map and the vector of the
considered system, but we do not denote it explicitly by λ∗,s as they are known from
context. Other notations are denoted implicitly in the same manner.

On the other hand, as the variable names d, s are so popular, they may be reused for
other purposes. If they are used as defined in this section, it will be stated explicitly.

2.2. Some beginning examples

We start with a simple system: Let s = (1, 1) and
u ∗ v = (u1v2 + u2v1, u2v2),

we show that every combination of n instances of s using ∗ gives the same result (n, 1).
It holds for n = 1 as the vector is s then. We show that it holds for n > 1 provided
it holds for smaller numbers than n. Let the combination be U ∗ V where U, V are the
combinations of `,m, respectively, instances of s, we have U = (`, 1) and V = (m, 1).
The resulting vector is

U ∗ V = (`, 1) ∗ (m, 1) = (`+m, 1) = (n, 1).

The verification is done by induction. It follows that g(n) = n.
Despite being a simple example, we can see that g(n) can be of the same order as a

polynomial when λ = 1. In fact, Theorem 5.3 shows that g(n) cannot be superpolynomial
when λ = 1. We construct examples with polynomials of higher degrees. Let s = (1, 1, 1)
and

u ∗ v = (u1v2 + u2v1, u2v2, u1v1),

the largest third entry should be of order n2. We have already known by the previous
example that the first two dimensions of the resulting vector are always (n, 1). Let the
combination for n > 1 be U ∗ V , where U, V are the combinations of `,m, respectively,
instances of s. The third dimension will be `m. This value is at most (`+m)2/4 = n2/4,
where the equality is attained when ` = m. The situation for odd n is not very different
and we obtain n2 as the order of g(n).

Let us give another example with g(n) of order n2 suggested by Rote. This is actually
the puzzle “Splitting the Stacks” in the book “Mathematical Puzzles” by Peter Winkler:
We are given a stack of n items and we are allowed to divide a stack into two stacks at
any time and get paid the product of the two stacks. The question is what is the most
money f(n) we can get for some n? Of course, one should keep dividing stacks until all
stacks are of size 1. But the interesting point is that no matter how we divide the stacks,
the money we finally get is always 1

2
n(n− 1). Indeed, we can write

(2.1) f(n) = max
1≤m≤n−1

m(n−m) + f(m) + f(n−m)

for n ≥ 2, while f(1) = 0. One can verify by induction that f(n) = 1
2
n(n − 1) is the

answer, and we can get the optimal f(n) for any m. Another way is treating the division
of the stacks as a tree of n leaves, we can see that the final money we get is the total
number of ways we pair two leaves, which is obviously

(
n
2

)
= n(n − 1) regardless of the

structure of the tree. In the setting of a bilinear system, one can write s = (0, 1, 1) and
(2.2) x ∗ y = (x1y3 + x3y1 + x2y2, x2y3 + x3y2, x3x3).

The third dimension is always 1, the second dimension presents the number of instances of
s, and the first dimension is the money we can get. It follows that f(n) = g(n) = O(n2).

In case one may find (2.2) looks a bit hard to track, let us write it in a different way:
x ∗ y = (x1 + y1 + x2y2, x2 + y2),



2.2. SOME BEGINNING EXAMPLES 9

which resembles (2.1) better. Although it is no longer a bilinear map due to the mixture
of linear and bilinear forms, one can see that there is no more expressiveness when
introducing linear forms, due to the constant dimension.

As we have increased the order of g(n) from O(n) to O(n2) when we consider the
examples in R3 instead of R2, a false impression would be that we can increase the degree
of the polynomial by at most 1 when we add one dimension. The truth is that we can
double the degree. Indeed, let s = (1, 1, 1, 1) and u ∗ v = (u1v2 + u2v1, u2v2, u1v1, u3v3),
we leave the verification that n4 is the order of g(n) to the readers as it is similar to the
previous verification. Inspired by the construction, we propose the conjecture that for
the space of Rd, we have

g(n) ≤ constn2d−1

λn.

The corresponding bound for nonnegative matrices A is ‖An‖ ≤ constnd−1λn, as one
can see in Chapter 4. It is interesting that d − 1, 2d−1 are linear and exponential, in
correspondence to linear and bilinear maps.

As the growth rate for the problem of minimal dominating sets is 13
√
95, Rote asked

in a personal communication whether it is true that if λ is algebraic then λ is a root of
some number. It turns out that it is not always the case by the following example, which
is related to the Fibonacci sequence. It is also the least trivial example in this chapter.

Theorem 2.1. If s = (1, 1) and

x ∗ y = (x1y2 + x2y1, x1y2),

then the growth rate λ is the golden ratio φ = 1+
√
5

2
. In particular, g1(n) = Fn+1 and

g2(n) = Fn, where Fn is the Fibonacci sequence with F1 = F2 = 1.

It can be seen that g1(n) ≥ Fn+1 and g2(n) ≥ Fn for every n ≥ 1 since the vector
(Fn+1, Fn) is the resulting vector of the sequence vn with v1 = s and vn = vn−1 ∗ s for
n ≥ 2 (the sequence is s, s ∗ s, (s ∗ s) ∗ s, ((s ∗ s) ∗ s) ∗ s, (((s ∗ s) ∗ s) ∗ s) ∗ s, . . . ).

In order to show that they are also the upper bounds, we prove the following lemma.

Lemma 2.2. Let {Fn}n≥0 be the Fibonacci sequence with F0 = 0, F1 = 1, F2 = 1, then
the inequalities

FpFq−1 + Fp−1Fq ≤ Fp+q−1,

FpFq ≤ Fp+q−1

hold for every p, q ≥ 1.

Proof. The conclusion holds for any (p, q) ∈ ({1, 2} × N+) ∪ (N+ × {1, 2}), i.e. one
of the four conditions p = 1, p = 2, q = 1, q = 2 holds.

For the first inequality, if p = 1 (similarly for q = 1), then the inequality is equivalent
to Fq−1 ≤ Fq. If p = 2 (similarly for q = 2), then it is equivalent to Fq−1 + Fq ≤ Fq+1.

For the second inequality, if p = 1 (similarly for q = 1), then the inequality is
equivalent to Fq ≤ Fq. If p = 2 (similarly for q = 2), then it is equivalent to Fq ≤ Fq+1.

We prove the lemma by induction. For p ≥ 3, q ≥ 3, suppose the inequalities hold for
any (p′, q′) ∈ {p− 1, p− 2} × {q − 1, q − 2}. We show that they also hold for (p, q).
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Indeed,

FpFq−1 + Fp−1Fq = (Fp−2 + Fp−1)(Fq−3 + Fq−2) + (Fp−3 + Fp−2)(Fq−2 + Fq−1)

= (Fp−2Fq−3 + Fp−3Fq−2) + (Fp−2Fq−2 + Fp−3Fq−1)

+ (Fp−1Fq−3 + Fp−2Fq−2) + (Fp−1Fq−2 + Fp−2Fq−1)

≤ Fp+q−5 + Fp+q−4 + Fp+q−4 + Fp+q−3

= Fp+q−3 + Fp+q−2

= Fp+q−1

and

FpFq = (Fp−2 + Fp−1)(Fq−2 + Fq−1)

= Fp−2Fq−2 + Fp−2Fq−1 + Fp−1Fq−2 + Fp−1Fq−1

≤ Fp+q−5 + Fp+q−4 + Fp+q−4 + Fp+q−3

= Fp+q−3 + Fp+q−2

= Fp+q−1.

By induction, the inequalities hold for every p, q ≥ 1. �

Now the verification for the upper bounds of g1(n) and g2(n) becomes clear.

Proof of Theorem 2.1. The upper bounds by Fibonacci numbers hold trivially
for n = 1. For higher n, if g1(n) is the first entry of U ∗V where U, V are the combinations
of p, q, respectively, instances of s, then we have the same bounds:

g1(n) ≤ g1(p)g2(q) + g2(p)g1(q) = Fp+1Fq + FpFq+1 ≤ Fp+q+1 = Fn+1,

and
g2(n) ≤ g1(p)g2(q) = Fp+1Fq ≤ Fp+q = Fn.

Being both lower bounds and upper bounds, we have g1(n) = Fn+1 and g2(n) =
Fn. �

A large class of examples is also given in Chapter 3, where we allow only one summand
in the representation of the operator ∗ in the way that for each k there exist some i, j
so that (x ∗ y)k = xiyj. We call it the problem of replacements by this condition. The
growth rate is always a root of some number in this case.

Let us quickly give an example: Let s = (1, 2, 3, 4) and

x ∗ y = (x2y3, x3y4, x4y1, x1y2),

one can verify that the growth rate is 3
√
4 · 4 · 3 = 3

√
48, by applying Theorem 3.2 in

Chapter 3.
It is possible to give examples of more complicated algebraic growth rates by simu-

lating linear recurrences. Let xn be a sequence so that the first m elements x1, . . . , xm

are given in advance and for n > m, we have

xn =
m∑
i=1

aixn−i,

for some coefficients a1, . . . , am. In Rm+1, we can construct an example where the first m
dimensions of a combination of n instances of s, if not all zero, are xn+m−1, xn+m−2, . . . , xn.
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Indeed, consider the bilinear system

s =



xm

xm−1

xm−2
...
x1

1

 , u ∗ v =



∑m
i=1 aiuivm+1

u1vm+1

u2vm+1
...

um−1vm+1

0

 .

We can see that U ∗ V is a zero vector for any combinations U, V with V containing at
least 2 instances of s. Indeed, the last dimension of V is zero, which makes the first
m dimensions of U ∗ V all zero as well. Therefore, if a combination has U ∗ V as a
subcombination, then the vector is zero. In other words, nonzero resulting vectors can
be found among the combinations s, s ∗ s, (s ∗ s) ∗ s, ((s ∗ s) ∗ s) ∗ s, (((s ∗ s) ∗ s) ∗ s) ∗ s, . . .
only. The conclusion on the simulation of the linear recurrence easily follows.

Note that the construction still fits the requirement of the positive setting provided
that a1, . . . , am are nonnegative and x1, . . . , xm are positive. When we extend the signs of
the values to the general setting, more algebraic rates can be obtained since the growth
rates of linear recurrences can be characterised as the solutions of polynomials.

While the previous example is a nice way to simulate a linear recurrence, it is not the
most straightforward way to produce algebraic growth rates. We can use the observation
that matrix multiplication is a special case of a bilinear map. Given a square matrix M
in Rd, we embed it into the space Rd2 as the starting vector and let ∗ : Rd2 ×Rd2 → Rd2

be the bilinear map corresponding to the matrix multiplication. As the multiplication for
matrices is similar to the one for numbers in the sense that it is associative, the result of
every combination for any n contains the entries of Mn. Therefore, we have produced a
bilinear system for any algebraic root that is the spectral radius of a matrix M .

The previous examples suggest some general questions.

Question 2.3. What is the space of all possible functions g(n)?

Question 2.4. Suppose the entries of s and the coefficients of ∗ are all integers.
What is the set of all possible growth rates?

The readers may start with whether or not we can produce a bilinear systems of
growth rate e or π from integer entries and coefficients. It must be very surprising if we
can obtain one.

Another issue is that the algebraic growth rates known so far are the dominating roots
of equations. Can we obtain the non-dominating ones? For example, can we obtain the
growth rate

√
5−1
2

instead of the golden ratio
√
5+1
2

?
As the growth rate λ is a limit in the positive setting, it makes sense to give examples

with no limit when the system is not in the positive setting. When s = (1, 0) and
x ∗ y = (x2y2, x1y1), we have g(n) = 0 if 3 divides n and g(n) = 1 otherwise. In
particular, for k ∈ {1, 2}, we have gk(n) = 1 if n ≡ k (mod 3) and gk(n) = 0 otherwise.
One can easily verify by induction. In the general setting, let us choose an appropriate
norm for g(n), say the greatest absolute value of an entry (i.e. the maximum norm). If
some entries of s are allowed to be negative, let us consider the system with s = (1,−1, 1)

and x ∗ y = (x1y1, x2y2, 3x1y3 + 3x2y3). We have g(n) = 1 for even n and g(n) = 6
n−1
2

for odd n. Indeed, the first entry of any resulting vector is 1 while the second entry is
1 for even n and is −1 for odd n. If x is the result of a combination of an odd number
of instances of s, then (x ∗ y)3 = 0 for any y. When the number of instances is even, we
have (x ∗ y)3 = 6y3. It follows that g3(n) = 0 for even n and g3(n) = 6

n−1
2 for odd n. One
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can easily verify by induction. If some coefficients of ∗ are allowed to be negative, let us
consider the system with s = (1, 1, 1) and x ∗ y = (x1y1,−x2y2, 3x1y3 − 3x2y3). We have
the same g(n), that is g(n) = 1 for even n and g(n) = 6

n−1
2 for odd n. The readers can

apply the same method as the previous example.
For examples of different natures, we refer the readers to Chapters 3 and 4 for two

large classes of problems.

2.3. Fekete’s lemma

Fekete’s lemma is used in many places in the thesis. We give its statement and a
variant that is also useful.

Lemma (Fekete’s lemma). Given a supperadditive sequence an for n = 1, 2, . . . , that
is am+n ≥ am + an for any m,n, the following limit exists and can be expressed as

lim
n→∞

an
n

= sup
n

an
n
.

Note that ∞ is treated as a valid limit throughout the thesis for generality. However,
we deal with bounded sequences most of the times.

We often use Fekete’s lemma in the form for supermultiplicative sequences. A sequence
an for n = 1, 2, . . . is said to be supermultiplicative if am+n ≥ aman for any m,n. If the
sequence is strictly positive, we can take the logarithm and apply Fekete’s lemma to get

lim
n→∞

n
√
an = sup

n

n
√
an.

However, sometimes the sequence we treat is not strictly positive but only nonnega-
tive. Therefore, we introduce the following variant of Fekete’s lemma.

Lemma 2.5. Given a nonnegative sequence an for n = 1, 2, . . . , if the sequence is
supermultiplicative, then the subsequence of all positive n

√
an, if nonempty, converges to

supn
n
√
an.

In particular, if the limit is θ, we can conclude that an ≤ θn for every n.

Proof. We suppose the subsequence {an : an > 0} is not empty. If there is any m
such that am > 0, then the subsequence {an : an > 0} is infinite (amt > 0 for every t ≥ 1).

It is obvious by definition that lim sup{ n
√
an : an > 0} ≤ supn

n
√
an. To finish the

proof, it remains to show lim inf{ n
√
an : an > 0} ≥ supn

n
√
an.

Consider any positive integer q. Let R be the set of integers r (0 ≤ r < q) such that
there exists some mr with mr ≡ r (mod q) and amr > 0. For each r ∈ R, we denote by
mr the smallest such number.

For every n such that an > 0, if n ≡ r (mod q), then r ∈ R. Consider the represen-
tation n = pq +mr, we obtain

n
√
an ≥ n

√
(aq)pamr .

The right hand side converges to q
√
aq when n → ∞ since mr is bounded.

As the lower bound holds for every q, we have shown the lower bound supn
n
√
an for

the limit inferior and finished the proof. �

It should be noted that the sequence n
√
an itself may not converge. For example, an = 1

for even n and an = 0 for odd n. The situation is more pleasant with submultiplicative
sequences.
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Lemma 2.6. Given a nonnegative sequence an for n = 1, 2, . . . , if the sequence is
submultiplicative, that is am+n ≤ aman for any m,n, then the following limit exists and
can be expressed as

lim
n→∞

n
√
an = inf

n

n
√
an.

In particular, if the limit is θ, we can conclude that an ≥ θn for every n.
Proof. If am = 0 for some m, then an = 0 for every n ≥ m, and the lemma trivially

holds in this case. If the whole sequence is positive, then the supermultiplicative sequence
1/an satisfies

lim
n→∞

n

√
1

an
= sup

n

n

√
1

an
.

The conclusion follows. �

Throughout the work, we may deal with some forms of weak supermultiplicativity and
submultiplicativity. An example is the existence of a constant K so that for every m,n we
have am+n ≥ Kaman (instead of am+n ≥ aman as in the ordinary supermultiplicativity).
However, this does not introduce any new problem since the sequence Kan, which satisfies
Kam+n ≥ KamKan, is a supermultiplicative sequence. Sometimes, there is a polynomial
in the place of K but the approach is still essentially the same.

As we will work with rooted binary trees, the following lemma turns out to be useful,
and can be used with Fekete’s lemma in some certain situations.

Lemma 2.7. Consider any d ≥ 1/2. Every rooted binary tree of at least d leaves has
a subtree of m leaves so that d ≤ m ≤ 2d.

Proof. Suppose otherwise that there is no such subtree. Every subtree has either
less than d leaves or more than 2d leaves. As the tree has at least d leaves, not all subtrees
have less than d leaves. Pick a minimal subtree T ′ with more than 2d leaves. This subtree
cannot be a leave since 2d ≥ 1. It follows that T ′ has two subtrees T ′

1, T
′
2, each of which

has less than d leaves, due to the minimality of T ′. The number of leaves of T ′, which is
the total number of leaves of T ′

1, T
′
2, is however less than 2d, contradiction. �





CHAPTER 3

Growth of replacements

As checking if the growth rate λ ≤ 1 is undecidable as proved in Chapter 6 and the
big class of the joint spectral radius has the same situation as mentioned in Chapter 4, we
present a class of problems for which fairly simple algorithms work.1 The class consists
of all the systems where the vector s is positive and the bilinear map ∗ has the following
restricted structure: For every index k, there exist indices i, j so that (x ∗ y)k = xiyj for
every two vectors x, y. As the nature of the problem is simple, we will describe its additive
version in a combinatorial language, which is quite interesting on its own, instead of the
original version in terms of a bilinear system. Its simplicity allows a rather thorough
study.

Suppose we have a finite number of baskets, each basket contains infinitely many balls
of the same value. We start with choosing a ball from some basket to put on a table. At
each subsequent step, we replace one ball on the table by two balls from some baskets
with respect to a given set of rules that only involves the baskets where the balls are from.
When there are n balls on the table for a given n, we stop and evaluate the sum (and the
average) of the values of all the n balls. Our aim is to achieve the highest possible sum
(and average) for a given n by choosing appropriately the basket of the first ball to put
on the table and the ball to replace at each subsequent step. An asymptotic behavior is
that when n tends to infinity, this best average converges to a constant λ, which is called
the growth rate of the system.

Let us state the problem in an equivalent but more formal way, which will be used
from now on. The formulation starts with a collection V of functions v : N+ → R. Denote
cv = v(1) for each function v ∈ V , which will be called the starting values later. We have
an assignment of a pair of functions M(v) = (u,w) to each v (u, v, w ∈ V not necessarily
different). The value of v(n) for n ≥ 2 is given by
(3.1) v(n) = max

1≤m≤n−1
u(n−m) + w(m).

Let g(n) denote the maximum of the values of the functions at n, that is
g(n) = max

v∈V
v(n).

We show that the sequence {g(n)/n}∞n=1 converges to the so-called growth rate λ of
the system:

λ = lim
n→∞

g(n)

n
.

The equivalence between this formulation and the problem with the balls is not so
hard to see. Each function v corresponds to a basket with cv as the value of a ball in the
basket. The value of v(n) is the maximum sum obtained from n balls if we start with
a ball from the basket corresponding to v. The value of g(n) is then the maximum sum
when we do not restrict which ball to start with.

On the other hand, the problem is an instance of the growth of bilinear maps where
the starting vector s is positive and for each k all the coefficients c(k)i,j are zero except that

1This chapter presents the content of the article [9].

15
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one of them is 1. We can reduce this bilinear system to the problem of replacements by
taking the logarithm. Since the problem involves replacing balls, we call it the growth of
replacements, as in the chapter title.

The problem we are studying is in some sense of the same type as Fekete’s lemma,
which states that for a superadditive function f : N+ → R, that is f(m + n) ≥ f(m) +
f(n) for any m,n, the limit limn→∞ f(n)/n exists (see also Chapter 2). Our setting
differs from Fekete’s lemma in two points: (i) instead of the equivalent inequality f(n) ≥
max1≤m≤n−1 f(n − m) + f(m), we use the equality as in (3.1), and (ii) instead of one
function, a collection of functions are involved. Note that if the equality in (3.1) is
replaced by the inequality, then the limit we are studying does not necessarily exist. For
example, consider the functions v0, v1 so that v0(n) ≥ max1≤m≤n−1 v0(n − m) + v0(m)
and v1(n) ≥ max1≤m≤n−1 v0(n − m) + v0(m). If v0(n) = n for every n while v1(n) = n
for odd n and v1(n) = 2n for even n, then the maximum average changes between 1
and 2 as n increases. However, if the dependency graph, which will be defined later, is
connected, then the limit still exists, by the proof in Section 3.6. The readers can check
for themselves that the techniques there also work for the case of inequalities.

One can also formulate this problem in terms of a context free grammar (in Chomsky
normal form). Let us consider the following language: There is a nonterminal symbol V
associated to each function v, the production rule V → UW corresponds to the assign-
ment of u,w to each v, and there is also a production V → v for each nonterminal symbol
V , where v is a terminal symbol for which we assign the weight cv. We define the weight
of a word to be the sum of the weights of all the symbols in that word. The function
v(n) is then the maximum weight of a word of length n if we start with the symbol V .
Every other term is mapped accordingly.

The readers who are familiar with Petri nets [11] and chip-firing games [12] can find
our problem similar to both problems in the setting but different in the object.

Four proofs for the existence of the limit λ will be given. Each is involved with
different terms, for which we will give the definitions first. They are: the dependency
graph, composition trees and pseudo-loops. A linear program is also related. Note that
the dependency graph is defined slightly differently from chapter to chapter, to suit each
particular problem. The pseudo-loops in this chapter are themselves very similar to
the linear patterns in Chapter 5. However, being a special case allows the growth of
replacements to have simpler approaches, techniques and proofs.

The dependency graph is the directed graph whose set of vertices is V and there is
a directed edge from v to u if and only if one of the two functions in M(v) is u (loops
are allowed). As the dependency graph is directed, it can be partitioned into strongly
connected components, for which we call components for short. A component is said to
be a single component if it contains only one vertex and there is no loop for that vertex.
In other words, the only vertex v in a single component has the outward edges vu and
vw for u,w both different from v. Let us consider the condensation of the dependency
graph, which is the acyclic graph with each vertex corresponding to a strongly connected
component and there is a directed edge UV if and only if there is an edge uv with u ∈ U
and v ∈ V in the dependency graph. The condensation defines a partial order between
components where a directed edge UV means U ≥ V . A minimal component cannot
be a single component since otherwise the minimality implies that the only function in
the single component depends on itself, which in turn contradicts its membership in the
single component.

One can see the evaluation of a function v(n) as a composition tree whose definition
is given as follows. For any rooted binary tree of n leaves, we start with labeling the
root of the tree with v, and for M(v) = (u,w) we label the left child of the root with u
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and the right child with w. We subsequently label all the vertices of the subtrees with
the same method. If a leaf is labeled with v, then we say the leaf has value cv. The
value of a tree is the sum of the values of its leaves. Such a labeled tree with this way of
evaluation is called a composition tree. One may see that the value of v(n) is the largest
evaluation over all the composition trees of n leaves. Note that the label for a vertex in a
composition tree is actually a vertex of the dependency graph. Unless stated otherwise,
all the trees will be regarded as composition trees.

Let us define a simple pattern for composition trees. Let T be a tree with some label
for the root and a specially marked leaf that has the same label as the root. Let the
sequence of trees {T n}∞n=1 be defined so that T 1 = T and T n for n ≥ 2 is obtained from
T n−1 by replacing the marked leaf of T n−1 by T . The marked leaf of T n is defined to be
the marked leaf of the instance of T . A tree T defined in this way is called a pseudo-loop.
The value of a pseudo-loop is defined to be the sum of the values of all leaves excluding
the marked leaf. It is not hard to see that the values of the trees {T n}n grow linearly
with respect to the number of leaves, which is the average of the values of all the leaves
excluding the marked one. This rate will be called the rate of the pseudo-loop.

The following definitions on pseudo-loops will be also used later. For a subtree with
one of the vertices p having the same label as the root of the subtree, the pseudo-loop
obtained from the subtree by removing every descendant of p with p being the marked leaf
is called an inner pseudo-loop. An inner pseudo-loop does not contain the marked leaf is
said to be removable. Removing a removable inner pseudo-loop from a pseudo-loop gives
another pseudo-loop. By removing an inner pseudo-loop we mean contracting the whole
inner pseudo-loop into a vertex. Note that while an inner pseudo-loop can be in either a
tree or a pseudo-loop, removability is considered only in the context of a pseudo-loop.

The relation between the growth rate λ and the notion of pseudo-loop is given in the
following theorem.

Theorem 3.1. The growth rate exists and it is the supremum of the rates of all
pseudo-loops.

Furthermore, we can find the best rate in a finite set of pseudo-loops. That is to say
the supremum is always attainable.

Theorem 3.2. There exists a pseudo-loop with the same rate as the growth rate of
the system. It can be found among pseudo-loops that do not contain any removable inner
pseudo-loop. In particular, such a pseudo-loop has at most |V |2|V |−1 leaves after excluding
the marked one.

The proofs of the two above theorems can be found in Section 3.1.
The readers may relate pseudo-loops to linear patterns, for which Theorem 7.2 is a

similar result to Theorem 3.1. However, the growth rate of a bilinear system is not always
the rate of a linear pattern as in the specific case of the growth of replacements. In other
words, there is no correspondence to Theorem 3.2, see Theorem 7.4 for a counterexample.

We can also study the growth rate by the following system2 of 2|V | inequalities: For
every v ∈ V ,

(3.2) zv ≥ cv − θ,
zv ≥ zu + zw,

where {zv : v ∈ V } and θ are variables, cv is v(1) as already defined, and M(v) = (u,w).

2This system was suggested by Günter Rote (private communication). The readers may relate it to [1,
Proposition 5.1].
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The set of the solutions is nonempty, e.g., we can set zv = 0 for all v and θ is the
maximum of all cv.

Consider the linear program minimizing θ subject to System (3.2). We have the
following representation of the growth rate.

Theorem 3.3. The growth rate exists and it is the optimal value of θ to the linear
program.

A proof is given in Section 3.2. The linear program has |V | + 1 variables and 2|V |
inequalities but it is still rather simple and actually resembles the setting of the problem.
In fact, given a solution of all variables, one can construct a pseudo-loop with the growth
rate λ in linear time of the number of functions (variables) by a method provided during
the course of the proof. A more precise order of g(n) is also shown there:

nλ+O(1) ≤ g(n) ≤ nλ+O(1).

A corollary of this fact is a small interval bounding λ provided the value of g(n) for an n
large enough. The values of O(1) are reasonable and can be found in the proof.

Also in Section 3.2, we consider the dual linear program. An interesting point is that
given a pseudo-loop of the rate λ, we can give a solution to the dual program in linear
time of the variables. Moreover, the construction is more straightforward than the other
direction with the original program.

We now consider some computational aspects of the growth rate.

Theorem 3.4. Given any proposal λ0, one can decide if λ0 < λ in quadratic time of
the number of functions.

Theorem 3.4 immediately gives a reasonable algorithm of approximating λ with the
time complexity O(|V |2 log ∆

ε
) for a given precision ε and ∆ = maxv cv − minv cv (one

can observe that the growth rate must be contained in the interval [minv cv,maxv cv]).
In the proof in Section 3.3, the readers will find that the condition λ0 ≥ λ is equivalent
to whether each function v has a maximum value of v(n) over all n when the considered
system uses the value cu − λ0 instead of cu for every u. Such maximum values are also
computed as a by-product. When λ0 = λ, these maximum values turn out to be a solution
of the linear program for θ = λ.

Theorem 3.5. When the starting values are all rational with the numerators and
denominators contained in a fixed interval,3 we can compute the growth rate precisely in
cubic time of the number of functions.

Theorem 3.5 is a combination of the results in Theorem 3.2 and Theorem 3.4. The
idea is that the growth rate is a fraction with the denominator not too big, therefore,
one can stop the binary search when the interval is small enough. Details are given in
Section 3.4. How to compute the growth rate efficiently in case the starting values are
not necessarily rational, such as π, e, . . . , is still open. Note that the straight algorithm
by Theorem 3.2 may take double exponential time.

Although the notion of pseudo-loop is a very useful tool, we attempt to prove the
existence of the limit λ without it by studying the individual functions v(n).

Theorem 3.6. Both λ = limn→∞ g(n)/n and λv = limn→∞ v(n)/n for every v exist.

The proof of Theorem 3.6 is given in Section 3.5. Although it is not as short as the
other proofs, the readers can find there a nice result of the same type as Fekete’s lemma.
3It should be noted that in the statement of [9, Theorem 6], the author has not assumed the condition of
the boundedness of the numerators and denominators. The mistake has therefore been corrected here.
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The last proof of the limit, which assumes the connectedness of the dependency graph, is
given in Section 3.6. Although the fourth proof does not work without the condition, it
is the shortest proof, and demonstrates a nice application of Fekete’s lemma. Meanwhile,
the proof that removes inner pseudo-loops in Section 3.1 is perhaps the simplest and
shortest one for the general case.

3.1. Growth rate as the maximum rate over all pseudo-loops

We give two proofs of Theorem 3.1, one removes inner pseudo-loops and one extends
a tree to a pseudo-loop.

At first, it is obvious that lim infn→∞ g(n)/n ≥ supT λT , where λT is the rate of a
pseudo-loop T . Indeed, consider a pseudo-loop T and let q be the number of leaves of T
excluding the marked one. For every n, let n be expressed as n = pq + r for an integer p
and 1 ≤ r ≤ q. It can be seen that g(n) ≥ pqλT +O(1) by considering the tree obtained
from T p by replacing the marked leaf of T p by any tree of r leaves. The corresponding
lower bound of g(n)/n converges to λT , the conclusion follows.

Let λ̄ = lim supn→∞ g(n)/n and λ∗ = supT λT . It remains to prove that
λ̄ ≤ λ∗.

Proof of Theorem 3.1 that removes inner pseudo-loops. Assume the con-
trary that λ̄ > λ∗. We give a contradiction by the existence of a pseudo-loop with a higher
rate than λ∗.

An inner-pseudo-loop-free tree has a bounded number of leaves. In other words, any
tree of a large enough number of leaves has an inner pseudo-loop. Subsequently removing
all inner pseudo-loops results in an inner-pseudo-loop-free tree. The value of the original
tree is the sum of the values of all removed inner pseudo-loops and the reduced tree.

By the definition of λ̄, for every ε > 0 and any N0, there exists some N > N0 so
that g(N)/N > λ̄ − ε. Choose some ε small enough and consider such a large N . As
the tree has the value at least N(λ̄ − ε), the sum of the values of all the removed inner
pseudo-loops is N(λ̄ − ε) − O(1), since the value of the reduced tree is bounded. Since
the total number of leaves of the pseudo-loops is N −O(1), there must be a pseudo-loop
of rate at least the average

N(λ̄− ε)−O(1)

N −O(1)
.

When ε is small enough and N is large enough, the above average is arbitrarily close to
λ̄, hence greater than λ∗, contradiction. �

The other proof is sketched as follows.

Proof of Theorem 3.1 that extends a tree to a pseudo-loop. If there is
a path from u to v then there is a composition tree T (u, v) of a bounded number of leaves
(and value) so that the root is labeled with u and one of the leaves is labeled with v.

If g(N) > N(λ̄ − ε) corresponds to a tree of N leaves with the root labeled with v
and a leaf labeled with u so that u, v are in the same component, then replacing the leaf
by T (u, v), we obtain a pseudo-loop with the rate at least

(3.3) N(λ̄− ε) +O(1)

N +O(1)
,

which is greater than λ∗ when N is large enough and ε is small enough.
If no leaf has the label in the same component as the label v of the root, we consider

a subtree T ′ of T such that |T |/3 ≤ |T ′| ≤ 2|T |/3 (which always exists by Lemma 2.7),
where |T | is the number of leaves of T . The value of T ′ is at most |T ′|(λ̄ + ε) when we
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choose N large enough, by the definition of λ̄. If the root of T ′ has the label in the same
component as v, then we have the same situation as in (3.3). That is because the value
of the tree T0 obtained from T by contracting T ′ into a single leaf would have the value
at least

N(λ̄− ε)− |T ′|(λ̄+ ε) +O(1),

while |T0| = N − |T ′|+ 1.
If the label of the root of T ′ is in a lower component than the component of v, then we

have the same problem for T ′ with the labels of the vertices being in one less components
than T and the value of T ′ at least

N(λ̄− ε)− |T0|(λ̄+ ε) +O(1),

since the value of T0 is at most |T0|(λ̄+ ε).
Recursively treating smaller problems with N large enough and ε small enough would

give a situation where there is a leaf having the label in the same component as the label
of the root. �

Although the space of all pseudo-loops is infinite and the supremum of the rates may
not belong to any particular pseudo-loop, we show that the latter is not the case by
the fact that we just need to look into the set of pseudo-loops that do not contain any
removable inner pseudo-loop to find one with the best rate. In other words, we prove
Theorem 3.2, as follows.

Proof of Theorem 3.2. In order to prove the theorem, it suffices to show that any
pseudo-loop containing a removable inner pseudo-loop does not need to be considered in
the sense that there exists a pseudo-loop of fewer leaves with at least that rate. In other
words, the space of pseudo-loops to be considered is finite.

Indeed, if the inner pseudo-loop has a lower or equal rate to the original one, then
removing the former does not reduce the rate of the latter. If the inner one has a higher
rate, then that inner one itself is a pseudo-loop with a higher rate. In both cases, we can
ignore the original pseudo-loop.

It remains to show that a pseudo-loop without any removable inner pseudo-loop has
at most |V |2|V |−1 leaves after excluding the marked one. Let us call the path from the
root to the marked leaf the main path. On the main path from the root to the marked
leaf, the subpath from the vertex following the root to the marked leaf should not have
two vertices of the same label, otherwise we have a removable inner pseudo-loop. That
is we have at most |V | vertices on the main path after excluding the marked leaf. For
each vertex p on the main path other than the leaf, the subtree whose root is not on
the main path is inner pseudo-loop free. Such a subtree has the depth at most |V | − 1
and therefore has at most 2|V |−1 leaves. In total, we have at most |V |2|V |−1 leaves after
excluding the marked one. �

Remark 3.7. The bound |V |2|V |−1 may not be a tight bound but we can come up with an
example where a pseudo-loop of the rate λ must have at least 2m+1 leaves after excluding
the marked leaf for a set of m+3 functions a, b, v0, v1, . . . , vm where M(a) = (a, b),M(b) =
(a, v0),M(v0) = (v1, v1),M(v1) = (v2, v2), . . . ,M(vm−1) = (vm, vm),M(vm) = (a, a) with
ca = cb = cv0 = · · · = cvm−1 = 0 and cvm = 1. The verification is left to the readers as an
exercise. (Hint: The growth rate is 2m/(2m + 1).)



3.2. GROWTH RATE AS THE SOLUTION OF A LINEAR PROGRAM 21

3.2. Growth rate as the solution of a linear program

Relation to the original program. We prove Theorem 3.3. Before that, we repeat
the linear program: For every v ∈ V ,

zv ≥ cv − θ,
zv ≥ zu + zw,

where {zv : v ∈ V } and θ are variables, cv is v(1), and M(v) = (u,w). The object is to
minimize θ.

Let θ and {zv}v be a solution to the linear program. We prove the following two
claims.

Claim. g(n) ≤ nθ +maxv zv.

Proof. For each n, consider the composition tree corresponding to g(n) and let the
label of the root be v∗. Let L be the multiset of the labels of the leaves in the composition
tree. Since zv ≥ cv − θ and zv ≥ zu + zw for any v and M(v) = (u,w), we have

zv∗ ≥
∑
u∈L

(cu − θ) = g(n)− nθ =⇒ g(n) ≤ zv∗ + nθ,

which confirms the claim. �

Claim. g(n) ≥ nθ +O(1).

Proof. We say v is decomposable if either (i) zv = cv − θ, or (ii) zv = zu + zw (for
M(v) = (u,w)) and both u,w are decomposable.

Let G be the decomposition graph, which is a directed graph with the vertices being
the functions and there is an edge from v to u (resp. w) if and only if zv = zu + zw (for
M(v) = (u,w)) and w (resp. u) is decomposable. (Note that the condition for a vertex
to have an outward edge is weaker than the condition for a vertex to be decomposable.)

We will show that G contains a cycle. Assume otherwise, that is we have a partial
order between the vertices in G with u ≤ v if there is an edge vu. Consider θ′ = θ − ε
for a small enough ε, we show that there is a solution with θ′ (which contradicts with the
minimality of θ). We first start with all decomposable functions v with zv = cv − θ and
increase it to z′v = cv − θ′ and gradually increase zv for decomposable functions v with
zv = zu + zw to z′v = z′u + z′w. Finally, for those v with an edge vu in G whose z′v is not
established yet, we increase zv to z′v = zu + z′w with zv for smaller v in the partial order
updated first. Note that we do not need to update zv twice for any v. For the remaining
functions v we keep z′v = zv and obtain a solution {z′v}v for θ′.

Now G contains a cycle, say v0 → v1 → · · · → vk → v0 with zvi = zvi+1
+ zwi+1

for M(vi) = (vi+1, wi+1) (and zvk = zv0 + zw0). Since zv0 =
(∑k

i=0 zwi

)
+ zv0 , the sum∑k

i=0 zwi
is zero.

As each wi is decomposable, we can construct a composition tree so that the root is
labeled with wi and zwi

is the sum of cv − θ over all the labels v of the leaves.
We now obtain a pseudo-loop whose path from the root to the marked leaf is the

same as the cycle in G and the other branches are the above decomposition trees. This
pseudo-loop has rate θ as the sum of zwi

is zero.
Let the number of leaves excluding the marked leaf be m, then for any n = mp + r

(1 ≤ r ≤ m), the claim follows from the boundedness of r and
g(n) ≥ mpθ +O(1). �

Theorem 3.3 follows from the two claims.
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Remark 3.8. Given a solution of the program, it is possible to construct a pseudo-loop
of the growth rate in linear time as in the process of the second claim. The least trivial
part is to check if the functions are decomposable. We leave it as an exercise for the
readers.

Relation to the dual program. We relate the dual program4 to pseudo-loops of
the growth rate. The dual program has 2|V | variables {xv, yv : v ∈ V } so that for each v
we have

xv + yv =
∑

u,w: M(u)=(v,w)

yu +
∑

u,w: M(u)=(w,v)

yu,

xv ≥ 0,

yv ≥ 0,

and the sum of all xv is ∑
v

xv = 1.

The object of the program is to maximize∑
v

cvxv.

The maximum value is the same solution as in the original program, which is the
growth rate λ. We show that a pseudo-loop of the rate λ can give a solution to the dual
program in linear time of the number of variables. In fact, the transformation is more
straightforward than the other direction with the original program.

Consider a pseudo-loop with the rate λ. We let x′
v be the number of leaves labeled

with v in the tree, and let y′v be the number of non-leaf vertices labeled with v. If v is
the label of the root, we reduce x′

v by 1 (not counting the marked leaf). All the variables
x′
v, y

′
v that have not been assigned any value will be assumed to be zero.

By the structure of the tree, we have

x′
v + y′v =

∑
u,w: M(u)=(v,w)

y′u +
∑

u,w: M(u)=(w,v)

y′u.

Let m =
∑

v x
′
v, we set xv = x′

v/m and yv = y′v/m for each v. We have
∑

v xv = 1,
and the object

∑
v cvxv is the rate of the pseudo-loop, which is λ. Such a solution gives

the maximum value to the object.

3.3. Rate test in quadratic time

We show that it is possible to test whether a proposed rate λ0 is smaller than the
actual rate λ in quadratic time of the number of functions, which in turn immediately
gives an algorithm to find an approximation to the growth rate in O(|V |2 log ∆

ε
) for a

given precision ε and ∆ = maxv cv −minv cv. (Note that the growth rate is contained in
the interval [minv cv,maxv cv].)

At first, λ0 < λ is equivalent to the existence a pseudo-loop of positive rate if we
consider the system with the starting values cv − λ0 instead of cv. We show that the
latter fact is in turn equivalent to the existence of a function v not having a tree with
the label of the root v and a maximum value zv (regardless of the number of leaves).
This equivalence will be verified after presenting the following algorithm, which gives
maximum values zv in case there are such values.
4An anonymous reviewer for the article form of this chapter suggested that the dual program may have
some meaning.
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Algorithm: For each v, initiate zv = cv − λ0. We repeat the following
process as long as there is a variable zv still having the initial value and
zv < zu + zw for M(v) = (u,w):

• Update zv by the new better value zu+zw and mark zv as a variable
depending on zu, zw in the sense that any further improvement on
zu or zw will be directly followed by an improvement on zv.

• Make a sequence of improvements on the variables that directly
or indirectly depend on zv. If zv is itself a variable among those
variables depending on zv, then we stop the iteration and conclude
λ0 < λ right away.

If we finish without concluding λ0 < λ, then we conclude otherwise
λ0 ≥ λ.

The process can be done in O(|V |2) time since the second step in each iteration is a
finite process of O(|V |) time, as in the verification of the algorithm below.

We show that each zv from our algorithm gives the largest possible value over all the
compositions trees rooted by v without any inner pseudo-loop. We reason by induction
on the height of trees. Consider a tree T ∗

v whose root is labeled with v with the maximum
value over the trees without any inner pseudo-loop. It means there is no other occurrence
of v other than the root. If T ∗

v is only a single vertex v, then its value is cv − λ0. Our
algorithm gives this value in the first place and the value of Tv will never be decreased
during the course. Suppose all other functions v′ in the tree T ∗

v than the root v have their
trees Tv′ produced by the algorithm attaining their maximum values. Since Tv is the tree
of two subtrees Tu, Tw, whose values are maximum due to the induction hypothesis, the
value of Tv is also the maximum value for v.

It means if there is no pseudo-loop of positive rate, the values produced by the algo-
rithm are also the maximum values of the trees rooted by the functions.

On the other hand, if there is any pseudo-loop of positive rate, our algorithm also
detects a pseudo-loop of positive rate. In this case, g(n) is unbounded. Suppose the
algorithm stops without recognizing any pseudo-loop. Consider a minimal composition
tree giving a value larger than any zv given by our algorithm (minimality in the sense that
no subtree has such a property). Each branch of the root should give the value at most
the value given by our algorithm due to the minimality of the composition tree. Let v be
the label of the root. If v is already marked as being dependent on any improvement of
u,w (M(v) = (u,w)), then we have a contradiction as zv < zu+zw. If the dependency has
not been established, then our algorithm has not finished yet, as we still have zv < zu+zw
and another iteration should be proceeded. In either case, we have a contradiction.

As for the matter of time complexity, we show that for the terminating condition in
each iteration, we only need to check for zv but not any other zu whether that variable
depends the improvement of zv for the turn zv is updated. Initially, there is no pseudo-
loop in the composition trees corresponding to all zv. Suppose we have the same situation
before a given iteration. The reason for that lack is due to a missing edge of dependency.
Therefore, if there is a pseudo-loop after updating zv, it must be a pseudo-loop involving
v when only two new dependencies v → u and v → w are introduced as the missing
edges. Also, before reaching again v in case of a pseudo-loop, we do not have to check for
other pseudo-loops when updating variables depending on v as they do not exist. The
second step of the iteration can be done easily with a queue in O(|V |) time. It follows
that the whole algorithm takes O(|V |2) time since the outmost loop is iterated at most
|V | times.
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We have verified the validity of the algorithm by showing that the algorithm either
stops in the middle and concludes the existence of a pseudo-loop of a positive rate (λ0 <
λ), or finishes and gives the trees of the maximal values (λ0 ≥ λ).

Remark 3.9. The best value obtained by the algorithm is also a solution of zv with a
fixed θ = λ0 to System (3.2). Of course, a solution only exists when λ0 ≥ λ.

3.4. A cubic time algorithm to find the precise value of the growth rate

This section combines the results of Theorem 3.2 and Theorem 3.4 to give a cubic
time algorithm computing the growth rate precisely provided that the starting values are
rational. In other words, we settle Theorem 3.5 as follows.

At first, we can assume that the starting values are not just rational but all integers,
otherwise we can scale the starting values by an appropriate factor. Note that these
integers are also contained in a fixed interval. By Theorem 3.2, the growth rate of a
system is the rate of a pseudo-loop without any removable inner pseudo-loop, which is of
the form a/b where b is an integer at most |V |2|V |−1. By the assumption that the starting
values are integers, the numerator a is also an integer and the rates a1/b1 and a2/b2 of
two pseudo-loops without any removable inner pseudo-loop are either equal or at least
1/B2 apart where B = |V |2|V |−1. Therefore, if we apply the binary search to the starting
interval [minv cv,maxv cv] with the quadratic time rate test algorithm in Theorem 3.4, we
can stop the binary search whenever the interval is small enough, in particular less than
1/B2. This interval contains only one fraction whose denominator is at most B, which
is the growth rate. Given the interval, we can find this precise value of the growth rate
using the Farey sequence in linear time of |V |, which is dominated by the time finding
the interval, which is O(|V |2 log(B2)) = O(|V |3). In fact, instead of taking the middle
value in each iteration of the binary search, one can take the mediant as in the process
of the Farey sequence and avoid applying the Farey sequence in the end. However, it
does not change the cubic time of the algorithm. The algorithm can be seen as a nice
combination of the binary search, the Farey sequence and some insights of the problem.

Remark 3.10. The approach does not apply when the nature of the starting values
is more complicated than rational numbers, e.g. transcendental numbers e, π, . . . . One
can approximate these numbers by rationals and then recover the coefficients (the number
of leaves with the corresponding label over the total number of leaves) from the estimated
growth rate, however, it may take an exponential time for the recovery (and also the
numerators and denominators are no longer in a fixed interval). The problem in this case
seems to ask for a more direct solution than finding the value by the binary search.

3.5. Growth rate in terms of the functions

To prove the growth rate λ and λv for every function v exist, we give first the following
lemma, which should be of its own interest. It is kind of in the same spirit as Fekete’s
lemma, with more functions involved and similar proving techniques.

For convenience, in the statement of the lemma and in the proof, all the integers that
are supposed to be used for indexing functions u, v will be treated as elements in Z/kZ
for the k in the statement. In particular, it is the case of the indices i, i∗, j.

Lemma 3.11. Given 2k (k ≥ 1) functions v0(n), . . . , vk−1(n), u0(n), . . . , uk−1(n) :
N+ → R such that for every 0 ≤ i ≤ k − 1 and every n ≥ 2,

vi(n) = max
1≤m≤n−1

(vi+1(n−m) + ui+1(m)).
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Then for every i,

lim
n→∞

vi(n)

n
= sup

m0≥1,...,mk−1≥1

∑k−1
j=0 uj(mj)∑k−1

j=0 mj

.

Proof. Denote by R the value of the supremum (note that it can be infinite). To
prove the theorem, it suffices to verify the following two points for every i:

(i) lim infn→∞ vi(n)/n ≥ R.
By the definition of R, for any R′ < R, there are m0, . . . ,mk−1 such that∑k−1

j=0 uj(mj)∑k−1
j=0 mj

> R′.

Let m = m0 + · · ·+mk−1. For every n, if n = mt+ p for some integer t and 1 ≤ p ≤ m,
we have the lower bound v′i(n) ≤ vi(n) with

v′i(n) = vi(p) + t

(
k−1∑
j=0

uj(mi)

)
.

Since vi(p) is bounded, the sequence {v′i(n)/n}n tends to∑k−1
j=0 uj(mj)∑k−1

j=0 mj

> R′.

It follows that lim infn→∞ vi(n)/n > R′ for any R′ < R, which implies

lim inf
n→∞

vi(n)/n ≥ R.

(ii) lim supn→∞ vi(n)/n ≤ R (we assume R 6= ∞ otherwise it is trivial).
Assume lim supn→∞ vi(n)/n = R′ > R, we will show a contradiction by giving m0 ≥

1, . . . ,mk−1 ≥ 1 so that ∑k−1
j=0 uj(mj)∑k−1

j=0 mj

> R.

For each i and n, due to the evaluation of vi(n), there exist a number t and tk numbers
m

(s)
j for 0 ≤ j ≤ k − 1, 1 ≤ s ≤ t such that:

∑
j,sm

(s)
j = n − 1, all of them are nonzero

except possibly m
(t)
i∗ ,m

(t)
i∗+1, . . . ,m

(t)
i for some i∗ (if there is no zero, we let i∗ = i+1), and

vi(n) = vi∗−1(1) +
t∑

s=1

k−1∑
j=0

uj(m
(s)
j ),

where uj(0) is assumed to be zero for every j. (The number t can be understood as the
number of rounds.)

Let m′(s)
j = m

(s)
j , but we set m′(t)

i∗ = m′(t)
i∗+1 = · · · = m′(t)

i = 1 if there are corresponding
zeroes in {m(s)

j }. We have

(3.4)
t∑

s=1

k−1∑
j=0

uj(m
′(s)
j ) = vi(n)− vi∗−1(1) +

i∑
j=i∗

uj(1).

By the definition of R′, for every ε > 0, there is an arbitrarily large n such that
vi(n)

n
> R′ − ε.



26 3. GROWTH OF REPLACEMENTS

Note that the right hand side of (3.4) is the sum of vi(n) and a bounded sum, and the
difference between the sum of all m′(s)

j and the sum of all m(s)
j is also bounded. It means

that for every ε′ > 0, we can choose a small enough ε and a large enough n such that
t∑

s=1

k−1∑
j=0

uj(m
′(s)
j ) > (R′ − ε′)

(
t∑

s=1

k−1∑
j=0

m′(s)
j

)
.

This is followed by the existence of some s∗ such that∑k−1
j=0 uj(m

′(s∗)
j )∑k−1

j=0 m
′(s∗)
j

> R′ − ε′.

Since ε′ can be arbitrarily small, R′ − ε′ > R for some ε′, and since all m′(s∗)
j ≥ 1, we

have a contradiction with the supremum R.
By (i) and (ii), the conclusion follows. �

Now we can prove Theorem 3.6.
Consider the partial order between the strongly connected components of the depen-

dency graph. The minimal component cannot be a single component. Therefore, each
function in a minimal component should be in a cycle and the existence of its growth rate
is confirmed by Lemma 3.11. Consider a non-minimal component with the assumption
that we already have growth rates for the functions in all smaller components. If the
considered component is not single, then every function has a growth rate as already rea-
soned. In the other case, the only function v of the component has M(v) = (u,w) with
u,w from smaller components, which already have growth rates by induction hypothesis.
Since v(n) = maxm u(n − m) + w(m), the larger rate of u and w is the growth rate of
v. By induction, all functions have growth rates. It follows from g(n) = maxv v(n) that
g(n) also has a growth rate, which is the largest rate over all the functions v.

Remark 3.12. Although Lemma 3.11 also covers the case the limit is infinite, the
limits in our application are obviously finite since the value v(n)/n for any function v ∈ V
is always contained in the range of the minimum and maximum starting values.

3.6. A proof of the limit for strongly connected dependency graphs using
Fekete’s lemma

Suppose the dependency graph is connected, this section provides a simple proof of
the limit λ. It is interesting to apply Fekete’s lemma here, as our problem itself can be
seen as a variant of Fekete’s lemma.

If there is an edge vu with M(v) = (u,w), then

v(n) ≥ u(n− 1) + cw.

It follows that if the distance from v to u is dv,u, then

v(n) ≥ u(n− dv,u) + αv,u,

for some constant αv,u.
Consider a function v with M(v) = (u,w). For any m,n large enough, we have

v(m+ n) ≥ u(m) + w(n) ≥ v(m− du,v) + αu,v + v(n− dw,v) + αw,v,

where the constants du,v, dw,v exist because the dependency graph is connected.
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Replacing m by m− dw,v and n by n− du,v, and adding to both sides αu,v + αw,v, we
have

v(m+ n− du,v − dw,v) + αu,v + αw,v ≥ v(m− du,v − dw,v) + αu,v + αw,v

+ v(n− du,v − dw,v) + αu,v + αw,v.

Let v′(n) = v(n − du,v − dw,v) + αu,v + αw,v, we can see that v′(n) is a superadditive
sequence. By Fekete’s lemma, v′(n)/n converges. It follows that v(n)/n converges to the
same limit. The convergence of g(n)/n follows.

Remark 3.13. The approach still works when we replace the equality in (3.1) by the
inequality v(n) ≥ max1≤m≤n−1(u(n−m)+w(m)). However, the limit does not necessarily
hold when the dependency graph is not connected, as pointed out in the introduction of
the chapter.





CHAPTER 4

Joint spectral radius

The joint spectral radius is a generalization of the spectral radius to a set of matrices,
which was first introduced in [13]. The notion has caught a lot of attention with its
theoretical interest as well as its applications in engineering fields. We advise the readers
to check [14] for a book with a comprehensive treatment of the subject.

The reason for including a chapter1 on the joint spectral radius is that it is actually
an instance of the growth of bilinear maps, as proved in Chapter 6. Although the topic
is quite established with many results, we provide some new facts, mostly bounds, in the
case of nonnegative matrices. The joint spectral radius theorem for nonnegative matrices
is also related.

We begin with the definition of the joint spectral radius. In this chapter, we consider
only finite sets of matrices, unless otherwise stated. Whether the results hold for infinite
sets or how they can be extended is left open.

Given a finite set Σ of square nonnegative matrices in RD×D,2 we denote
‖Σn‖ = max

A1,...,An∈Σ
‖A1 . . . An‖,

where ‖A‖ for a matrix A is some chosen norm. In this chapter, we use the maximum
norm for convenience, that is ‖A‖ = maxi,j |Ai,j|.

As we may be interested in a specific entry, we write
‖Σn‖i,j = max

A1,...,An∈Σ
(A1 . . . An)i,j.

A simple observation that will be frequently used is that ‖Σn‖i,j is bounded for a bounded n
(and a fixed Σ). Another one is that: For any k∗, we have

‖Σm‖i,k∗‖Σn‖k∗,j ≤ ‖Σm+n‖i,j ≤
∑
k

‖Σm‖i,k‖Σn‖k,j,

where the corresponding one to the latter inequality in the case of a single matrix A is
the equality (Am+n)i,j =

∑
k(A

m)i,k(A
n)k,j.

In [13], the joint spectral radius ρ(Σ) of the set Σ is defined to be the limit

(4.1) ρ(Σ) = lim
n→∞

n
√

‖Σn‖.

Note that ρ(Σ) is independent of the norm of choice, since any two norms are in a constant
factor of each other.

When |Σ| = 1 with Σ = {A}, the joint spectral radius ρ(Σ) becomes the ordinary
spectral radius ρ(A). The spectral radius ρ(A) is originally defined as the largest absolute
value of the eigenvalues of A, while the representation corresponding to (4.1) is known
as Gelfand’s formula: For every matrix A, we have

ρ(A) = lim
n→∞

n
√

‖An‖.

1Some part of this chapter can be found in the article [10].
2We use the capital form D instead of d to emphasize that the dimension is a constant, along with other
constants U, V as defined later, and also to reserve d to denote distances and divisors.

29
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Note that there is no natural corresponding notion to eigenvalues for a set of matrices.
The following result, which appears in most of the sources, is used to prove that the

limit of ρ(Σ) exists. We provide it again here as it also gives a bound on the radius. It
is often expressed in submultiplicative norms (so-called matrix norms) and in a slightly
different form.

Proposition 4.1 (An adaptation of the popular statement for the maximum norm3).
The following limit of ρ(Σ) exists and can be expressed as:

ρ(Σ) = lim
n→∞

n
√
‖Σn‖ = inf

n

n
√
D‖Σn‖.

Proof. For any two matrices A,B, we have

‖AB‖ = max
i,j

(AB)i,j = max
i,j

∑
k

Ai,kBk,j ≤ D‖A‖‖B‖.

For any two positive integers m,n, we have
‖Σm+n‖ = ‖A1 . . . Am+n‖ ≤ D‖A1 . . . Am‖‖Am+1 . . . Am+n‖ ≤ D‖Σm‖‖Σn‖,

where A1, . . . , Am+n are some matrices from Σ.
Writing differently, D‖Σm+n‖ ≤ (D‖Σm‖)(D‖Σn‖) means the sequence {D‖Σn‖}n is

submultiplicative. By Fekete’s lemma, n
√
D‖Σn‖ converges to infn

n
√
D‖Σn‖, which is

also the limit of n
√
‖Σn‖. �

The main focus of the chapter to give a formula and some bounds for the joint spectral
radius. The main tool is the dependency graph, which is actually quite similar to the
dependency graph for the growth of bilinear maps in Chapter 5.

Definition 4.2. The dependency graph of a set of matrices Σ is a directed graph
where the vertices are 1, . . . , D, and there is an edge from i to j if and only if Ai,j 6= 0 for
some matrix A ∈ Σ (loops are allowed). Being a directed graph, the dependency graph
can be decomposed into strongly connected components, for which we will call components
for short. If a component contains only one vertex without loop around it, we call it a
single component. Otherwise, we will call it a regular component.

As the dependency graph is the main graph in the chapter, vertices, paths and com-
ponents may be mentioned without stating explicitly the dependency graph. In a similar
manner to ‖Σn‖i,j, we also denote
(4.2) ‖Σn‖C = max

i,j∈C
‖Σn‖i,j

for a component C.
When we consider ‖Σn‖C for a component C instead of considering ‖Σn‖, we are

actually considering the problem reduced to C in the sense that we remove all the rows
and columns not in C. This is still a problem that satisfies all the results of the original
problem. Therefore, we also have the limit

ρC(Σ) = lim
n→∞

n
√

‖Σn‖C ,

which corresponds to ρ(Σ′) with a strongly connected dependency graph for Σ′.
It is obvious that ρ(Σ) ≥ maxC ρC(Σ), but only in later sections we will verify that

the equality
ρ(Σ) = max

C
ρC(Σ)

holds.
3For a submultiplicative norm, the constant D is not necessary and the expression on the right would
be infn

n
√
‖Σn‖.
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4.1. Known bounds and estimations

This section discusses some bounds and estimations of the joint spectral radius for
complex matrices, which are not necessarily nonnegative. One of the popular ways to
estimate the joint spectral radius is as follows (see Proposition 1.6 and Section 2.3.3
on “Branch and Bounds Methods” in the book [14]). For any sequence of matrices
A1, . . . , Am ∈ Σ, the m-th root of the (ordinary) spectral radius of A1 . . . Am is a lower
bound for ρ(Σ). Denote4

Pm(Σ) = max
A1,...,Am∈Σ

ρ(A1 . . . Am).

Together with the bound from Proposition 4.1, we can bound ρ(Σ) from both sides: For
any m,

(4.3) m
√

Pm(Σ) ≤ ρ(Σ) ≤ m
√
D‖Σm‖.

The lower bound is due to
m
√

Pm(Σ) = m

√
max

A1,...,Am∈Σ
ρ(A1 . . . Am)

= m

√
max

A1,...,Am∈Σ
lim
t→∞

t
√

‖(A1 . . . Am)t‖ ≤ lim
n→∞

n
√
‖Σn‖.

One of the points supporting this method of bounding is that the limit superior of
the sequence for the left side and the limit of the sequence for the right side (with respect
to m) are equal to ρ(Σ). In fact,

ρ̌(Σ) = lim sup
n→∞

n
√
Pn(Σ)

is called the generalized spectral radius of Σ. That the two radii are equal for finite sets
Σ is the content of the joint spectral radius theorem (see Theorem 2.3 in the book [14]
or the article [15] for the first time it was proved).

Theorem (The joint spectral radius theorem). For every bounded5 set Σ of matrices,

ρ̌(Σ) = ρ(Σ).

Since Ptm(Σ) ≥ (Pm(Σ))
t for any t,m, we can write

(4.4) ρ(Σ) = lim sup
n→∞

n
√

Pn(Σ) = sup
n

n
√

Pn(Σ).

We justify the latter equality by the following observation.

Proposition 4.3. If a nonnegative sequence xn satisfies xtm ≥ (xm)
t for every t,m,

then

(4.5) lim sup
n→∞

n
√
xn = sup

n

n
√
xn.

Proof. It suffices to prove lim supn→∞
n
√
xn ≥ supn

n
√
xn as the other direction is

obvious. For every m, m
√
xm ≤ lim supn→∞

n
√
xn due to the subsequence tm

√
xtm ≥ m

√
xm

for t = 1, 2, . . . . It follows that supm
m
√
xm ≤ lim sup n

√
xn. The conclusion follows. �

4Note that when we write ρ(A) for a matrix A, we mean the classic spectral radius for A, which is
actually the same as ρ({A}). Also, the P in Pm(Σ) is actually the capital version of ρ.
5The original version is stated for bounded sets (of complex matrices). In particular, every finite set is
bounded. However, a bounded set may be infinite.
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A set Σ is said to have the finiteness property if ρ(Σ) = n
√

Pn(Σ) for some n, that is
there exists a sequence A1, . . . , An of matrices in Σ so that ρ(Σ) = n

√
ρ(A1 . . . An). The

finiteness conjecture [16], which states that every set has the finiteness property, was
disproved in [17]. An explicit example was given in [18] but the nature of the entries is
quite complicated. It is still open whether the conjecture holds for binary matrices (or
equivalently for rational matrices), see [19]. Another discussion on the finiteness property
can be found in Chapter 7.

An example in [20, Section 2] shows that the limit superior of the generalized spectral
radius is not replaceable by a limit in general. This behaviour can be suggested by the
fact that while ‖Σn‖ is supermultiplicative, Pn(Σ) is not always so (only the condition of
(4.4) is guaranteed). Also, it is asked in [20]: Since it follows from (4.3) that for every n
we have

(4.6) max
1≤m≤n

m
√

Pm(Σ) ≤ ρ(Σ) ≤ min
1≤m≤n

m
√

D‖Σm‖,

what is the convergence rate of the lower bound max1≤m≤n
m
√

Pm(Σ) and the upper
bound min1≤m≤n

m
√
D‖Σm‖ (with respect to n)6 to ρ(Σ)? This question is critical to the

efficiency of the bound in (4.3). Section 4.5 will show that both sequences converge at
the rate O( logn

n
) for finite sets of nonnegative matrices.

The following bound of Kozyakin [21] has a more explicit convergence rate than (4.3):
For every n,

(4.7) n
√

f(n)‖Σn‖ ≤ ρ(Σ) ≤ n
√
‖Σn‖,

where f(n) is rather complicated and it may grow very small (note that the norm in
(4.7) is a submultiplicative norm). The work [21] describes f(n) explicitly, but loosely
speaking, f(n) is in general roughly about C−nα for a constant C and α = ln(D−1)/ lnD.
Although the bound in (4.7) is very interesting and limn→∞

n
√

f(n) = 1, it is hard to
estimate ρ(Σ) effectively as the ratio of the two bounds is large.

If one restricts the scope to irreducible sets of matrices,7 we have the following bound
in [22]: There is constant γ ≤ 1 so that for every n,

(4.8) n
√

γ1+lnn‖Σn‖ ≤ ρ(Σ) ≤ n
√
‖Σn‖.

Note that the norm here is also submultiplicative. Also note that the quantity γ1+lnn is
actually of order n−t for some t. Although our bounds in the following sections have the
same convergence rate as the bound (4.8), the condition in our bounds is on the signs of
the entries of matrices, instead of the algebraic nature of irreducible sets in this context.

In the theme of nonnegative matrices, we mention [23, Theorem 16], which works for
nonnegative matrices only: For the matrix S so that Si,j = maxA∈ΣAi,j, we have

(4.9) ρ(S)

|Σ|
≤ ρ(Σ) ≤ ρ(S).

The gap between the two bounds is obviously not so efficient when there are many
matrices in Σ. However, it requires lower computational complexity due to calculating
the spectral radius of a single matrix. It is asked in [23] whether the bound in (4.9) can
be improved at a reasonable computational cost.

6It was actually asked in [20] for m
√
‖Σm‖ for submultiplicative norms. We adapt it for the maximum

norm.
7Irreducible sets of matrices are not related to irreducible matrices: A set of matrices Σ is irreducible if
the only subspaces that are invariant under all the matrices in Σ are the trivial subspaces {0} and the
whole space.
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4.2. The diagonal formula for the joint spectral radius

In this section, a formula for the joint spectral radius is introduced as follows. During
the course of proving, a by-product is an upper bound on ‖Σn‖ itself.

Theorem 4.4. Given a finite set Σ of nonnegative matrices, we have

(4.10) ρ(Σ) = sup
n

max
i

n

√
‖Σn‖i,i.

Moreover, if ρ(Σ) > 0, there exists a number r so that for every n,
(4.11) const ρ(Σ)n ≤ ‖Σn‖ ≤ constnrρ(Σ)n.

We note here that the formula of ρ(Σ) in Theorem 4.4 is itself not completely new,
but rather a perspective on some known results.8 We may start with the first result of
the type.

Theorem (Wimmer 1974 [24]). For any complex matrix A, we have

ρ(A) = lim sup
n→∞

n
√

| tr(An)|,

where tr(An) denotes the trace of An.

The reason why this result is related to Theorem 4.4 will be given after discussing the
following similar form for the joint spectral radius.

Theorem (Chen and Zhou 2000 [25]). For any finite set of complex matrices Σ, we
have

ρ(Σ) = lim sup
n→∞

max
A1,...,An

n
√
| tr(A1 . . . An)|.

It turns out that the formula (4.10) in Theorem 4.4 can be deduced from this theorem.
Indeed, since for any nonnegative matrices A1, . . . , An we have

max
i

(A1 . . . An)i,i ≤ tr(A1 . . . An) ≤ Dmax
i

(A1 . . . An)i,i,

it follows from the characterization of Chen and Zhou that

(4.12)
lim sup
n→∞

max
A1,...,An∈Σ

n

√
max

i
(A1 . . . An)i,i ≤ ρ(Σ)

≤ lim sup
n→∞

max
A1,...,An∈Σ

n

√
Dmax

i
(A1 . . . An)i,i.

It means
ρ(Σ) = lim sup

n→∞
max

A1,...,An∈Σ
n

√
max

i
(A1 . . . An)i,i

= sup
n→∞

max
A1,...,An∈Σ

n

√
max

i
(A1 . . . An)i,i.

The former equality is due to the lower bound and the upper bound of ρ(Σ) in (4.12)
being identical since D is a constant and does not affect the asymptotic behavior when
n → ∞. The latter equality is due to Proposition 4.3.

By using similar arguments, Wimmer’s result implies the formula (4.10) of Theorem
4.4 when Σ consists of a single matrix.

We note that the bound (4.11) on ‖Σn‖ in Theorem 4.4 is not new either. It is well
known in literature, even for bounded sets of complex matrices, e.g. see [26]. For finite

8The author was not aware of these results at first, the motivation for the formula is actually an after-
thought of Theorem 5.3.
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sets of nonnegative matrices, a stronger bound will be shown in Theorem 4.15 below: If
ρ(Σ) > 0, there exists a nonnegative integer r < D so that for every n,

constnrρ(Σ)n ≤ ‖Σn‖ ≤ constnrρ(Σ)n.

Note that the value of r in the proof of Theorem 4.4 is in general much larger than the
value of r here.

Although the content of Theorem 4.4 is not exactly new as discussed, the point of
proving it again by combining the formula and the bound is that they can be proved
together in the same time and in a simple way (about two pages without relying on any
result). The proof uses a kind of double induction, which may be interesting on its own.

Moreover, the formula (4.10) in Theorem 4.4 and the joint spectral radius theorem for
finite sets of nonnegative matrices are closely related as follows. On one hand, suppose we
already have the joint spectral radius theorem. In principle, in order to prove the formula
(4.10) in Theorem 4.4, it suffices to prove the formula (4.10) for a single nonnegative
matrix A, that is

(4.13) ρ(A) = sup
n

max
i

n

√
(An)i,i,

and then apply the joint spectral radius theorem to Σ. Indeed, ρ(Σ) = ρ̌(Σ) while ρ̌(Σ)
can be written as

(4.14)

ρ̌(Σ) = lim sup
n→∞

n
√

Pn(Σ)

= sup
n

n
√

Pn(Σ) (by (4.4))

= sup
n

max
A1,...,An∈Σ

n
√
ρ(A1 . . . An)

= sup
n

max
A1,...,An∈Σ

n

√
sup
t

max
i

t

√
[(A1 . . . An)t]i,i (by (4.13))

= max
i

sup
t

sup
n

max
A1,...,An∈Σ

tn

√
[(A1 . . . An)t]i,i

= max
i

sup
n

max
A1,...,An∈Σ

n

√
(A1 . . . An)i,i

= max
i

sup
n

n

√
‖Σn‖i,i.

Note that the sixth equality comes from the following observation: For every t, n,

max
A1,...,An∈Σ

tn

√
[(A1 . . . An)t]i,i ≤ max

B1,...,Btn∈Σ
tn

√
(B1 . . . Btn)i,i.

Although the formula (4.10) of Theorem 4.4 (for a set of matrices) can be reduced
to the formula (4.13) for a single matrix, proving Theorem 4.4 for a set of matrices is
not harder than proving for a single matrix. Therefore, we provide the full proof without
relying on the joint spectral radius theorem.

On the other hand, suppose we have the formula (4.10) in Theorem 4.4 in the first
place. This leads to a simple proof for the joint spectral radius theorem for finite sets of
nonnegative matrices, since it follows from (4.14) and (4.10) that

ρ̌(Σ) = max
i

sup
n

n

√
‖Σn‖i,i = ρ(Σ).

Note that (4.14) depends on (4.13), which is a special case of (4.10). However, (4.14) is
independent of the joint spectral radius theorem.
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Corollary 4.5. The joint spectral radius theorem holds for finite sets of nonnegative
matrices.

In comparison to the standard proof of the joint spectral radius theorem by Elsner
[27], which makes use of analytic–geometric tools, our combinatorial approach seems to
be more elementary with basic arguments asking for less background on the subject. How-
ever, we should emphasize here that our approach works for only finite sets of nonnegative
matrices.

Proof of Theorem 4.4. If ρ(Σ) = 0, then there is no cycle in the dependency graph,
hence the theorem trivially holds. We assume ρ(Σ) > 0.

Denoting
λ = sup

n
max

i

n

√
‖Σn‖i,i,

we have
ρ(Σ) = lim

n→∞
n
√

‖Σn‖ ≥ λ,

since ‖Σtn‖ ≥ ‖Σtn‖i,i ≥ (‖Σn‖i,i)t for any t, n. (The latter inequality is obtained by
induction with ‖Σtn‖i,i ≥ ‖Σ(t−1)n‖i,i‖Σn‖i,i.)

To finish the proof, it suffices to prove that
(4.15) ‖Σn‖ ≤ constnrλn.

Indeed, suppose we have (4.15), then

λ ≤ ρ(Σ) = lim
n→∞

n
√

‖Σn‖ ≤ lim
n→∞

n
√
constnrλn = λ.

We obtain the equality λ = ρ(Σ), which is the formula (4.10) of Theorem 4.4. The bounds
(4.11) of Theorem 4.4 also follow, since

‖Σn‖ ≤ constnrλn = constnrρ(Σ)n,

while the lower bound ‖Σn‖ ≥ const ρ(Σ)n is due to Proposition 4.1.
The reduction to (4.15) is clarified. We now prove (4.15).
We begin with an observation: There exists some K0 so that ‖Σn‖i,j ≤ K0λ

n for every
n and every i, j in a regular component. Indeed, let δ be the distance from j to i in the
dependency graph, we have

(4.16) ‖Σn‖i,j =
1

‖Σδ‖j,i
‖Σn‖i,j‖Σδ‖j,i ≤

1

‖Σδ‖j,i
‖Σn+δ‖i,i ≤

1

‖Σδ‖j,i
λn+δ ≤ K0λ

n,

where

K0 = max
j′,i′

λδ′

‖Σδ′‖j′,i′
with j′, i′ ranging over all the vertices in the same regular component so that there is a
path from j′ to i′ and δ′ is the distance from j′ to i′.

Note that if the component is single, then the inequality ‖Σn‖i,i ≤ K0λ
n in (4.16) still

trivially holds with ‖Σn‖i,i = 0 for every n.
Now we may wonder what would be the inequality when i, j are not in the same

component.
The condensation of the dependency graph is the directed acyclic graph whose vertices

are the components and there is an edge from C1 to C2 if there is an edge ij in the
dependency graph with i ∈ C1 and j ∈ C2. We denote by ∆(i, j) the distance from the
component of i to the component of j. (For i, j in the same component, we let ∆(i, j) = 0,
and we do not consider i, j with no path from i to j.)
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For any δ, we denote
‖Σn‖δ = max

i,j: ∆(i,j)≤δ
‖Σn‖i,j.

What we have shown in (4.16) is actually ‖Σn‖0 ≤ K0λ
n. It is the base case of the

following claim.

Claim. For every δ, there exist a positive constant Kδ and a nonnegative number rδ
so that for every n,

‖Σn‖δ ≤ Kδn
rδλn.

Proof. By the induction method, since we have established the claim for δ = 0 with
K0 in (4.16) and r0 = 0, it remains to show the claim for any δ given that it holds for
δ′ = δ − 1 (with the corresponding numbers Kδ′ , rδ′).

Let α = max{‖Σ1‖
λ

, D(Kδ′)
2} and H = max{1, K0D, 22rδ′}. It suffices to show that

for every n,

(4.17) ‖Σn‖δ ≤ αHdlogneλn,

since Hdlogne ≤ H1+logn = HH logn = HnlogH (note that H ≥ 1), which implies

‖Σn‖δ ≤ αHnlogHλn.

(In other words, this is the claim for δ with Kδ = αH and rδ = logH.)
In order to prove (4.17), we again use another induction on dlog ne as follow (i.e.

double induction, first on δ, then on dlog ne). (Notation log n here denotes the logarithm
of base 2.) At first, the base case trivially holds for those n with dlog ne = 0, i.e. n = 1.
That is because ‖Σ1‖δ ≤ ‖Σ1‖ = ‖Σ1‖

λ
λ ≤ αλ while Hdlogne = 1.

We assume (4.17) holds for any number n′ so that dlog n′e < dlog ne and proves it also
holds for n. Let n = ` +m where ` = bn/2c and m = dn/2e. Suppose ‖Σn‖δ = ‖Σn‖i,j
for some i, j. We have

‖Σn‖i,j ≤
∑
k′

‖Σ`‖i,k′‖Σm‖k′,j ≤ D‖Σ`‖i,k‖Σm‖k,j

for some k that maximizes ‖Σ`‖i,k‖Σm‖k,j.
We consider three cases regarding k:

• If i, k are in the same component then ‖Σ`‖i,k ≤ K0λ
` by (4.16), and ‖Σm‖k,j ≤

‖Σm‖δ ≤ αHdlogmeλm by the induction hypothesis on dlog ne, since dlogme =
dlogdn/2ee = dlog ne − 1. It follows that

‖Σn‖i,j ≤ DK0λ
`αHdlogmeλm ≤ HαHdlogmeλn = αHdlogneλn,

where the latter inequality is due to K0D ≤ H.
• If k, j are in the same component then likewise we have

‖Σn‖i,j ≤ DαHdlog `eλ`K0λ
m ≤ HαHdlog `eλn ≤ αHdlogneλn.

Note that HHdlog `e ≤ HHdlogme = Hdlogne since H ≥ 1 (the inequality may be
strict, say when dlog `e < dlogme, e.g. n = 2t + 1, for which we need H ≥ 1).

• If k is not in the same component with either i or j, then both ∆(i, k) and
∆(k, j) are at most δ′ = δ − 1. It follows that ‖Σ`‖i,k ≤ ‖Σ`‖δ′ ≤ Kδ′`

rδ′λ` and
‖Σm‖k,j ≤ ‖Σm‖δ′ ≤ Kδ′m

rδ′λm by the induction hypothesis on δ. We have

‖Σn‖i,j ≤ DKδ′`
rδ′λ`Kδ′m

rδ′λm ≤ D(Kδ′)
2n2rδ′λn ≤ αHdlogneλn,

where the last inequality is due to the condition α ≥ D(Kδ′)
2 and Hdlogne ≥

H logn = nlogH ≥ n2rδ′ (note that we have the condition H ≥ 1 and H ≥ 22rδ′ ).
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We have verified (4.17) by induction on dlog ne. The claim follows, by induction on
δ. �

Since every ∆(i, j) is less than D, it follows that ‖Σn‖ = ‖Σn‖D. Therefore, the claim
implies (4.15), which in turn finishes the proof of Theorem 4.4.

A corollary on a limit of the trace. Following the development of Wimmer’s and
Chen and Zhou’s results, Xu has attempted to turn the limit superior in the theorem of
Chen and Zhou to a limit for nonnegative matrices with the condition that one of them
is primitive. Note that a matrix A is primitive if An > 0 for some n ≥ 1.

Theorem (Xu 2010 [28]). For any finite set of nonnegative matrices Σ with at least
one primitive matrix, we have

ρ(Σ) = lim
n→∞

max
A1,...,An∈Σ

n
√

tr(A1 . . . An).

Using the formula (4.10) in Theorem 4.4, we can extend Xu’s result to the following
theorem, by showing that the conclusion still holds with a more relaxed condition than
the primitivity of at least one matrix.

Theorem 4.6. Given a finite set of nonnegative matrices Σ, for each i, denote
δi = gcd{n : ‖Σn‖i,i > 0},

or we set δi = 1 in case the set is empty. If ∆ is a multiple of all δi, then

ρ(Σ) = lim
m→∞

max
i

m∆

√
‖Σm∆‖i,i = lim

m→∞
max

A1,...,Am∆

m∆
√
tr(A1 . . . Am∆).

Note that a matrix A is primitive if and only if it is irreducible, i.e. all δi corresponding
to Σ = {A} are equal to 1. If such a matrix A is an element of Σ, we still have the same
δi = 1, for which we have the conclusion for ∆ = 1, i.e. Xu’s result.

The proof below can be seen as a corollary of Theorem 4.4, with the support of Lemma
2.5 (a variant of Fekete’s lemma for nonnegative sequences).

Proof of Theorem 4.6. The latter equality is quite obvious by the fact that 1
D
tr(A) ≤

maxi Ai,i ≤ tr(A) for any D ×D nonnegative matrix A.
At first, since the sequence {‖Σn‖i,i}n for each i is supermultiplicative, it follows from

the extension of Fekete’s lemma in Lemma 2.5 that the subsequence of all the positive
elements is either empty or follows the growth rate

ρi = lim

{
n

√
‖Σn‖i,i : ‖Σn‖i,i > 0

}
= sup

n

n

√
‖Σn‖i,i.

In case of emptiness, we still have ρi = 0 as the value of the supremum.
By Theorem 4.4, we have

ρ(Σ) = max
i

ρi.

Further, if the set {n : ‖Σn‖i,i > 0} is nonempty, then ‖Σn‖i,i > 0 for every large
enough multiple n of δi, since δi is the greatest common divisor. It means

ρi = lim
m→∞

mδi

√
‖Σmδi‖i,i.

When the set is empty, it trivially holds with δi = 1.
Since ∆ is a multiple of all δi, it follows that

ρ(Σ) = max
i

ρi = max
i

lim
m→∞

m∆

√
‖Σm∆‖i,i = lim

m→∞
max

i

m∆

√
‖Σm∆‖i,i. �



38 4. JOINT SPECTRAL RADIUS

4.3. An explicit bound using the diagonal

Although Theorem 4.4 is not exactly new and can be seen as a perspective on known
results only, the following bound is quite useful and can be seen as a nice application of
the formula (4.10) in the theorem.

Theorem 4.7. Let mi for each i be any number so that ‖Σmi‖i,i > 0, or set mi = 1
if there is no such mi. We have

max
i

mi

√
‖Σmi‖i,i ≤ ρ(Σ) ≤ max

i

mi

√(
UD

V

)3D2

‖Σmi‖i,i,

where D×D is the dimension of the matrices, U, V are respectively the largest entry and
the smallest entry over all the positive entries of the matrices in Σ, and C is taken over
all components in the dependency graph.

Although U/V can be arbitrarily large, the appearance of U and V is essential to the
formula. For example, let Σ contain only one matrix

A =

[
1
N

1
1 1

N

]
where N is a large number. As its square is

A2 =

[
1 + 1

N2
2
N

2
N

1 + 1
N2

]
,

the joint spectral radius is greater than 1, since ρ(Σ) ≥
√

(A2)1,1 > 1. Setting m1 = m2 =

1, we have mi

√
‖Σmi‖i,i = 1

√
‖Σ1‖i,i = 1

N
for i = 1, 2. Therefore, the relation between U

and V must present in the formula in some form.
The reason we use the quantities U, V is that they can be convenient to bound the en-

tries of products. Indeed, given some n matrices A1, . . . , An from Σ, an entry (A1 . . . An)i,j
is the sum of Dn−1 terms, each of which is the product of some n entries of the matrices
from Σ. Therefore, if (A1 . . . An)i,j > 0, then

V n ≤ (A1 . . . An)i,j ≤ Dn−1Un.

In other words, if ‖Σn‖ > 0, then we have the same bound V n ≤ ‖Σn‖ ≤ Dn−1Un for
‖Σn‖. It follows that if ρ(Σ) > 0 then

V ≤ ρ(Σ) ≤ UD.

These simple observations will used in several arguments in this section and the following
sections.

The performance of the bound in Theorem 4.7 may be not so obvious. At first, we
can discard those i with no positive ‖Σmi‖i,i. We also make sure that the remaining mi

have large enough values, say they are at least some m. Let us say maxi
mi

√
‖Σmi‖i,i =

mj

√
‖Σmj‖j,j and maxi

mi

√(
UD
V

)3D2

‖Σmi‖i,i = mk

√(
UD
V

)3D2

‖Σmk‖k,k. We have

mk

√
‖Σmk‖k,k ≤ mj

√
‖Σmj‖j,j ≤ ρ(Σ) ≤ mk

√(
UD

V

)3D2

‖Σmk‖k,k.

It follows that the ratio between the upper bound and the lower bound in Theorem 4.7
is at most mk

√(
UD
V

)3D2

≤ m

√(
UD
V

)3D2

, which is the m-th root of a constant. The value
of m can be taken arbitrarily large as ‖Σtmi‖i,i > 0 for any t ≥ 1.

Note that ‖Σn‖i,i is computed based on the computation of all |Σ|n combinations.
However, it is still reasonable since the problem of approximating the joint spectral radius
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is NP -hard [29]. The theorem applies however very well if the set contains only one
matrix, i.e. the case of the ordinary spectral radius.

To prove Theorem 4.7, we need the following key lemma, which is fairly technical,
and will be proved later. In fact, we use it to relate different bounds of the joint spectral
radius in Section 4.6.

Lemma 4.8. For any index i, if m,n are two positive integers whose difference is
bounded, then either ‖Σn‖i,i = 0 or the ratio ‖Σm‖i,i/‖Σn‖i,i is bounded. In particular, if
m ≥ n, then the bound can be set to

(UD)m−n

(
UD

V

)3D2−2D+1

.

We are interested in an explicit constant only for the case m ≥ n since it will be
applied in the proof of Theorem 4.7 as follows. When m < n, we do not need the
boundedness of the ratio for other results, but still prove it as an interesting fact.

Proof of Theorem 4.7. The lower bound is obvious, we prove the upper bound.
Since ‖Σn‖C for a component C is ‖Σn‖ when we reduce the problem to C, it follows

from Theorem 4.4 that
ρC(Σ) = sup

n
max
i∈C

n

√
‖Σn‖i,i,

which means
ρ(Σ) = max

C
ρC(Σ).

For a regular component C and any i ∈ C, by Proposition 4.1 we have
ρC(Σ)

mi ≤ D‖Σmi‖C .
Suppose ‖Σmi‖C = ‖Σmi‖j,k. Let δ1 be the distance from i to j and δ2 be the distance
from k to i, that is ‖Σδ1‖i,j and ‖Σδ2‖k,i are both nonzero (when i = j, we have δ1 = 0,
we then assume that ‖Σ0‖i,j = 1, and similarly for j = k with δ2 = 0 and ‖Σ0‖k,i = 1).
We have

‖Σmi‖C =
1

‖Σδ1‖i,j‖Σδ2‖k,i
‖Σδ1‖i,j‖Σmi‖j,k‖Σδ2‖k,i

≤ 1

V δ1+δ2
‖Σmi+δ1+δ2‖i,i ≤

1

V δ1+δ2
(UD)δ1+δ2

(
UD

V

)3D2−2D+1

‖Σmi‖i,i

=

(
UD

V

)3D2−2D+1+δ1+δ2

‖Σmi‖i,i ≤
(
UD

V

)3D2−1

‖Σmi‖i,i,

where Lemma 4.8 is used in the step bounding ‖Σmi+δ1+δ2‖i,i by a constant times ‖Σmi‖i,i.
(Note that 3D2 − 2D + 1 + δ1 + δ2 ≤ 3D2 − 1 is due to δ1 ≤ D − 1, δ2 ≤ D − 1.)

In total,

ρC(Σ) ≤
mi

√
D

(
UD

V

)3D2−1

‖Σmi‖i,i ≤
mi

√(
UD

V

)3D2

‖Σmi‖i,i.

When C is single, C contains a single vertex without any loop, hence ρC(Σ) = 0, and
the above inequality trivially holds with mi = 1.

As ρ(Σ) = maxC ρC(Σ), we obtain the conclusion

ρ(Σ) ≤ max
i

mi

√(
UD

V

)3D2

‖Σmi‖i,i. �
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Proof of Lemma 4.8. It suffices to consider only i for which the set {n : ‖Σn‖i,i > 0}
is nonempty. To prove Lemma 4.8, we need the following lemma.

Lemma 4.9. Let d = gcd{n : (Σn)i,i > 0}. There exists N so that ‖Σn‖i,i > 0 for
every n ≥ N with d|n. In particular, one can set N = (D − 1)(2D − 1).

Note that Lemma 4.9 is asymptotically optimal in the worst case. For example, if
the dependency graph is composed of only two disjoint cycles around i of lengths `1, `2
so that `1, `2 are not too much distant with gcd(`1, `2) = 1, then the smallest number in
the place of N would be (`1 − 1)(`2 − 1). (We recall that the Frobenius number9 of x, y
is (x− 1)(y − 1)− 1.) An example of `1, `2 when D = 2k is `1 = k + 1 and `2 = k (note
that `1 + `2 = D + 1). When D is odd, we leave a vertex isolated and proceed with the
even number of remaining vertices.

To prove Lemma 4.9, we need some preliminary results.
Two subwalks in a walk are said to be disjoint if the only vertex that they possibly

share is a common endpoint.

Observation 4.10. If a walk does not contain two disjoint circuits, then its length is
less than 2D.

Proof. Let the walk be v0, . . . , vk. If the vertices are all distinct, then k < D and we
are done. Otherwise, let vj be the first repeated vertex, that is, j is the smallest number
so that there exists i < j with vi = vj. It follows that v0, . . . , vj−1 are distinct. Suppose
the walk does not contain two disjoint circuits. This mean there is no circuit in the walk
vj, . . . , vk, that is, these vertices are distinct. It follows that k < 2D. �

We also need Schur’s lemma10 that gives a bound on the Frobenius number.

Lemma 4.11 (Schur 1935 [30]). Let 2 ≤ p1 < p2 < · · · < pk be k integers such that
gcd(p1, . . . , pk) = 1, then every integer n ≥ (p1 − 1)(pk − 1) can be expressed as a linear
combination of p1, . . . , pk with nonnegative coefficients.

We can now prove Lemma 4.9.

Proof of Lemma 4.9. Denote S = {n : ‖Σn‖i,i > 0}. Let m be the smallest
element of S such that the set S∗ = {n ∈ S : n ≤ m} satisfies gcd S∗ = d.

We prove that m < 2D. Indeed, suppose m ≥ 2D. Due to the minimality of m, we
have d∗ = gcd (S∗ \{m}) > d and d∗ does not divide m. As ‖Σm‖i,i > 0, there is a circuit
from i to i of length m. This circuit contains 2 disjoint subcircuits, by Observation 4.10.
Let a and b be the lengths of the two subcircuits. Removing any of these subcircuits or
both results in a circuit of length less than m, which is divisible by d∗. In other words,
d∗ | m−a, d∗ | m−b and d∗ | m−a−b. It implies that d∗ | (m−a)+(m−b)−(m−a−b) = m,
contradiction.

Let T = {n/d : n ∈ S∗}, we have gcd T = 1. As minS∗ ≤ D (a minimal circuit) and
maxS∗ ≤ m < 2D, we have minT ≤ D/d and maxT ≤ 2D/d. It follows that ‖Σn‖i,i > 0
for every n ≥ d(D

d
− 1)(2D

d
− 1) and n divisible by d, by Schur’s lemma. The conclusion

follows as d(D
d
− 1)(2D

d
− 1) ≤ (D − 1)(2D − 1). �

Now comes the main part of the proof of Lemma 4.8.
Denote d = gcd{t : ‖Σt‖i,i > 0}.
Denote N = (D−1)(2D−1). By Lemma 4.9, for every t ≥ N , if d|t then ‖Σt‖i,i > 0.

9The Frobenius number of positive integers p1, . . . , pk with gcd(p1, . . . , pk) = 1 is the largest integer that
cannot be expressed as a linear combination of p1, . . . , pk with nonnegative coefficients.
10The lemma is due to Schur in 1935 but was not published until 1942 by Brauer in [30].
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Let St = {j : ‖Σt‖j,i > 0} for each t ≥ 1, that is the set of vertices from which we can
reach i by a walk of length t. Let S =

⋃
t:d|t St, that is the set of vertices from which we

can reach i by a walk of some length divisible by d.
Let M = N +D2. We have the observation.

Claim. St = S for every t ≥ M with d|t.

Proof. For each j ∈ S, let ud be the least multiple of d such that ‖Σud‖j,i > 0.
We have u ≤ D. Indeed, suppose u > D. Consider the path v0, . . . , vud from v0 = j to
vud = i. The vertices vkd for k = 0, . . . , u are not all distinct since u > D, say vk′d = vk′′d.
Contracting the subpath vk′d, . . . , vk′′d from the path v0, . . . , vud gives a path from j to i
whose length is divisible by d but less than ud, contradiction.

Consider any t = vd ≥ M . It follows from M = N + D2 ≥ N + ud that t −
ud = vd − ud ≥ N , which implies ‖Σvd−ud‖i,i > 0 by Lemma 4.9. That is ‖Σt‖j,i ≥
‖Σud‖j,i‖Σvd−ud‖i,i > 0, i.e. the vertex j is also in St. �

Note that M = N +D2 = (D− 1)(2D− 1) +D2 = 3D2 − 3D + 1, for which one can
observe

M + d = 3D2 − 3D + 1 + d ≤ 3D2 − 2D + 1.

We consider the case ‖Σm‖i,i > 0 and ‖Σn‖i,i > 0 only, as the conclusion is trivial
otherwise. It follows that d divides both m,n. Cases regarding the magnitude of m,n
are analyzed as follows:

• Suppose n ≥ M + d and m > d. It follows that there exists a greatest positive
integer t < min{m,n} with n− t ≥ M and d|t. Such a number t exists because
t = d is a satisfying number. Since d divides m− t, we have

‖Σm‖i,i ≤
∑
j∈S

‖Σt‖i,j‖Σm−t‖j,i

≤
∑
j∈S

‖Σt‖i,j‖Σn−t‖j,i
maxj∈S ‖Σm−t‖j,i
minj∈S ‖Σn−t‖j,i

≤ maxj∈S ‖Σm−t‖j,i
minj∈S ‖Σn−t‖j,i

D‖Σn‖i,i.

Note that denominator is positive as n− t ≥ M and d | n− t.
Since m− t and n− t are bounded (as t is chosen to be the greatest satisfying

number), the ratio maxj∈S ‖Σm−t‖j,i/minj∈S ‖Σn−t‖j,i is bounded, and so is the
ratio ‖Σm‖i,i/‖Σn‖i,i.

Suppose n−m ≤ M . Now comes the explicit bound (the situation m ≥ n is
included in this case). We have n− t ≤ M + d. Indeed, if n− t > M + d, then
t+ d < n−M ≤ m, t+ d < n−M < n and n− (t+ d) > M , a contradiction to
the maximality of t (since t+ d is a larger satisfying number than t). It follows
that n− t ≤ M + d ≤ 3D2 − 2D + 1. Therefore,

‖Σm‖i,i
‖Σn‖i,i

≤ D
maxj∈S ‖Σm−t‖j,i
minj∈S ‖Σn−t‖j,i

≤ D
1
D
(UD)m−t

V n−t

=

(
UD

V

)n−t

(UD)m−n ≤
(
UD

V

)3D2−2D+1

(UD)m−n.

• It remains to consider the case we do not have both m > d and n ≥ M + d.
If m = d then ‖Σm‖i,i/‖Σn‖i,i is bounded as the range of n is bounded

when m − n is bounded (we do not need an explicit bound here as m < n). If
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n < M + d ≤ 3D2 − 2D + 1, then regardless of m we still have

‖Σm‖i,i
‖Σn‖i,i

≤
1
D
(UD)m

V n
≤
(
UD

V

)n

(UD)m−n ≤
(
UD

V

)3D2−2D+1

(UD)m−n.

The conclusion follows from the verification in both cases.

4.4. A bound using the norm

The bound in the previous section gives a quite effective bound but the constant in the
upper bound is not convenient to establish as we have to take care of for which n we have
‖Σn‖i,i > 0 and other issues. This section provides another approach to bounding the
joint spectral radius using the “norm” ‖Σn‖ with easier to established constants instead
of the “diagonal” ‖Σn‖i,i as follows.

Theorem 4.12. Given a finite set Σ of nonnegative matrices. For every n,

n

√(
V

UD

)D

max
C

‖Σn‖C ≤ ρ(Σ) ≤ n

√
Dmax

C
‖Σn‖C ,

where D×D is the dimension of the matrices, U, V are respectively the largest entry and
the smallest entry over all the positive entries of the matrices in Σ, and C is taken over
all components in the dependency graph.

When D and U/V are not too large, the gap between them can be reasonably small
even with a not so large n. Although U/V can be arbitrarily large, the appearance of U
and V is essential to the formula. For example, let Σ contain only one matrix

A =

[
1 1

N
N 1

]
where N is a large number. Since

A2 =

[
2 2

N
2N 2

]
= 2A, An = 2n−1A,

the joint spectral radius is obviously 2. Meanwhile, maxC ‖Σ1‖C = N , therefore, the
relation between U and V must present in the formula in some form. One may compare
this matrix A with the matrix A in the example after Theorem 4.7, whose diagonal has
the smallest values.

During the proof of Theorem 4.12, we also give the following bound on ‖Σn‖ as in
Theorem 4.15: If ρ(Σ) > 0 then there exists a nonnegative integer r < D so that for
every n,

constnrρ(Σ)n ≤ ‖Σn‖ ≤ constnrρ(Σ)n.

The inequalities show that n
√

‖Σn‖ converges to ρ(Σ) at the rate O( logn
n

).
It is quite obvious that the method of bounding in Theorem 4.12 is asymptotically

better than the methods in Section 4.1 except that it is not clear for the one in (4.3).
The comparison to the latter one can be done only in Section 4.5 when we have all the
necessary results. In short, the method in Theorem 4.12 is better than the one in (4.3)
by a root of a polynomial of degree r. However, there is a modification to make the two
methods asymptotically equivalent.

Comparing the bound in Theorem 4.7 and the bound in Theorem 4.12 would be a bit
tricky as the former uses the diagonals while the latter uses the norms. The lower bound
in the former is the trivial part while the upper bound in the latter is the trivial part.
Both are asymptotically as effective as each other, while the estimation of the constants
for the latter one is easier. However, the former gives a neat formula of the joint spectral



4.4. A BOUND USING THE NORM 43

radius with some interesting corollaries, e.g. a simple proof of the joint spectral radius
theorem for finite sets of nonnegative matrices.

Treatment of strongly connected dependency graphs. The central argument
in Proposition 4.1 is ‖Σm+n‖ ≤ const ‖Σm‖‖Σn‖. The other direction of the inequality
suggests an alternative approach that works in the case of nonnegative matrices. While
Proposition 4.1 leads to an upper bound for ρ(Σ), Proposition 4.13 below will lead to a
lower bound.

Proposition 4.13. Given a finite set Σ of nonnegative matrices with a strongly
connected dependency graph, we have the following weak form of supermultiplicativity:
For every m,n,

‖Σm‖‖Σn‖ ≤
(
UD

V

)D

‖Σm+n‖,

where U, V,D are defined as in Theorem 4.12.

Proof. For any i, j, let δ(i, j) be the distance from i to j in the dependency graph.
We have

‖Σm‖‖Σn‖ = ‖Σm‖i,j‖Σn‖i′,j′

≤ V −δ(j,i′)‖Σm‖i,j‖Σδ(j,i′)‖j,i′‖Σn‖i′,j′

≤ V −δ(j,i′)‖Σm+n+δ(j,i′)‖i,j′

≤ V −δ(j,i′)‖Σm+n+δ(j,i′)‖
≤ V −δ(j,i′)D‖Σm+n‖‖Σδ(j,i′)‖
≤ V −δ(j,i′)D‖Σm+n‖Dδ(j,i′)−1U δ(j,i′)

=

(
UD

V

)δ(j,i′)

‖Σm+n‖

≤
(
UD

V

)D

‖Σm+n‖,

where the indices i, j, i′, j′ are chosen to fulfill the first equation. �

With K = ( V
UD

)D, we rewrite the inequality as
‖Σm+n‖ ≥ K‖Σm‖‖Σn‖.

It means K‖Σm+n‖ ≥ (K‖Σm‖)(K‖Σn‖), i.e., the sequence K‖Σn‖ is supermulti-
plicative. As this sequence is also positive, n

√
K‖Σn‖ converges to supn

n
√
K‖Σn‖ by

Fekete’s lemma. This is also the limit of n
√

‖Σn‖.
We have now an effective two-sided bound of ρ(Σ) for any set Σ of nonnegative

matrices with a strongly connected dependency graph.

Corollary 4.14. If the dependency graph is strongly connected, then for every n,

n

√(
V

UD

)D

‖Σn‖ ≤ ρ(Σ) ≤ n
√

D‖Σn‖,

where U, V,D are defined as in Theorem 4.12.

Note that the upper bound is due to Proposition 4.1.
When the concern is the value of ‖Σn‖, we have

(4.18) const ρ(Σ)n ≤ ‖Σn‖ ≤ const ρ(Σ)n.



44 4. JOINT SPECTRAL RADIUS

Treatment of unconnected dependency graphs. We can extend the treatment
to any set of nonnegative matrices, which do not necessarily have a strongly connected
dependency graph. Consider the case when the dependency graph is not strongly con-
nected. For each component C, by restricting Σ to the indices in C, we obtain the
limit

ρC = lim
n→∞

n
√

‖Σn‖C ,

where ‖Σn‖C is defined as in (4.2).
The formula corresponding to (4.18) is

const(ρC)
n ≤ ‖Σn‖C ≤ const(ρC)

n.

Let λ = maxC ρC where the maximum is taken over all the components C. We have11

(4.19) constλn ≤ max
C

‖Σn‖C ≤ constλn.

When the concern is the maximum over all entries, we have the following theorem,
which is a more precise quantitative statement than the convergence of n

√
‖Σn‖.

Theorem 4.15. If λ > 0 then there exists a nonnegative integer r < D so that for
every n,

constnrλn ≤ ‖Σn‖ ≤ constnrλn.

A direct corollary is λ = ρ(Σ) and for every n,

constnrρ(Σ)n ≤ ‖Σn‖ ≤ constnrρ(Σ)n.

Note that when λ = 0, the bound still works for n large enough since there are only
finitely many n so that ‖Σn‖ > 0. Only a small point in the proof uses the condition
λ > 0.

The degree r is one less than the maximum number of components C with ρC = ρ(Σ)
that can be visited by a path in the dependency graph.

The readers may notice that this bound is stronger than the one in Theorem 4.4.
In fact, it is possible to prove the same bound using the formula with the diagonal in
Theorem 4.4, but it is not as convenient as using the norm. In Chapter 5, we give a
bound on g(n): There exists some r so that for every n,

constn−rλn ≤ g(n) ≤ constnrλn,

where λ is the growth rate of the bilinear system there (in case it may get confused with
λ here). The lower bound and the upper bound differ by a polynomial, whose degree is
not well bounded (due to the nature of the proof in Chapter 5). In contrast, the lower
bound and the upper bound in Theorem 4.15 differ at most by a constant factor and we
can specify that r < D. It is a hint that the problem for the growth of bilinear maps is
harder than the one for the joint spectral radius.

Proof. For any i, j, we have

(A1 . . . An)i,j =
∑

k0,k1,...,kn
k0=i,kn=j

(A1)k0,k1(A2)k1,k2 . . . (An)kn−1,kn .

Every term of (A1 . . . An)i,j corresponds to a path k0, k1, . . . , kn of length n from i to j.
Partitioning the path into vertices of the same components, we obtain some ` components

11Although we will later prove that ρ(Σ) = maxC ρC , we for now need another notation λ in the place
of ρ(Σ), just in case the readers may get confused of the new notation.
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C1, . . . , C` with mi edges inside each component Ci. In other words, we have
(4.20)

(A1 . . . An)i,j =∑
`

∑
C1,...,C`

∑
m1,...,m`

∑
i1,j1,...,i`,j`

(A1 . . . Am1)i1,j1(Am1+1)j1,i2(Am1+2 . . . Am1+m2+1)i2,j2 . . .

. . . (An−m`−m`−1
. . . An−m`−1)i`−1,j`−1

(An−m`
)j`−1,i`(An−m`+1 . . . An)i`,j` ,

where the sum is taken over all possible choices of: some number ` of components to
consider, some different components C1, . . . , C`, some partition of n− `+ 1 into nonneg-
ative parts m1 + · · · +m` = n − ` + 1 and some indices i1, j1 ∈ C1, . . . , i`, j` ∈ C` with
i1 = i, j` = j (note that if mt = 0 then it = jt).

To let the summand of (4.20) be positive, the sequence C1, . . . , C` should form a
chain in the sense that there is an edge uv with u ∈ Ci, v ∈ Ci+1 for any two consecutive
Ci, Ci+1. Let r be one less than the maximal number of components C with ρC = λ that
lie in a common chain.

Splitting the sum (4.20) by the number m′ of edges inside components C with ρC < λ,
we have the sum (4.20) is at most

∑
`

∑
C1,...,C`

∑
m′

∑
{mt:0<ρCt<λ}∑

mt
=m′

∑
{mt:ρCt=λ}∑
mt

=n−m′−`+1

const

 ∏
t:0<ρCt<λ

‖Σmt‖Ct

 ∏
t:ρCt=λ

‖Σmt‖Ct


≤
∑
`

∑
C1,...,C`

∑
m′

const(m′)`−(r′+1)−1(n−m′ − `+ 1)r
′
(λ′)m

′
λn−m′−`+1

≤
∑
`

∑
C1,...,C`

∑
m′

const(m′)`nr′
(
λ′

λ

)m′

λn−`+1

≤
∑
`

λ1−`
∑

C1,...,C`

constnr′λn
∑
m′

(m′)`
(
λ′

λ

)m′

≤
∑
`

λ1−`
∑

C1,...,C`

constnr′λn

≤ constnrλn,

where r′ is one less than the number of components C in the chain C1, . . . , C` so that
ρC = λ, and λ′ is some positive number less than λ so that if ρCt < λ then ρCt < λ′. (The
assumption λ > 0 is to make the products involving t not all empty.) The last inequality
is due to the boundedness of ` and the number of choices for C1, . . . , C`. In the next to
last inequality, the boundedness of

∑
m′(m′)`

(
λ′

λ

)m′

can be seen by the ratio test.
In total, we have ‖Σn‖ ≤ constnrλn. It remains to show the other direction that

‖Σn‖ ≥ constnrλn. Consider a chain C1, . . . , C` with r + 1 components C attaining
ρC = λ. We can assume that ρC1 = λ (for a more compact representation of the sum on
the right hand side of (4.22)).

Since ‖Σn+δ‖ ≤ const ‖Σn‖‖Σδ‖ = const ‖Σn‖ for any fixed δ, the following inequality
holds for any fixed ∆:

(4.21) ‖Σn‖ ≥ const
∆∑
δ=0

‖Σn+δ‖.

For two vertices i, j, consider the shortest path k0, k1, . . . , kδ(i,j) from i to j where
δ(i, j) is the distance from i to j and k0 = i, kδ(i,j) = j. There are the corresponding
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matrices A1, . . . , Aδ(i,j) ∈ Σ so that

L(i, j) = (A1)k0,k1 . . . (Aδ(i,j))kδ(i,j)−1,kδ(i,j)

is positive. We prove that
(4.22)

D2∑
δ=0

‖Σn+δ‖ ≥∑
m1+···+m`=n−`+1
mt=0 for ρCt<λ

m1≡n−`+1 (mod 2D)
mt≡0 (mod 2D) for ρCt=λ,t 6=1

‖Σm1‖C1L(j1, i2)‖Σm2‖C2 . . . ‖Σm`−1‖C`−1
L(j`−1, i`)‖Σm`‖C`

,

where each pair it, jt is chosen depending on mt so that ‖Σmt‖Ct = ‖Σmt‖it,jt (for mt = 0,
we set it = jt = k for any element k ∈ Ct and let ‖Σmt‖Ct = 1).

Each summand on the right hand side of (4.22) is at most ‖ΣN‖ where N = m1 +
δ(j1, i2) +m2 + · · · +m`−1 + δ(j`−1, i`) +m`. One can see that n ≤ N ≤ n +D2, which
explains why δ ∈ [0, D2].

Each summand on the right hand side of (4.22) is the sum of products of the form
(A1)k0,k1(A2)k1,k2 . . . (AN)kN−1,kN , which correspond to a path k0, k1, . . . , kN from some
k0 ∈ C1 to some kN ∈ C`. We will show that no path appears twice in this summation.
As k0 ∈ C1 and kN ∈ C`, the path k0, . . . , kN goes through C1, . . . , C`, and the transition
from Ct to Ct+1 occurs at some edge kpt , kpt+1. Suppose two summands with different
m1, . . . ,m` and m′

1, . . . ,m
′
` have some two identical products. It follows that all the

transition edges are the same at positions p1, . . . , p`−1. Let k∗ be the first index so
that mk∗ 6= m′

k∗ . Due to the congruence modulo 2D, we have |mk∗ − m′
k∗ | ≥ 2D, say

mk∗ −m′
k∗ ≥ 2D. Meanwhile,

mk∗ ≤ pk∗ − pk∗−1 ≤ δ(jk∗−1, ik∗) +mk∗ + δ(jk∗ , ik∗+1)

and
m′

k∗ ≤ pk∗ − pk∗−1 ≤ δ(j′k∗−1, i
′
k∗) +m′

k∗ + δ(j′k∗ , i
′
k∗+1).

It raises a contradiction by the strict inequality

pk∗ − pk∗−1 ≤ δ(j′k∗−1, i
′
k∗) +m′

k∗ + δ(j′k∗ , i
′
k∗+1) < m′

k∗ + 2D ≤ mk∗ ≤ pk∗ − pk∗−1.

Since no product is accumulated twice, (4.22) follows.
As we set mt = 0 for ρCt < λ, each summand on the right hand side of (4.22) is

at least constλn. Since the number of partitions m1 + · · · + m` = n − ` + 1 in (4.22)
(even with the divisibility constraints) is Θ(nr), the right hand side of (4.22) is at least
constnrλn. The conclusion follows from (4.21) and (4.22). �

The conclusion. Now we can see that Theorem 4.12 is a corollary of Theorem 4.15.

Proof of Theorem 4.12. If λ = 0, then ρ(Σ) = 0 and the bound in Theorem 4.12
trivially holds by (4.19). Suppose λ > 0. It follows from Theorem 4.15 that λ = ρ(Σ).
Since λ = maxC ρC , the bound in Corollary 4.14 should now become

n

√(
V

UD

)D

max
C

‖Σn‖C ≤ ρ(Σ) ≤ n

√
Dmax

C
‖Σn‖C . �
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4.5. On convergence rates

Although we have proved the joint spectral radius theorem for nonnegative matrices
as a direct corollary of Theorem 4.4, we give another proof for the theorem using the
approach with the norm. Further, we deduce the convergence rates of the sequences
related to (4.6).

At first, for any regular component C and any m, we have
‖Σm‖C = ‖Σm‖i,j ≤ const ‖Σm‖i,j‖Σδ(j,i)‖j,i ≤ const ‖Σm+δ(j,i)‖i,i ≤ constPm+δ(j,i)(Σ),

where i, j ∈ C are chosen to fulfill the first equality. The last inequality is due to
‖Σm+δ(j,i)‖i,i = (A1 . . . Am+δ(j,i))i,i ≤ ρ(A1 . . . Am+δ(j,i)) ≤ Pm+δ(j,i)(Σ) for some matrices
A1, . . . , Am+δ(j,i).

Note that the inequality ‖Σm‖C ≤ constPm+δ(j,i)(Σ) still holds trivially for a single
component C.

Taking the maximum over all components, we have
max
C

‖Σm‖C ≤ max
0≤δ≤D

constPm+δ(Σ).

Applying Theorem 4.12 to a set of only one matrix with n = 1, we have
Pm+δ(Σ) = max

A1,...,Am+δ∈Σ
ρ(A1 . . . Am+δ) ≤ max

A1,...,Am+δ∈Σ
constmax

C
‖{A1 . . . Am+δ}‖C

= constmax
C

‖Σm+δ‖C ≤ constλm+δ ≤ constmax
C

‖Σm‖C ,

where the two last inequalities are due to (4.19). Strictly speaking, it may be the case
that several components of the dependency graph of {A1 . . . Am+δ} form a component of
the dependency graph of Σ. However, it does not affect the results.

In total,
constmax

C
‖Σm‖C ≤ max

0≤δ≤D
Pm+δ(Σ) ≤ constmax

C
‖Σm‖C .

It follows from (4.19) that
(4.23) constλm ≤ max

0≤δ≤D
Pm+δ(Σ) ≤ constλm.

Let P̃m(Σ) = max0≤δ≤D Pm+δ(Σ). Although n
√
Pn(Σ) does not neccesarily converge,

the sequence of n

√
P̃n(Σ) converges to λ. Together with Theorem 4.15, we have

lim sup
n→∞

n
√

Pn(Σ) = lim
n→∞

n
√
‖Σn‖,

which is the conclusion of the joint spectral radius theorem. (When Theorem 4.15 does
not apply, i.e. λ = 0, the equality becomes trivial.)

Now we can see the convergence rates of some sequences that clarify the efficiency of
the bound in (4.3).

At first, Theorem 4.15 gives
constmrλm ≤ ‖Σm‖ ≤ constmrλm,

which shows that the sequence min1≤m≤n
m
√

D‖Σm‖ converges at the rate O( logn
n

) to λ.
On the other hand, it follows from (4.23) that

λ min
0≤δ≤D

m+δ
√
const ≤ max

0≤δ≤D

m+δ
√

Pm+δ(Σ) ≤ λ max
0≤δ≤D

m+δ
√
const.

It means the same convergence rate also applies to max1≤m≤n
m
√

Pm(Σ).
We finish by comparing the bound in (4.3) and the bound in Theorem 4.12. When

r = 0, the two bounds are asymptotically equivalent. When r > 0, the ratio between the
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upper bound and the lower bound in (4.3) is at least the n-th root of a polynomial, which
may reduce the efficiency when r is large. One may improve the traditional method in
(4.3) by considering the components separately when dealing with nonnegative matrices,
which then makes the two methods as effective as each other. At any rate, Theorem
4.12 gives explicit constants. We also note that the lower bound in (4.3) is not so self-
contained in the sense that it needs another method to estimate the ordinary spectral
radius of a matrix. Although the bound in (4.3) in the original form is not as good as the
bound in Theorem 4.12, it works for any complex matrices, not necessarily nonnegative
ones. An open problem in this direction is how our results would be extended for more
general matrices.

4.6. Equivalence of the bounds using diagonals and norms up to a constant

We present a way to deduce each of Theorems 4.7 and 4.12 from the other, using
Lemma 4.8. However, the version of Theorem 4.12 that is deduced from Theorem 4.7 is
obtained with the weaker constant

(
V
UD

)3D2

instead of
(

V
UD

)D.
Given some i in some component C, suppose ‖Σn‖C = ‖Σn‖j,k, and let `1, `2 be the

distance from i to j and from k to i, respectively. We have
(4.24)

‖Σn‖C = ‖Σn‖j,k =
1

‖Σ`1‖i,j‖Σ`2‖k,i
‖Σ`1‖i,j‖Σn‖j,k‖Σ`2‖k,i ≤

1

V `1+`2
‖Σn+`1+`2‖i,i.

Note that if i = j (resp. k = i), then `1 = 0 (resp. `2 = 0) and we assume ‖Σ0‖i,j = 1
(resp. ‖Σ0‖k,i = 1).

The following proof shares some parts with the proof of Theorem 4.7.

Deduction of Theorem 4.7 from Theorem 4.12. As the lower bound of The-
orem 4.7 is trivial, we prove the upper bound.

Fix a regular component C and choose any i ∈ C. Since ‖Σmi‖i,i > 0, it follows from
(4.24) with n = mi and Lemma 4.8 that

‖Σmi‖C ≤ 1

V `1+`2
(UD)`1+`2

(
UD

V

)3D2−2D+1

‖Σmi‖i,i

≤
(
UD

V

)3D2−2D+1+`1+`2

‖Σmi‖i,i

≤
(
UD

V

)3D2−1

‖Σmi‖i,i,

since `1 ≤ D − 1, `2 ≤ D − 1.
Multiplying by D and taking the root, we obtain

mi

√
D‖Σmi‖C ≤ mi

√
D

(
UD

V

)3D2−1

‖Σmi‖i,i ≤
mi

√(
UD

V

)3D2

‖Σmi‖i,i.

If C is a single component, that is C contains a single vertex i with no loop, then the
above inequality trivially holds with all sides being zeros.

Since ρ(Σ) ≤ n
√
DmaxC ‖Σn‖C by Theorem 4.12, it follows that

ρ(Σ) ≤ max
i

mi

√(
UD

V

)3D2

‖Σmi‖i,i. �

Now we deduce Theorem 4.12 with a weaker constant.
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Deduction of Theorem 4.12 from Theorem 4.7. As the upper bound of The-
orem 4.12 is trivial, we prove the lower bound. We start with (4.24):

‖Σn‖C ≤ 1

V `1+`2
‖Σn+`1+`2‖i,i.

Suppose C is a regular component, which means both sides of the above inequality are
positive. Let δ ≤ D be the length of the shortest cycle from i to i. Since ‖Σtδ‖i,i > 0 for
any t ≥ 1, two consecutive elements in the set {` : ‖Σ`‖i,i > 0} have the distance at most
δ ≤ D. Therefore, if n+ `1 + `2 > D, there exists some positive integer m < n+ `1 + `2
with n+ `1+ `2−m ≤ D so that ‖Σm‖i,i > 0. We first consider the case n+ `1+ `2 > D,
it follows from Lemma 4.8 that

‖Σn‖C ≤ 1

V `1+`2
(UD)n+`1+`2−m

(
UD

V

)3D2−2D+1

‖Σm‖i,i

≤ (UD)n−m

(
UD

V

)3D2−2D+1+`1+`2

‖Σm‖i,i

≤ (UD)n−m

(
UD

V

)3D2−2D+1+`1+`2

ρ(Σ)m

≤ (UD)n−m

(
UD

V

)3D2−2D+1+`1+`2

ρ(Σ)nρ(Σ)m−n

≤
(

UD

ρ(Σ)

)n−m(
UD

V

)3D2−2D+1+`1+`2

ρ(Σ)n.

If n ≥ m, it follows from ρ(Σ) ≥ V that

‖Σn‖C ≤
(
UD

V

)n−m(
UD

V

)3D2−2D+1+`1+`2

ρ(Σ)n

=

(
UD

V

)3D2−2D+1+`1+`2+n−m

ρ(Σ)n

≤
(
UD

V

)3D2−D+1

ρ(Σ)n.

When n < m, it follows from ρ(Σ) ≤ UD that

‖Σn‖C ≤
(
UD

V

)3D2−2D+1+`1+`2

ρ(Σ)n

≤
(
UD

V

)3D2−1

ρ(Σ)n,

since `1 ≤ D − 1, `2 ≤ D − 1.
Combining the two cases gives

‖Σn‖C ≤
(
UD

V

)3D2

ρ(Σ)n.

In the remaining case that n+ `1 + `2 ≤ D, we also have

‖Σn‖C ≤ ‖Σn‖ ≤ 1

D
(UD)n ≤

(
UD

V

)n

V n ≤
(
UD

V

)3D2

ρ(Σ)n,
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since n ≤ n+ `1 + `2 ≤ D ≤ 3D2.
When C is a single component, the above inequality trivially holds with ‖Σn‖C = 0.
Taking over all the components, we obtain the conclusion

ρ(Σ) ≥ n

√(
V

UD

)3D2

max
C

‖Σn‖C . �

Remark. In the above proof, only the trivial lower bound in Theorem 4.7 is used. In
fact, in the deduction of Theorem 4.7 from Theorem 4.12, only the trivial upper bound of
the latter is used. In other words, Lemma 4.8 is actually the key element in both proofs.



CHAPTER 5

A formula and two bounds for the growth rate

This chapter will treat the growth of bilinear maps with a formula for the growth rate
and some bounds. The key tools are the notion of linear pattern and Fekete’s lemma. We
remind the general assumption to avoid the degenerate cases, which is already mentioned
in Chapter 2, that for every i, there exists some n so that gi(n) > 0.

Before introducing linear patterns, we show a correspondence between the rooted
binary trees of n leaves and the combinations of n instances of the vector s. In one
direction, we let the expression associated with a tree of a single leaf be the vector s
itself, and the expression associated with a tree of a higher number of leaves be (L ∗R),
where L,R are respectively the expressions associated with the left and right branches.
The other direction is obvious as the previous association is a one-to-one mapping. Note
that the map from the binary trees to the resulting vectors of the combinations is however
not injective. Given a resulting vector v, we just pick any binary tree that gives v to be
the associated tree with v. The arguments in the chapter are independent of the choice.
The other direction is deterministic: The vector that the binary tree gives is said to be
the associated vector with the tree. Note that from now on, all considered trees are rooted
binary trees. In some places, we say the tree associated with gk(n) instead of saying the
tree of n leaves associated with a vector whose k-th entry is gk(n) for short. The same
manner is also applied for g(n).

A linear pattern P = (T, `) is a pair of a tree T and a marked leaf ` in T . Suppose in
the expression associated with T , we put a vector variable u instead of the fixed vector
s in the place associated with the leaf `. The value of the expression is then a vector
variable v that is a linear function of u. Let M = M(P ) be the matrix representing the
dependency, that is v = Mu. The matrix M is said to be the matrix of the linear pattern.

For two patterns P1 = (T1, `1) and P2 = (T2, `2), the composition of the two patterns,
denoted by P1 ⊕ P2, is the pattern P = (T, `) where T is obtained from T1 by replacing
`1 by T2, and ` is the leaf `2 in this instance of T2. We denote by P q the pattern
P ⊕P ⊕· · ·⊕P with q instances of P . A quick observation is M(P1⊕P2) = M(P1)M(P2)
and M(P q) = (M(P ))q.

For a pattern P = (T, `), we denote by |P | the number of leaves excluding ` in T . We
have |P1 ⊕ P2| = |P1|+ |P2| and |P q| = q|P | for any patterns P, P1, P2.

When we regard “the number of leaves of pattern P”, we mean |P |. In most of the
cases, the distinction between |P | and the number of leaves in T does not matter very
much. However, one must be careful when taking the root, it must be the |P |-th root.

For convenience, we also write P ⊕ T for a tree T to denote a tree obtained from the
tree of P by replacing its marked leaf by T .

Before presenting the formula and the bounds for the growth rate λ in the following
sections, we give first some observations.

Observation 5.1. Consider a pattern P = (T, `). If sj > 0, then Mi,j ≤ const gi(n)
for any i where n is the number of leaves in T . If sj = 0, we have Mi,j ≤ const gi(n+O(1))
for any i.

51
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Proof. Let v be the vector associated with T , we have

gi(n) ≥ vi =
∑
k

Mi,ksk ≥ Mi,jsj.

It follows that Mi,j ≤ const gi(n) for the constant 1
sj

when sj > 0.
For the case sj = 0, we still have gj(m) > 0 for some m with the associated tree T0.

Consider the tree P ⊕T0 with the associated vector v, we have vi ≥ Mi,jgj(m). It follows
that Mi,j ≤ const vi ≤ const gi(n+O(1)) since m is fixed. �

The dependency graph of a system, which expresses the dependency among the di-
mensions in ∗, is defined to be a directed graph that takes the dimensions as the vertices.
There is an edge from k to i if and only if there exists some j so that either c

(k)
i,j 6= 0 or

c
(k)
j,i 6= 0. As a directed graph, the dependency graph can be partitioned into strongly

connected components, for which we call components for short. We define a partial order
between the components: A component C1 is said to be smaller than a component C2 for
C1 6= C2 if there are vertices i ∈ C2, j ∈ C1 and a path from i to j. For any C1, C2, we
say C1 ≤ C2 if C1 < C2 or C1 = C2.

The following observation is useful in various proofs.

Observation 5.2. If there is a path from i to j, then there exists a pattern whose
matrix M satisfies Mi,j > 0. It follows that there exists some δ so that gi(n + δ) ≥
const gj(n) for every n. On the other hand, if M is the matrix of some pattern and
Mi,j > 0, then there is a path from i to j.

Proof. Suppose there is an edge from k to i with c
(k)
i,j > 0. Consider the pattern

(T, `) for a tree T with ` being the left branch, the right branch is the tree associated with
gj(m) > 0 for some m. The matrix M of the pattern has Mk,i > 0. A similar construction
is for c

(k)
j,i > 0 with the marked leaf ` being the right branch. Suppose there is a path

k0, k1, . . . , kd from i to j, with k0 = i and kd = j. The desired pattern is P1 ⊕ · · · ⊕ Pd

where Pt is the pattern constructed from the edge kt−1kt.
Given such a pattern P = P1 ⊕ · · · ⊕ Pd, we can see that gi(n+ |P |) ≥ const gj(n) by

considering the tree P ⊕ T ∗ where the tree T ∗ is associated with gj(n).
In the other direction, let P be the pattern whose matrix M satisfies Mi,j > 0.

Consider the decomposition P = P1 ⊕ · · · ⊕Pt so that each Pk has the marked leaf being
a child of the root. Let Mk be the matrix of Pk, we have M = M1 . . .Mt, that is

Mi,j =
∑

k1,...,kt−1

(M1)i,k1(M2)k1,k2 . . . (Mt−1)kt−2,kt−1(Mt)kt−1,j.

As Mi,j > 0, there exist k1, . . . , kt−1 so that all

(M1)i,k1 , (M2)k1,k2 , . . . , (Mt−1)kt−2,kt−1 , (Mt)kt−1,j

are positive. It follows that there are edges ik1, k1k2, . . . , kt−2kt−1, kt−1j, which form the
path i, k1, k2, . . . , kt−1, j. �

5.1. A formula for λ and a polynomial upper bound for g(n)/λn

We prove the following representation of the growth rate, and provide a polynomial
upper bound for g(n)/λn at the same time. It is done via the quantity

θ = sup
linear pattern P

max
i

|P |
√

M(P )i,i.
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Theorem 5.3. We have
λ = θ.

Moreover, there exists r so that for every n,
g(n) ≤ constnrλn.

Observation 5.4. λ ≥ θ.
Proof. Consider a linear pattern P . Choose an r so that gi(r) > 0 by a tree T0, and

consider the sequence of trees P q⊕T0 for q = 1, 2, . . . . Each tree P q⊕T0 has n = q|P |+r
leaves and the associated vector has the i-th entry at least gi(r)(M(P )i,i)

q. The lower
bound λ ≥ θ follows from limq→∞

n
√

gi(r)(M(P )i,i)q =
|P |
√

M(P )i,i. �

Observation 5.5. Consider a linear pattern P . For any i, j of the same component,
we have
(5.1) M(P )i,j ≤ const θ|P |.

Proof. When the component contains a single vertex without loops, the observation
is trivial. In the remaining situation, let Pj→i be a pattern so that M(Pj→i)j,i > 0. We
have M(P ⊕ Pj→i)i,i ≥ M(P )i,jM(Pj→i)j,i. Meanwhile, M(P ⊕ Pj→i)i,i ≤ θ|P⊕Pj→i| ≤
const θ|P |. The observation is established since M(Pj→i)j,i is a constant. �

The proof of Theorem 5.3 uses the following proposition. The strange condition in the
proposition is in fact not necessary for the conclusion, by Theorem 5.3 itself. However,
we need the proposition in the induction step of the proof of the theorem.

Proposition 5.6. Consider a vertex i with the condition that there exists some α so
that for every j in a component lower than the component of i, we have gj(m) = O(mαθm).
Suppose k is a vertex in a component lower than the component of i and gk(m) 6= O(θm),
then there exists some r so that for every linear pattern P with |P | = n and the associated
matrix M , we have

Mi,k ≤ constnrθn.

While gj(m) = O(mrθm) straightforwardly means the existence of some K > 0 so
that gj(m) ≤ Kmrθm for every m, the not very popular notation gk(m) 6= O(θm) can be
interpreted as: For every K > 0 there exists some m so that gk(m) > Kθm.

Note that we write f(x) = O(e(x)) for two functions f, e in this part only, instead
of writing f(x) ≤ const e(x) as usual.1 The reason is to highlight the meaning of the
notation f(x) 6= O(e(x)).

Proof. Decompose P into P = P1 ⊕ · · · ⊕ Pt so that each pattern has the marked
leaf being a child of the root. Let M1, . . . ,Mt be the associated matrices of P1, . . . , Pt,
respectively. We have M = M1 . . .Mt. Let C be the component of i. The entry Mi,k can
be written as
(5.2) Mi,k =

∑
1≤s≤t

j1∈C, j2 /∈C

(M1 . . .Ms−1)i,j1(Ms)j1,j2(Ms+1 . . .Mt)j2,k,

where j1 = i if s = 1, and j2 = k if s = t. (Note that j1j2 is the edge where the path
leaves C.)

We proceed by considering all the nonzero summands. It means that j2 is in a com-
ponent directly lower than C, in order for (Ms)j1,j2 to be nonzero. We can conclude right
away that (Ms+1 . . .Mt)j2,k ≤ const gj2(m+O(1)) ≤ constmαθm for m = |Ps+1|+· · ·+|Pt|,
1Strictly speaking, f(x) ≤ const e(x) is a stronger conclusion than f(x) = O(e(x)) but they are asymp-
totically equivalent.
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by the condition of the proposition. Also, by Observation 5.5, we have (M1 . . .Ms−1)i,j1 ≤
const θ|P1|+···+|Ps−1| as i, j1 are both in C.

It remains to consider (Ms)j1,j2 . Suppose the marked leaf of Ps is on the left branch,
without loss of generality. Let v be the vector associated with the right branch of the
tree of Ps. We have

(Ms)j1,j2 =
∑
j

c
(j1)
j2,j

vj.

Note that in order for the summand in (5.2) to be nonzero, we need (Ms+1 . . .Mt)j2,k > 0,
which implies a path from j2 to k by Observation 5.2. Another corollary of Observation
5.2 is that gj2(m) 6= O(θm). We can see that for any j so that c

(j1)
j2,j

> 0, the vertex j is
not in C. Indeed, assume otherwise, let K be fixed and Q be a tree of m leaves so that
the associated vector u has uj2 = gj2(m) > Kθm. Let P̂ be the linear pattern where the
left branch is Q and the right branch is the marked leaf. The associated matrix M̂ has

M̂j1,j =
∑
j′

c
(j1)
j′,j uj′ ≥ c

(j1)
j2,j

uj2 > constKθm,

contradicting Observation 5.5 as K can be arbitrarily large. Therefore, for such j we
have vj ≤ gj(|Ps|) ≤ const |Ps|αθ|Ps| by the condition of the proposition. In other words,

(Ms)j1,j2 =
∑
j

c
(j1)
j2,j

vj ≤ const |Ps|αθ|Ps|.

In total, each summand in (5.2) is at most a constant times n2αθn. Meanwhile, there
are only at most n options for the summation variable s and constantly many options for
j1, j2. Therefore, for r = 2α + 1, we have

Mi,k ≤ constnrθn. �

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. It suffices to prove that: For every i there exists r so that
(5.3) gi(n) ≤ constnrθn.

Indeed, suppose we have (5.3). Together with Observation 5.4, we have

θ ≤ λ = lim sup
n→∞

n
√

g(n) ≤ lim sup
n→∞

n
√
constnrθn = θ,

which means λ = θ and g(n) = maxi gi(n) ≤ constnrλn.
We can prove (5.3) by induction on the components. The base case that (5.3) holds for

any i in a minimal component is established with the help of Observation 5.5. For such an
i, let P be any pattern with the tree associated to gi(n), we have gi(n) =

∑
j M(P )i,jsj ≤

const θn, since j needs to be in the same component as i for M(P )i,j to be nonzero.
As for the induction step, we now consider an i that is not in a minimal component

and suppose (5.3) holds for any vertex in a component lower than the component of i,
we prove that it also holds for i.

Let T be the tree associated with gi(n). Pick a subtree T0 of m leaves so that n/3 ≤
m ≤ 2n/3 by Lemma 2.7. Consider the decomposition T = P ′ ⊕ T0. Let M ′ be the
matrix associated with P ′ and u be the vector associated with T0. We have

gi(n) =
∑
k

M ′
i,kuk ≤ constM ′

i,juj ≤ constM ′
i,jgj(m)

for some j that maximizes M ′
i,juj.

Let C be the component of i. We consider the following cases regarding j:
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• If j is in a lower component than C but gj(t) 6= O(θt), then we have M ′
i,j ≤

const(n − m)αθn−m for some α, due to Proposition 5.6. By the induction hy-
pothesis, we also have gj(m) ≤ constmβθm for some β. In total,

gi(n) ≤ const(n−m)αθn−mmβθm ≤ constnα+βθn = constnγθn

where γ = α + β.
• If j is in a lower component than C and gj(t) = O(θt), then together with
M ′

i,j ≤ const gi(n−m+O(1)) by Observation 5.1 we have
gi(n) ≤ Kgi(n−m+O(1))θm

for some large enough K.
• If j is in C, then we have M ′

i,j ≤ const θn−m by Observation 5.5. Therefore,

gi(n) ≤ Kθn−mgj(m)

for some large enough K.
In any of the two latter cases, we have reduced the size n considerably by at least

a fraction of n but still keep considering gk for some k in the component of i. After
repeating the process at most O(log n) times, and stopping only when the current n is
small enough or we fall into the first case, we obtain

gi(n) ≤ constKO(logn)nγθn+O(logn)

for the sufficiently large constant K as specified in the two latter cases.
As xlogn = nlog x, the induction step finishes since for some r,

gi(n) ≤ constnrθn.

The conclusion follows by induction. �

Remark 5.7. The value of r in the proof in principle depends on the coefficients of
∗ and the entries of s. However, it is probably due to the techniques of the proof only.
We believe that the conclusion still holds if we set r = 2d−1 where d is the dimension,
regardless of the coefficients/entries of ∗, s.

We provide a condition in the nonnegative setting so that λ is a limit.

Theorem 5.8. Suppose there exists some n0 so that for every n ≥ n0 and every i we
have gi(n) > 0, then λ is actually a limit.

Proof. By Theorem 5.3, it suffices to prove that

lim inf
n→∞

n
√

g(n) ≥ sup
linear pattern P

max
i

|P |
√

M(P )i,i,

which can be reduced to showing that for any pattern P and any index i, we have

lim inf
n→∞

n
√

g(n) ≥ |P |
√

M(P )i,i.

Indeed, for every n large enough, let n = q|P | + r so that n0 ≤ r < n0 + |P |.
Consider the tree P q ⊕ T0 where T0 is the tree associated with gi(r). The i-th entry of
the associated vector is at least a constant times (M(P )i,i)

q. Since r is bounded, the
conclusion follows. �

Note that the condition is satisfied in the positive setting. In other words, we have
obtained a simpler proof of the limit λ than the one in [8], whose approach is briefly
mentioned in Chapter 7.

Corollary 5.9. If s > 0 then the growth rate λ is a limit.
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An important corollary of the formula in Theorem 5.3 is that the growth rate is
computable, in the sense that λ can be computed to any desired precision, as in Theorem
5.10 below.

Theorem 5.10. The growth rate in the nonnegative setting is computable.

Proof. It was known that the growth rate λ in the nonnegative setting is upper semi-
computable [4], in the sense that there exists a sequence of upper bounds converging to
λ. It remains to show that it is lower semi-computable, by showing a sequence of lower
bounds converging to λ. As

λ = sup
linear pattern P

max
i

|P |
√
M(P )i,i,

we have
λ = sup

n
max

linear pattern P
|P |=n

max
i

n

√
M(P )i,i.

The sequence
an = max

linear pattern P
|P |≤n

max
i

|P |
√

M(P )i,i

for n = 1, 2, . . . is indeed the desired sequence since it is increasing and converges to
λ. �

Although the growth rate λ is computable in the sense of computability, there is no
guarantee yet on the convergence rate of the approximations. The next section will give
efficient bounds for λ in the positive setting.

5.2. A polynomial upper bound for λn/g(n) when s > 0

As an upper bound for g(n) is established, one might expect a matching lower bound.
In this section, we attempt to give such a bound in the positive setting, where s is
always positive. Note that although the growth rate is computable in the nonnegative
setting, the convergence rate is still unknown and likely to be poor. On the other hand,
the following matching lower bound on g(n) sheds light on the convergence rate of the
estimations for s > 0. We say it is “matching” due to the existence of the polynomial in
the bound, like in Theorem 5.3.

Theorem 5.11. If s is a positive vector then there exists some r so that for every n,
g(n) ≥ constn−rλn.

When s is positive, it follows from Theorem 5.11 and Theorem 5.3 that the limit λ
exists. However, it is a much harder way than proving it by Corollary 5.9.

When s is not positive, the lower bound may not hold, as otherwise the limit λ exists,
which we already know is not always the case as in the examples in Chapter 2. It is
possible to extend the approach to the nonnegative setting, in the way that instead of
g(n) we give a lower bound for

∑
0≤δ≤∆ g(n+ δ) for some ∆. However, we avoid treating

the case as such arguments ask for a lot more care.
The leading constant of the lower bound and r in Theorem 5.11 depend on the coef-

ficients of ∗ and the entries of the starting vector s, due to the techniques in the proof.
However, we believe that it is possible to replace n−r by nt (a nonnegative degree here)
so that t ≥ 0 and t ≤ 2d−1 for the space Rd.

Before presenting the proof, we would note that we try to keep this section as inde-
pendent from Section 5.1 as possible.
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Preliminary lemmas.

Lemma 5.12. Let T be the tree associated to gk(n). If there is a subtree T0 of m
leaves, then there exists some j so that there is a path from k to j and

gk(n) ≤ const gk(n−m+ 1)gj(m).

Proof. Let v, u be the vectors associated with T, T0, respectively. Consider the
decomposition T = P ′ ⊕ T0. Let M be the matrix associated with P ′. Since v = Mu, we
have

gk(n) = vk = (Mu)k =
∑
i

Mk,iui ≤ constMk,juj

for some j that maximizes Mk,juj (the constant can be chosen to be the dimension). As
Mk,j > 0, there is a path from k to j.

The conclusion follows from the fact that Mk,j ≤ const gk(n−m+1) (by Observation
5.1) and uj ≤ gj(m). �

Corollary 5.13. For any k and any fixed d, we have gk(n + d) ≤ const gk(n) for
every n.

Proof. Since every tree of at least 2 leaves has a subtree of 2 leaves, setting m = 2
for Lemma 5.12 gives gk(n+1) = gk((n−1)+2) ≤ const gk(n)gj(2) ≤ const gk(n) for every
n. The conclusion follows by applying d times the inequality gk(n+1) ≤ const gk(n). �

The other direction also holds under a condition.

Observation 5.14. If k is in a component that has at least one edge inside (loops
are also counted), then for any fixed d, we have

gk(n+ d) ≥ const gk(n).

It follows that gk(n) and gk(n + d) are in a constant factor of each other for such a
component.

Proof. By the condition of the component of k, there is a path from k to k, that
is gk(n + d) ≥ const gk(n + d − δ) for some δ by Observation 5.2. (We only consider n
large enough, e.g. greater than δ, since smaller n can be treated by adjusting the leading
constant in the lower bound.) Applying repeatedly this fact until we have gk(n + d) ≥
const gk(n0) so that n0 < n. Note that n − n0 is bounded. By Corollary 5.13, we have
gk(n0) ≥ const gk(n), the conclusion follows. �

The condition in Observation 5.14 can be relaxed, but the current form is enough for
later applications.

Corollary 5.15. Let T be the tree associated to gk(n). If there is a subtree T0 of m
leaves, then

gk(n) ≤ const gk(n−m)gk(m).

Proof. By Lemma 5.12, we have
gk(n) ≤ const gk(n−m+ 1)gj(m) ≤ const gk(n−m)gj(m),

where the latter inequality is due to Corollary 5.13.
Since there is a path from k to j, by Observation 5.2, for some d we have

gj(m) ≤ const gk(m+ d) ≤ const gk(m),

where the latter inequality is also due to Corollary 5.13.
The conclusion follows. �
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Definition 5.16. Given a component C, the C-subsystem is the system with (∗′, s′)
deduced from (∗, s) by restricting (∗, s) to only the dimensions reachable from the vertices
in C. In particular, s′i = si for i ∈ C ′ and C ′ ≤ C (other dimensions i are removed).
Likewise, the coefficients c

′(k)
i,j = c

(k)
i,j for k ∈ C ′ and C ′ ≤ C.

One can observe that the value gk(n) as well as the k-th entry of any resulting vector
for a dimension k in the C-subsystem are the same as those in the original system, as
they do not depend on the dimensions outside the C-subsystem.

The following proposition is [8, Lemma 5].

Proposition 5.17. Given some k in a component C, in the C-subsystem we have
gk(n) ≥ const g(n),

where g(n) is subject to the C-subsystem.

Proof. For every dimension i in the C-subsystem, there is a path from k to i. It
follows from Observation 5.2 that for some d we have

gi(n) ≤ const gk(n+ d) ≤ const gk(n),

where the latter inequality is due to Corollary 5.13.
The conclusion follows by

g(n) = max
i

gi(n) ≤ const gk(n). �

Corollary 5.18. In the C-subsystem, the values gk(n) and g(n) (subject to the C-
subsystem) are in a constant factor of each other. So are the values of gi(n) and gj(n) if
i, j are in the same component.

Definition 5.19. We denote the limit λk = limn→∞
n
√
gk(n).

One can observe that λi = λj if i, j are in the same component. Also, for a vertex k
in C, the value λk is the growth rate of the C-subsystem. If i ∈ C1, j ∈ C2 and C1 ≤ C2,
we have λi ≤ λj, by Observation 5.2. In other words, the order of the components is also
the order of the growth rates.

A classification of components. We classify all the components into the three
following classes, for which the growth rates for each class of components can be studied
individually in a more convenient way later.

Definition 5.20. A component C is said to be strongly self-dependent if there are
three indices k, i, j in C (not necessarily different) so that c(k)i,j > 0.

Definition 5.21. A component C is said to be weakly self-dependent if for every
k ∈ C and for any c

(k)
i,j > 0 at least one of i, j is in a lower component than C, and for

any j in a component lower than the component of k we have λj < λk.

Before classifying the remaining components, we give the following observation.

Observation 5.22. Let k be so that for each c
(k)
i,j > 0, both i, j are in a lower

component than the component of k, we have
λk = max

i,j: c
(k)
i,j >0

max{λi, λj}.

Note that when there is no edge from k (that is c(k)i,j = 0 for every i, j), we have λk = 0
with the convention that the maximum of an empty list is zero.
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Corollary 5.23. For any k in a weakly self-dependent component C, there exist i, j
so that c(k)i,j > 0 and one of i, j is in C while the other one is in a component lower than
C.

The remaining components C (other than strongly self-dependent and weakly self-
dependent) satisfy (i) for every k ∈ C and for any c

(k)
i,j > 0 at least one of i, j is in a lower

component than C and (ii) there exists k ∈ C and j in a lower component than C so
that λk = λj. It means the remaining components are included in the following class.

Definition 5.24. A component C is said to be not self-dependent if for each k ∈ C
we have λk = λj for some j in a lower component than C.

In total, we have the following proposition.

Proposition 5.25. The three classes of components: strongly self-dependent, weakly
self-dependent and non-self-dependent components cover all the components.

Strongly self-dependent components. We show that gk(n) is weakly supermul-
tiplicative for k in a strongly self-dependent component.

Theorem 5.26. Let k be in a strongly self-dependent component. For any m,n, we
have

gk(m+ n) ≥ const gk(m)gk(n).

Proof. Let i, j be in the component of k so that c
(k)
i,j > 0. Using the preliminary

results, we have
gk(m)gk(n) ≤ const gi(m+ d1)gj(n+ d2) ≤ const gk(m+ n+ d1 + d2) ≤ const gk(m+ n)

for some bounded d1, d2. The first inequality is due to Observation 5.2, while the last
inequality is due to Corollary 5.13. The middle inequality is obtained by considering a
tree where the left branch is associated to gi(m + d1) and the right branch is associated
to gj(n+ d2).

An alternate argument is
gk(m)gk(n) ≤ const gi(m)gj(n) ≤ const gk(m+ n),

where the first inequality is by Corollary 5.18. �

An instance of the condition is the strong connectedness of the dependency graph.
Corollaries of the result include the limit of n

√
gk(n) and gk(n) ≤ constλk

n by applying
Fekete’s lemma to the supermultiplicative sequence {const gk(n)}n. The upper bound is
a case of Theorem 5.3 as we reduce the polynomial nr to n0 = 1.

Remark 5.27. The two arguments in the proof of Theorem 5.26 both use not so
trivial propositions. We can avoid using them and obtain a slightly weaker result, which
still implies the bound of gk(n) and the limit. Indeed, after obtaining the inequality
gk(m)gk(n) ≤ Kgk(m+ n+ d1 + d2) for some constant K as in the first half of the first
argument, we shift the sequence and multiply both sides by K to get

Kgk(m− d1 − d2)Kgk(n− d1 − d2) ≤ Kgk(m+ n− d1 − d2).

The sequence sn = Kgk(n− d1 − d2) is supermultiplicative. By Fekete’s lemma, we have
n
√
sn converges to λk = supn

n
√
sn. The original sequence n

√
gk(n) also converges to λk.

The bound also follows.
The argument shows that the proof of the limit λ would become fairly simple when the

dependency graph is strongly connected.
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The upper bound constλk
n is a nice corollary of Fekete’s lemma. We naturally wonder

what a lower bound would be, and whether the leading constant should be replaced
by something arbitrarily small. Actually, we would conjecture that gk(n) ≥ constλk

n.
However, what we could come up is just the following result. It is also a corollary of
Fekete’s lemma, but for a submultiplicative sequence. The interesting point is that the
supermultiplicative form as in Theorem 5.26 is used in the proof.2

Theorem 5.28. If k is in a strongly self-dependent component, then there exists some
r so that

gk(n) ≥ constn−rλk
n.

We need to show a form of submultiplicativity first.

Proposition 5.29. Let k be in a strongly self-dependent component. For any m,n
we have

gk(m+ n) ≤ constK logmgk(m)gk(n),

where K is a constant.

One may recognize that the proof below is similar to the proof of Theorem 5.3.

Proof. Let T be the tree associated with gk(m+n). By Lemma 2.7, there is a subtree
T0 of m0 leaves so that m/2 ≤ m0 ≤ m. That means gk(m + n) ≤ const gk(m0)gk(n +
m − m0) by Corollary 5.15. We continue the process with a subtree of m1 leaves so
that m−m0

2
≤ m1 ≤ m − m0 from the tree associated with gk(n + m − m0), for which

gk(n + m − m0) ≤ const gk(m1)gk(n + m − m0 − m1). Repeating this process some
t = O(logm) times, we obtain

gk(m+ n) ≤ constK0
logmgk(m0) . . . gk(mt)gk(n)

where K0 is a constant and m0 + · · ·+mt = m.
Since k is in a strongly self-dependent component, that is gk(a+ b) ≥ const gk(a)gk(b)

for any a, b by Theorem 5.26, we have
gk(m+ n) ≤ constK logmgk(m0 + · · ·+mt)gk(n) = constK logmgk(m)gk(n)

where K is a constant. �

We are now ready to prove Theorem 5.28.

Proof of Theorem 5.28. Consider any pair of m,n with m ≤ n. Proposition 5.29
gives

gk(m+ n) ≤ constK logmgk(m)gk(n).

We have
K log(m+n)gk(m+ n) ≤ αK logmgk(m)K logngk(n)

for some constant α, since m+ n and n are in a constant factor of each other.
Writing K logn = nlogK = nr for r = logK, and multiplying both sides of the inequality

by α, we have
α(m+ n)rgk(m+ n) ≤ αmrgk(m)αnrgk(n).

Applying Fekete’s lemma for the submultiplicative sequence αnrgk(n), we have

λk = inf
n

n
√
αnrgk(n),

2A similar technique is also applied by the author to prove a weaker lower bound on the number of
polyominoes P (n) ≥ constn− const lognλn, where λ is the growth rate of P (n), which is also known as
Klarner’s constant. Bui, Vuong. “An asymptotic lower bound on the number of polyominoes.” Annals
of Combinatorics (2023).
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which means
gk(n) ≥ constn−rλk

n. �

Weakly self-dependent components. We now treat weakly self-dependent com-
ponents.

Proposition 5.30. Consider some k in a weakly self-dependent component. Let T
be a tree of n leaves with the associated vector w. If both branches of T are large enough,
then gk(n)/wk is unbounded, in the sense that for any R > 0 there exists L > 0 so that
if both branches of T have more than L leaves then gk(n)/wk > R.

Before proving the proposition, we give the following lemma.

Lemma 5.31. Consider a vertex i so that every j in a lower component than the
component of i has λj < λi, we have

λi = sup
linear pattern P

|P |
√
M(P )i,i.

Furthermore, let qn = maxP :|P |=nM(P )i,i, this supermultiplicative sequence satisfies
λi = lim{ n

√
qn : qn > 0}.

Proof. Consider the C-subsystem for the component C of i, it follows from Theorem
5.3 that

λi = sup
linear pattern P

max
j

|P |
√

M(P )j,j,

where j is taken over all j in C or in a component lower than C.
Since λi > λj for every j in a component lower than C, the maximum can be taken

over all j in C only. In order to prove the first part of the lemma, it suffices to show that
for two different vertices i, j in a component, we have

sup
linear pattern P

|P |
√

M(P )i,i = sup
linear pattern Q

|Q|
√

M(Q)j,j.

Indeed, for any pattern Q, consider the sequence of patterns Pn = Pi→j⊕Qn⊕Pj→i, where
Pi→j is a pattern of bounded number of leaves so that M(Pi→j)i,j > 0 by Observation
5.2. We have |Pn|

√
M(Pn)i,i converging to |Q|

√
M(Q)j,j. It means the left hand side is at

least the right hand side. The other direction is obtained by exchanging the roles, hence
we have an equality.

The second part of the lemma is merely a corollary of the first one, by applying the
extension of Fekete’s lemma for nonnegative sequences (Lemma 2.5) to the supermulti-
plicative sequence qn. �

Now we prove Proposition 5.30.

Proof of Proposition 5.30. Assume that both branches of T are large enough
but gk(n)/wk is still bounded, we show contradictions.

Let u, v be the associated vectors with the left and the right branches, respectively.
We can assume the number m of leaves in the right branch is smaller. Choose some ε small
enough, we suppose m is large enough so that for every m′ ≥ m, we have (λi − ε)m

′
<

gi(m
′) < (λi + ε)m

′ for every i.
Since wk =

∑
i,j c

(k)
i,j uivj, we have

wk ≤ constuivj

for some i, j.
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By Corollary 5.23, let i∗, j∗ be a pair so that c
(k)
i∗,j∗ > 0 with one of i∗, j∗ in C, say

i∗ ∈ C, where C is the component of k. Consider the tree T ∗ where the left branch is the
tree associated with gi∗(n− 1) and the right branch is just a leaf. The associated vector
w∗ to T has w∗

k ≥ const gi∗(n− 1) ≥ const(λk − ε)n (since λi∗ = λk).
Back to the tree T , we have

uivj ≤ gi(n−m)gj(m) ≤ const(λi + ε)n−m(λj + ε)m.

It follows that i ∈ C (hence j /∈ C) when ε is small enough and n is large enough, since
otherwise

gk(n)/wk ≥ constw∗
k/(uivj) ≥ const

(λk − ε)n

(λi + ε)n−m(λj + ε)m

= const

(
λk − ε

λi + ε

λk − ε

λj + ε

)m(
λk − ε

λi + ε

)n−2m

is unbounded. (Note that m is unbounded, n− 2m ≥ 0 and λk−ε
λi+ε

λk−ε
λj+ε

> 1, λk−ε
λi+ε

> 1 when
ε is small enough.)

We can now prove that m being large enough raises a contradiction, which finishes
the proof.

By Lemma 5.31, there exists a pattern of m0 leaves so that the associated matrix
M0 satisfies (M0)i,i ≥ (λi − ε)m0 . For every m = m0p + r (1 ≤ r ≤ m0), we have the
pattern (T0)

p of m∗ = m0p leaves with the associated matrix M∗ = (M0)
p satisfying

(M∗)i,i ≥ [(M0)i,i]
p ≥ (λi − ε)m

∗ .
We proceed with transforming the original tree. We replace the right branch by any

tree of r = m−m∗ leaves with the associated vector v′. As r is bounded, v′ is bounded.
We set the left branch to be (T0)

p ⊕L where L is the original left branch. The new tree
has the k-th entry of the associated vector at least

c
(k)
i,j (M

∗)i,iuiv
′
j ≥ const(λi − ε)m

∗
ui ≥ const(λi − ε)mui,

which is greater than wk an unbounded number of times when ε is small enough and m
is large enough. That is because

wk ≤ constuivj ≤ constuigj(m) ≤ constui(λj + ε)m. �

Corollary 5.32. Suppose k is in a weakly self-dependent component. Let T be the
tree associated with gk(n). Then every subtree of T with at least n/2 leaves has a branch
with a bounded number of leaves.

Proof. Let T0 be a subtree of m ≥ n/2 leaves. Consider the decomposition T =
P ′ ⊕ T0. Let M ′ be the matrix associated with P ′. Let v, u be the associated vectors
with T, T0, respectively. We have v = M ′u. It follows that vk = (M ′u)k =

∑
i M

′
k,iui. It

means for some j,
vk ≤ constM ′

k,juj.

Applying3 Theorem 5.3 to the C ′-subsystem with the support of Corollary 5.18 for
the component C ′ of j, we have uj ≤ const gj(m) ≤ constmr1λj

m for some r1. Also, we
have M ′

k,j ≤ const gk(n − m + 1) ≤ const(n − m + 1)r2λk
n−m+1 for some r2. In total,

vk ≤ constmr1(n−m+ 1)r2λj
mλk

n−m+1.
Suppose j is not in the component of k, that is λj < λk. For some ε small enough, we

have vk = gk(n) ≥ (λk − ε)n for any n large enough. However, it follows from m ≥ n/2
that vk is less than (λk − ε)n, contradiction.
3Here is the only place in this section that the polynomial bound of Theorem 5.3 is applied. We avoid
using the results from Section 5.1 with the intention to keep Sections 5.1 and 5.2 to be as independent
as possible. Otherwise, certain arguments could be easier.
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Therefore, both j, k are in the same component. By Proposition 5.30, one of the
branches of T0 has a bounded number of leaves. The conclusion follows. �

We now give a bound for gk(n) for k in a weakly self-dependent component.

Proposition 5.33. Given a vertex k in a weakly self-dependent component, then the
sequence gk(n) is weakly submultiplicative in the sense that gk(m+n) ≤ const gk(m)gk(n)
for any m,n. As a consequence, gk(n) ≥ constλk

n.

Proof. Let T be the tree associated to gk(n). By Corollary 5.32, there exist a leaf `
and a decomposition P = P1 ⊕ · · · ⊕ Pt−1 ⊕ Pt for P = (T, `) so that each |Pi| for i 6= t
is bounded and the number of leaves in Pt is at most n/2. The leaf ` is chosen by going
from the root in the bigger branch at each step, and when we reach the first subtree of
at most n/2 leaves, we assign an arbitrary leaf in the subtree to `.

If P = P ′ ⊕ P ′′, it follows from Corollary 5.13, Observation 5.14 and Corollary 5.15
that

gk(|P |) ≤ const gk(|P ′|)gk(|P ′′|).
By the decomposition P = P1 ⊕ · · · ⊕ Pt−1 ⊕ Pt, for each m ≥ n/2, there are P ′, P ′′

so that P = P ′ ⊕ P ′′, and |P ′| − (n − m) and |P ′′| − m are bounded. It follows from
Corollary 5.13 and Observation 5.14 that

gk(n) ≤ const gk(|P |) ≤ const gk(|P ′|)gk(|P ′′|) ≤ const gk(n−m)gk(m).

Let the final constant be K. We have Kgk(n) ≤ Kgk(n−m)Kgk(m), i.e., the sequence
{Kgk(n)}n is submultiplicative. By Fekete’s lemma, we have λk = infn

n
√
Kgk(n). The

conclusion follows. �

Proof of the lower bound. Now Theorem 5.11 is clear.
Proof of Theorem 5.11. Consider a minimal component C so that λk = λ for

k ∈ C. The minimality means that every component C ′ lower than C has λk′ < λ for
k′ ∈ C ′. It follows that C does not belong to the class of non-self-dependent components.
By Proposition 5.25, the component C is either strongly self-dependent or weakly self-
dependent. By Theorem 5.28 and Proposition 5.33, we have gk(n) ≥ constn−rλk

n =
constn−rλn for some r in both cases. The conclusion that g(n) ≥ gk(n) ≥ constn−rλn in
Theorem 5.11 follows. �





CHAPTER 6

Decidability and reducibility

The growth rate λ can be approximated to an arbitrary precision by Theorem 5.10.
However, we sometimes need an exact solution. Rosenfeld [5] shows that checking λ ≤ 1
is undecidable for the nonnegative setting by reducing the problem of checking ρ ≤ 1 for
the joint spectral radius ρ. Therefore, the notion of growth of bilinear maps can be seen
as a generalization of the joint spectral radius.

It should be noted that the problem of checking λ ≤ 1 is actually easier than the
problem of checking λ = 1 in the sense that the former problem can be reduced to the
latter one by adding an extra dimension that is always 1.

In this chapter, we provide another proof of the undecidability by Theorem 6.1 with a
simpler reduction using the observation that matrix multiplication is also a bilinear map.
The reduction is natural, and the products of the matrices can be found in an embedded
form in the resulting vectors. Note that it is still left open whether the problem of
checking λ ≤ 1 in the positive setting is undecidable. We prove its undecidability under
the assumption that it is undecidable to check ρ ≤ 1 for the joint spectral radius ρ of a
pair positive matrices in Section 6.6.

Suppose the coefficients of ∗ and the entries of s have no condition on the signs (they
can even be complex, i.e. the general setting). Rosenfeld [5] asks whether the problem of
checking if the system can produce a zero vector is decidable? A negative answer is given
in Theorem 6.3. It uses a similar construction to the reduction from checking ρ ≤ 1 to
checking λ ≤ 1, but reduces the problem of checking the mortality of a pair of matrices
instead. Another application of the construction is the reduction of the problem with
multiple operators and multiple starting vectors to the original problem, as in Section
6.5. This was first remarked by Rosenfeld in [5].

Checking if λ is actually a limit is also interesting problem, whose decidability was
asked by Rosenfeld in a correspondence. Theorem 6.5 shows that it is undecidable by
reducing the problem of checking λ ≤ 1. During the course, there is a transformation of
(∗, s) to a new system with the corresponding function g′(n) so that for every m ≥ 1 we
have g′(2m) = g(m) and g′(2m+1) = 0. As a related fact, we also give a transformation
so that the new system has the same growth rate as the original system but with a valid
limit λ, as in Section 6.4.

6.1. Checking λ ≤ 1 is undecidable

The reduction in the theorem below is quite important in the sense that its variants
appear throughout the chapter.

Theorem 6.1. The problem of checking if λ ≤ 1 for the nonnegative setting is
undecidable.

Proof. Consider the problem of checking if ρ({A,B}) ≤ 1 for the joint spectral
radius ρ({A,B}) of a pair of nonnegative matrices A,B in Rd×d, which is known to be
undecidable [6]. We reduce this problem to the problem of checking if λ ≤ 1 for the
bilinear system (∗, s) constructed as follows.

65
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We use some embedding of a d× d matrix C to a vector v in the space Rd2 , and allow
ourselves to write (C, i, j) to present a vector in Rd2+2, where C is embedded in the first
d2 dimensions and i, j are the two last dimensions.

Given a pair of matrices A,B in Rd, we consider the system (∗, s) with the (d2 + 2)-
dimensional vector s = (O, 1, 0) for the zero matrix O and ∗ : Rd2+2 × Rd2+2 → Rd2+2

presented by

(6.1)

C
i
j

 ∗

C ′

i′

j′

 =

CC ′ + ij′A+ ji′B
0
ii′

 ,

where CC ′ is the usual matrix multiplication. The key point here is that a matrix
multiplication in Rd is also a bilinear map in Rd2 × Rd2 → Rd2 .

Let us write down some beginning combinations (of up to 3 instances of s):
s = (O, 1, 0)

s ∗ s = (O, 0, 1)

s ∗ (s ∗ s) = (OO+ 1 · 1 · A+ 0 · 0 ·B, 0, 0) = (A, 0, 0)

(s ∗ s) ∗ s = (OO+ 0 · 0 · A+ 1 · 1 ·B, 0, 0) = (B, 0, 0).

(6.2)

Let n be the number of instances of s in a combination with the resulting vector v.
Obviously, vd2+1 (the index of i) is nonzero for only n = 1, and vd2+2 (the index of j)
is nonzero for only n = 2. It follows that the sum ij′A + ji′B in (6.1) is nonzero only
for n = 3. In other words, whenever n ≥ 4, the expression for the first d2 dimensions in
(6.1) has the recursive form CC ′. Together with (6.2), we have the matrix form M of the
first d2 dimensions is the product of matrices from {O, A,B}. If M is not zero, then M
is the product of matrices from {A,B} where the number of instances mA,mB of A,B
respectively correspond to the number of the occurrences of s ∗ (s ∗ s) and (s ∗ s) ∗ s, and
3mA + 3mB = n. Note that the last 2 dimensions of these combinations are always zero,
due to n ≥ 3.

On the other hand, for any sequence of matrices M1, . . . ,Mt ∈ {A,B}, the combina-
tion

(S1 ∗ (S2 ∗ (S3 ∗ (· · · ∗ (St−1 ∗ St) . . . ),

where Sk = (s ∗ (s ∗ s)) if Mk = A and Sk = ((s ∗ s) ∗ s) if Mk = B, for k = 1, . . . , t,
gives a vector whose first d2 dimensions embed the matrix M1 . . .Mt, and the last two
dimensions are zero.

It follows from the two above directions that
g(3t) = max

M1,...,Mt∈{A,B}
‖M1 . . .Mt‖,

where ‖ · ‖ denotes the maximum norm.
Also, for n ≥ 3 and n not divisible by 3, we have

g(n) = 0.

Therefore,
λ = 3

√
ρ({A,B}).

We have reduced the problem of the joint spectral radius to the problem of the growth
rate. The conclusion on the undecidability follows. �

The variant of checking λ = 1 is also undecidable due to the undecidability of the
corresponding problem of checking ρ = 1 for the joint spectral radius. In fact, we can
reduce the problem of checking λ ≤ 1 to the problem of checking λ = 1 by adding an
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extra dimension that is always 1. However, the question for ρ ≥ 1 still remains open (see
[14, Section 2.2.3] for a discussion):

Conjecture 6.2 (Blondel and Tsitsiklis 2000 [6]). It is undecidable to check if ρ ≥ 1
for the joint spectral radius ρ.

The conjecture has applications in the stability of dynamical systems. If it holds, then
the problem of checking λ ≥ 1 is also undecidable. Note that the problems of comparing ρ
with 1 for a pair of matrices and a set of several matrices are equivalent, see [6]. However,
the reduction from the problem of checking ρ(Σ) ≤ 1 for a set of matrices Σ to the one
for ρ({A,B}) ≤ 1 in [6] does not have the strong form ρ(Σ) = ρ({A,B})t for some t as
in the reduction of Theorem 6.1, where λ = 3

√
ρ({A,B}). This property can, however,

be achieved for the growth of bilinear maps by an appropriate variation of the reduction
in Theorem 6.1. Indeed, for any set Σ of 2 or more matrices, we can define a bilinear
system with growth rate λ = t

√
ρ(Σ) for some t. We give an example with a set Σ of 5

matrices M1, . . . ,M5 and leave the verification and the problem for higher1 numbers of
matrices to the readers: Consider the system (∗, s) in Rd2+4 with s = (O, 1, 0, 0, 0) and ∗
presented by

C
i
j
k
`

 ∗


C ′

i′

j′

k′

`′

 =


CC ′ + jj′M1 + ik′M2 + i`′M3 + ki′M4 + `i′M5

0
ii′

ij′

ji′

 .

The growth rate is λ = 4
√
ρ(Σ). (Hint for verification: |Σ| is 5 because this is the number

of combinations of 4 instances of s. The combinations yields the 5 matrices of Σ in the
first d2 dimensions.)

A corollary of the above exercise is that: Since g(n) ≤ constnrλn for some r by
Theorem 5.3, it follows that ‖Σn‖ ≤ constnr′ρ(Σ)n for some r′. Although the latter
bound is shown in an easier way in Theorem 4.4, the point here is that the joint spectral
radius can apply results from the growth of bilinear maps, since the former is an instance
of the latter.

6.2. Checking the mortality is undecidable

The problems of other properties of a pair of matrices can be also reduced to the
corresponding ones of a bilinear system. The following theorem is one example.

Theorem 6.3. When there is no condition on the signs of the coefficients and the
starting entries, the problem of checking if the system can produce a zero vector is unde-
cidable.

Proof. We reduce to this problem the problem of checking if a pair of matrices A,B
is mortal, that is checking if there exists a sequence of matrices M1, . . . ,Mk drawn from
{A,B} for some k so that M1 . . .Mk is a zero matrix. The problem of mortality for a
pair of matrices is known to be undecidable [31].

For the space Rd of A,B, we consider the space Rd2+2 with an embedding of d × d
matrices into the first d2 dimensions. One may write (C, i, j) where C is a matrix to
present a vector in Rd2+2.

1The construction covers also the cases of 3 and 4 matrices, e.g., for 3 matrices we set M3 = M4 = M5

(or set M4 = M5 = O).
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Consider the system (∗, s) with the starting vector s = (I, 1, 0) where I is the identity
matrix, and ∗ defined byC

i
j

 ∗

C ′

i′

j′

 =

CC ′ + ij′(A− I) + ji′(B − I)
0
ii′

 .

Some begining combinations are
s = (I, 1, 0)

s ∗ s = (I, 0, 1)

s ∗ (s ∗ s) = (I+ (A− I), 0, 0) = (A, 0, 0)

(s ∗ s) ∗ s = (I+ (B − I), 0, 0) = (B, 0, 0).

(6.3)

Consider a vector v obtained by combining n instances of s. It follows from vd2+1 = 0
for n > 1 that vd2+2 = 0 for n > 2. The consequence is that for n > 3, the first d2

dimensions of v, denoted by v̄, are
CC ′ + ij′A+ ji′B = CC ′.

Together with (6.3), the matrix form of v̄ for any n presents a product of matrices
from {I, A,B}. It follows that if v = 0 for some combination, then {A,B} is mortal.

On the other hand, if {A,B} is mortal with M1 . . .Mk = 0, the combination
(S1 ∗ (S2 ∗ (S3 ∗ (· · · ∗ (St−1 ∗ St) . . . ),

where St = (s ∗ (s ∗ s)) if Mt = A, and St = ((s ∗ s) ∗ s) if Mt = B, for t = 1, . . . , k, is
zero.

The equivalence means that we can reduce the problem of checking the mortality of a
pair of matrices to the problem of checking if a bilinear system can produce a zero vector.
The conclusion follows. �

6.3. Checking if the limit exists is undecidable

Before showing that it is undecidable to check if the growth rate is a limit, we give
the following nice transformation.

Proposition 6.4. For every bilinear system (∗, s) with the function g(n) we can
construct (∗′, s′) so that for every m ≥ 1 we have g′(2m + 1) = 0 and g′(2m) = g(m),
where g′(n) is the function for (∗′, s′).

Proof. Let Rd be the space of (∗, s). We write (x, i) for a vector x ∈ Rd and a
number i ∈ R to present a vector in Rd+1. Consider (∗′, s′) with the (d+ 1)-dimensional
vector s′ = (0, 1) where 0 denotes the zero vector and ∗′ : Rd+1×Rd+1 → Rd+1 presented
by

(6.4)
(
x
i

)
∗′
(
y
j

)
=

(
ijs+ x ∗ y

0

)
.

Let v be the vector obtained from a combination of n instances of s′ (using ∗′). For
n = 1, we have v = s′ = (0, 1). For n = 2, we have v = s′ ∗ s′ = (s, 0). When n ≥ 3, the
summand ijs in (6.4) is zero since either i or j is zero, for which we have the recursive
form x ∗ y for the first d dimensions. It follows that the first d dimensions v̄ of v are a
combination of vectors in {0, s} (using ∗). If v̄ is nonzero, then v̄ is a combination of some
m instances of s, with 2m = n. Since vd+1 = 0 for any n ≥ 2, we have g′(2m) ≤ g(m).
Considering odd n > 1, we start with s ∗ (s ∗ s) = (s ∗ s) ∗ s = (O, 0) for n = 3. By
induction, one can show that g′(2m+ 1) = 0 for any m ≥ 1. On the other hand, for any
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combination of m instances of s (using ∗) that is associated with g(m), we also have the
corresponding combination of 2m instances of s′ (using ∗′) by replacing each instance of
s by (s′ ∗ s′). The resulting vector of the former combination is the same as v̄ for the
resulting vector v of the latter combination. It follows that g′(2m) = g(m). �

Theorem 6.5. Checking the existence of the limit of n
√

g(n) is undecidable.

Proof. We will reduce the problem of checking if λ = lim supn→∞
n
√

g(n) ≤ 1 for a
system (∗, s) to the problem of checking the existence of the limit of another system.

By Proposition 6.4, we can construct a system (∗′, s′) so that for every m ≥ 1 we
have g′(2m + 1) = 0 and g′(2m) = g(m). Let the space of (∗′, s′) be Rd′ , we construct
∗′′ : Rd′+1 × Rd′+1 → Rd′+1 and s′′ ∈ Rd′+1 so that the system (∗′, s′) is brought into the
first d′ dimensions of the new system (∗′′, s′′) and

s′′d′+1 = 1, (x ∗′′ y)d′+1 = xd′+1yd′+1.

The last dimension is obviously always 1. It follows that g′′(2m+1) = 1 and g′′(2m) =

max{g(m), 1} for m ≥ 1. It means lim infn→∞
n
√
g′′(n) = 1 since g′′(n) ≥ 1 for every n

and lim infn→∞
n
√

g′′(n) ≤ lim infm→∞
2m+1
√
g′′(2m+ 1) = 1. Meanwhile,

λ′′ = lim sup
n→∞

n
√
g′′(n) = max

{
lim sup
n→∞

n
√

g′(n), lim sup
n→∞

n

√
g′′d′+1(n)

}
= max{λ, 1}.

Therefore, the limit of n
√

g′′(n) exists if and only if λ ≤ 1. The reduction is finished, and
the conclusion on the undecidability follows. �

6.4. Transformation to make the limit valid

Beside the transformation in Proposition 6.4, we also present the following transfor-
mation, as an application of Theorem 5.3. While the former transformation makes the
limit not valid, the latter ensures the opposite.

Proposition 6.6. For every bilinear system (∗, s) we can construct (∗′, s′) so that
(∗′, s′) has the same growth rate as (∗, s) and the limit of n

√
g′(n) exists, where g′(n) is

the function for (∗′, s′).
Proof. We assume λ > 0, otherwise it is trivial. (Note that λ > 0 if and only if the

dependency graph has a cycle.)
For the space Rd of (∗, s), consider ∗′ : Rd+2 × Rd+2 → Rd+2, s′ ∈ Rd+2 so that the

coefficients of ∗ and the entries of s are brought to the first d dimensions of (∗′, s′). We
let s′d+1 = s′d+2 = α where 0 < α ≤ λ. We can take any positive lower bound of λ, e.g.
by Theorem 5.3. (In fact, the value of s′d+1 does not matter.) The operator ∗′ is defined
so that

(x ∗′ y)d+1 =
d∑

i=1

xiyd+2

and
(x ∗′ y)d+2 = xd+2yd+2.

The (d + 2)-th entry of any vector obtained from combining n instances of s′ is αn.
It follows that for any index i and any δ ≥ 1, we have

g′d+1(n+ δ) ≥ αδgi(n)

by considering the composition tree where the left branch is associated with gi(n) and
the right branch is any tree of δ leaves. This means that for a bounded δ, we have
(6.5) g′(n+ δ) ≥ g′d+1(n+ δ) ≥ max

i
αδgi(n) = αδg(n) = const g(n).
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On the other hand,
g′d+1(n) ≤ d max

1≤i≤d
max

1≤δ≤n−1
αδgi(n− δ),

which implies

lim sup
n→∞

n

√
g′d+1(n) ≤ max{α, lim sup

n→∞
n

√
max

i
gi(n)} = max{α, λ} = λ.

It follows that
lim sup
n→∞

n
√
g′(n) ≤ λ.

For any linear pattern P with the associated matrix M and any index i, we prove
that
(6.6) lim inf

n→∞
n
√

g′(n) ≥ |P |
√
Mi,i.

Indeed, we pick a fixed n0 so that gi(n0) > 0 with the associated tree T0. For any
n large enough, we write n = q|P | + n0 + r so that 0 ≤ r < |P |. Consider the pattern
P q with the associated matrix M q. Since (M q)i,i ≥ (Mi,i)

q, the i-th entry of the vector
associated to P q ⊕ T0 is at least a constant times (Mi,i)

q. As r is bounded and P q ⊕ T0

has q|P |+ n0 leaves, it follows from (6.5) that
g′(n) ≥ const g(n− r) ≥ const gi(q|P |+ n0) ≥ const(Mi,i)

q.

As n− q|P | is bounded, we have proved (6.6). It follows that

lim inf
n→∞

n
√

g′(n) ≥ sup
linear pattern P

max
i

|P |
√
M(P )i,i = λ,

where the equality is due to Theorem 5.3.
In total, we have the limit

lim
n→∞

n
√
g′(n) = lim inf

n→∞
n
√

g′(n) = lim sup
n→∞

n
√
g′(n) = λ. �

Assume Conjecture 6.2 holds, that is checking ρ ≥ 1 and checking λ ≥ 1 are unde-
cidable, we give another approach to the undecidability of the problem of checking if the
limit of n

√
g(n) exists, as an application of Proposition 6.6.

Given a system (∗, s), let the system (∗′, s′) obtained from Proposition 6.6 be in
the space Rd′ . Consider ∗′′ : Rd′+2 × Rd′+2 → Rd′+2 and s′′ ∈ Rd′+2 where the first d′

dimensions are deduced from (∗′, s′). We let s′′d′+1 = 1, s′′d′+2 = 0, and

(x ∗′′ y)d′+1 = xd′+2yd′+2, (x ∗′′ y)d′+2 = xd′+1yd′+1.

We can see that the last 2 dimensions are independent of the remaining dimensions,
and max{g′′d′+1(n), g

′′
d′+2(n)} is 0 if n is divisible by 3 and it is 1 otherwise, where g′′ is

the function for (∗′′, s′′). It follows that

lim sup
n→∞

n
√

g′′(n) = max

{
lim sup
n→∞

n

√
max{g′′d′+1(n), g

′′
d′+2(n)}, lim sup

n→∞

n
√
g′(n)

}
= max{1, λ}.

Meanwhile,
lim inf
n→∞

n
√

g′′(n) ≥ lim inf
n→∞

n
√

g′(n) = lim
n→∞

n
√
g′(n) = λ,

and since g′′(3m) = g′(3m) for any m, we have

lim inf
n→∞

n
√

g′′(n) ≤ lim inf
m→∞

3m
√

g′′(3m) = lim inf
m→∞

3m
√
g′(3m) = lim

n→∞
n
√

g′(n) = λ.
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In total, lim infn→∞
n
√

g′′(n) = λ. It follows that we have reduced the problem of checking
λ ≥ 1 to the problem of checking if the limit of n

√
g′′(n) exists. Therefore, the latter

problem is undecidable, under the assumption on the undecidability of λ ≥ 1.

6.5. Multiple operators and multiple starting vectors

Rosenfeld [5] made a remark that the problem of the bilinear system does not be-
come harder when we allow multiple operators and multiple starting vectors. We give
reductions that are similar to those in Section 6.1.

The construction in Section 6.1 is well suited for reducing the problem for (∗, {s, s′})
to the original problem. By the problem for (∗, {s, s′}) we mean the problem where we
can choose either s or s′ in the place of each s instead of fixing the vector s. The two
vectors s, s′ play the roles of A,B in the construction. We rewrite it formally without
repeating the verification.

For a bilinear map ∗ : Rd × Rd → Rd and two vectors s, s′ ∈ Rd, consider the system
(•, u) with the (d+ 2)-dimensional vector u = (0, 1, 0) where 0 is the d-dimensional zero
vector and • : Rd+2 × Rd+2 → Rd+2 presented byw

i
j

 •

w′

i′

j′

 =

w ∗ w′ + ij′s+ ji′s′

0
ii′


By the same analysis as in Theorem 6.1, the growth rate of (•, u) is the cube root of

the growth rate of (∗, {s, s′}).
Using the idea of the previous construction, we can reduce the problem for ({∗, ∗′}, s)

to the original problem. By the problem for ({∗, ∗′}, s) we mean the problem where we
can choose either ∗ or ∗′ in the place of each instance of ∗ instead of fixing ∗.

For two bilinear maps ∗, ∗′ : Rd × Rd → Rd and a vector s ∈ Rd, consider the system
(•, u) with the (3d+2)-dimensional vector u = (s, s,0, 1, 0) where 0 is the d-dimensional
zero vector and • : R3d+2 × R3d+2 → R3d+2 presented by

x
y
w
i
j

 •


x′

y′

w′

i′

j′

 =


w ∗ w′

w ∗′ w′

jx′ + yj′

0
ii′

 .

We sketch the approach: For any vector v obtained from combining n instances of u
using •, if v[2d+1,3d] 6= 0 then n = 5k + 3 for some k. Also, if v[1,d] or v[d+1,2d] is not a
zero vector, then n = 5k + 1 for some k. The growth rate of (•, u) is the fifth root of
the growth rate of ({∗, ∗′}, s). The verification is similar to that in Theorem 6.1 and we
leave it to the readers.

A construction for a higher number of starting vectors or a higher number of bilinear
operators, or both, can be established similarly by introducing more dimensions. We
leave it to the readers as an exercise since the details would be tedious (one may consult
the construction for several matrices in Section 6.1).

In conclusion, introducing more vectors and more operators does not make the prob-
lem any harder.

6.6. Conditional undecidability of checking λ ≤ 1 in the positive setting

As we can reduce the problem of checking ρ ≤ 1 for the joint spectral radius ρ to the
problem of checking λ ≤ 1 for the growth of bilinear maps in the nonnegative setting, one
may wonder if there is a similar reduction for the positive setting, where all the entries
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of s have to be positive. In this section, we give such a reduction, which implies the
undecidability of checking λ ≤ 1 in the positive setting under the assumption that the
following conjecture holds.2

Conjecture 6.7. It is undecidable to check ρ({A,B}) ≤ 1 for the joint spectral
radius ρ of a pair of positive matrices A,B.

The reduction is almost the same as the one in Section 6.1 but with some ideas of the
reduction in Section 6.2 and a more complicated argument.

We reuse the convention of embedding a matrix into a vector in Section 6.1. For a pair
of d×d positive matrices A,B, we consider the system (∗, s) with the (d2+2)-dimensional
vector s = (E, 1, ε) where E denotes3 the d× d matrix with all entries set to ε and ε > 0

is small enough. The operator ∗ : Rd2+2 × Rd2+2 → Rd2+2 is presented by

(6.7)

C
i
j

 ∗

C ′

i′

j′

 =

CC ′ + ji′X + ij′Y
0
ii′

 ,

where X,Y, ε satisfy some requirements that are given in (6.8) below.
We denote by Γ(v) the matrix form of the first d2 dimensions of a vector v. Let us

analyze some beginning combinations of s:
Γ(s ∗ s) = E2 + εX + εY,

Γ((s ∗ s) ∗ s) = (E2 + εX + εY )E+X,

Γ(s ∗ (s ∗ s)) = E(E2 + εX + εY ) + Y.

We need X,Y be so that
Γ((s ∗ s) ∗ s) = A,

Γ(s ∗ (s ∗ s)) = B,

X ≥ 0, Y ≥ 0.

(6.8)

The requirements X ≥ 0, Y ≥ 0 are for the coefficients of ∗ to be nonnegative.
Proposition 6.8. Such X,Y always exist for any ε small enough.
Proof. The first two requirements of (6.8) are equivalent to

ε(X + Y )E+X = A− E3(6.9)
εE(X + Y ) + Y = B − E3.(6.10)

Let ΣM denote the sum of all entries of a matrix M . Taking the sum of all entries in two
sides of (6.9) and (6.10), we obtain

dε2(ΣX + ΣY ) + ΣX = ΣA − d4ε3

dε2(ΣX + ΣY ) + ΣY = ΣB − d4ε3.

The solutions of ΣX ,ΣY are

ΣX =
1

2

(
ΣA − ΣB +

1

1 + 2dε2
(ΣA + ΣB − 2d4ε3)

)
(6.11)

ΣY =
1

2

(
ΣB − ΣA +

1

1 + 2dε2
(ΣA + ΣB − 2d4ε3)

)
.(6.12)

2During a conversation after the defense of the thesis, Rosenfeld suggested that the conjecture seems to
follow from a variant of the problem Probabilistic Finite Automaton Emptiness in an upcoming note by
Rote, using the technique in [6].
3E here is the capital version of ε, for the mnemonic purpose.
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Taking the sum of the entries in the j-th column of both sides in (6.9) for some j, we
obtain

ε2(ΣX + ΣY ) + ΣX,Cj
= ΣA,Cj

− d3ε3,

where
∑

M,Cj
denotes the sum of the entries in the j-th column of a matrix M . This

implies
(6.13) ΣX,Cj

= ΣA,Cj
− d3ε3 − ε2(ΣX + ΣY ).

The value of ΣY,Cj
can be computed by taking the sum of the entries in the j-th column

of both sides in (6.10):
dε2(ΣX,Cj

+ ΣY,Cj
) + ΣY,Cj

= ΣB,Cj
− d3ε3,

which implies

(6.14) ΣY,Cj
=

1

1 + dε2
(ΣB,Cj

− d3ε3 − dε2ΣX,Cj
).

Considering the (i, j)-th entry of both sides in (6.10), we have
ε2(ΣX,Cj

+ ΣY,Cj
) + Yi,j = Bi,j − d2ε3,

which implies
(6.15) Yi,j = Bi,j − d2ε3 − ε2(ΣX,Cj

+ ΣY,Cj
).

If we substitute (6.11), (6.12), (6.13) and (6.14) into (6.15), we get an explicit expres-
sion for Yi,j in terms of ε, A and B. We can check that Yi,j is well-defined and depends
continuously on ε. If ε = 0 then Yi,j = Bi,j > 0. It follows that when ε > 0 is small
enough, we also have Yi,j > 0. The entries Xi,j are computed likewise, which are also
positive, due to the symmetry of rows and columns. The readers can check for themselves
that these values are indeed the solution of the system (6.9) and (6.10). �

Remark. Note that X,Y can be shown to be positive as in the proof. However, the
positivity here does not make much sense as there are already some zero coefficients in
the representation of ∗ in (6.7).

Denote M1 = Γ(s) = E and M2 = Γ(s ∗ s) = E2 + εX + εY , we have both M1 < E′

and M2 < E′ where E′ is the matrix of all entries ε′ that depends on ε. The value ε′ can
be made arbitrarily small by reducing ε.

We make the following observation, whose verification is simple and left to the readers.

Proposition 6.9. The matrix form Γ(v) for any vector v obtained by combining n
instances of s is the product of some matrices from {A,B,M1,M2}. In particular, if
mA,mB,m1,m2 are respectively the numbers of instances of A,B,M1,M2, then m1 +
2m2 +3(mA +mB) = n. On the other hand, for any product of m matrices from {A,B},
we have a combination for n = 3m so that Γ(v) is the product.

Since ε′ can be made arbitrarily small, the number m1,m2 should be made minimal.
It follows that λ = 3

√
ρ({A,B}) like in Theorem 6.1. Therefore, the problem of checking

λ ≤ 1 is undecidable in the positive setting under the assumption that Conjecture 6.7
holds.

Remark. In contrast to the situation in Section 6.1, the limit of n
√

g(n) here exists,
because this is always the case for a positive setting by Corollary 5.9.





CHAPTER 7

Linear and multilinear patterns

The notion of linear pattern is a useful tool to study the growth of bilinear maps, as
we have seen in Chapter 5. We revisit this matter and discuss the original motivation
of linear patterns by their rates. The growth rate of a system may be recognized as the
rate of a linear pattern. However, there exist cases where no linear pattern attains the
growth rate. This chapter also extends the notion of linear pattern to bilinear patterns
and beyond that, by allowing more leaves to be marked and replaced, in the hope that
they may cover the growth rate in more cases, or even better in every case.

7.1. Linear patterns and finiteness property

The growth rate λ was expressed in [8] for the first time in a different form as in
Theorem 7.2 follows. We need a definition first.

Definition 7.1. The rate of a linear pattern P , denoted by λ̄P , is the |P |-th root of
the spectral radius λP = ρ(M(P )) of M(P ).

Theorem 7.2. We have
λ = sup

linear pattern P
λ̄P .

We provide a quick verification using the results we have proved.

Proof. It follows from Theorem 5.3 that

λ = sup
linear pattern P

max
i

|P |
√
M(P )i,i

= sup
linear pattern P

sup
n

max
i

n|P |
√

[M(P )n]i,i

= sup
linear pattern P

|P |

√
sup
n

max
i

n

√
[M(P )n]i,i

= sup
linear pattern P

|P |
√
ρ(M(P ))

= sup
linear pattern P

λ̄P .

We obtain the second equality because M(P )n is the matrix associated with P n and
|P n| = n|P |. The next to last equality is due to Theorem 4.4 for a single matrix. �

We would note that the formula in Theorem 4.4 for a single matrix can be deduced
from Theorem 5.3 about bilinear systems as follows.

Theorem 7.3. For every nonnegative matrix A, the spectral radius ρ(A) can be written
as

ρ(A) = sup
n

max
i

n

√
(An)i,i.

75
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Proof. The direction that ρ(A) ≥ supnmaxi
n
√

(An)i,i is trivial. We prove the other
direction.

Suppose A is a d × d matrix. Consider an embedding of any d × d matrix B to a
vector v in Rd2 by the function Γ so that

B = Γ(v), v = Γ−1(B).

Let the system (∗, s) in the space Rd2 be so that s = Γ−1(A) and
u ∗ v = Γ−1(Γ(u)Γ(v)).

One can see that every combination of n instances of s gives Γ−1(An). Therefore,
λ = ρ(A).

On the other hand, if P is a linear pattern with |P | = m, then the relation between
the vector at the root v and the vector at the marked leaf u is

Γ(v) = AtΓ(u)Am−t

for some 0 ≤ t ≤ m. In particular, for every i, j, one can write

Γ(v)i,j =
∑
k,`

(At)i,kΓ(u)k,`(A
m−t)`,j =

∑
k,`

Γ(u)k,`(A
t)i,k(A

m−t)`,j.

Let M be the d2 × d2 matrix so that v = Mu. The diagonal M(i,j),(i,j) is

(At)i,i(A
m−t)j,j.

It follows from Theorem 5.3 that

ρ(A) = λ = sup
m

max
linear pattern P

|P |=m

max
i,j

m

√
M(P )(i,j),(i,j)

≤ sup
m

max
0≤t≤m

max
i,j

m

√
(At)i,i(Am−t)j,j

≤ sup
m

max
0≤t≤m

max
i,j

max

{
t

√
(At)i,i,

m−t

√
(Am−t)j,j

}
≤ sup

n
max

i

n

√
(An)i,i. �

In fact, one can also deduce Theorem 4.4 about the joint spectral radius using this
method with the construction in Section 6.1. It is left as an exercise for the readers.

The rate of a linear pattern is the original motivation for the proof of the limit λ in
the positive setting in [8]. Although Theorem 7.2 is not technically more important than
Theorem 5.3, the meaning of the former is worth mentioning: Consider the sequence of the
trees of P 1, P 2, . . . , the vectors v(1), v(2), . . . associated with these trees are Ms,M2s, . . .
for M = M(P ). As s > 0, the growth λP = limn→∞

n
√

‖v(n)‖ of the norms ‖v(n)‖ is the
spectral radius of M . However, a lower bound on the growth rate should be ρ(M) after
being normalized, by taking the |P |-th root, as the number of leaves in P i grows by |P |
in each step, that is λ ≥ λ̄P = |P |

√
λP for any P . In other words, λ ≥ supP λ̄P . The proof

in [8] manages to show that this is also an upper bound for λ.
Representing the growth rate in terms of the rates of linear patterns gives some new

insight. While the supremum is almost never attained in the form of Theorem 5.3 (as
rare as in the case of Theorem 4.4), it is quite common that some linear pattern attains
the growth rate in the form of Theorem 7.2, that is λ = λ̄P for some P . For example, the
system in Theorem 2.1 has the growth rate attained by a linear pattern where the tree has
two leaves with the marked leaf on the left. A more complicated example is the problem
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of the maximum number of minimal dominating sets in a tree of n leaves, as given in the
introductory chapter. The underlying optimal trees are composed of beautiful snowflakes
(and a linear pattern can generate these trees), see [1].

We now answer the following question in the negative.
Is the growth rate always attained by a linear pattern, like Theorem
3.2?

We first relate the coverage of the rates of linear patterns to the finiteness property of
a set of matrices. A set of matrices is said to have the finiteness property if there exists
some m so that the joint spectral radius of the set is the m-th root of the spectral radius
of the product of some m matrices from the set.

Given a pair of matrices A,B and the associated bilinear system that is constructed
as in Section 6.1, the argument in the proof of Theorem 6.1 gives

λ = 3
√
ρ({A,B}).

Suppose the pair A,B has the finiteness property, i.e., there exists a sequence M1, . . . ,Mm

where each matrix is in {A,B} so that m
√
ρ(M1 . . .Mm) = ρ({A,B}). We can then build

a pattern P = (T, `) so that λ̄P = 3
√

ρ({A,B}). Indeed, if T ′ is the tree of 3m leaves
that is associated to M1 . . .Mm (as in Theorem 6.1), we can let T be the tree of 3m+ 1
leaves where one branch is T ′ and the other branch is the marked leaf `. The readers can
check that λ̄P = 3

√
ρ({A,B}).

On the other hand, suppose the pair A,B does not have the finiteness property, e.g.
the class of pairs in [32], or an explicit instance in [18]. In this case, there is no linear
pattern where λ̄P = 3

√
ρ({A,B}), since otherwise, by considering the sequence of P t for

t = 1, 2, . . . , we would have a periodic sequence of products of matrices whose norms
follow the rate ρ({A,B}) (with respect to the number of matrices).

It means that a pair of matrices has the finiteness property if and only if the corre-
sponding bilinear system has the growth rate attained by a linear pattern. Therefore, we
have bilinear systems where no linear pattern attains the growth rate. The matter is that
the entries of the example in [18] have a quite complicated nature, and the verification
is not trivial. Therefore, we give the following example where the entries and coefficients
are binary, and the verification is not complicated. It is actually the case for the problem
of pruned trees in the introductory chapter. The result first appeared in [8].

Theorem 7.4. If s = (1, 1) and

x ∗ y = (x1y1 + x2y2, x2y2),

then λ > λ̄P for every linear pattern P .

For this system, the value of g(n) can be found in the vectors associated with the
perfect binary trees (for n being a power of 2), see [2]. They cannot be generated by any
linear pattern.

Proof. Consider a linear pattern P = (T, `) with its matrix[
a b
c d

]
.

It is verifiable that a ≥ 1, b ≥ 1, c = 0 and d = 1 (the readers can check for themselves,
e.g. by induction through the manipulations of patterns and matrices throughout the
proof). The spectral radius of the matrix can be also seen to be a. Therefore, the rate is
the |P |-th root of a.
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Consider some two patterns P1 = (T1, `1) and P2 = (T2, `2) with their associated
matrices respectively [

a1 b1
0 1

]
,

[
a2 b2
0 1

]
.

Their product is [
a1a2 a1b2 + b1
0 1

]
,

which is the matrix associated with the pattern P = P1 ⊕ P2.
We have

(7.1) λ̄P ≤ max{λ̄P1 , λ̄P2},
since |P | = |P1|+ |P2| and the spectral radius of the product is a1a2.

Suppose there is a pattern P with λ̄P = λ, let P ∗ = (T ∗, `∗) be a pattern with the
minimal number of leaves among all such patterns. By (7.1), we can see that P ∗ is not
decomposable into two patterns in that way. In other words, one child of the root of T ∗

is just the marked leaf `∗.
Let the other branch than the branch of the marked leaf, denoted by T ′, have the

associated vector (a, 1), then the matrix associated with P ∗ is[
a 1
0 1

]
.

We have λ̄P ∗ = m
√
a, where m is the number of leaves in T ′.

Let T ′′ be a tree where each branch of the root is a copy of T ′. The vector associated
with T ′′ is (a2 + 1, 1). Since 2m

√
a2 + 1 > m

√
a, if we replace T ′ in T ∗ by T ′′, we obtain

another pattern with a higher rate than λ̄P ∗ , a contradiction. �

The relation JSR ≤ GRBS seems to suggest that certain phenomena of GRBS may
be easier to construct than the similar ones of JSR. In fact, the finiteness conjecture,
which claims that every set of matrices has the finiteness property, is still open for the
case of rational (and equivalently binary) matrices, though already wrong for the general
matrices, see [19]. Note that if we have a reduction from GRBS to JSR that is as natural
as the one in Section 6.1 and keeps the resulting vectors in some form in the resulting
matrices, then we can obtain a set of binary matrices without the finiteness property.

When the entries of s and the coefficients of ∗ are integers, the entries of M(P ) for
any linear pattern P are also integers, that is the spectral radius λP of M(P ) and the
rate λ̄P are algebraic. It follows that the growth rate λ is algebraic whenever there is a
linear pattern attaining λ. On the other hand, the growth rate

λ = exp

(∑
i≥1

1

2i
log

(
1 +

1

a2i

))
= 1.502836801 . . .

where a0 = 1 and am = 1+ a2m−1 for m ≥ 1 of the system in Theorem 7.4 (see [2]) seems
to be transcendental. The fact that no linear pattern attains the growth rate in this case
suggests the following question.

Question 7.5. Suppose the entries of s and the coefficients of ∗ are integers, is the
following true: The growth rate λ is algebraic if and only if there exists a linear pattern
attaining λ?

Note that one direction is trivial as discussed: If there exists a linear pattern P
attaining λ, then the growth rate λ = λ̄P = |P |

√
ρ(M(P )) is algebraic. Chapter 2 provides

several examples of a linear pattern attaining the growth rate. However, some algebraic
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roots are still unknown to be constructible or not, e.g. the root
√
5−1
2

, which is closely
related to the golden ratio.

7.2. Bilinear and multilinear patterns

As the optimal composition trees for the system in Theorem 7.4 are more or less
symmetric (and are perfect binary trees when n is a power of 2), we extend the notion
of linear pattern to cover the case by allowing one more leaf to be marked as follows.

Definition 7.6. A bilinear pattern P = (T, `1, `2) is a tree P with two marked leaves
`1, `2 with the convention that the leaf `1 is on the left to `2 (they do not need to have the
same father). Let |P | denote the number of leaves excluding the marked leaves. We can
observe that the vector at the root depends on the vectors at the two leaves by a bilinear
map •.

Now we need to define the rate λ̄P of a bilinear pattern P . It has the motivation
from the following behaviour. Let T0 be the tree of a single leaf, we define Tn for n ≥ 1
be the tree obtained from T by replacing each marked leaf of T by an instance of Tn−1.
The vector associated with T0 is v(0) = s and the vector associated with Tn for n ≥ 1
is v(n) = v(n−1) • v(n−1). The norm of the sequence v(n) grows doubly exponentially and
the rate is λP = limn→∞ ‖v(n)‖ 1

2n , since ‖u ∗w‖ ≤ const ‖u‖‖w‖ for any two vectors u,w,
that is ‖v(n)‖ ≤ const ‖v(n−1)‖2. However, the growth with respect to the number of
leaves should be the normalized to the (|P | + 1)-th root, that is λ̄P = |P |+1

√
λP . Indeed,

the number of leaves xn in Tn is actually (|P |+1)2n − |P |, which satisfies the recurrence
xn = 2xn−1+ |P | with x0 = 1. As recurrences of this type will appear again, we state the
following observation.

Observation 7.7. Let the sequence {xn}n be so that x0 = k and xn = mxn−1 + t
(with m 6= 1) for n ≥ 1, where k and t are some constants, we have

xn =

(
k +

t

m− 1

)
mn − t

m− 1
.

The rate of a bilinear pattern plays the role of a lower bound for the growth rate. One
may wonder if the growth rate can be the supremum of the rates of all bilinear patterns,
as in Theorem 7.2 for linear patterns. The following theorem is an answer to such a
question, however under a condition on the dependency graph.

Theorem 7.8. If the dependency graph is strongly connected, then we have the fol-
lowing representation of the growth rate:

λ = sup
bilinear pattern P

λ̄P .

Proof. Consider any bilinear pattern P = (T, `1, `2). Let • be the associated bilinear
map with P , that is the vector v at the root can be written as v = s • s. It follows that
there exist some i, j, k so that ‖v‖ ≤ const ĉ

(k)
i,j for the coefficients ĉ of •. Let Pi→j denote

a linear pattern so that the number of leaves is bounded and the associated matrix M
has Mi,j > 0. Replacing `1 by Pi→k and `2 by Pj→k, we obtain from P a new bilinear
pattern P ′ with the marked leaves being the marked leaves of Pi→k and Pj→k and the
associated bilinear map •′ having the coefficient ĉ

′(k)
k,k ≥ ĉ

(k)
i,j M

(1)
i,k M

(2)
j,k = const ĉ

(k)
i,j where

M (1),M (2) are respectively the matrices associated with Pi→k and Pj→k. It follows that
λP ′ ≥ const ‖v‖. Note that |P ′| − |P | is bounded.

For any ε > 0, consider a tree T of n leaves for a large enough n with the associated
vector v having ‖v‖ > (λ − ε)n. Taking any two leaves `1, `2 of T to form a bilinear
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pattern P = (T, `1, `2), we have the corresponding pattern P ′ with λP ′ ≥ const ‖v‖ ≥
const(λ− ε)n ≥ const(λ− ε)|P

′|+1, that is λ̄P ′ ≥ (λ− ε) const
1

|P ′|+1 . As ε can be arbitrarily
small and n can be arbitrarily large, we have supP λ̄P ≥ λ. The other direction of the
conclusion is already known, hence completing the proof. �

The condition on the connectedness of the dependency graph is not artificial. Indeed,
λ is greater than the supremum for the system (∗, s) with s = (2, 5, 1) and

x ∗ y = (x1y2, x3y3, x3y3).

The linear pattern with the tree of two leaves where the marked leaf on the left has the
rate 5. The system has the same crucial properties as the replacements, whose growth was
studied in Chapter 3 (except that we use multiplication instead of addition to combine the
entries: Every entry of x∗y is the combination of a single entry of x with a single entry of
y). The rate 5 is obviously the growth rate, since the growth rate cannot be higher than
the maximal entry in the starting vector. Consider any bilinear pattern P = (T, `1, `2).
We show that λ̄P = 1. Obviously the third entry of any resulting vector is 1. Also, this
value 1 is the second entry of any resulting vector associated with a tree of more than
one leaf. We are now basically interested in only the first entry, which is the largest
entry when n ≥ 1. We have (v(n))1 = K(v(n−1))i(v

(n−1))j for some constant K and some
i, j ∈ {1, 2, 3}. The reasoning is the same as the growth of replacements. We start labeling
the vertices of T with the root labeled with 1. The two children of a vertex with label k
are labeled from left to right with 1, 2 if k = 1, and with 3, 3 if k = 2, 3. The constant K
is then the product of sk for the labels k of the leaves in T excluding `1, `2. As `1 is to the
left of `2, the label j should be either 2 or 3 (the only leaf with label 1 is the leftmost leaf
in T ). It follows from j ∈ {2, 3} that (v(n))1 ≤ K(v(n−1))1 · 1 = K(v(n−1))1 when n ≥ 2

(i.e. n− 1 ≥ 1). That is (v(n))1 ≤ constKn−1. It follows that lim supn→∞[(v(n))1]
1
2n ≤ 1.

Therefore, limn→∞ ‖v(n)‖ 1
2n = 1 due to the other two dimensions. The rate λ̄P = 1 is

smaller than the growth rate.
When the dependency graph is strongly connected, sometimes there is still no bilinear

pattern attaining the growth rate λ. Consider the following system (∗, s) with s = (1, 4)
and

x ∗ y = (x1y2, x1y2).

The growth rate 4 is attained by a linear pattern with the tree of two leaves and the
marked leaf on the left. We show that no bilinear pattern P can attain this rate. At first
(v(n))1 = (v(n))2 for n ≥ 1 as the expressions for the two entries are identical. As in the
previous example, when n ≥ 2, we have (v(n))1 = K(v(n−1))i(v

(n−1))j = K((v(n−1))1)
2 for

some constant K (each of i, j is either 1 or 2). For n = 1, we have (v(1))1 = Ksisj for some
i and j. Let xn = log(v(n+1))1, we have x0 = log(v(1))1 and xn = 2xn−1+logK. Applying
Observation 7.7 to the sequence xn, we have (v(n))1 = (K(Ksisj))

2n−1 1
K

= (K
√
sisj)

2n 1
K

.
One can see that K

√
sisj is strictly less than 4|P |+1. Indeed, we assign the labels to

the vertices in the tree of the pattern in the same way as for the problem of growth of
replacements (like in the previous example). The constant K is the product of sk for the
|P | labels k of the leaves excluding the 2 marked leaves. The labels i, j belong to the
two marked leaves. Since sisj ≤ 4, it follows that K

√
sisj ≤ 4|P |+1. In order to have

equality, it is necessary that all leaves, including the two marked ones, are labeled with
2. (Otherwise, there is some leaf with label k = 1 and sk = 1.) Since each dimension
of the result x ∗ y depends on both dimensions of the input, the labels of the leaves are
not all 2. In other words, K√

sisj < 4|P |+1. (Note that Ksisj can be 4|P |+1 in certain
situations, however, it is not what we care, as Ksisj is the product of |P | + 2 entries of
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s.) The same situation also applies for the second dimension. It follows that λ̄P < 4.
Therefore, no bilinear pattern attains the growth rate in this case.

Note that all the above examples are instances of the problem of the growth of re-
placements, where there is always a linear pattern attaining the growth rate, by Theorem
3.2.

By allowing even more leaves to be marked, we have the following extension.

Definition 7.9. A multilinear pattern P = (T, `1, `2, . . . , `m) is a tree T with some
m ≥ 2 marked leaves `1, `2, . . . , `m. We may call such a pattern specifically an m-linear
pattern (or we may call it a trilinear pattern if m = 3). The vector at the root depends
multilinearly (m-linearly) on the vectors at the marked leaves.

We also define the rate of a multilinear pattern in the same manner as for bilinear
patterns. Let T0 be the tree of a single leaf, we define Tn for n ≥ 1 be the tree obtained
from T by replacing each marked leaf of T by an instance of Tn−1. Let the multilinear map
h(u1, . . . , um) : Rn×· · ·×Rn → Rn represent the relation between vector at the root and
the vectors at the m marked leaves. The vector associated with T0 is v(0) = s and the vec-
tor associated with Tn for n ≥ 1 is v(n) = h(v(n−1), . . . , v(n−1)). The norm of the sequence
v(n) has a superexponential growth rate λP = limn→∞ ‖v(n)‖ 1

mn , since ‖h(u1, . . . , um)‖ ≤
const ‖u1‖ . . . ‖um‖ for any vectors u1, . . . , um, that is ‖v(n)‖ ≤ const ‖v(n−1)‖m.

However, the growth with respect to the number of leaves should be the normalized
to the ( |P |+m−1

m−1
)-th root, that is we have the rate λ̄P =

|P |+m−1
m−1

√
λP of the pattern P .

Indeed, the number of leaves xn in Tn is actually |P |+m−1
m−1

mn − |P |
m−1

, which satisfies the
recurrence xn = mxn−1 + |P | with x0 = 1 of Observation 7.7.

Theorem 7.10. If the dependency graph is strongly connected, then for any m we
have

λ = sup
m-linear pattern P

λ̄P .

Proof. The readers can apply the same method as in the proof of Theorem 7.8. �

For convenience, we may call a linear pattern a 1-linear pattern in some certain cases.
The following conjecture is perhaps one of the landmarks and interesting results of

the study of the growth of bilinear maps if it holds. The author would estimate that it
is the hardest problem in the thesis.

Conjecture 7.11. For any system (∗, s), there exist an integer m ≥ 1 and an
m-linear pattern P so that

λ = λ̄P .

A direct consequence of the conjecture is that g(n) ≥ constλn. There would be a
simpler approach to this inequality if we could conclude that g(n) is submultiplicative,
but we have not been able to achieve this either.

If there is a counterexample so that no pattern of our proposed types attains the
limit, it must be very interesting to see. Nevertheless, we have not yet been able to give
an example where a trilinear pattern attains the limit but no linear or bilinear pattern
does. We even suspect that linear and bilinear patterns are sufficient to cover all cases.
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