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Abstract
Infrared (IR) hyperspectral imaging is a powerful approach in the field of materials and life
sciences. However, for the extension to modern sub-diffraction nanoimaging it still remains a
highly inefficient technique, as it acquires data via inherent sequential schemes. Here, we
introduce the mathematical technique of low-rank matrix reconstruction to the sub-diffraction
scheme of atomic force microscopy-based infrared spectroscopy (AFM-IR), for efficient
hyperspectral IR nanoimaging. To demonstrate its application potential, we chose the
trypanosomatid unicellular parasites Leishmania species as a realistic target of biological
importance. The mid-IR spectral fingerprint window covering the spectral range from 1300 to
1900 cm−1 was chosen and a distance between the data points of 220 nm was used for
nanoimaging of single parasites. The method of k-means cluster analysis was used for
extracting the chemically distinct spatial locations. Subsequently, we randomly selected only
10% of an originally gathered data cube of 134 (x)× 50 (y)× 148 (spectral) AFM-IR
measurements and completed the full data set by low-rank matrix reconstruction. This approach
shows agreement in the cluster regions between full and reconstructed data cubes. Furthermore,
we show that the results of the low-rank reconstruction are superior compared to alternative
interpolation techniques in terms of error-metrics, cluster quality, and spectral interpretation for
various subsampling ratios. We conclude that by using low-rank matrix reconstruction the data
acquisition time can be reduced from more than 14 h to 1–2 h. These findings can significantly
boost the practical applicability of hyperspectral nanoimaging in both academic and industrial
settings involving nano- and bio-materials.
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1. Introduction

Infrared (IR) hyperspectral imaging (HSI), i.e. the recording
of a spectrum at each pixel of a 2D specimen, is a powerful
approach for non-invasive and non-ionizing materials char-
acterization ranging from analytical chemistry [1, 2], mater-
ials sciences [3, 4], life sciences [5, 6] to microelectron-
ics [7], minerals as well as planetary observations [8, 9].
HSI allows for directly correlating sample’s morphology and
topography with spectroscopic properties and offers the cap-
ability of high-throughput spatially resolved analysis when
combined with multivariate statistics and machine learning
tools, thus, enabling automated detection, pattern recognition,
and phenotyping, particularly in the field of biomedical dia-
gnostics [10–12].

Hyperspectral maps are usually obtained from parallel
detection, for instance by employing focal-plane-array (FPA)
detectors, which can considerably reduce data acquisition
times via simultaneous detection of multi-pixel elements [13].
However, the highest spatial resolution of conventional optical
techniques is limited by diffraction [14, 15]. The diffrac-
tion limit can be overcome by modern scanning-based meth-
ods, such as atomic force microscopy-based IR spectroscopy
(AFM-IR) [16, 17], scattering-type scanning near-field optical
microscopy (s-SNOM) [18, 19], photoinduced force micro-
scopy [20], and tip-enhanced Raman spectroscopy [21]. As
these approaches gather spectra in a sequential manner, HSI
is highly time consuming and challenging for large sizes of
2D data arrays.

More specifically, AFM-IR is a powerful spectromicro-
scopy technique that has a spatial resolution below the dif-
fraction limit of optical microscopy and is complementary to
s-SNOM,where interferometry is used alongwith a broadband
radiation source, such as synchrotron radiation, to determine
local IR spectral properties [22]. This is different from AFM-
IR along with HSI used in this work, where a tunable quantum
cascade laser (QCL) provides an easily tunable, pulsed photon
source that allows for the detection of local IR spectra at selec-
ted locations or sample arrays. The specific advantage is found
in the ease of operation and the linear correlation of photo-
thermal expansion and the local concentration of the species
under study.

Typically, HSI measurements using scanning based meth-
ods may take several hours to reach a meaningful detection
sensitivity (see, e.g. [23]). This, on the other hand, may lead to
sample and tip damage as well as drift artifacts [24]. This com-
promise between sensitivity and data acquisition time inhib-
its unfolding the potential of HSI for reliably identifying and
distinguishing chemical species. To overcome this limitation,
we introduce the mathematical technique of low-rank matrix
reconstruction [22, 25–27] to AFM-IR spectroscopy and show
how to realize a compressed and correspondingly fast HSI-
measurement by thismethod.We apply this technique to single
Leishmania parasites as a realistic target of biological import-
ance [28] and heterogeneous composition, well beyond simple
model structures. This target also relates to our previous work

using diffraction limited FTIR spectromicroscopy [22]. Given
the broad range of spectra present in the considered biological
specimen, alternative compressed measurement techniques,
such as compressed sensing [29, 30], are hardly applicable.
This is due to the violation of the underlying sparsity assump-
tion, which is usually not required for the techniques presented
here [22].

2. The principle of compressed measurements in
AFM-IR hyperspectral imaging

A scheme of the setup is shown in figure 1(a). During
the experiments pulsed IR laser radiation from a tunable
QCL (MIRcat-QTTM, DRS Daylight Solutions Inc. USA) was
focused onto the sample in the proximity of the AFM tip of a
nanoIR2-s setup (Anasys, Bruker). The corresponding absorp-
tion results in local rapid thermal expansion under the con-
dition that the wavelength of the IR laser radiation matches
the absorption bands of the samples under study. The induced
expansion of the sample generates oscillations of the canti-
lever which are registered by changes of the deflection laser
(DL) reflection spot on the four-quadrant photodiode (FQD)
of the AFM. High sensitivity was achieved by using the res-
onance enhanced mode. In this mode the repetition rate of
the laser is continuously matched to the contact resonance
frequency of the cantilever which was in contact with the
sample. Local absorption spectroscopy is realized by record-
ing changes of the cantilever oscillation amplitude as a func-
tion of IR laser emission wavelength. In HSI the full spectral
information is gathered in each pixel (distance between the
data points: 220 nm) of the topographic map, allowing for a
local chemical analysis of the sample related to its topography.
Further details on the experimental setup can be found in the
supplementary material.

The principle of a compressedmeasurement using AFM-IR
imaging is shown in figures 1(b)–(d). AFM-IR spectral finger-
prints were collected via HSI data acquisition in the 1300 to
1900 cm−1 spectral window from two single Leishmania para-
sites (L. braziliensis parasites, promastigote forms). An illus-
tration of the full HSI data set as a 3D data cube is shown in
figure 1(b). It consists of so-called voxels formed by 134× 50
points along the (x, y) axes as spatial and 148 points along the
wavenumber (ν̃) axis as the spectral coordinate. The spectral
resolution is approximately 4 cm−1, with a data acquisition
time of 8 s per spectrum. The total time for recording the full
data cube was approximately 14 h.

The projection shown in figure 1(b) views the data cube
along the spectral axis, where two spectrally integrated
Leishmania parasites can be seen. As an example, the yel-
low circle in figure 1 indicates an arbitrarily chosen position
to illustrate the data evaluation.

In a compressed measurement only a small fraction of
selected voxels of the data cube are used. This is indicated by
the blue dots in figure 1(c). In this example 10% of the full
data set were used. For the spatial position indicated by the
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Figure 1. (a) Photothermal expansion experimental setup: QCL—tunable quantum cascade laser, DL—deflection laser, FQD—four-
quadrant photodiode. The topography of the sample is shown, with the arrow pointing to the indicated sample spot marked by a yellow
circle; (b) 3D representation of the data set viewed along the spectral axes. The color scale shown below encodes the signal strength both as
color and transparency, so that the spatial distribution of two Leishmania promastigotes can be seen. The yellow circle corresponds to the
indicated position indicated in (a); (c) illustration of the compressed measurement, showing the randomly chosen voxels in the data cube, to
which low-rank matrix reconstruction was applied. The dashed line connecting the two yellow circles corresponds to the IR spectrum shown
in (d); (d) nanoIR spectrum at the position marked by a yellow circle in (a)–(c). The original and the reconstructed data set are indicated by
blue and orange curves, respectively. The marked points belong to the randomly chosen set of data used for reconstruction.

yellow dot, only 15 out of 148 wavenumber-values are actu-
ally considered during the measurement, cf the dashed line in
figure 1(c).

By applying the method of low-rank matrix reconstruc-
tion [22, 26, 30], as detailed below, the full spectrum can
be retrieved. Figure 1(d) shows, for example, an IR spectrum
taken at the point marked by the arrow in figure 1(a) and yel-
low circles in figures 1(b) and (c). The full and reconstruc-
ted spectra are shown in blue and orange, respectively. Both
curves are in agreement despite the fact that the reconstructed
data is based on only 10% of the complete, original data set.
These randomly selected points are marked by gray circles in
figure 1(d).

3. Low-rank matrix reconstruction

Low-rank matrices arise in many settings related to math-
ematical modeling and data compression. Applications range
from signal processing [31] to image restoration [32] and
machine learning [33]. A relevant example of tasks includes
the recovery of a data matrix given only by incom-
plete observations [22]. The data matrix is then approx-
imated by a matrix product with each factor having lower
dimensionality, resulting in a recovery result of lower
rank.

The main idea is that a low-rank approximation already
captures the main characteristics of the data and less informat-
ive dimensions will be removed. In [22], an algorithm for low
rank matrix reconstruction has been presented and success-
fully applied to sub-sampled (FPA)-FTIR data. For a matrix of
observationsX ∈ Rn,m, the task is to findmatricesU ∈ Rn,r and
V ∈ Rm,r by minimizing

∑
i,j |Xi,j−

∑r
k=1Ui,kVj,k|2. The rank

r approximation X̂ of X is then given by the matrix product
X̂= UVT. The problem depicted above is in general ill-posed.
Hence, an additional Tikhonov regularization is utilized [34]
together with a smoothness constraint to the spatial domain.
The resulting loss functional that needs to be minimized over
the matrices U and V is then given by

J(U,V) =
∑
i,j

|Xi,j−
r∑

k=1

Ui,kVj,k|2 +λ
{
∥KU∥22 + ∥V∥22

}
,

(1)

where λ> 0 is chosen by an L-curve criterion and the mat-
rix K denotes the precision matrix of a Gauß-Markov ran-
dom field [35] to model smoothness in the spatial domain. To
solve the minimization problem, an alternating algorithm is
employed, since the optimization functional above reduces to
a linear problem, when fixing one of the matrices U or V. The
starting values for U and V are taken from a singular value
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Table 1. Overview of relevant vibrational modes detected in the mid-infrared regime [39, 40].

Observed modes (cm−1) Molecular vibration Band assignments

1400–1420 ν(C–N) Primary amide
1550–1562 δ(N–H), ν(C–N), ν(C = N) NHR, secondary amine, protein and nucleic acid (amide II)
1614–1640 δ(N–H) Primary amide (amide II)
1640–1677 ν(C = O) or ν(C = C), ν(C = N) Amide I
1705–1725 ν(C = O) ketones,–COOH
1735–1753 ν(C = O), ν(COOH) Saturated esters

decomposition of the zero-filled matrix X. For details on the
algorithm and a corresponding Python implementation, see
[22, 36].

4. Results and discussion

4.1. Spectral assignments

For HSI the following spectral regions were put into our
focus (cf table 1): in the 1500–1900 cm−1 spectral window
proteins show amide I and amide II bands. Amide bonds
are abundant in proteins because of their higher stability
and proclivity for forming resonating structures, which influ-
ence secondary structure adoption and biological activity
[37]. Particularly, band positions, band widths (full-width-
at-half-maximum, FWHM), and shifts of amide bands may
represent an important indicator for molecular structural
(re-)organizations. Furthermore, an analysis of the area ratio
between the amid I and II bands can indicate valuable spec-
tral biomarkers and can provide a quantitative tool also for
many biomedical applications [38]. Besides the amide win-
dow there is the so-called ‘mixed region’ (1300–1500 cm−1),
including fatty acid bending vibrations, C–N stretching andN–
H deformational modes of proteins, as well as P=O stretching
modes of phosphate-carrying species.

4.2. Cluster analysis imaging

Cluster analysis is a statistical approach for multivariate dif-
ferentiation and classification studies of biological specimens
and can be easily applied to IR-based hyperspectral data [41].
Meaningful clusters in the full data set were obtained from the
following steps. Prior to clustering the data were pre-processed
by smoothing along the spectral axis using the Savitzky–
Golay-filter with a window size of 10 pixels and using 2nd
order polynomials. Subsequently, the 2nd derivative is numer-
ically computed using a finite difference scheme to reveal
curvature information that improves separability of the sub-
sequent clustering. Cluster analysis was performed using the
well-known method of k-means clustering applied to all spec-
tra in the data cube [42]. The pre-processing and clustering
algorithm was implemented using Mathematica Version 11.0
[43].

The spectra were initially grouped into 15 clusters and the
mean spectrum was determined for each cluster. Based on

the spectral position, ν̃m, of the maximal value of the mean
spectrum, A(ν̃m), the 15 clusters were then combined into 3
clusters. Depending on whether ν̃m lies in the region within
1550–1640 cm−1 or within 1650–1677 cm−1 the correspond-
ing cluster was assigned to cluster number 1 and 2, respect-
ively. In this way, the regions where amide I or amide II
are dominant were selected. The background was assigned to
cluster number 3, with a maximal value below a threshold
of 5 expressed as arbitrary units of the AFM-IR signal
(cf figure 2).

4.3. Result of the reconstructions from 10% of the data

It is shown in the following that the information gained from
cluster analysis is preserved after the reconstruction of the data
from a subset of 10% of the data. Figures 2(a) and (b) compare
the clusters obtained from the original and low-rank recon-
structed data cubes, respectively. The low-rank reconstruc-
tions were performed on a workstation with 4 Intel Xeon CPU
E7-8867 nodes and 504GB of memory. The value of 10% of
the data was chosen uniformly random from the complete data
set. The mean spectra are shown for cluster 1, 2, and 3 as red,
green, and black lines, respectively. The amide I and II spectral
region is highlighted in blue and labeled asAI andAII, respect-
ively. In addition, the region of primary amides referring to
C–N stretching vibrations located at 1400 cm−1–1420 cm−1

has been highlighted and labeled as P. The cluster mean spec-
tra of the original data cube resemble the reconstructed mean
profiles and particularly the peak ratios: the mean spectrum
of cluster 1 (red lines), which features an enhancement of the
amide II/amide I band ratios compared to profiles of cluster 2
(green lines), are modeled correctly. The band shapes as well
as their FWHM, could be successfully reproduced using the
low-rank reconstruction. Furthermore, the baselines and spec-
tral offsets can be completely recovered from low-rank model-
ing with respect to their magnitudes. Also note that the spectral
features near 1735–1753 cm−1 referring to the baselines occur
at the same position.

Based on the spectral clusters chemically distinct spatial
regions have been defined, as shown in the left-hand column
of figure 2. The colors of the cluster correspond to the col-
ors of the lines of the mean spectra in the right-hand column.
Both cluster maps of the two Leishmania parasites contain
the three clustered groups, given by the spectral features loc-
ated mainly in the body (red), spectral features of the body
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Figure 2. Results of cluster analysis performed using the full data
set (a) and the data set reconstructed from 10% of the full data set
(b). The left column shows the spatial distribution of the three
spectral clusters as determined by the k-means method while on the
right the spectra averaged over each of the three clusters are shown;
The scale bar corresponds to 5µm. The result for the alternative
interpolation approaches of nearest neighbor and linear interpolation
are shown (c) and (d), respectively. The relevant spectral regions are
shaded and labeled as P: primary amides, AI the amide I, and AII
the amide II region. The vertical lines correspond to some of the
relevant wavenumber values given in table 1.

and the flagellum regions (green), and the spectral background
(black). Notably, the parasites’ morphologies are found cor-
rectly represented in the reconstructed cluster maps, as can
be seen from the flagellum outline and body dimensions. This
is a quite important aspect in view of the characterization of
biological specimens, particularly in single cell analysis, and

microscopy studies for examining the microorganisms in com-
bination with molecular nanoscopy for a detailed analysis of
the contained species. If we compare the cluster maps obtained
from the full and the low-rank reconstructed data cubes, the
cluster allocations are, to a large extent, recovered at nearly
the same pixel coordinates. However, small deviations can be
observed. These are mainly due to a smoothing effect result-
ing from the application of the Tikhonov regularization in our
analysis.

We note that while cluster 1 makes up only a small portion
(≈µm in diameter) of the whole parasite the reversal of the
band ratio may be of interest from the biochemical classific-
ation point of view [38]. Hence, pixel sizes, corresponding to
sub-wavelengths resolution in hyperspectral AFM-IR meas-
urements, are expected to significantly boost the sensitivity
in classification as compared to conventional methods with a
spatial resolution that is diffraction limited by the wavelength
of the incident radiation. Therefore in the context of low-rank
matrix reconstruction it is particularly important to note that
cluster 1 and the corresponding band-ratio reversal has been
correctly reproduced.

4.4. Comparison between different subsamplings and
methods

The quality of the results obtained from low-rank matrix
reconstruction is compared to alternative interpolation tech-
niques, such as nearest neighbor interpolation and linear inter-
polation. Both interpolation methods were implemented using
Pythons SciPy interpolation package for irregular grids and
applied to the same subsampled data that were used for the
low-rank matrix reconstruction.

The results for these alternative approaches are shown in
figures 2(c) and (d). It can be seen that in the cluster map the
area of both Leishmania regions and in particular of cluster 1
is significantly reduced. The cluster locations and mean spec-
tra deviate visibly from the original data set. As a quantit-
ative measure to evaluate the reconstruction the root-mean-
square-error (RMSE) between the available full data set and
the reconstruction result has been evaluated for the differ-
ent reconstruction schemes. Hereby, the RMSE is taken over
all pixels and spectral positions. The results are presented in
table 2, where we also compare different subsampling ratios.
The low-rank reconstruction results in the lowest RMSE at all
subsampling ratios. The linear interpolation yields a slightly
higher RMSE than the low-rank reconstruction. One has to
note that the linear interpolation is performed on the convex
hull of the set of data points, defined by the subsampling.
Therefore, points outside the convex hull are linearly extrapol-
ated to 0 at the maximal and minimal wavenumbers to com-
pute the RMSE in table 2 for the case of linear interpolation.
The nearest neighbor interpolation always yields the highest
RMSE.

The uncertainty introduced by the random sampling pro-
cedure is negligible. This has been confirmed by repeating
the computations ten times with different, randomly drawn
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Table 2. RMSE for the low-rank matrix reconstruction quality for different subsampling ratios and compared to alternative interpolation
techniques, such as nearest neighbor interpolation and linear interpolation.

Subsampling Low rank (this study) Nearest neighbor Linear interpolation

1% 3.2 3.8 3.4
2% 2.8 3.8 3.3
5% 2.4 3.5 3.1
10% 2.2 3.3 2.9
20% 2.2 3.0 2.7

subsamplings for the case of 1% of the original data. The
uncertainty of the RMSE values presented in table 2 is
basically smaller than the significant digits indicate. The
fact that the uncertainty of the results in table 2 introduced
by the choice of the random subsamples is already negli-
gible for 1% of the data suggests that no significant vari-
ation is to be expected for the 10% case considered in
this work.

The results have demonstrated that the low-rank method-
ology provides a reliable modeling approach to reconstruct
multi-dimensional data of complex biological species, as not
only the protein content lying behind the amide I/amide II
bands, and their ratios, could be entirely recovered, but also
their spectral background and offsets. The latter is likely due to
wavenumber-dependent scattering or non-compensated reflec-
tion losses [44].

5. Conclusions

We presented for the first time a procedure for compressed
AFM-IR spectroscopy using low-rank reconstruction for effi-
cient hyperspectral IR nanoimaging. The suitability and
application potential was demonstrated using signatures of
the single parasitic specimens L. braziliensis. We have shown
that the use of only 10% of randomly selected data from
the original data cube enabled an adequate reconstruction of
the entire data cube. The mid-IR fingerprint spectral com-
plexity could be successfully reproduced, specifically in the
amide and ‘mixed’ regions. This was evaluated by compar-
ing cluster maps leading to the same bio-analytical informa-
tion. Subsequent work should focus on sub-sampled data sets
of biological species. This requires, however, that the data
acquisition of the instrument also supports a fast approach
of randomly selected AFM-tip positions. Translation of data
reduction into a similar reduction of data acquisition time
is possible by continuously measuring and moving all three
axes. Metzner et al [45] provides a first description of suit-
able data acquisition schemes and their impact on data recon-
struction quality, which remain to be experimentally real-
ized. We conclude that the data acquisition times required
for full hyperspectral measurements in AFM-IR procedures
may be significantly reduced by low-rank matrix reconstruc-
tion schemes, promoting scanning based methods for hyper-
spectral imaging for which so far only parallel schemes
qualify.
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Supplementary material

AFM-IR nanoscopy setup

For the studies on single Leishmania braziliensis a 450µm
long gold-coated silicon AFM tip with a nominal radius of
25 nm (Bruker, model: PR-EX-nIR2-10, resonance frequency
of 13± 4 kHz, spring constant: 0.07–0.4Nm−1) was used in a
nanoIR2-s spectrometer. The AFM-IR spectra were acquired
within a range of 1306–1894 cm−1, employing a quantum
cascade laser MIRcat-QTTM (DRS Daylight Solutions, USA)
equipped with four diode modules. A sweep speed of
100 cm−1 s−1 was used. The average of the IR laser power
applied to the sample was of 1.5mW. The influence of power
variation in the IR source at different wavenumbers was
reduced by collecting the laser power spectrum and normal-
izing the AFM-IR amplitude at the specified wavenumbers.
The hyperspectral imaging infrared maps were recorded in the
resonance-enhanced mode with a distance between the data
points of 220 nm, which was not the resolution limit (estim-
ated to be 40± 15 nm) but chosen to achieve a realistic meas-
urement time.

In the resonance-enhanced mode the repetition rate of the
QCL laser is tuned to the continuously monitored AFM canti-
lever oscillation amplitude within a range of±30 kHz of oscil-
lation resonance. The oscillation resonance during the scan has
a slightly higher frequency than the cantilever’s free resonance
in air and is continuously changing. This is due to the fact
that the contact resonance of the cantilever in a snap-in posi-
tion of the probing tip is varying and these changes are caused
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by numerous factors, such as the contact surface between the
probing tip and the investigated sample, the free resonance fre-
quency of the cantilever, or stiffness of the sample. Thus, the
oscillation resonance has to be tuned more frequently for com-
plex samples.

Cultivation and preparation of Leishmania parasites

Promastigote forms of Leishmania (V.) braziliensis strain
(MHOM/PE/94/LC2452cl3) were cultured at 24 ◦C ± 1 ◦C
in M199 medium (Sigma Aldrich) supplemented with 10%
fetal calf serum (FCS) (Sigma Aldrich), 1% L-glutamine, and
0.5% penicillin/streptomycin (Sigma Aldrich). A neutral pH
was ensured by the addition of 0.04M HEPES-NaOH buffer
solution (pH 6.9). Parasites were collected between the 4th
and 5th day in culture. The parasites’ density was determined
with a Casy counter (OLSOMNI Life Science) and concentra-
tion adjusted to 5× 106 ml−1 in order to receive thin films for
AFM-IR investigations. After two washing steps with 0.5%
phosphate-buffered saline (PBS) at 1000 g, for 10min, para-
sites were resuspended in 300µl of 0.5% PBS (or 100µl for
thick drops). A 5µl drop of the suspension was placed onto
a Kevley low-e-slide (Kevley Technologies©) and left to air-
dry at room temperature. The parasites were microscopically
examined with respect to their living or life cycle stages [46].
This should ensure that the parasites shall stay under near-to-
native condition, when prepared and air-dried onto the sub-
strates. The applied salt concentration was carefully evaluated
and compromised with regard to keeping the parasites alive
during preparation steps. We point out here that no other addit-
ives, i.e. FCS or bovine serum albumin, were used, as they con-
tain proteins and may render the IR investigations unreliable
with regard to protein detection in parasites.
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