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ABSTRACT: Mixed-cation metal halide perovskites have shown
remarkable progress in photovoltaic applications with high power
conversion efficiencies. However, to achieve large-scale deploy-
ment of this technology, efficiencies must be complemented by
long-term durability. The latter is limited by external factors, such
as exposure to humidity and air, which lead to the rapid
degradation of the perovskite materials and devices. In this work,
we study the mechanisms causing Cs and formamidinium (FA)-
based halide perovskite phase transformations and stabilization
during moisture and air exposure. We use in situ X-ray scattering,
X-ray photoelectron spectroscopy, and first-principles calculations
to study these chemical interactions and their effects on structure.
We unravel a surface reaction pathway involving the dissolution of
FAI by water and iodide oxidation by oxygen, driving the Cs/FA ratio into thermodynamically unstable regions, leading to
undesirable phase transformations. This work demonstrates the interplay of bulk phase transformations with surface chemical
reactions, providing a detailed understanding of the degradation mechanism and strategies for designing durable and efficient
perovskite materials.

1. INTRODUCTION
Formamidinium [CH(NH2)2, FA] metal halide perovskites
have emerged as promising materials for solar cell applications
due to their exceptional light-harvesting properties, producing
high power conversion efficiencies (PCEs) of over 26%.1

However, one of the most significant challenges is their poor
stability, particularly in the presence of moisture (H2O) and
oxygen (O2), which can trigger phase transformations to
nonperovskite structures during solar cell fabrication and
operation.2 To overcome this challenge, mixed ion perovskites,
including CsxFA1−xPbI3 (CsFA), have been shown to provide
improved stability compared to their single-cation counter-
parts.2−4 However, CsFA perovskites also degrade when
exposed to ambient air, where the perovskite structure
transforms into nonperovskite phases such as one of the
hexagonal FAPbI3 (2H) and orthorhombic δ-CsPbI3 (δCs)
structures.5,6 Perovskite degradation due to water exposure7−11

and photo-oxidation under illumination in oxygen is widely
recognized.12−15 Nonetheless, we lack a clear understanding of
the mechanisms that lead to phase instabilities in these FA-rich
perovskites due to water and oxygen interactions. Therefore, a
fundamental understanding of the mechanisms causing perov-
skite phase transformations is crucial for developing durable
and efficient metal halide perovskites for solar cell applications.

Herein, we investigate the origin of structural phase
instability of FA-based perovskites upon exposure to H2O,
with air (H2O/air) or nitrogen (H2O/N2) as carrier gases,
using in situ grazing incidence wide-angle X-ray scattering
(GIWAXS). We study the surface chemistry and propose a
mechanism to explain phase transformations when the
perovskites are exposed to H2O and O2 by using X-ray
photoelectron spectroscopy (XPS) and density functional
theory (DFT) calculations. We find that the degradation rate is
considerably slower when the perovskite is exposed to H2O/
N2 when compared to H2O/air. Our results show that a critical
synergy between H2O and O2 in air is needed to accelerate the
undesired phase transformations in perovskites. The H2O
molecules dissolve FAI on the perovskite surface, leading to
volatilization of the iodide and FA+ cations. The O2 may then
interact with the exposed lead-iodide-rich surfaces, oxidizing
iodide and forming the thermodynamically favored iodate
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species, IO3
−, which bonds to surface Pb ions. Lead(II) iodate,

Pb(IO3)2, can then form and segregate at the surface, leaving
PbI2 vacancies behind and allowing H2O molecules to further
infiltrate the crystal structure. The continuous removal of FAI
causes a local imbalance between Cs+ and FA+, destabilizing
the CsFA phase and favoring a transformation to the 2H and
δCs phases. The degradation proceeds both in dark and light
conditions, with light accelerating the formation of secondary
phases. Finally, we show that a surface treatment using a
hydrophobic top layer of phenethylammonium iodide (PEAI)
effectively stabilizes the perovskite phase even in the presence
of H2O/air. Solar cells made of CsFA-PEAI films exhibit stable
PCEs even after exposure to H2O and air. Our study provides
structural and atomistic insights into the phase instability in
FA-based perovskites when exposed to humid air conditions
and provides surface passivation strategies to stabilize the
perovskite phase for highly stable and efficient solar cells.

2. RESULTS
2.1. Structural Phase Transformations. To understand

the structural phase transformations in FA-based perovskites,
we used in situ GIWAXS, as shown in Figures 1 and S1, where
we exposed CsFA films to a relative humidity of ∼100% and in
dark conditions (lights off). Initially, we analyzed the structural
phases without H2O or air exposure (Le Bail refinement,
Figure S2, Table S1), resulting in a mixed-cation (Cs 17%�
FA 83%) tetragonal perovskite phase (β) with a space group
P4/mbm5,16 (Figure 1a). Figure 1b shows the in situ GIWAXS
scattering patterns as a function of time exposed to H2O/air
for 600 min. In H2O/air, the β phase (mixed-cation)
transformed into two different phases, namely, the single-
cation FAPbI3 hexagonal phase (2H)5 and CsPbI3 ortho-
rhombic phase (δCs)3 (crystal structures shown in Figure 1a).
The 2H and δCs are both nonperovskite phases given the lack
of corner-sharing octahedra. Figure 1c shows the quantified
peak evolution of the integrated area of the main scattering
peak of the perovskite (β) and nonperovskite (2H, δCs)

Figure 1. Humidity-induced structural phase transformations measured by in situ GIWAXS. The structural phases analyzed are (a) tetragonal β−
perovskite of space group P4/mbm (left), 2H FAPbI3 hexagonal nonperovskite phase of space group P63/mmc (center), and orthorhombic
δ−CsPbI3 nonperovskite phase of space group Pnma (right). Phase transformations over time of CsFA β−perovskite exposed to (b) H2O/air, (d)
H2O/N2, and (f) dry air, where (c, e, and g) are the corresponding integrated areas of the main scattering peaks of each phase.
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phases. We observe that δCs forms at around 50 min of
exposure to H2O/air, while 2H forms after 200 min of
exposure, but at a faster rate. A kinetic model was used to
quantify the phase transformation rates, shown in Figures S3
and S4, where we fit a rate constant b. The negative b for the β-
110 peak indicates the loss of the β-perovskite phase in H2O/
air. The positive b for the 2H and δCs peaks reveals the
appearance of the nonperovskite phases and a faster formation
rate for 2H compared to δCs.

To isolate the effect of H2O from O2, we performed in situ
GIWAXS experiments by exposing the CsFA films to H2O/N2,
as shown in Figure 1d. It is important to study the role of H2O
alone, considering that O2 has been key in the photo-oxidation
of methylammonium lead iodide (MAPbI3) under illumina-
tion.17−19 Remarkably, when CsFA is exposed to H2O/N2, the
β phase does not change, and a 2H phase does not appear.
This is in contrast with the samples exposed to H2O/air, which
suffered phase transformations after the same exposure time.
The peak evolution in Figure 1e shows a minor decrease in the
β-perovskite integrated area from 92 to 85 with no formation
of the 2H phase. However, the δCs phase still forms with a rate
constant b of 1.5, compared to 2.2 in H2O/air (Figure S4),
confirming a slower δCs phase formation in H2O/N2.

To isolate the role of oxygen (from air) from that of the
water molecule, we exposed the CsFA films to dry air only.
Interestingly, from in situ GIWAXS (Figure 1f) and the time
evolution of the main peaks (Figure 1g), the phase
transformations previously seen do not occur. This reveals
that the amount of photo-oxidation induced by the X-rays
alone is not sufficient to induce the formation of secondary
nonperovskite phases. The effects induced by humidity or dry
air exposure are independent of the substrate we use (Figure
S5). These result show that the CsFA phase instability is not
just due to humidity exposure but is accelerated by O2. These
results are further corroborated by additional analyses of the in
situ GIWAXS experiments (Figures S5 and S6). It is worth
noting that X-ray beam-induced damage due to prolonged
exposure during in situ experiments can provide artifacts to
measurements, as it has been shown in a wide variety of
materials.20,21 Thus, to deconvolute potential effects on the
structure caused by X-rays, we measured GIWAXS in a
separate isolated location of the same film (without X-ray
exposure) to make sure the peak intensity did not change due
to beam damage. The second isolated location was measured
in parallel and with lower beam exposure, given that the data
were taken with longer delays between measurements. The
data for the isolated location is summarized in Figure S7 and
shows a very similar trend to the consecutive measurements
shown in Figure 1.

To study the structural changes at the surface of CsFA films
exposed to H2O/air, we analyzed the in situ GIWAXS with an
incident angle below the critical angle (Figure S8). We
observed the same transformation from perovskite into
nonperovskites on the surface as in the bulk (Figure 1).
Furthermore, analyzing the formation of the nonperovskite
phases 2H and δCs, we calculated a larger rate constant b at
the surface (Figure S8), evidence of a faster transformation
into nonperovskites. In addition, areas with more charging
were observed by scanning electron microscopy (Figure S9),
suggesting the formation of new phases. UV−vis spectroscopy
shows a larger band gap for the CsFA film after H2O/air
exposure, which may be due to the absorption from the 2H
phase (Figure S10).22,23 The emission observed from both

photoluminescence (PL) and carrier lifetime from time-
resolved PL (TRPL) is reduced, as expected with the
conversion to nonperovskite phases (Figure S10).
2.2. Surface Chemistry. To investigate the chemical

changes at the surface, we performed XPS of the CsFA films
without exposure and after H2O/air exposure (Figure 2).21

After exposure to H2O/air, the N 1s peak (Figure 2a, CsFA)
decreases by 5.6% in atomic content (Tables S2 and S3),
evidence of the FA+ volatilization, as the N 1s peak
corresponds to the C�N bond of the FA.24 The I 3d peak
from iodine decreases by 11.4% in atomic content after
exposure to H2O/air (Figure 2b, CsFA), suggesting the loss of
FAI at the surface and the additional loss of iodine from
elsewhere in the structure.19,25,26

The exposure of CsFA films to H2O/air influences the
oxygen signal. An increase in the intensity of the peak signal of
the O 1s is observed after exposure (Figure 2c), corresponding
to an 18% atomic content (Table S3). The O 1s peak (peak 1)
is centered at 532.3 eV, suggesting the existence of adsorbed
O2 molecules.27 Peak 1 may be attributed to the formation of
hydroxides (OH−) or carbonates (CO3

2‑) expected from the
exposure to H2O/air.28 The C 1s peaks also suggest carbon−

Figure 2. XPS spectra of the peaks: (a) N 1s, (b) I 3d, and (c) O 1s of
CsFA perovskite, FAI, and PbI2 films without (w/o) and after H2O/
air exposure. For the CsFA perovskite films, panel (d) shows the
atomic ratio of iodine(I), cesium (Cs), nitrogen (N, FA), or oxygen
(O) normalized to lead (Pb), for pristine films and after H2O/air
exposure. Full peak deconvolution and details for the CsFA films can
be found in Figures S10 and S11 and Tables S2 and S3, for FAI films
in Figure S12, Tables S4 and S5, and for PbI2 films in Figure S13 and
Tables S6 and S7. CsFA perovskite films w/o H2O exposure (green)
were fabricated in a nitrogen glovebox and exposed to a room
atmosphere while mounting the XPS measurement. CsFA films after
H2O/air exposure (blue) were fabricated in a nitrogen glovebox,
exposed to humidity, and then measured.
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oxygen complexes such as carbonates after H2O/air exposure
(Figure S11).27 The peak assigned to C−C or C−H bonds
increases after H2O/air exposure, possibly from adventitious
carbon (Figure S12). Figure 2c also shows a small peak 2,
centered at 530.4 eV, suggesting the formation of Pb-oxides.27

Figure 2d summarizes the changes in the atomic ratio of
iodine, cesium, nitrogen, and oxygen compared to Pb on CsFA
films after H2O/air exposure, showing the volatilization of
nitrogen and iodine, and an increase in oxygen content.

To further understand the chemical surface species after
H2O/air exposure, we deposited FAI and PbI2 thin films and
characterized their surface chemistries by XPS (Figure 2a-c
FAI, PbI2, and Figures S13 and S14). After H2O/air exposure,
the FAI films show a decrease in the atomic content from N 1s
and I 3d, confirming the volatilization of FAI (Figure 2a,b, FAI,
and Tables S4 and S5). An increase in the intensity of the O 1s
peak is observed for the FAI films (Figure 2c, FAI). The FAI
films without H2O exposure show an O 1s peak centered at
532.8 eV in Figure 2c (FAI), suggesting that atmospheric H2O
and O2 molecules are adsorbed to the FAI films when the
samples are mounted in the XPS, confirming the high
hydrophilicity of FAI. The deconvolution of the O 1s peak
shows a second peak (peak 2) centered at 530.8 eV, indicating
that this peak may result from FA exposure to ambient
conditions. Therefore, the O 1s peak 2 in Figure 2c (CsFA)
can be attributed to either Pb-oxides and to I- or FA-based
oxides. In contrast, the PbI2 films before and after H2O/air
exposure do not show changes in Pb 4f (Figure S14) or I 3d
(Figure 2b, PbI2), and there is no oxygen from the O 1s
spectrum (Figure 2c, PbI2 and Tables S6 and S7). We studied
the chemistry changes in the bulk by X-ray fluorescence (XRF)
elemental mapping, which also shows the loss of iodine after
H2O/air exposure (Figure S15), agreeing with the XPS results

(Figure 2b). Fourier transform infrared spectra (FTIR)
showed no oxygen in the vibrational modes of CsFA powders
and films (Figures S16 and S17, Table S8). Thus, we are
confident that the H2O/air-induced CsFA phase trans-
formations begin at the surface through the interaction of
oxygen with the perovskites.
2.3. Chemical Reaction Mechanism. Previous studies

have suggested adverse effects of H2O on lead-iodide
perovskite surfaces leading to the degradation of the
material.6,17,29,30 Molecular dynamics simulations of
MAPbI3/H2O interfaces have shown the fast dissolution of
MAI-terminated surfaces, as H2O molecules break the bond
between surface I− and underlying Pb2+ ion resulting in the
removal of I−, accompanied by the desorption of the MA+.31,32

Despite FA being less polar than MA,33 the same mechanism is
expected to occur on FAI-terminated surfaces. Previous results
showed the dissolution of FAPbI3 with water vapor,34

explaining the release of I− and FA+ from the CsFA perovskite
surface31 and within the FAI films (Figure 2a,b,d) after
exposure to H2O/air.32 The removal of CsI or FAI leads to a
PbI2-terminated surface that is more resistant to degradation
by water alone.31

To understand the phase transformation mechanisms, we
performed DFT calculations on the interactions of oxygen
molecules with the PbI2-terminated CsFA perovskite surface
(Figure S18). Our calculations suggest that the O2 adsorption
is favored at the PbI2-terminated surface (Eads = −0.03 to
−0.22 eV, Table S9) compared to a CsFAI-terminated surface
(Eads = 0.06 to 0.36 eV, Table S10), while H2O may further
support O2 adsorption. Note that the PbI2-terminated surface
is made of undercoordinated Pb2+, which makes it more
hydrophilic than the PbI2 crystal phase (Figure 2c) made of
fully coordinated Pb2+.35 The direct formation of PbO units

Figure 3. DFT calculations of iodide oxidation and superoxide formation on the perovskite surface. Panel (a) visualizes the formation of IOn
−

species upon oxidation of surface iodide ions [Rx. 1]; from left to right: hypoiodite, IO−; iodite, IO2
−; iodate, IO3

−; and periodate, IO4
−. All

oxidized species are explicitly highlighted, and reaction energies are given (see the computational methods for details). (b) Reaction mechanism
[Rx. 2 and 3] of (left) lead(II) iodate, Pb(IO3)2, formation by consumption of oxygen molecules and (right) removal of Pb(IO3)2 resulting in a
surface vacancy VPbI2. The following color code is used for the atomic representations: purple, I; cyan, Pb; blue, N; green, Cs; gray, C; white, H;
and red, O.
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from the adsorption of O2 appears thermodynamically
unfavorable, with reaction energies of +1.09 eV (Figure
S19). Therefore, we consider the oxidation of iodide ions on
the surface by O2 as the starting point, as modeled by reaction
1. Here, surface iodide changes its oxidation state from −1 to
positive values (−1 + 2 × n) while oxygen atoms are in their
stable −2 oxidation state. We observe that, as previously
suggested,36 oxygen breaks the Pb−I bonds at the surface,
forming a Pb−O−Iox−I− bond network, where Iox is the
oxidized iodine and I− is a surface iodide in its negative charge
state as shown in Figure 3a.

+ n
I

2
O IOn2 (1)

Our calculations show positive reaction energies for the
formation of hypoiodite (IO−) and periodate (IO4

−) of 0.13
and 0.14 eV, respectively, while iodite (IO2

−) is slightly favored
by −0.05 eV. Notably, iodate (IO3

−) with iodide in its +5-
oxidation state is strongly thermodynamically favored with a
formation energy of −0.97 eV, indicating an irreversible surface
transformation. From IO3

− in reaction 2, we consider the
formation of lead(II) iodate, Pb(IO3)2, at the surface
(indicated by an asterisk) by oxidizing two adjacent iodide
ions sharing bonds with the same Pb surface ion. The
formation energy of surface Pb(IO3)2 is ΔE = −1.19 eV
(Figure 3b), which suggests a thermodynamically favorable
replacement of a surface PbI2 unit. Finally, in reaction 3, we
compute the removal of surface Pb(IO3)2 leaving a PbI2
vacancy (Figure 3b).37 We predict an energy of −0.77 eV
for reaction 3, significantly more favorable than the direct
removal of a PbI2 unit from a nonoxidized surface (ΔE = 0.07
eV, Figure S20).

* + × *PbI 3 O Pb(IO )2 2 3 2 (2)

* +Pb(IO ) Pb(IO ) V3 2 3 2 PbI2 (3)

We note that the interaction of O2 with water molecules
lowers the π* orbitals of O2 acting as accepting orbitals in
oxidation reactions (Table S10), while hydration of perovskite
surfaces raises the energies of the iodide-based valence band
edge (Figure S21), which results in easier oxidation of surface
iodide. These results suggest that O2 can modify PbI2-
terminated surfaces by oxidizing iodide to iodate species and
creating PbI2 vacancies. These vacancies may allow H2O
molecules to enter the structure and dissolve the next FAI
layers in an iterative process.

Our experimental and theoretical analyses suggest that first
the H2O/air atmosphere dissolves the surface of CsFA
perovskite and causes a loss in FA at the surface, likely
increasing the relative amount of Cs relative to FA. Previous
studies have shown that the CsFA perovskite phase becomes
thermodynamically unstable when exceeding a Cs fraction of
0.2 (FA below 0.8).3,4 We note that the studied composition of
Cs0.17FA0.83 is on the upper limit of Cs-molar content to form a
single-phase perovskite.4,5 The loss of FAI may easily shift the
composition into the thermodynamically unstable phase by
increasing the ratio between Cs and FA, favoring the
segregation into nonperovskite phases. Iodide vacancies
created by H2O may further accelerate the phase transitions.10

Light can speed up these reactions, but degradation can also
happen in the dark. This is confirmed both by the trend in the
XPS spectra, where exposure to H2O/air is performed in the
dark, and by GIWAXS measurements performed on the same

sample but in different spots and using different measurement
frequencies (different X-ray doses), Figure S7. Previous studies
have highlighted the role of superoxide on perovskite
degradation under light irradiation.13,19,25,38 Both room light
and X-ray exposure can photoexcite charge carriers during the
in situ GIWAXS measurements, but they only lead to a
negligible amount of free charge carriers and superoxide
formation (discussion in S2.5, Figures S22−S26).

A proposed mechanism for the role of chemistry in phase
transformations during exposure to H2O/air is shown in Figure
4. First (I), water molecules dissolve FAI at FAI-rich perovskite

surfaces, creating PbI2-rich surface regions. Second (II), the O2
molecules are adsorbed and oxidize surface iodide, resulting in
iodate species at the surface. Third (III), lead iodate can
subsequently segregate at the surface, leaving PbI2 vacancies,
which act as hotspots for further FAI dissolution by H2O.
Fourth (IV), the loss of FA changes the Cs/FA molar ratio
beyond the thermodynamically stable region, forming single-
cation nonperovskite phases. We emphasize that the structural
phase transformations in H2O/air are initiated at the surfaces.
Thus, chemical surface treatments, such as reducing under-
coordinated Pb ions at the surface, should reduce the
interaction with H2O and O2, likely improving phase
stabilization.
2.4. Stabilizing the Perovskite Phase. To understand

the role of surface blockers, capping layers, or surface

Figure 4. Proposed surface and bulk mechanism for CsFA perovskites
exposed to H2O/air. (I) H2O is adsorbed on the CsFA surface,
promoting the loss of FAI (g). Surface vacancies are created, leading
to preferential oxygen binding sites, favoring the oxidation of iodide
and energetically favorable formation of Pb(IO3)2 (II), which will
create a PbI2 vacancy (III). Surface vacancies and the loss of FAI will
lead to faster phase segregation and phase transformations from
mixed-cation perovskite into single-cation nonperovskite phases (IV).
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passivators on phase transformations at the interface,39,40 we
evaluated the effect of PEAI spin-coated on a perovskite film
(PEAI-treated).41,42 DFT calculations show a substantial
reduction in H2O adsorption energies at the aromatic PEA+

(Figure 5a), resulting in hydrophobic protection that can
reduce the degradation of CsFA perovskite surfaces (Figure
S27). We analyzed the structural phase transformations by in
situ GIWAXS in H2O/air (Figures S28−S30). Figure 5b shows
the peak evolution of the main perovskite and nonperovskite
phases (Figure 1a) as a function of exposure time to H2O/air.
The main 110 β-perovskite peak does not change in H2O/air
after 600 min of exposure, suggesting that the PEAI layer
prevents H2O and O2 interactions at the surface compared to
the untreated films in H2O/air (Figure 1b,c). Films treated
with PEAI show a slight presence of 2H phase (Figure 5b),
which decreases as a function of time (Figure S30). The δCs
phase forms when exposed to H2O/air but three times slower
than the untreated films (Figure 1c) when comparing the rate
constant b (Figures S2 and S30). Figure 5c shows the 2D
GIWAXS after final exposure to H2O/air. For the PEAI-treated
films, the β-perovskite 110 Debye−Scherrer ring has a high
intensity at the bulk and surface. We also observe rings that we
assigned to low-dimensional (LD) PEA phases, as expected.43

The pristine CsFA films in Figure 5c show that the primary
phases are 2H and δCs.

We evaluated the effect of the PEAI treatment on the
performance and stability of solar cells of the n-i-p architecture
(Figure 5d). CsFA-untreated devices showed an initial PCE of
19.7% (Figure 5e). The average PCE for the CsFA-untreated
solar cells dropped 3.7% after H2O/air exposure (CsFA-H2O/
air), while the average PCE for the PEAI-treated devices did
not decrease (PEAI-H2O/air) (Figure 5f). A change in film
color was visible after the pristine films were exposed to H2O/
air (images in Figure 5f). The drop of PCE in CsFA-H2O/air is
mainly due to the decrease in short circuit current density
(Figure S31). We attribute this decrease to the formation of
wide band gap nonperovskite phases such as 2H and δCs,
which absorb less photons and thus transport fewer charge
carriers in the solar cell. From correlative XRF and X-ray
beam-induced current (XBIC) maps in Figure S32, we observe
the formation of Cs-rich clusters that could correspond to δ-
CsPbI3. The δCs clusters in XRF are correlated with reduced
XBIC currents, in agreement with other studies.44 We assessed
the long-term stability under operating conditions of solar
cells14,38 under one sun illumination in dry air (Figures S33
and S34). Our results show an 85% decrease after 13 h in the
untreated film solar cells. The PEAI-treated solar cells
decreased only 30% from their initial PCE after 25 h, showing
a slower degradation. This is in agreement with previous
studies that highlighted the relevance of photo-oxidation of
perovskite under 1 sun illumination and O2 exposure and

Figure 5. The PEAI capping layer is used to stabilize the perovskite in H2O/air. Panel (a) shows H2O adsorption energy on a CsFA surface and
CsFA-PEAI surface calculated by DFT. From GIWAXS measurements in Figure S27, (b) is the integrated area of the main scattering peak of each
phase for films exposed to H2O/air. (c) Shows the 2D GIWAXS patterns from the surface and bulk measurements after 600 min of exposure to
H2O/air for the (left) PEAI-treated CsFA films and (right) untreated CsFA. A PEAI-treated CsFA perovskite layer in a solar cell with (d) n-i-p
architecture. Panel (e) shows the current density−voltage curve and stabilized PCE of a high-efficiency device, and (f) shows the statistics of the
PCE in box plots for the CsFA-untreated and PEAI-treated, w/o and with H2O exposure, under 1 sun illumination. The inset pictures show the
device after H2O/air exposure before depositing the Spiro-OMeTAD and Au layers.
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further suggests increased robustness to the exposure to H2O/
air of PEAI-treated surfaces (Figure S32).13,19,25,38 In contrast,
the solar cells exposed to dry nitrogen showed little to no
degradation (Figure S33), suggesting that oxygen in air is key
to the degradation of the solar cells.

3. CONCLUSIONS
Exposing mixed-cation CsFA perovskites to H2O/air leads to
undesired structural phase transformations, unlike the slower
degradation observed in H2O/N2 and little to no degradation
in dry air and the dark. When exposed to H2O/N2, the CsFA
perovskite degrades more slowly by dissolving FAI molecules
from the surface. However, in the presence of both H2O and
air, after the volatilization of the FAI molecules, the O2 from
air oxidizes surface iodide ions, forming lead(II) iodate. This
further causes the formation of PbI2 vacancies, which act as
hotspots for H2O to enter the structure and that lead to the
volatilization of additional FAI molecules. This results in the
loss of FAI molecules in an iterative process. This alteration in
the local composition leads the Cs/FA ratio beyond the
energetically stable region, producing a thermodynamic force
that drives the phase transformation from perovskite to
nonperovskite phases. This phase transformation process starts
at the surface, where H2O and O2 react with surface ions.
These insights into the surface chemistry and reaction
mechanisms provide a foundation for designing durable and
efficient solar cell materials. As a demonstration, a hydrophobic
PEAI layer can be used to protect the surface from water and
oxygen molecules, which prevents structural phase trans-
formations and helps to preserve the solar cell performance.
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