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Introduction

Algebraic torus actions form a fundamental concept in algebraic geometry, providing a powerful
tool to study the structure of algebraic varieties.

A split algebraic torus T over the field k is defined as a group isomorphic to the product of
a finite number of copies of the multiplicative group Gm

∼= k∗ of k. This means that T is an
abelian algebraic group, where multiplication is a well-defined algebraic map and invertible for
its elements.

When an algebraic torus T acts on an algebraic variety X, it induces a group action on
the points of that variety in a way that preserves the algebraic structure of the variety. This
action often has important consequences on the geometry of the variety, revealing its geometric
properties and being a powerful tool in its study.

One of the primary areas of interest in algebraic torus actions is the study of toric varieties.
Toric varieties are algebraic varieties equipped with a torus action that has a dense orbit. Toric
varieties have rich connections with discrete geometry. A normal toric variety can be defined by
a polyhedral fan Σ and many of its properties can be translated into properties of the fan Σ.

In chapter 2 we make use of these connections to study a special class of line bundles on
toric varieties. A line bundle on a toric variety X is given by a divisor class on X, so up to
linear equivalence, it can be described by a torus invariant Weil divisor that is a formal sum of
torus invariant prime divisors which are in one-to-one corresponds with the rays Σ(1) of the
fan. We will recapitulate how the cohomology of a line bundle can also be calculate discrete
geometrically with the help of the fan and use properties of the fan to describe immaculate line
bundles on X, see section 1.1.

In the case of toric varieties the dimension of the torus T equals the dimension of the variety
X that T acts on. But even the action of a one-dimensional torus T on a variety (or scheme)
X can reveal valuable insights into the structure of X. An important result is the paper by
Bialynicki-Birula [Bia73] where such a torus action is used to define a decomposition of a scheme
X into T -invariant subschemes. In chapter 3 we apply this to Hilbn(k[x, y]), the Hilbert scheme
of n points of a plane for n ∈ Z>0. The points of Hilbn(k[x, y]) correspond to zero-dimensional
ideals I in the polynomial ring k[x, y] with dimk

k[x, y]/
I = n. We can define an action of

a one-dimensional torus T on k[x, y] and this induces an action on the ideals of k[x, y] that
restricts to an action on Hilbn(k[x, y]). When the action is general enough, the only fixed points
of this action in Hilbn(k[x, y]) are the zero-dimensional monomial ideals. These ideals can be
identified with partitions of n. Under the given action all ideals in Hilbn(k[x, y]) specialize to
monomial ideals. This process can also be understood in the language of leading term ideals.
The subset of ideals specializing to a given monomial ideal or in other words with given leading
term ideal are the so-called Gröbner cells. In chapter 3 we parametrize them by means of
canonical Hilbert-Burch matrices, see section 1.2.

The computational component played a big role in both parts of this thesis. The computer
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algebra systems polymake [GJ00], Singular [DGPS23] and OSCAR [23] via Julia [BEKS17]
were used to generate examples, and to find and test hypotheses. Both parts lead to exten-
sions/modules for the computer algebra systems polymake and Julia. The developed software
comes partially shipped with polymake, the rest is available on GitHub.

We will proceed by giving more detailed introductions to both main chapters with a focus on
the author’s contributions.

1.1 Immaculate Line Bundles on Toric Varieties, chapter 2

Most results presented in chapter 2 have been published in [ABKW20], co-authored with Klaus
Altmann, Jarosław Buczyński, and Lars Kastner. For a detailed comparison between the paper
and this chapter, please refer to the beginning of the chapter.

Exceptional sequences play an important role in the study of the derived category of a scheme
X. An exceptional sequence is a sequence of exceptional elements of the derived category such
that there are no backwards morphisms. A full exceptional sequence generates the derived
category, or more precisely, it gives a semiorthogonal decomposition of the derived category of
X. There has been a lot of research about the existence of full exceptional sequences, lengths
of full exceptional sequences (especially in the context of phantom categories), the possibility
of expanding a given exceptional sequence to a full exceptional sequence, classification of full
exceptional sequences and many more, see e.g. [AA22; AW21; BGKS15; BH09; CM04; Cra11;
Efi14; HP06; HP11; Kaw06; Kaw13; Mic11]. When there exist full exceptional sequences for
schemes X, it has been a question whether one can build an exceptional sequence only out of
sheaves or even of line bundles. For toric varieties Efimov has given a negative answer to this
question in [Efi14]. Nevertheless, there are still many open problems in this research field.

On a smooth projective toric variety X, a sequence (L0, ..., Ln) of line bundles is exceptional
if Hk(X,Li ⊗ L−1

j ) = 0 for all i > j and all k ∈ Z. This motivates the following definition.

Definition 1.1 (Definition 2.3). A line bundle L on a variety X is called immaculate if
Hk(X,L) = 0 for all k ∈ Z.

In this sense, immaculate line bundles can be seen as building blocks for exceptional sequences
of such. Immaculate line bundles also have a connection to Physics: they are contained in the
vanishing sets studied in [BMW17; Bie18]. These sets are relevant in the studies of F-Theory,
which describes a special set of solutions in string theory.

Although the study of full exceptional sequences was our motivation, in chapter 2 we focus
on the structure of immaculate line bundles for (often projective) toric varieties.

The normal toric variety associated to a polyhedral fan Σ ⊂ NR = N ⊗Z R, will be denoted
by X = TV(Σ), where N is the lattice of one-parameter subgroups of T and M is the dual
lattice to N , the lattice of characters of T . Line bundles on X are given as O(D) with D being
a divisor class in Cl(X). Whenever X has no torus factors and the rays of Σ are not contained
in a proper sub-vector space, the class group of X can be obtained by the following well-known
exact sequence

0 →M →ρ∗ DivT (X) = (ZΣ(1))∗ →π Cl(X) → 0. (1.1)

We will fix the notation and remind some basic results about divisors on toric varieties and their
cohomologies in section 2.1.

In our strategy to study immaculate line bundles of a toric variety X = TV(Σ) the exact
sequence 1.1 plays an important role. We will divide the task of finding immaculate line
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bundles into two steps. Firstly, we study subsets of the rays Σ(1). A subset R ⊂ Σ(1) will be
called tempting whenever the set V >(R) := R>0 ·

⋃
σ∈Σ conv(R ∩ σ(1)) is not k-acyclic, see

Definition 2.4. The aim of this step is to identify all tempting subsets of the rays of Σ. The
second step is to study the associated “maculate” subsets of the class group.

Definition 1.2 (Definition 2.6). Let R ⊂ Σ(1) be a tempting set. We define the maculate set
MZ(R) and the maculate region MR(R) as

MZ(R) := π(ZΣ(1)\R
≥0 × ZR

≤−1) and MR(R) := π(RΣ(1)\R
≥0 × RR

≤−1).

We show in Proposition 2.9 that a line bundle O(D) is immaculate if and only if D /∈ MZ(R)
for any tempting subset R ⊂ Σ(1). For the maculate regions only one of the directions is true. It
might happen that a divisor is immaculate, but belongs to a maculate region, see Example 2.10
and Example 2.39. Nevertheless in many of our examples we get the other implication as well.
This is the case if the rays of the tail cone of the maculate region form a Hilbert basis, which is
guaranteed by total unimodularity of the matrix π. The methods used are similar to [BH09]
and [Efi14], but different to their approach of detecting full exceptional sequences, we will focus
on studying the immaculate locus inside of the class group Cl(X).

The first step of the task is treated in section 2.2: deciding whether a subset R ⊂ Σ(1) is
tempting or not. First we notice that monomials and subsets of rays that span a cone σ ∈ Σ, do
not lead to temptation. On the other hand, a guaranteed source for temptations are primitive
collections. A primitive collection P of Σ is a minimal non-face, in the sense that each proper
subset of P spans a cone of the fan. The main characterization is the following theorem that is
not contained in [ABKW20].

Theorem 1.3 (Proposition 2.28). Let X = TV(Σ) be a projective toric variety. If R ⊂ Σ(1)
is tempting, then R and its complement Σ(1) \ R can be written as the union of primitive
collections.

The main point in the proof is that whenever R is not a union of primitive collections, it
can be obtained as the rays of some cones of Σ that intersect in a common face and thus
V >(R) can be retracted to this face and is k-acyclic. This result was also proven by Efimov
in [Efi14, Lemma 4.4] with different methods. In Example 2.30 we see that this is not a
complete characterization, since primitive collections cannot identify all the cases where R (or
its complement) consists of the rays of a subfan with convex support.

The rest of the chapter is devoted to the study of more concrete classes of examples of smooth
projective toric varieties: we start with varieties of Picard rank 2 in section 2.3. Here the
situation is simple, there are only four tempting subsets and the structure of the immaculate
locus can be described nicely. The varieties of Picard rank 2 are a subclass of the next class,
varieties with splitting fans that we study in section 2.4. The focus in this chapter lies on
projective toric varieties of Picard rank 3 in section 2.5. This section differs from the equivalent
section [ABKW20, Section VIII.3]. It contains the complete proofs and studies the structure of
the immaculate locus in more detail. In subsection 2.5.1 we use the classification by Batyrev and
see that the varieties of Picard rank 3 are either varieties with splitting fans and three primitive
collections, so a subset of the class studied in section 2.4, or they have 5 primitive collections.
By Proposition 2.47 the rays of a fan of a projective toric variety with exactly five primitive
collections can be partitioned into five sets X0, X1, . . . , X4 of cardinalities p0, p1, . . . , p4. The
primitive collections then consist of unions of two consecutive Pα = Xα∪Xα+1. Now the variety
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is determined by two parameter vectors b and c. We identify the immaculate line bundles for
this class of varieties.

Theorem 1.4 (Proposition 2.54 – Proposition 2.57). Let X = TV(Σ) be a projective toric
variety of Picard rank 3 that has exactly five primitive collections. Then the immaculate locus
of X contains the following types of line bundles:

• type (F): line bundles (∗, x, y) in full lines with (x, y) ∈ Q1 ∪Q2, see Proposition 2.54,

• type (A): line bundles (∗, y, −y) in line segments for y ∈ [−p1 − p2 + 1, p3 + p4 − 1], see
Table 2.2 and Proposition 2.55,

• type (B): if p2, p3 ≥ 2: p0 − 1 line bundles in a line line segment in (∗, −p1 − p2, p1), see
Proposition 2.56 (also for the statements for p2 = 1 or p3 = 1),

where Q1 and Q2 denote two planar parallelograms with vertices depending on p0, . . . , p4, see
Definition 2.53 and Figures 2.4 – 2.6.

Whenever the parameters b and c are sufficiently general, then there are no other immaculate
line bundles than the ones stated above and their Serre duals (Proposition 2.57).

In subsection 2.5.4 we study how the set of immaculate line bundles of different varieties
of Picard rank 3 behave. The special case with vanishing parameters b and c is studied in
subsection 2.5.5. Here a second class of lines of immaculates exists, similar to the lines in
Proposition 2.54 in another direction.

Proposition 1.5 (Proposition 2.62). Let X = TV(Σ) be a toric variety of Picard rank 3 with
exactly 5 primitive collections, and let b and c from Proposition 2.47 be zero. Then the line
bundles (x, ∗, z) are immaculate for (x, z) ∈ Q̃1 ∪ Q̃2, where Q̃1 and Q̃2 are two planar
parallelograms with vertices depending on p0, . . . , p4.

The last section, section 2.6, is devoted to the description of the computational aspects of the
problem. In particular, we implemented an extension for polymake to calculate the immaculate
locus for toric varieties.

1.2 Canonical Hilbert-Burch Matrices, chapter 3

The first part of chapter 3 is joint work with Roser Homs, published in [HW21] and [HW23].
For a detailed comparison between the papers and this chapter, please refer to the beginning of
the chapter.

Hilbert schemes parametrize subschemes of a scheme with a fixed Hilbert function. The most
basic examples are Hilbert schemes of points of affine spaces. The points of these schemes
parametrize n points of the affine space, counted with multiplicities. Even the simplest among
those, the Hilbert scheme of points in the affine plane Hilbn(k[x, y]), has been studied for a long
time, [ES87; ES88; Gal74; Gra83; Iar77; Yam89]. The points of Hilbn(k[x, y]) parametrize n
points in A2 counted with multiplicities, or with a more algebraic view, Artinian k-algebras
with two generators of vector space dimension n, so ideals I of k[x, y] such that the quotient of
k[x, y] by I is an n-dimensional vector space. One strategy to study those spaces has been to
decompose them into smaller spaces.

A term order τ on a polynomial ring defines an ordering of the monomials, and enables
the definition of leading term of a polynomial f , denoted by Ltτ (f), as the biggest monomial
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occurring as a term of f . For an ideal I, we define the leading term ideal Ltτ (I) as the
ideal generated by all leading terms Ltτ (f) for all f ∈ I. In [CV08] and [Con11] the authors
parametrize subsets of Hilbn(k[x, y]) where the ideals share a common leading term ideal E with
respect to the term order τ , for τ the lexicographic (lex) and the degreelexicographic (deglex)
term order, respectively. This set will be denoted by Vτ (E). By [Bia73; ES87; Yam89] the
sets Vτ (E) are affine spaces and form a cellular decomposition of Hilbn(k[x, y]). By analogy to
Schubert cells in Grassmanians they are called Gröbner cells. The idea of the parametrizations
of Vτ (E) by [CV08] and [Con11] is to use the Hilbert-Burch theorem. Since each ideal in
Vτ (E) is of codimension two, it can be generated by the maximal minors of a matrix, called
Hilbert-Burch matrix. Obviously, this matrix is not at all unique. Both papers describe ways
to pick a canonical representative. One aspect of their constructions is that the minors of
their ”canonical Hilbert-Burch matrix” of an ideal I do not only generate the ideal, but form a
Gröbner basis with respect to the considered term order. That means that the leading terms
of the minors also generate the leading term ideal Ltτ (I). We will review these results and fix
notations in section 3.1.

In chapter 3 our aim is to generalize these results in two different directions. In the first
part (section 3.2 – section 3.6) we study those ideals of Hilbn(k[x, y]) that correspond to points
of multiplicity n at the origin, so local Artinian k-algebras of length n. This subscheme of
Hilbn(k[x, y]) is called the punctual Hilbert scheme. The punctual Hilbert scheme (not only of
the plane) has also been of great interest, see for example [Bri77; BG74; Iar77; Poo08; Göt90].
By Cohen’s structure theorem, a local Artinian k-algebra A is a quotient R/J , where R is
the ring of formal power series and J ⊂ R is an m-primary ideal. For this reason, we denote
the punctual Hilbert scheme by Hilbn(k[[x, y]]). Since J is m-primary, it can be generated by
polynomials and the quotient R/J is naturally isomorphic to P/(J ∩ P ), J ∩ P is an m-primary
ideal of the polynomial ring P and m denotes the maximal ideal in R and by a slight abuse
of notation also the homogeneous maximal ideal of P . In [CV08] a parametrization of the
sub-cell of (x, y)-primary ideals of Vτ (E) is given, so we obtain a cellular decomposition of the
punctual Hilbert scheme. But this decomposition has a major drawback. For a local Artinian
k-algebra A one can define the Hilbert function of A as the Hilbert function of its associated
graded ring. The associated graded ring of a local algebra A = R/J can be recovered as the
quotient of the polynomial ring by the initial ideal J∗ of J , see Definition 3.10. The initial form
of a polynomial f is the part of f of lowest degree, and similar to the leading term ideal, the
initial ideal J∗ is defined as the ideal generated by the initial forms of all f ∈ J . A natural wish
for a decomposition of the punctual Hilbert scheme is that all ideals in a cell have the same
Hilbert function. This is not the case in the sub-cell of (x, y)-primary ideals in the Gröbner cell
Vlex(E), see Example 3.14. Roughly speaking, the reason is that taking the initial ideal and
the leading term ideal with respect to a term order do not commute, see Remark 3.11. This
gives the motivation to define a different decomposition by local Gröbner cells such that all
ideals in the cell share the same Hilbert function. To achieve this we work in the power series
ring R = k[[x, y]] with so-called local term orders instead of considering (x, y)-primary ideals in
P = k[x, y] with global term orders. Local term orders, and the analogue notions to leading
term ideals, Buchberger division and Gröbner basis for the power series ring are introduced and
some crucial results needed for our setting will be recalled in subsection 3.2.1. Working towards
a parametrization of the ”local” Gröbner cell V(E), in section 3.3, we firstly give a surjection to
the cell.

Proposition 1.6 (Theorem 3.21). Let E = (xt, xt−1ym1 , . . . , xt−iymi , . . . , ymt) ⊂ k[[x, y]] be a
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monomial ideal with canonical Hilbert-Burch matrix H and degree matrix U as in Definition 3.2.
Let N (E) ⊂ k[[y]](t+1)×t such that the non-zero entries of N = (ni,j) ∈ N (E) satisfy that the
order, ord(ni,j) ≥ ui,j + 1 for i ≤ j and ord(ni,j) ≥ ui,j for i > j, with ord(ni,j) = deg(n∗i,j).
Then the map

φ : N (E) → V(E)

defined by
N 7→ It(H +N)

is surjective. In particular, the minors of H+N form a lex-enhanced standard basis of J ∈ V(E).

This surjection is from an infinite dimensional vector space and determines Hilbert-Burch
matrices of the ideals in V(E) such that the minors do not only generate the ideals, but form a
lex-enhanced standard basis (see Definition 3.9) of a specific form. In Proposition 3.26 a finite
dimensional sub-vector space is given that also surjects onto V(E). Since the map is still not
injective, this map cannot be used to define canonical Hilbert-Burch matrices for the ideals yet.
In section 3.4 we define a subset of ideals in V(E) for which canonical Hilbert-Burch matrices
can be chosen. It consists of ideals for which there exists a generating set that behaves well with
respect to the local structure as well as with respect to the lexicographic order. More precisely,
those ideals have a lex-enhanced standard basis that is also a Gröbner basis with respect to lex.
In Lemma 3.36 we show that for many monomial ideals this subset is already the whole Gröbner
cell. Combining these results the following theorem gives a parametrization of the Gröbner cells
of lex-segment ideals.

Theorem 1.7 (Theorem 3.38). Let E = (xt, xt−1ym1 , . . . , xt−iymi , . . . , ymt) ⊂ k[[x, y]] be a lex-
segment ideal with canonical Hilbert-Burch matrix H and degree matrix U as in Definition 3.2
and M(E) ⊂ N (E) such that deg(ni,j) < dmin(i,j) where di = mi −mi−1. Then

φ : M(E) → V(E)

by N 7→ It(H +N) is a bijection.

In the case that E is a lex-segment ideal (or under the slightly more general assumption
of being a relax-segment ideal, see Definition 3.35) the set M(E) only contains strictly lower
triangular matrices, in the sense that ni,j = 0 for all i ≤ j. One can define canonical Hilbert-
Burch matrices for all ideals in the cell. In Lemma 3.46 we give a parametrization of the sub-cell
Vhom(E) of V(E) consisting of all homogeneous ideals of the cell and calculate its dimension
for general zero-dimensional monomial ideals E. In Conjecture 3.48 we propose that the whole
cell V(E) should be parametrized by the set N<d(E), see Definition 3.47. In section 3.5 we
investigate subsets of V(E) with a given number of generators and see that those subsets are
quasi-affine varieties in the affine space V(E). We use our construction to investigate which
minimal numbers of generators can be realized.

Section 3.6 focuses on the fact that the given Gröbner cells provide a cellular decomposition
of the punctual Hilbert scheme Hilbn(k[[x, y]]). Cellular decompositions of schemes over C can
be used to calculate their Betti numbers. We study our cellular decomposition for small values
of n and compare the results to known results by [ES87; ES88] and [Bri77]. We compare the
results about Betti numbers of the punctual Hilbert scheme of [ES87] to the numbers obtained
by our proposed parametrization and verify that they coincide for n ≤ 50. The fact that the
Gröbner cells with respect to a local order restrict to a cellular decomposition of the subspace
with fixed Hilbert function is used to calculate the Betti numbers of those subspaces for some
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values of n. We finish section 3.6 by giving another evidence for Conjecture 3.48. Using [Iar77,
Theorem 2.11, Theorem 3.14] we conclude that the difference of dimensions of V(E) and
Vhom(E) has to be the same for all E with the same Hilbert function h. We use this to verify
that the dimensions of N<d(E) and V(E) coincide for all E ∈ Hilbn(k[[x, y]]) for n ≤ 50. We
also give a small outline on the use of our Julia module.

In the second part (section 3.7 – section 3.9), we return to Hilbn(k[x, y]), so not necessarily
(x, y)-primary ideals in the polynomial ring k[x, y], and study Gröbner cells for general term
orders on k[x, y]. Varying term orders is not a new idea: in [MR88] Gröbner fans of ideals are
studied – term orders can be described by vectors and the fans of the Gröbner fan are those
regions where the leading term ideal of I stays the same for all orders, see also [Stu96] for
an introduction to the topic. In [AS05] the authors start from a different perspective. They
define a graph that has a vertex for every monomial ideal, and two vertices corresponding to
monomial ideals E and E′ are joined by an edge whenever there exists an ideal I such that
E and E′ are the only possible occurring initial ideals with respect to any given term order.
In Theorem 3.71 we give a surjection from a finite dimensional vector space to the Gröbner
cell Vτ (E) with respect to a general term order τ and conjecture how a parametrization should
look like in Conjecture 3.79. In section 3.9 intersections of two Gröbner cells Vτ (E) and Vτ ′(E)
are studied, so ideals for which the leading term ideal is the same with respect to two (or
more) term orders. In [JS19] it was shown that for two orderings those intersections are affine
spaces. In the case that one of the term orders is lex or deglex we give a parametrization of
these sets. So in particular, we have parametrizations of some subsets of the Gröbner cells
and can define canonical Hilbert-Burch matrices with respect to general term orders for the
ideals in those subsets. The parametrizations of subsets also give evidence for Conjecture 3.79.
In Corollary 3.92, we give a parametrization of those ideals that have a given monomial ideal
E = (xt, xt−1ym1 , . . . , ymt) as leading term ideal with respect to all term orders τ . This set is
isomorphic to a (t+mt)-dimensional affine space. In section 3.10 we collect some more evidence
for the correctness of Conjecture 3.79. We finish the chapter with the description of Gröbner
cells for n = 6 and different term orders.
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Immaculate Line Bundles on Toric
Varieties

The results of this chapter were previously published by International Press in the paper
“Immaculate line bundles on toric varieties” [ABKW20] by Klaus Altmann, Jarosław Buczyński,
Lars Kastner, and me. The paper is published in “Pure and Applied Mathematics Quarterly”,
Volume 16 (2020), Number 4, Special Issue: In Honor of Prof. Gert-Martin Greuel’s 75th
Birthday, Pages 1147 – 1217. The publication is available at https://dx.doi.org/10.4310/
PAMQ.2020.v16.n4.a12.

The present chapter contains a selection of adapted sections from [ABKW20]. The results of
[ABKW20] about calculating the cohomology of a line bundle by differences of polytopes, so
called p-immaculacy, and all statements connected only to these subtopics are omitted. Of the
presented parts of the paper, subsection 2.2.2 differs from the published version and contains
more statements about sources or absence of “temptations” (see Definition 2.4), where the
main result is Proposition 2.28. This statement makes it possible to shorten the proofs of the
statements identifying the “tempting subsets” in the case of splitting fans and Picard rank 3,
Lemma 2.36 and Lemma 2.49. The main contribution in this thesis is in section 2.5: the detailed
proofs of the statements about the structure of immaculate line bundles on projective toric
varieties of Picard rank 3, as well as more statements concerning the structure of the immaculate
sets when changing parameters in subsection 2.5.4, and about the structure in the special case
of vanishing parameters in subsection 2.5.5.

The collaboration started at the Fields Institute in Toronto, and lead to a visit of Jarosław
Buczyński in Berlin, where the other three authors worked at that time and a visit in Warsaw. A
lot of the conceptual work was done during those visits. Of the presented material of [ABKW20]
in this chapter, the results of section 2.5 were obtained almost entirely be me.

A more detailed comparison:

• section 2.1: An adapted version of [ABKW20, Chapter III], mostly shortened to contain
only the relevant notions for the present chapter (including subsection 2.1.1 a shortened
version of [ABKW20, section III.2] with Remark 2.2 added).

• section 2.2: a small part of [ABKW20, Chapter IV] (e.g. the definition of immaculate)
and mostly [ABKW20, Chapter V] (without the non-toric example, Figure 4)

– subsection 2.2.1 is a shortened version of [ABKW20, section V.1] Proposition 2.9 and
its proof are a slight variation of [ABKW20, Proposition V.6]

– The first part of subsection 2.2.2 is slightly adapted from [ABKW20, section V.2].
The following parts are new: Proposition 2.21, Example 2.22 and Example 2.23.
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– The first part of subsubsection 2.2.2 (Primitive collections deluded) is [ABKW20,
subsection V.2.3]. Proposition 2.27, Proposition 2.28, Example 2.29 and Example 2.30
are new.

• section 2.3 is [ABKW20, Chapter VI]

• section 2.4 is an adapted version of [ABKW20, Chapter VII].

– subsection 2.4.1 is a slightly shortened version of [ABKW20, section VII.1] with two
extra examples: Example 2.34 and Example 2.35.

– subsection 2.4.2 [ABKW20, section VII.2] proof of Lemma 2.36 ([ABKW20, Lemma
VII.2]) shortened with use of Proposition 2.28.

– subsection 2.4.3 is a variant of [ABKW20, sections VII.3+VII.4]. The proof of
the main result of this section Theorem 2.44 ([ABKW20, Theorem VII.12]) is only
summarized, instead some examples were added: Example 2.41, Example 2.43 and
subsubsection 2.4.3 for the splitting fans of Picard rank 3.

• section 2.5 contains the results of [ABKW20, Chapter VIII] but with the detailed proofs
and added subsection 2.5.4 and subsection 2.5.5.

• section 2.6 is a slightly adapted version of [ABKW20, Chapter IX].

2.1 Toric geometry

The main objective in this chapter is to investigate a toric variety X and its immaculate locus
within Cl(X). For this we will make use of the classical method of calculating the cohomology
of equivariant line bundles from the fan Σ in NR.

In the following we will assume that k is an algebraically closed field. All our toric varieties
are normal. Our main references for dealing with toric varieties are [CLS11; Ful93; KKMS73].
We denote by N the lattice of one-parameter subgroups of the torus acting on the toric variety,
and by M the character lattice. Throughout Σ denotes a polyhedral fan in N and X = TV(Σ)
the corresponding toric variety. For a cone σ in NR = N ⊗ R or MR =M ⊗ R we denote the
dual cone in MR or NR, respectively, by σ∨ .

The set of all cones of dimension k of a fan Σ is denoted Σ(k). Similarly, for a cone σ, by
σ(k) we mean the set of all faces of dimension k. In order to reduce the notation, we will follow
the standard convention to denote rays (one-dimensional polyhedral cones) and their primitive
lattice generators by the same letter, usually ρ.

Most toric varieties occurring in this chapter will be complete, many even projective. For
simplifying the notation in the proofs we will also assume that X has no torus factors. In
particular, the support of Σ, Supp(Σ), is the whole NR.

Every Weil divisor on X is linearly equivalent to a torus invariant divisor D =
∑

ρ∈Σ(1) λρ ·Dρ

with Dρ := orb(ρ).
A fan Σ in NR ∼= Rd gives rise to a map ρ : ZΣ(1) → N , which takes the basis element indexed

by a ray of Σ to the corresponding primitive element on that ray in N . Since by assumption
the toric variety X = TV(Σ) has no torus factors, the cokernel of ρ is finite. If X is smooth, ρ
is surjective. We denote the kernel by K, and we obtain an exact sequence

0 // K // ZΣ(1) ρ // N.
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It is well known that the dual of this sequence yields

0 Cl(X)oo DivT (X)
πoo M

ρ∗oo 0,oo (2.1)

where DivT (X) =
(
ZΣ(1)

)∗ denotes the group of torus invariant Weil divisors on X. Note that
Cl(X) may have torsion, which corresponds to the torsion of the cokernel of ρ. The anticanonical
class of X is −KX = π(1). The set of effective divisor classes is EffZ(X) = π

(
ZΣ(1)
≥0

)
, although

often we really consider the effective cone EffR(X) = π
(
RΣ(1)
≥0

)
, where π is now considered as

the map RΣ(1) → Cl(X)⊗ R.

Example 2.1. Throughout the text we will regularly come back to the example of the del Pezzo
surface of degree 6, which is the blow up of P2 in three points, also referred to as a hexagon due
to the shapes of its fan and the polytopes of sections of ample divisors. This is also a smooth
projective toric variety of Picard rank 4, which illustrates that our methods go beyond the main
results presented in this chapter (splitting fans and Picard rank 3 cases). The exact sequence
(2.1) in this example is given by the matrices

ρ∗ =

 1 0
0 1
−1 1
−1 0
0 −1
1 −1

 and π =

(
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 −1 1 0 0 0

)
.

The rows of ρ∗ form the rays of our fan Σ, meaning we work with the following 2-dimensional
fan:

0

12

3

4 5

With this choice of ρ∗ and π the Nef cone is generated by the following 5 rays:

(1 1 0 0), (1 0 1 1), (0 1 1 0),
(1 1 1 0), (1 1 1 1).

2.1.1 Toric cohomology

Let us review the classical method of calculating the cohomology groups of toric divisors.
If D =

∑
ρ∈Σ(1) λρ ·Dρ is a Weil divisor on a toric variety X = TV(Σ), then for every m ∈M

we define
VD,m :=

⋃
σ∈Σ

conv{ρ | ρ ∈ σ(1), ⟨ρ,m⟩ < −λρ} ⊆ NR. (2.2)

It is a classical result [CLS11, Theorem 9.1.3], that one obtains the m-th homogeneous piece
of the sheaf cohomology of OX(D) as

Hi
(
TV(Σ),OX(D)

)
m

= H̃
i−1

(VD,m,k) for all i ≥ 0.
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Recall that the reduced cohomology of a topological space S is defined via the cochain double
complex of S mapping to a point. In particular, there arises a (−1)-st reduced cohomology, and

H̃
i
(S,k) = 0 for i < −1 H̃

−1
(S,k) =

{
k if S = ∅
0 if S ̸= ∅,

H0(S,k) ↠ H̃
0
(S,k) with kernel k, and

H̃
i
(S,k) = Hi(S,k) for i > 0.

Here Hi(S,k) are the classical singular cohomology groups of the topological space S (with
coefficients k). See [Spa66, §4.3, §5.4] and [Hat02, §2.1, §3.1] for more details about singular
and reduced (co)homology groups. See also a brief but relevant summary at the end of [CLS11,
§9.0].

Since 0 /∈ VD,m, one might retract VD,m onto a subset of the sphere Sd−1 ⊆ NR (where d is
the dimension of X, and hence also of NR) without changing their cohomology. Alternatively,
we can replace VD,m with V >

D,m := R>0 · VD,m. If Σ is simplicial, then we can also consider

the “full” or “induced” subcomplexes V ≥
D,m of Σ, defined as V ≥

D,m :=
{
σ ∈ Σ | σ \ {0} ⊂ V >

D,m

}
.

Both sets are closely related, i.e. V >
D,m = SuppV ≥

D,m \ {0}.
Remark 2.2. Note that VD,m = VD+div(xm),0. The equation D + div(xm) =

∑
ρ∈Σ(1)(λρ +

⟨ρ,m⟩)Dρ yields that the resulting inequalities in Equation 2.2 in the two cases are equivalent.
The set VD,0 is thus of special interest and we can easily see that

VD,0 =
⋃
σ∈Σ

conv{ρ | ρ ∈ σ(1), λρ < 0}.

2.2 The immaculate locus in Pic(X)

In this section we introduce the notion of an immaculate sheaf, concentrating on the case of line
bundles.

Recall, that a sheaf is called acyclic, if it has all higher cohomology groups equal to zero. We
will also say that for a field k, a topological space V is k-acyclic, if it is non-empty, arc-wise
connected, and its singular cohomologies Hi(V,k) = 0 vanish for all i > 0. Note that in such
case H0(V,k) = k. For example, all non-empty contractible spaces are k-acyclic (for any k).
Spheres Sk are never k-acyclic.

Definition 2.3. We call a sheaf F on a variety X immaculate if all cohomology groups Hp(X,F)
(p ∈ Z) vanish. The difference from the usual notion of acyclic sheaves is that we ask for the
vanishing of H0, too.

In particular, a toric sheaf of a T -invariant Weil divisor OX(D) is immaculate if and only if
all sets VD,m are k-acyclic.

Let us compare two examples of smooth projective toric varieties with Picard rank 2: the
product projective space P1 × P1 and the Hirzebruch surface F1. The first is a homogeneous
space (for the semisimple group SL2×SL2). Figures 2.1 and 2.2 illustrate the Picard lattices of
these examples, indicating the regions of line bundles with non-trivial cohomologies.

For homogeneous spaces, the regions for various Hi are disjoint, that is, for every line bundle
L there is at most one value of i, such that Hi(L) ̸= 0, see for instance [Kos61, Theorem 5.14].
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Figure 2.1: The Picard lattice of the surface P1 × P1. The effective cone Eff is the cone of
divisors with non-zero H0 and it coincides with the Nef-cone. There are two cones
of divisors with non-zero H1, and one cone with non-zero H2. The remaining line
bundles are immaculate, and the immaculate locus consist of two lines parallel to
the common facets of the Nef- and Eff-cones. The notation MR(•) is explained in
subsection 2.2.1.
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Figure 2.2: The Picard lattice of the Hirzebruch surface F1 = TV(Σ), where Σ has rays Σ(1) =
{(0, 1), (−1,−1), (1, 0), (−1, 0)}. The effective cone Eff is the cone of divisors with
non-zero H0. There are two cones of divisors with non-zero H1, and one cone with
non-zero H2. In addition the Nef-cone is marked; it is a proper subset of the Eff-cone.
The remaining line bundles are immaculate, and the immaculate locus consist of a
bounded polytope and a line parallel to the unique common facet of the Nef- and
Eff-cones.

For toric varieties this is not necessarily the case. As illustrated by the F1 example, the regions
may intersect. The goal of this section is to show how to obtain these regions of line bundles
with various cohomologies for any toric variety.
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2.2.1 Temptations

Let X = TV(Σ) be a toric variety with no torus factors. For any subset R ⊆ Σ(1) we define
V >(R) ⊂ NR, similar to V >

D,0 as in subsection 2.1.1:

V >(R) := R>0 ·

(⋃
σ∈Σ

conv(R∩ σ(1))

)
.

Moreover define V ≥(R) as the complex of cones {cone(R∩ σ(1)) | σ ∈ Σ} in NR, so that

SuppV ≥(R) = V >(R) ∪ {0} .

In fact, V >(R) = V >
−

∑
ρ∈R Dρ,0

and analogously for V ≥. Thus, as in subsection 2.1.1, if Σ is in

addition simplicial, then V ≥(R) is the full (“induced”) subcomplex of Σ generated by R. This
notion has an analogous function as that of “Supp(r)” in [BH09, section 4].

Definition 2.4. We call R ⊆ Σ(1) tempting if the geometric realization V >(R) of V ≥(R) \ {0}
admits some reduced cohomology, that is if it is not k-acyclic.

Example 2.5. Following with our “hexagon” example (see notation in Example 2.1), the fan Σ
of this surface has the following 34 tempting subsets R ⊆ Σ(1):

∅, {0, 2}, {0, 3}, {0, 4}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {0, 1, 3}, {0, 1, 4},
{0, 2, 3}, {0, 2, 4}, {0, 2, 5}, {0, 3, 4}, {0, 3, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4},

{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 1, 3, 5}, {0, 2, 3, 4},
{0, 2, 3, 5}, {0, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {0, 1, 2, 3, 4, 5}.

As in section 2.1 we denote both natural maps ZΣ(1) → Cl(X) and RΣ(1) → Cl(X)⊗ R by π.

Definition 2.6. Let R ⊆ Σ(1) be a tempting subset. Then, we define MZ(R), the R-maculate
set of Cl(X), and MR(R), the R-maculate region of Cl(X)⊗ R, as

MZ(R) := π
(
ZΣ(1)\R
≥0 × ZR

≤−1

)
and

MR(R) := π
(
RΣ(1)\R
≥0 × RR

≤−1

)
.

Remark 2.7. The forbidden sets KI , defined in [Efi14, Proposition 4.1] correspond to the
R-maculate sets MZ(R) in our language.

Remark 2.8. When the fan Σ is complete. The empty set R = ∅ yields MR(∅) = Eff(X).
Moreover, Alexander duality implies that switching between R and Σ(1)\R does not change the
temptation status. After applying M, the relation between the subsets MZ(R) and MZ(Σ(1)\R)
of Cl(X) becomes Serre duality in X = TV(Σ). The reinterpretation in terms of Serre duality
in the projective case is the following: the canonical divisor on X is KX = −

∑
ρDρ, and the

Serre dual divisor to D :=
∑

ρ aρDρ is KX −D =
∑

ρ(−1− aρ)Dρ. Thus the duality swaps the
sets MZ(R) and MZ(Σ(1) \ R) and their cohomologies are dual to each the other.

The integral sets MZ(R) ⊆ Cl(X) reflect more precisely the properties we need, but the
real regions MR(R) are easier to control and they already contain a lot of information. Note
that under the natural map κ : Cl(X) → Cl(X) ⊗ R, [D] 7→ [D] ⊗ 1, the R-maculate set is
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mapped into the R-maculate region, that is κ : MZ(R) → MR(R). In other words, the preimage
κ−1MR(R) in Cl(X) contains MZ(R), or, slightly incorrect, MZ(R) ⊆ MR(R) ∩ Cl(X). We
will encounter several situations when κ−1MR(R) and MZ(R) are either equal or not equal,
depending on the saturation of respective cones.

Proposition 2.9. Suppose X = TV(Σ) is a toric variety with no torus factors.

(i) If R ⊆ Σ(1) is tempting, then for any i such that H̃
i−1

(V >(R),k) ̸= 0 and any Weil
divisor [D] ∈ MZ(R), we have Hi(OX(D)) ̸= 0.

(ii) A line bundle OX(D) for [D] ∈ Cl(X) is immaculate if and only if D /∈
⋃

R=tempting MZ(R).

(iii) A line bundle OX(D) such that [D]R /∈
⋃

R=tempting MR(R) is immaculate.

This statement is comparable with [BH09, Proposition 4.3 and 4.5] and [Efi14, Proposition 4.2].

Proof. Let [D] ∈ MZ(R) = π(ZΣ(1)\R
≥0 × ZR

≤−1), then by definition D is linearly equivalent to
some D′ =

∑
ρ∈Σ(1) λρDρ, with R = {ρ ∈ Σ(1) | λρ < 0}. If R ⊂ Σ(1) is tempting, then V >(R)

is not k-acyclic, so there exists i with H̃
i−1

(V >(R),k) ̸= 0. By [CLS11, Theorem 9.1.3] the
cohomology group of the line bundle associated to D is Hi(OX(D))m = H̃

i−1
(VD,m,k) and with

Remark 2.2 Hi(OX(D))m = Hi(O(D′))0 = H̃
i−1

(VD′,0,k). It is easy to see that V >
D′,0 = V >(R),

and thus Hi(OX(D))m = H̃
i−1

(V >(R),k) ̸= 0, which proves (i).
IfD is immaculate, then it is not in

⋃
R=tempting MZ(R) by (i). For the other direction, suppose

that [D] is not immaculate, then there exist i ∈ Z and m ∈M such that Hi(OX(D))m ≠ 0. Set
D′ = D+ div(xm) =

∑
ρ∈Σ(1) λρDρ and R = {ρ ∈ Σ(1) | λρ < 0}. With the same arguments as

before R is tempting and thus [D] is in the maculate set MZ(R).
Finally, (iii) follows from (ii), since [D] ∈ MZ(R) implies [D]R ∈ MR(R).

It is not always true, that [D]R ∈ MR(R) implies [D] ∈ MZ(R) as the following example
shows.

Example 2.10. Let X = TV(Σ) = P(2, 3, 5), the weighted projective plane with weights 2, 3,
5. Consider the divisor D = Dρ2 −Dρ1 . Notice that OX(D) ≃ OX(1). Then D is immaculate,
but [D]R ∈ MR(R) for R = ∅ (corresponding to the EffR-cone).

This leads to the following definition:

Definition 2.11. A divisor D is R-immaculate, if

[D]R ∈ Cl(X)⊗ R \
⋃

R=tempting

MR(R).

Thus Example 2.10 shows a simple case of an immaculate Weil divisor that is not R-immaculate.
In Example 2.39 we construct a line bundle on a smooth toric projective variety with the same
property. Up to the zero-th cohomology group, the concept of R-immaculate divisor here is an
analogue of the strongly acyclic line bundle in [BH09, Def. 4.4].
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Definition 2.12. The immaculate loci of X are

ImmZ(X) = Cl(X) \
⋃

R⊂Σ(1), R is tempting

MZ(R), and

ImmR(X) = κ−1

(Cl(X)⊗ R) \
⋃

R⊂Σ(1), R is tempting

MR(R)

 ⊂ Cl(X),

where κ : Cl(X) → Cl(X)⊗ R is the natural map [D] 7→ [D]⊗ 1 = [D]R.

Thus ImmZ(X) is the collection of all immaculate divisors. By Proposition 2.9(iii) all the
divisors in ImmR(X) are immaculate, that is ImmR(X) ⊂ ImmZ(X). More precisely, ImmR(X)
is the set of all R-immaculate divisors as in Definition 2.11.

Example 2.13. In contrast to Example 2.10, we can see that in the case of the hexagon
(Example 2.1), all immaculate line bundles are R-immaculate. This follows since the matrix π
defining the map (ZΣ(1))∗ → Pic(X) is totally unimodular.

Example 2.14. We illustrate Proposition 2.9 with the example of the Hirzebruch surface
Fa = TV(Σa). The special cases a = 0 and a = 1 are presented in the Figures 2.1 and 2.2,
respectively. More general cases will be explained in subsection 2.3.2.

The Gale transform, that is the map π, is given by the matrix

π =

(
1 1 0 −a
0 0 1 1

)
.

The associated rays of the fan Σa are given by the matrix

ρ =

(
0 −a 1 −1
1 −1 0 0

)
.

If we denote the four columns, that is the rays, by ρ1, . . . , ρ4, then the tempting subsets of Σa(1)
are just ∅, Σa(1), R1 = {ρ1, ρ2}, and R2 = {ρ3, ρ4}. The corresponding maculate regions are

MR(∅) = cone
〈
(1, 0), (0, 1), (−a, 1)

〉
= cone

〈
(1, 0), (−a, 1)

〉
,

MR(Σa(1)) = (a− 2,−2) + cone
〈
(−1, 0), (a,−1)

〉
,

MR(R1) = (−2, 0) + cone
〈
(−1, 0), (0, 1), (−a, 1)

〉
= (−2, 0) + cone

〈
(−1, 0), (0, 1)

〉
,

MR(R2) = (a,−2) + cone
〈
(1, 0), (0,−1)

〉
.

The lattice points within the complement of the union of these four regions consist of the line
(∗,−1) and, if a ≥ 1, the two isolated points (−1, 0) and (a − 1,−2). In the degenerate case
of a = 0, there is an additional line (−1, ∗), see Figure 2.1. Here, all immaculate divisors are
R-immaculate.

2.2.2 Conditions on presence or absence of temptations

In this section we describe straightforward criteria that imply that a given subset of rays is
tempting or it is non-tempting. The upshot is that, for all sets R ⊆ Σ(1) covered by one of
these claims, one does not need to look at the topology of V >(R) = SuppV ≥(R) \ {0}. In many
examples theses conditions will already completely determine all tempting subsets, in other
cases it reduces the number of candidates drastically. This is especially helpful when dealing
with classes of toric varieties as we will do in section 2.3 – 2.5.
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Monomials do not lead into temptation

The first criterion is similar to the boundedness condition in [HKP06, Proposition 2].

Proposition 2.15. Suppose X = TV(Σ) is a complete toric variety and R ⊂ Σ(1) is a tempting
subset. Denote by ρ∗ : MR → RΣ(1) the natural embedding of the principal torus invariant
divisors into all torus invariant divisors. Then

ρ∗(MR) ∩
(
RΣ(1)\R
≥0 × RR

≤0

)
= {0} .

Proof. Suppose on the contrary, that (ρ∗)−1
(
RΣ(1)\R
≥0 × RR

≤0

)
is a positive dimensional cone

τ ⊂MR. Consider the divisor D =
∑

ϱ∈R−Dϱ. Since R is tempting, the divisor has non-zero
cohomologies in degree −m for all m ∈ τ ∩M . Thus, the cohomology groups

⊕dimX
i=0 Hi(D) are

infinitely dimensional, a contradiction to the completeness of X.

Example 2.16. Consider the Hirzebruch surface Fa as in Example 2.14, and suppose a > 0.
Then out of 16 subsets of {ρ1, ρ2, ρ3, ρ4}, only six survive the test provided by Proposition 2.15.
Namely, these are the four tempting subsets as listed in Example 2.14, and {ρ4} and its
complement {ρ1, ρ2, ρ3} having the property of the associated cone intersecting M in just {0}.

Example 2.17. In the “hexagon” case (see Examples 2.1 and 2.5), Proposition 2.15 shows that
the following 18 out of 64 = 26 subsets of Σ(1) are non-tempting:

{0, 1} , {0, 5} , {1, 2} , {2, 3} , {3, 4} , {4, 5} , {0, 1, 2} , {0, 1, 5} , {0, 4, 5} , {1, 2, 3} ,
{2, 3, 4} , {3, 4, 5} , {0, 1, 2, 3} , {0, 1, 2, 5} , {0, 1, 4, 5} , {0, 3, 4, 5} , {1, 2, 3, 4} , {2, 3, 4, 5} .

Faces are not tempting

Proposition 2.18. Suppose X = TV(Σ) is a complete toric variety and σ ∈ Σ is any cone (or
a proper subfan with strictly convex support). Then the subsets R = σ(1) ⊂ Σ(1) and Σ(1) \R
are not tempting.

Proof. The complex V >(R) is equal to the convex set σ \ {0}, hence it is contractible. By
Alexander duality (see Remark 2.8) the complement is also not tempting.

Example 2.19. For the Hirzebruch surface Fa, only the four tempting subsets fail this test.
All the other subsets are either faces or complements of faces.

Example 2.20. According to Proposition 2.18, in the “hexagon” case (see Examples 2.1, 2.5),
the following 24 subsets of Σ(1) are non-tempting: all single element subsets {i}, all consecutive
two elements subsets {i, i+ 1}, and their complements (which have either four or five elements),
which are all faces or their complements. Moreover, considering also three consecutive elements
{i, i+ 1, i+ 2} (which are rays of a subfan with a strictly convex support), we obtain 30 subsets,
which are all the non-tempting subsets of Σ(1). Alternatively, the three element subsets can be
understood from Example 2.17.

The first part of Proposition 2.18 can be generalized to certain unions of faces.

Proposition 2.21. Suppose X = TV(Σ) is a complete toric variety and R such that the
maximal cones σ1, . . . , σl of V ≥(R) (with respect to inclusion) intersect in a common non-zero
face τ ∈ Σ.

Then R and Σ(1) \ R are not tempting.

24



Proof. All σi can be contracted to their face τ . Thus also σi \ {0} can be contracted to τ \ {0}.
The set V >(R) is equal to the union of the σi \ {0} and we can simultaneously contract all
σi \ {0} to the convex set τ \ {0}, which is contractible.

Again Alexander duality implies that the complement is not tempting, either.

Although this is not completely correct, we will say that R is the union of cones meeting in a
common face when R satisfies the conditions from Proposition 2.21. This condition includes
the case of Proposition 2.18 where R = σ(1) for a cone σ ∈ Σ and the case that R = Σ′(1)
where Σ′ ⊂ Σ is a subfan with convex support consisting of only two cones, or a subdivision of
its support obtained by inserting a ray. But in dimensions greater than two, it captures also
situations that are not covered by Proposition 2.18.

Example 2.22. Let Σ be a fan in NR ∼= R3 with the rays

{ρ1 = (1, 0, 1), ρ2 = (0, 1, 1), ρ3 = (−1, −1, −2), ρ4 = (1, 1, 1), ρ5 = (0, 0, 1)}

and the maximal cones be given by the following subsets of the rays (for better readability we
only write the indices of the associated rays)

{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5} and {2, 4, 5}.

Then for R = {1, 2, 5}, the maximal elements of the support of V ≥(R) are the cones cone(ρ1, ρ5)
and cone(ρ2, ρ5) that intersect in the ray ρ5. Thus by Proposition 2.21, it is not tempting, but
neither R nor its complement correspond to a subfan of Σ with convex support, so this situation
is not explained by Proposition 2.18.

Example 2.23. For the Hirzebruch surface Fa and the hexagon example, the condition from
Proposition 2.21 is equivalent to Proposition 2.18.

Primitive collections delude

A primitive collection of a simplicial fan Σ is a “minimal non-face”, that is, a subset of rays
R ⊂ Σ(1), such that the cone spanned by R is not in Σ, but the cone spanned by each proper
subset R′ ⊊ R is in Σ. In other words, a subset R ⊂ Σ(1) of any fan is a primitive collection, if
R is not contained in any single cone of Σ, but every proper subset is. This notion is particularly
useful in the classification of projective toric varieties, see [Bat91], [CR09] for more details, see
also subsection 2.4.1.

Proposition 2.24. Suppose X = TV(Σ) is a complete simplicial toric variety with no torus
factors. Let R ⊂ Σ(1) be either empty or a primitive collection. Then R and its complement
are tempting.

Proof. If R = ∅ then the claim is clear, so suppose R is a primitive collection, that is, a subset
which is does not generate a cone of Σ, but all its proper subsets do generate such cones. By
Alexander duality it is enough to prove that R = {ρ1, . . . , ρk} is tempting. Since every ray
belongs to Σ, we have k ≥ 2. We distinguish between two cases: either R is linearly independent
or not.

If R is linearly independent, then V := spanRR is k-dimensional, and R+ :=
∑k

j=1R≥0 · ρj
is a k-dimensional simplicial cone in V which does not belong to Σ. On the other hand, its
boundary ∂R+ is a subcomplex of Σ; it is exactly the complex V ≥(R) as in subsection 2.2.1.
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Thus, SuppV ≥(R) \ {0} = Supp ∂R+ \ {0} is homotopy equivalent to a sphere Sk−2. In
particular, it is not k-acyclic.

On the other hand, suppose R is linearly dependent. Since R is a primitive collection, all
the cones generated by R \ {ρj} are necessarily simplicial. In particular, V := spanRR is
(k − 1)-dimensional, and each R \ {ρj} spans a full-dimensional cone in V that belongs to Σ.
Thus, these cones generate V ≥(R), and this is a complete fan in V which (up to R-linear change
of coordinates) looks like the Pk−1-fan in Rk−1. Again, V >(R) = SuppV ≥(R)\{0} is homotopy
equivalent to Sk−2, hence it is not k-acyclic.

Example 2.25. For the Hirzebruch surface Fa, all tempting subsets are predicted by Proposi-
tion 2.24. That is all four of them are either empty, or Σ(1), or a primitive collection.

Example 2.26. Proposition 2.24 applied to the hexagon example (see Examples 2.1, 2.5),
implies that the following 20 subsets are tempting:

∅, {0, 2} , {0, 3} , {0, 4} , {1, 3} , {1, 4} , {1, 5} , {2, 4} , {2, 5} , {3, 5} , {0, 1, 2, 4} , {0, 1, 3, 4} ,
{0, 1, 3, 5} , {0, 2, 3, 4} , {0, 2, 3, 5} , {0, 2, 4, 5} , {1, 2, 3, 5} , {1, 2, 4, 5} , {1, 3, 4, 5} ,Σ(1).

With the notion of primitive collections, we can give a different characterization of the
condition from Proposition 2.21.

Proposition 2.27. Suppose X = TV(Σ) is a complete simplicial toric variety with no torus
factors. Let R ⊂ Σ(1) and σ1, . . . , σl be the (inclusion) maximal cones of V ≥(R). Then
σ1, . . . , σl intersect in a common non-zero face τ ∈ Σ if and only if R is not the union of
primitive collections.

Proof. With the notation from above R =
⋃l

i=1 σi(1) and SuppV ≥(R) =
⋃l

i=1 Suppσi. Let
τ =

⋂l
i=1 σi be the common face of the cones. Since τ ∈ Σ (and Σ is simplicial), τ(1) does not

contain a primitive collection.
Now we will show that for ρ ∈ τ(1) there does not exists a primitive collection P with

ρ ∈ P ⊂ R. So R cannot be the union of primitive collections.
Suppose there exists a primitive collection P with ρ ∈ P ⊂ R. Now since P ⊂ R, the

geometric realization

SuppV ≥(P ) =
l⋃

i=1

SuppV ≥(σi(1) ∩ P )

is a union of faces, all containing the ray ρ, since ρ ∈ σi and ρ ∈ P . Thus by Proposition 2.21
V >(P ) is contractible and P not tempting, but P is primitive and hence by Proposition 2.24 it
is tempting.

For the converse, consider the set

P (R) := {P | P primitive collection with P ⊂ R}.

We define B := ∪P∈P (R)P ⊂ R ⊂ Σ(1) and F := R \ B ⊂ Σ(1), which by assumption is
non-empty. Notice that for P ∈ P (R), it holds that P ∩ F = ∅. By construction F does not
contain any primitive collection, hence F consists of the rays of a cone τ ∈ Σ.

For P ∈ P (R) and ρ ∈ P consider S := F ∪ P \ ρ. Suppose that S is not the set of rays of a
cone of Σ, which we will denote now as S /∈ Σ, then there exists a primitive collection P ′ with
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P ′ ⊂ S. Since P \ ρ is a face, P ′ is not contained in it, thus P ′ ∩ F ≠ ∅. But P ′ ⊂ S ⊂ R, so
P ′ ∈ P (R), but then P ′ ∩ F = ∅, thus S ∈ Σ.

Now we define S(P, ρ) := F ∪ P \ ρ and we see that

R = ∪P∈P (R)(∪ρ∈PS(P, ρ))

and SuppV ≥(R) is the union of the supports of the cones S(P, ρ), meeting in the common face
τ with τ(1) = F .

This leads to the following statement which can be found with a different proof in [Efi14,
Lemma 4.4]

Proposition 2.28. If R is tempting, then R and Σ(1) \ R are unions of primitive collections.

Proof. If R is not the union of primitive collections, then it is a union of cones meeting in a
common face by Proposition 2.27 and by Proposition 2.21 R and Σ(1) \ R are not tempting.
Applying the same argument to Σ(1) \ R shows that also Σ(1) \ R has to be the union of
primitive collections.

Example 2.29. We continue with Example 2.22. The primitive collections in this case are
{1, 2} and {3, 4, 5}. The subset {1, 2, 5} that we already discussed before cannot be written
as a union of primitive collections. Actually the only subsets that can be written as union
of primitive collections are ∅, {1, 2}, {3, 4, 5} and {1, 2, 3, 4, 5}. All of them are tempting by
Proposition 2.24, since they are empty, a primitive collection or the set of all rays.

Thus for finding all tempting subsets of Σ(1), we only have to investigate subsets that are
unions of primitive collections and whose complements are also unions of primitive collections.
However, not all sets with this property are tempting. In the hexagon example (see Examples 2.1
and 2.5) and in the previous example all subsets satisfying this condition are tempting, but in
general this condition does not assure that R is tempting.

Example 2.30. Let Σ ⊂ R2 be a complete fan that consists of eight rays {0, 1, 2, 3, 4, 5, 6, 7}
ordered clockwise. All primitive collections are given by two non-adjacent rays. If #R = 4, then
it is always the union of two primitive collections and Σ(1) \ R is, too. But if R = {0, 1, 2, 3},
then SuppV ≥(R) is the union of three adjacent cones, where the three cones are the ones
corresponding to the rays {0, 1}, {1, 2} and {2, 3}. This set is contractible and hence not
tempting. Notice that this was already implied by Proposition 2.18, since at least one of V >(R)
and V >(Σ(1) \ R) is convex.

The condition of Proposition 2.28 can spot whether the associated V ≥(R) is a union of
cones meeting in a common non-zero face. But it is not possible to spot whether V ≥(R) is a
subdivision of a bigger cone that does not satisfy this condition. Clearly if the cones V ≥(R)
form a subdivision of a bigger cone, R is not tempting, by Proposition 2.18. As a result any
situation where the subset R is non-tempting, but contains a subdivided cone, can also not be
judged by Proposition 2.28. This makes sense, since primitive collections do not provide the
whole information about the convex structure of the fan. For this purpose one also needs the
information about primitive relations, see subsection 2.4.1.
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2.3 Toric varieties with Picard rank 2

We commence this section with recalling a well-known fact about smoothness of toric varieties
in terms of Gale duality. Then we study our first family of examples, that is smooth complete
toric varieties of Picard rank 2. Such varieties are described in [Kle88], and we can classify
all the immaculate line bundles on them. While the case of Picard rank 2 is a special case of
section 2.4, it will be helpful to spend some time on this. Here we are in a situation where all
loci can be completely described and depicted, and this will be very helpful for understanding
the general situation.

2.3.1 Spotting smoothness via Gale duality

When working with fans having only few generators, the Gale transform becomes the essential
tool to investigate their combinatorial structure. We recall an argument showing that this
instrument, considered for abelian groups instead of vector spaces, can spot smoothness, too.
Let

0 // K
ι // Zn ρ // N // 0

be an exact sequence of free abelian groups with d := rkN . This situation gives rise to the Gale
transform being just the dual sequence

0 K∗oo Zn∗ι∗oo N∗oo 0.oo

Denote by Zd ⊆ Zn and Z(n−d)∗ ⊆ Zn∗ the orthogonal subgroups being generated by
{e1, . . . , ed} and {ed+1, . . . , en}, respectively.

Proposition 2.31. The determinant of {ρ(e1), . . . , ρ(ed)} equals, maybe up to sign, the de-
terminant of {ι∗(ed+1), . . . , ι∗(en)}.

Proof. Assuming that the restriction ρ|Zd : Zd → N has a finite cokernel C (which is equivalent
to ρ|Zd being injective or to Qd ρ→ N ⊗Q being an isomorphism), we obtain

0
��

0
��

Zd

��
Zd

ρ��
0 // K

ι // Zn ρ //

��
N //

��
0

0 // K
ι // Zn−d ρ //

��

C //

��

0

0 0

Dualizing the bottom row yields coker
(
Z(n−d)∗ ι∗→ K∗) = Ext1Z(C,Z). That is, the cokernels of

Zd in N and of Z(n−d)∗ in K∗ have the same order.

2.3.2 Immaculate locus for Picard rank 2

After illustrating the general method for classifying immaculate line bundles in section 2.2, we
describe now the immaculate loci in the specific case of smooth (complete) toric varieties of
Picard rank 2.
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Investigating Gale duals leads to the well-known classification of the combinatorial type of
d-dimensional, simple, convex polytopes with d+ 2 vertices – they are (△ℓ1−1 ×△d−ℓ1+1)∨ for
some ℓ1 = 2, . . . , d, where △r means the r-dimensional simplex and (. . .)∨ denotes the dual of a
polytope. This is a special case of the situation we will meet in subsection 2.4.2.

Explicitly, in [Kle88, Theorem 1], this classification was refined to find all complete smooth
d-dimensional fans with d+ 2 rays, that is, all smooth complete toric varieties with Picard rank
two. They are parametrized by the following data:

(i) a decomposition d+ 2 = ℓ1 + ℓ2 with ℓ1, ℓ2 ≥ 2 and

(ii) a choice of non-positive integers 0 = c1 ≥ . . . ≥ cℓ2 which are jointly denoted by c ∈ Zℓ2
≤0.

These data provide the 2× (ℓ1 + ℓ2)-matrix(
1 . . . 1 0 c2 . . . cℓ2

0 . . . 0 1 1 . . . 1

)
encoding π : (Z(d+2))∗ ↠ Z2 = ClX (compare with Example 2.14, where we had a = −c2).
That is, the rays of the associated fan Σc are ui = ρ(ei) and vj = ρ(fj) in

N := Zℓ1+ℓ2
/(

Z · (1, c) + Z · (0, 1)
) ∼= Zd

where {e1, . . . , eℓ1 , f1, . . . , fℓ2} denotes the canonical basis in Zd+2 = Zℓ1+ℓ2 and ρ : Zd+2 → N
is the canonical projection. The fan structure is easy – the d-dimensional cones are σij which are
generated by Σc(1) \ {ui, vj} (i = 1, . . . , ℓ1, j = 1, . . . , ℓ2). That is, #Σc(d) = ℓ1ℓ2. Comparing
with (2.3.1), one sees that the corresponding cross-frontier (2×2)-minors of the above matrix are

det

(
1 ci

0 1

)
= 1, that is, by Proposition 2.31, the cones σij are indeed smooth. We will denote

c :=
∑ℓ2

ν=1 c
ν . In [Kle88, Theorem 2] it is shown that Xc is Fano if and only if −c ≤ ℓ1 − 1.

Theorem 2.32. Suppose X = TV(Σc) is a smooth complete toric variety of Picard rank 2.
Then ImmZ(X) = ImmR(X). Moreover, the line bundle represented by (x, y) ∈ Z2 = ClX is
immaculate if and only if one of the following holds:

• −ℓ2 < y < 0 or

• y ≥ 0 and −ℓ1 < x < cℓ2y or

• y ≤ −ℓ2 and 0 > x+ c > cℓ2(y + ℓ2)− ℓ1.

Note that the second and the third case in the theorem are Serre dual to one another, while
the first item is self-dual. The first item consists of ℓ2 − 1 (horizontal) affine lines. If c = 0,
that is, if X ≃ Pℓ1−1 × Pℓ2−1, then the divisors appearing in the second and third item (plus
parts of the first item) are the ℓ1 − 1 lines −ℓ1 < x < 0. Otherwise, cℓ2 < 0, and there are
only finitely many line bundles in the second and third items (the inequalities define triangles).
The special case of ℓ1 = ℓ2 = 2 is illustrated on Figure 2.2, and another case of a 5-fold is on
Figure 2.3. Points of the form (−1, 0), . . . , (−ℓ1 + 1, 0) are always contained in the second item
(independently of c). Later, in the more general setup of section 2.4, these points, together with
the lines from the first item, will form the “generating seeds” in the sense of Definition 2.40.

29



E
ff
-cone

0

H
3
-c

on
e

H
2-coneH

5
-c

on
e

KX

immaculate locus

Figure 2.3: The Picard lattice and immaculate locus of a smooth projective toric 5-fold X

with ClX = Z2 and the matrix π =

(
1 1 1 1 0 −1 −1
0 0 0 0 1 1 1

)
, that is, c =

(0, −1, −1).

Proof of Theorem 2.32. The only tempting subsets of Σc(1) are ∅, U = {u1, . . . , uℓ1}, V =
{v1, . . . , vℓ2} and Σc(1) = U ⊔ V . We proceed along the lines of Example 2.14 and calculate the
maculate loci:

MR(∅) = cone
〈
(1, 0), (cℓ2 , 1)

〉
,

MR(Σc(1)) = (−c− ℓ1,−ℓ2) + cone
〈
(−1, 0), (−cℓ2 ,−1)

〉
,

MR(U) = (−ℓ1, 0) + cone
〈
(−1, 0), (0, 1)

〉
,

MR(V ) = (−c,−ℓ2) + cone
〈
(1, 0), (0,−1)

〉
.

For every maculate R ⊂ Σc(1), the tail cone in the above locus is smooth and the primitive
generators of rays are all in the image of the set ZΣ(1)\R

≥0 × ZR
≤−1. Thus, the map ZΣ(1)\R

≥0 ×
ZR
≤−1 → MR(R) ∩ Cl(X) is surjective, i.e. MZ(R) = MR(R) ∩ Cl(X). It follows that

ImmZ(X) = ImmR(X) and the explicit description of the immaculate locus follows by an
explicit calculation of the inequalities of the cones above, and by taking the complement in
Cl(X).

Proposition 2.33. Suppose as above that X = TV(Σc) is a smooth complete toric variety of Pi-
card rank 2. If L is a line bundle on X such that Hi(X,L) ̸= 0, then i ∈ {0, ℓ1 − 1, ℓ2 − 1, dimX}.

Proof. As in the previous proof, the only tempting subsets are ∅, U , V and U ⊔ V = Σ(1). In
the proof of Proposition 2.24 we have seen that V >(U) ≃ Sl1−1 thus by (i) in Proposition 2.9,
we obtain line bundles L with Hℓ1−1(X,L) ̸= 0. The other tempting sets ∅, V and Σ(1) lead
to line bundles with Hi(X,L) ̸= 0 for i = {0, ℓ2 − 1, dimX}, respectively. By (ii) of the same
proposition, other cohomologies cannot occur.
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2.4 Toric varieties with splitting fans

In this section we apply the theory of section 2.2 to the case of splitting fans and calculate the
essential part of the immaculate locus of line bundles in this setup. Let X = TV(Σ) be a smooth
complete toric variety. Recall from subsubsection 2.2.2 that a primitive collection of a (smooth,
hence simplicial) fan Σ is another word for a “minimal non-face”. We say Σ is a splitting fan,
if the primitive collections of Σ are pairwise disjoint. This is equivalent to an existence of a
chain Σ = Σk, . . . ,Σ1 of fans such that TV(Σ1) = Pn and TV(Σi+1) → TV(Σi) is a toric split
bundle, that is a projectivization of a direct sum of toric line bundles (see [Bat91, Cor. 4.4]).
In particular, all such X are projective. Note that every smooth complete toric variety with
Picard rank two satisfies this property with k = 2, see subsection 2.3.2.

2.4.1 Primitive relations

In this subsection we recall the notion of the primitive relation associated to a primitive collection
and express all such relations for a splitting fan. Having in mind the application to splitting
fans, which are smooth by definition, we restrict our presentation of primitive relations to the
smooth case, following [Bat91]. See [CR09, §1.3] for a more general treatment.

Let Σ be a fan of a smooth complete toric varietyX. For every primitive collection P ⊆ Σ(1) we
denote eP :=

∑
ρ∈P eρ, where the eρ ∈ ZΣ(1) is the basis element corresponding to ρ, which under

the natural map ZΣ(1) → N is mapped to the primitive generator of the corresponding ray. The
focus of P denoted by σ(P) is the unique cone σ ∈ Σ such that the image of eP in N is contained
in intσ ⊂ NR. It leads to a unique element f(P) ∈ Zσ(P)(1)

≥1 with eP − f(P) ∈ ker(ZΣ(1) → N).
(Here, by convention, Z∅

≥1 = {0}.) The expression eP − f(P) is called the primitive relation
associated to P. As an element of Cl(X)∗, it represents a class of 1-cycles.

In [Bat91, Proposition 3.1] it is shown that P∩σ(P) = ∅, that is the elements of P are
not among the generators of σ(P). Moreover, if Σ is projective, then there exists a primitive
collection P with σ(P) = 0, see [Bat91, Proposition 3.2 and Theorem 4.3]. For complete fans
Σ, all rays ρ ∈ Σ(1) are contained in at least one primitive collection. If Σ is simplicial, then
the number of primitive collections is at least the rank of Cl(TV(Σ)) and for smooth fans Σ
equality holds only for splitting fans.

Example 2.34. Let us calculate the primitive relations for Example 2.22 and its continu-
ation 2.29. The toric variety X = TV(Σ) in this example is a 3-dimensional, projective
toric variety of Picard rank 2. We have seen that the two primitive collections are P1 =
{ρ1 = (1, 0, 1), ρ2 = (0, 1, 1)} and P2 = {ρ3 = (−1, −1, −2), ρ4 = (1, 1, 1), ρ5 = (0, 0, 1)}.
To determine the focus and primitive relations we first calculate e1 := eP1 = ρ1 + ρ2 = (1, 1, 2)
and e2 := eP2 = 0. Thus σ(P1) = cone(ρ4, ρ5) and e1 = 1 · ρ4 + 1 · ρ5. We obtain the following
f(P1) = (1, 1) and the primitive relation is (1, 1, 0, −1, −1). For P2, the focus σ(P2) = 0 and
the primitive relation is (0, 0, 1, 1, 1). When we write it as a matrix, we see how Example 2.22
fits into the description of subsection 2.3.2:(

1 1 0 −1 −1
0 0 1 1 1

)
.

Example 2.35. In the hexagon example from Example 2.1 the primitive collections are not
disjoint, so it is not an example of a splitting fan. Nevertheless, we want to calculate the
primitive relations in this case.
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Remember that all subsets with two non-consecutive entries form a primitive collection for
the fan Σ of the hexagon. If P = {i, i+ 3}, the focus is σ(P) = 0 and we obtain the first three
primitive relations in the matrix below.

For P = {i, i+ 2}, the focus is σ(P) = ρi+1 and this leads to the last six primitive relations
in the matrix. For the sake of readability, we denote the primitive collection P in front of the
row of the matrix containing its associated primitive relation.



{0, 3} 1 0 0 1 0 0
{1, 4} 0 1 0 0 1 0
{2, 5} 0 0 1 0 0 1
{0, 2} 1 −1 1 0 0 0
{1, 3} 0 1 −1 1 0 0
{2, 4} 0 0 1 −1 1 0
{3, 5} 0 0 0 1 −1 1
{0, 4} 1 0 0 0 1 −1
{1, 5} −1 1 0 0 0 1

The matrix π from the example is obtained by choosing the first four primitive relations.

2.4.2 Temptation for splitting fans

Here we assume that X is a smooth projective toric variety of dimension d whose fan Σ is a
splitting fan. We will first identify all of the tempting subsets R ⊂ Σ(1). Then in subsection 2.4.3
we describe the associated π-images MR(R) or MZ(R) as introduced in Definition 2.6.

Let Σ(1) = P1 ⊔ . . .⊔Pk be the decomposition into primitive collections of lengths ℓ1, . . . , ℓk ≥
2. To understand the tempting subsets of Σ(1) we first want to investigate the combinatorial
structure of the fan Σ. In particular, we want to determine the maximal dimensional cones
σ ∈ Σ(d). The maximal cones correspond to maximal subsets of Σ(1) not containing any entire
Pi. Since the Pi are disjoint, we obtain the bijection

P1× . . .× Pk
∼−→ Σ(d), (p1, . . . , pk) 7→ Σ(1) \ {p1, . . . , pk}.

In particular, Σ is combinatorially equivalent to the normal fan of

□ = □({1, . . . , k}) := △ℓ1−1 × . . .×△ℓk−1

where △ℓ−1 denotes the (ℓ − 1)-dimensional simplex with ℓ vertices. Thus, we know that
#Σ(1) =

∑k
i=1 ℓi, d =

∑k
i=1(ℓi − 1), #Σ(d) =

∏k
i=1 ℓi, and, as noticed above rk(ClX) =

#Σ(1)− d = k.
Now, the essential point is that in the case of splitting fans the temptation of a subset R ⊆ Σ(1)

depends only on the combinatorial structure of Σ. The finer structure, the true shape of the
fan reflected by the maps ρ : ZΣ(1) → N , the primitive relations of Σ, or π : ZΣ(1) → Cl(X),
does matter only for the second step of turning the tempting sets R into the maculate regions
MR(R).

Lemma 2.36. If Σ is a splitting fan with the decomposition Σ(1) = P1 ⊔ . . .⊔Pk into primitive
collections Pi, then the tempting subsets of Σ(1) are R(J) :=

⋃
j∈J Pj with J ⊆ {1, . . . , k}.
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Proof. By Proposition 2.28 the R(J) are the only candidates for tempting subsets. We will show
that all of them are indeed tempting. Instead of the complex (SuppV ≥(R))\{0} ⊆ SuppΣ\{0} ∼
Sd−1 we consider its dual version G(R) built as the union of all (closed) facets G(ρ) < □ dual to
ρ ∈ R. Clearly, SuppV ≥(R) \ {0} is homotopy equivalent to G(R), thus one is k-acyclic if and
only if the other is. A subset J ⊆ {1, . . . , k} defines a splitting □ = □(J)×□({1, . . . , k} \ J)
and accordingly we have G(R(J)) = ∂□(J)×□({1, . . . , k} \ J), which is not k-acyclic. Thus
every set R(J) is tempting.

Knowing this we can already determine which cohomological degrees can occur.

Proposition 2.37. Let X = TV(Σ) with Σ a splitting fan with k primitive collections of
lengths li for i = 1, . . . , k, and L be a line bundle on X such that Hi(X,L) ̸= 0, then i ∈{∑

j∈J(ℓj − 1)
}
J⊂{1,...,k}

.

Proof. In the previous proof we have seen that R(J) leads to the non-k-acyclic G(R(J)) =
∂□(J)×□({1, . . . , k} \ J). For cohomological considerations we can focus on the first factor
∂□(J) = ∂

(∏
j∈J △ℓj−1

)
. Thus we have the boundary of a polytope of dimension

∑
j∈J(ℓj−1),

so R(J) is homotopy equivalent to a (
∑

j∈J(ℓj − 1)− 1)-dimensional sphere. The claim then
follows by Proposition 2.9.

2.4.3 Immaculate locus of splitting fans

The 2k different sets J ⊆ {1, . . . , k} yield 2k tempting sets R(J), hence 2k maculate regions
MR(R(J)) within the k-dimensional space Cl(X)⊗R ∼= Rk. This looks a little like the structure
of 2k octants in this space, but we will see in this subsection that typically the octants are
“leaning”, and they may intersect as illustrated on Figures 2.2 and 2.3. For this we first need to
determine the structure of the map π : ZΣ(1) → Cl(X).

Write Σ(1) =
⊔k

i=1 Pi the decomposition of the rays into the disjoint sets of primitive
collections. In [Bat91, Corollary 4.4], Batyrev has proved that X can be obtained via a
sequence of projectivizations of decomposable bundles. Within the fan language this means
that we can assume that there is a sequence of fans Σ = Σk, . . . ,Σ1,Σ0 = 0 in abelian groups
N = Nk ↠ . . .↠ N1 ↠ N0 = 0 such that the focus σ(Pj) = 0 in Nj and Nj−1 = Nj/ spanPj .
The fans Σj in Nj are splitting with Σj(1) = ⊔j

i=1 Pi, and they admit subfans Σ̃j−1 ⊂ Σj such
that ψj : Nj ↠ Nj−1 induces an isomorphism Σ̃j−1

∼→ Σj−1 (piecewise linear on the geometric
realizations) and Σj consist of the sums of cones from Σ̃j−1 and proper subsets of Pj .

With ℓi = #Pi, this explicit structure of Σ can be translated into the fact that π is a triangular
block matrix

π =


1 c12 . . . c1k
0 1 . . . c2k
...

...
. . .

...
0 0 . . . 1

 (2.3)

with k rows and k blocks of 1 × ℓj-matrices (j = 1, . . . , k). While 1 denotes (1, 1, . . . , 1)

with ℓj entries, we have cij ∈ Zℓj
≤0. If needed, its entries will be denoted by cνij ∈ Z≤0

(i < j, ν = 1, . . . , ℓj). Every row encodes a primitive relation, hence each cij has at least one
zero entry (the support of ci• is supposed to be a face, that is to not contain any full Pj). All
matrices of the form (2.3) give rise to a smooth splitting fan of dimension

∑k
i=1(ℓi − 1).
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The smoothness of the variety TV(Σ) associated to the matrix π can also be derived directly
from the method of subsection 2.3.1. The co-facets of the fan Σ give rise to choosing one column
of π in every block. But this yields an upper triangular matrix with only 1 as the diagonal
entries. Hence, the determinant equals 1, too.

Example 2.38. A simple case to have in mind is k = 2. The matrix of π is(
1 . . . 1 0 c2 . . . cℓ2

0 . . . 0 1 1 . . . 1

)
=

(
1 c
0 1

)
It covers the case of Hirzebruch surfaces. In subsection 2.3.2 we have discussed the immaculate
locus of this matrix in detail.

Example 2.39. Consider the following smooth projective three dimensional toric variety
X = TV(Σ) = P(OY (−2, 0)⊕OY (0,−2)), where Y = P1 ×P1, and OY (i, j) := OP1(i)⊠OP1(j).
Then the fan Σ is a splitting fan with matrix

π =

1 1 0 0 −2 0
0 0 1 1 0 −2
0 0 0 0 1 1

 .

The line bundle represented by

π
(
(0, 0, 0, 0, 12 ,

1
2)
)
= (−1,−1, 1) ∈ Cl(X)

is immaculate but not R-immaculate (in the sense of Definition 2.11), since it is in the effective
cone

MR(∅) = cone

 1 0 −2 0
0 0 0 −2
0 0 1 1

 .

The reason for the existence of an immaculate, but not R-immaculate line bundle is that the
rays of the effective cone are not a Hilbert basis.

We fix a format ℓ := (ℓ1, . . . , ℓk) of splitting fans, that is a block format of the associated
matrix π. We interpret c, that is the entries cij ∈ Zℓj

≤0 of π, as coordinates of the “moduli space”
of splitting fans Σ(ℓ, c) of this fixed format ℓ. All these fans share the same combinatorial
type – that of the normal fan of □ := △ℓ1−1 × . . .×△ℓk−1, see subsection 2.4.2. Similarly, the
associated toric varieties share the same Picard group. Since we use the primitive relations for
the rows of π, we have even distinguished coordinates leading to a simultaneous identification
ClTV(Σ(ℓ, c)) = Zk. This makes it possible to compare the immaculate loci of different Σ(ℓ, c)
sharing the same ℓ.

Now, the basic idea is simple: For special c, e.g. c = 0, the immaculate locus is large – but it
becomes smaller for growing |c| := −c. Roughly speaking, we will show that this shrinking of
the immaculate locus becomes stationary, and we are going to calculate the limit.

There is, however, a technical obstacle. The center of symmetry KX/2 arising from Serre
duality moves with c. Thus, it is not the whole immaculate locus that becomes stationary – this
works only for some generating seed. That is, there is a certain subset of Zk which is immaculate
for all Σ(ℓ, c) and which generates (via some operations/reflections corresponding to successive
Serre dualities) the full immaculate locus if −c is sufficiently large.
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Definition 2.40. We call Seed(ℓ) :=
⋃k

j=1

(
Zj−1 × {−1, . . . ,−(ℓj − 1)} × 0k−j

)
the generating

immaculate seed for ℓ in Zk.

Example 2.41. In the simple case of k = 2 as in Example 2.38, the generating immaculate
seed consists of the lattice points in ℓ2 − 1 lines and ℓ1 − 1 further lattice points.

Seed((ℓ1, ℓ2)) = {(−1, 0), (−2, 0), . . . , (−(ℓ1 − 1), 0), (∗, −1), (∗, −2), . . . , (∗, −(ℓ2 − 1))}

where ∗ ∈ Z.

Depending on c, we can now define the operator enlarging a given seed in Zk. For fixed
i, j ∈ {1, . . . , k} we set cij :=

∑ℓj
ν=1 c

ν
ij ∈ Z≤0. Moreover, denote

vj := (c1j , . . . , cj−1, j , ℓj , 0) ∈ (Zj × 0) ⊆ Zk.

Definition 2.42. For a given subset G ⊆ Zk we define its c-hull as the smallest set ⟨G⟩c ⊇ G
satisfying the following recursive property: If a ∈ ⟨G⟩c ∩ (Zj × 0k−j) for some j = 0, . . . , k − 1,
then so is the shift a− vj+1 ∈ ⟨G⟩c.

Note that a − vj+1 ∈ Zj × {−ℓj+1} × 0k−j−1. Hence, to obtain ⟨G⟩c out of G one can
enlarge ⟨G⟩c successively: set ⟨G⟩−1

c := G and let ⟨G⟩j+1
c :=

(
⟨G⟩jc ∩ (Zj × 0k−j)

)
− vj+1. Then

⟨G⟩c =
⋃k

j=0⟨G⟩
j
c.

Example 2.43. The c-hull of Seed((ℓ1, ℓ2)) in Example 2.41 can be calculated in one step.
We check which a ∈ Seed(ℓ) have last coordinate zero. Then for all of them we add a− v2 =
(a1, 0)− (c12, ℓ2) to the set. This way we obtain

⟨Seed((ℓ1, ℓ2))⟩c =


(−1, 0), (−2, 0), . . . , (−(ℓ1 − 1), 0),

(−1− c12, −ℓ2), (−2− c12, −ℓ2), . . . , (−(ℓ1 − 1)− c12, −ℓ2),
(∗, −1), (∗, −2), . . . , (∗, −(ℓ2 − 1))

 .

These definitions of Seed(ℓ) and the hull operations allow to describe the locus of immaculate
line bundles for “general” c. Recall the notions of maculate regions from Definition 2.6, and
immaculate loci from Definition 2.12.

Theorem 2.44. Fix ℓ and let c be a parameter leading to a matrix π = π(ℓ, c) with the associated
splitting fan Σ = Σ(ℓ, c). Then:

(i) Seed(ℓ) ⊆ ImmR(Σ(ℓ, c)) for all c, that is the generating immaculate seeds are R-immaculate.

(ii) Both the loci ImmZ(Σ) and ImmR(Σ) are closed under the c-hull operation.

(iii) For “general” c, the immaculate loci are both equal to the minimal set satisfying the above.
That is, ImmZ(Σ(ℓ, c)) = ImmR(Σ(ℓ, c)) = ⟨Seed(ℓ)⟩c.

More precisely, a sufficient condition for “general” in (iii) is that for each j = 1, . . . , k − 1 the
vector cj,j+1 ∈ Zℓj+1 has at least two entries differing by more than ℓj.

We remark that for non-general values of c the conclusion of (iii) needs not to hold, see for
example Figure 2.3 and compare to Example 2.43.

The proof of Theorem 2.44 can be found in [ABKW20]. It uses induction on the number of
primitive collections and the fact that there exists a sequence of maps X = Xk →pk Xk−1 →
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. . . X1 = Pl1−1 with corresponding fans Σi such that Xi+1 = P(Ei) where Ei is a split vector
bundle over Xi = TV(Σi). An important ingredient is [ABKW20, Corollary IV.6] which
guarantees that for the maps pi : Xi → Xi−1 a line bundle L on Xi−1 is immaculate if and only
if its pullback p∗i (L) is immaculate. The usage of Serre duality on each Xi explains the hull
operation from Definition 2.42.

Splitting fan varieties of Picard rank 3

We will now briefly discuss the structure of the immaculate locus of splitting fan varieties of
Picard rank 3. That is, we will apply Theorem 2.44 to the specific case that X = TV(Σ) is
a smooth projective toric variety with Σ(1) = P1 ⊔P2 ⊔P3, #Pi = ℓi for i = 1, 2, 3. The
matrix π of primitive relations is the following matrix with three blocks of sizes ℓ1, ℓ2 and ℓ3
and cij ∈ Zlj

≤0:

π =

 1 c12 c13
0 1 c23
0 0 1

 .

Thus the parameters determining our variety are ℓ = (ℓ1, ℓ2, ℓ3) and c = (c12, c13, c23).
By Lemma 2.36 the tempting subset of Σ(1) are the following eight:

∅, P1, P2, P3, P2 ∪P3, P1 ∪P3, P1 ∪P2 and Σ(1).

The latter four tempting subsets are complements of the first four.
There are eight maculate sets/regions, each of the regions being a shifted cone. The vertices

of the regions – also referred to as maculate vertices – are

v∅ = (0, 0, 0) vΣ(1) = (−ℓ1 − c12 − c13, −ℓ2 − c23, −ℓ3)
vP1 = (−ℓ1, 0, 0) vP2 ∪P3 = (−c12 − c13, −ℓ2 − c23, −ℓ3)
vP2 = (−c12, −ℓ2, 0) vP1 ∪P3 = (−ℓ1 − c13, −c23, −ℓ3)
vP3 = (−c13, −c23, −ℓ3) vP1 ∪P2 = (−ℓ1 − c12, −ℓ2, 0).

The sum of two vertices in one row is always vΣ(1) = −KX as expected, since the maculate
regions of P and Σ(1) \ P are related to each other by Alexander/Serre duality.

The tail cones of the regions are generated by

∅

 1 c12 c13
0 1 c23
0 0 1

 Σ(1)

 −1 −c12 −c13
0 −1 −c23
0 −0 −1


P1

 −1 c12 c13
0 1 c23
0 0 1

 P2 ∪P3

 1 −c12 −c13
0 −1 −c23
0 −0 −1


P2

 1 −c12 c13
0 −1 c23
0 0 1

 P1 ∪P3

 −1 c12 −c13
0 1 −c23
0 0 −1


P3

 1 c12 −c13
0 1 −c23
0 0 −1

 P1 ∪P2

 −1 −c12 c13
0 −1 c23
0 0 1


The cones are in general not simplicial, e.g. in Example 2.39 the effective cone is generated by
four rays.
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The most prominent immaculate line bundles in the immaculate locus of X are the generating
immaculate seed:

Seed((ℓ1, ℓ2, ℓ3)) =


(−1, 0, 0), (−2, 0, 0), . . . , (−(ℓ1 − 1), 0, 0)
(∗, −1, 0), (∗, −2, 0), . . . , (∗, −(ℓ2 − 1), 0)
(∗, ∗, −1), (∗, ∗, −2), . . . , (∗, ∗, −(ℓ3 − 1))

 .

It consists of ℓ1 − 1 lattice points, the lattice points in ℓ2 − 1 lines and the lattice points of
ℓ3 − 1 planes.

Especially for the last class, it is easy to see that they do not belong to any maculate set,
since the last coordinate of the maculate vertices is always either 0 or −ℓ3 and we see that for
those maculate regions with last coordinate zero, the rays of the tail cone of the maculate region
have either zero or 1 as last coordinate, while for those with last coordinate −ℓ3 it is −1.

Example 2.45. When ℓ = (2, 2, 2) as in Example 2.39

Seed((2, 2, 2)) = {(−1, 0, 0), (∗, −1, 0), (∗, ∗, −1)}.

the generating immaculate seed consists of one lattice point, the lattice points in one line and
the lattice points of one plane.

Now we want to calculate the c-hull of Seed(ℓ) as defined in Definition 2.42. First we determine
the shifting vectors v1, v2, v3:

v1 = (2, 0, 0) v2 = (0, 2, 0) v3 = (−2, −2, 2).

In the first step of constructing ⟨Seed(ℓ)⟩c out of Seed(ℓ), we check if (∗, 0, 0) ∈ Seed(ℓ), that
is the case for (−1, 0, 0), so we have to add (−1, 0, 0)− v2 = (−1, −2, 0) to ⟨Seed(ℓ)⟩c.

In the next step, we look for all a = (∗, ∗, 0) in Seed(ℓ) ∪ (−1, −2, 0), and add a− v3 to
our set. Obviously, the element we have added in the previous step is of this form and we add
the new element (1, 0, −2) to ⟨Seed(ℓ)⟩c. Another element of this form is (−1, 0, 0), which
leads to the element (1, 2, −2). Then also the lattice points in the line (∗, −1, 0) are of this
form and leads to a line (∗, 1, −2). We obtain that

⟨Seed(ℓ)⟩c = {(−1, 0, 0), (−1, −2, 0), (1, 2, −2), (∗, −1, 0), (∗, 1, −2), (∗, ∗, −1)}.

Taking the c-hull has added two points and one line to the generating immaculate seed. In this
case the condition for c being sufficiently general is not satisfied, because c12 = (0, 0). Thence
⟨Seed(ℓ)⟩c is a proper subset of the immaculate locus. For example, the immaculate, but not
R-immaculate divisor (−1, −1, 1) /∈ ⟨Seed(ℓ)⟩c.

We will calculate the c-hull ⟨Seed(ℓ)⟩c of Seed(ℓ) for general ℓ = (ℓ1, ℓ2, ℓ3) and c =
(c12, c13, c23). For this we first determine the points v1, v2, v3 .

v1 = (ℓ1, 0, 0) v2 = (c12, ℓ2, 0) v3 = (c13, c23, ℓ3)

We calculate the c-hull step by step, first we have the seed Seed(ℓ):

Seed(ℓ) = {(a, 0, 0), (∗, b, 0), (∗, ∗, c)}

with a ∈ [−(ℓ1 − 1), . . . ,−1], b ∈ [−(ℓ2 − 1), . . . ,−1] and c ∈ [−(ℓ3 − 1), . . . ,−1].
In the first step we add the points (a, 0, 0)− v2 = (a− c12, −ℓ2, 0). In the second step we

add the points
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• (a, 0, 0)− v3 = (a− c13, −c23, −ℓ3)

• (a− c12, −ℓ2, 0)− v3 = (a− c12 − c13, −ℓ2 − c23, −ℓ3)

• (∗, b, 0)− v3 = (∗, b− c23, −ℓ3)

⟨Seed(ℓ)⟩c =


(a, 0, 0), (a− c12, −ℓ2, 0),

(a− c13, −c23, −ℓ3), (a− c12 − c13, −ℓ2 − c23, −ℓ3),
(∗, b, 0), (∗, b− c23, −ℓ3),

(∗, ∗, c)

 ,

with as above a ∈ [−(ℓ1 − 1), . . . ,−1], b ∈ [−(ℓ2 − 1), . . . ,−1] and c ∈ [−(ℓ3 − 1), . . . ,−1]. That
gives 4(ℓ1 − 1) points, 2(ℓ2 − 1) lines and ℓ3 − 1 planes.

By (iii) from Theorem 2.44 there are no further immaculate line bundles for c sufficiently
general.

2.5 Toric varieties of Picard rank 3

In this section we finally make everything concrete in the case of Picard rank 3. We first
review the classification of Batyrev and describe the tempting subsets of rays. We list a lot
of immaculate line bundles and prove (similarly to Theorem 2.44) that for sufficiently general
parameters the listed ones are all immaculate line bundles. In subsection 2.5.4 we study the
behavior of the immaculate sets when changing the parameters. Finally in subsection 2.5.5 the
special case of vanishing parameters of Batyrev’s classification is considered.

2.5.1 Classification by Batyrev

In [Bat91] a classification of smooth, projective toric varieties of Picard rank 3 is given by using
its primitive collections. See also [CR09].

Proposition 2.46 ([Bat91, Thm 5.7]). If Σ is a complete, regular d-dimensional fan with d+ 3
generators, then the number of primitive collections of its generators is equal to 3 or 5.

The number of primitive collections is always greater or equal to the Picard rank and equality
is only attained for splitting fans. So in the case that there are exactly three primitive collections
the fan Σ is a splitting fan and Theorem 2.44 provides a description of the immaculate locus in
this case. We have discussed it in subsubsection 2.4.3.

Therefore, in the rest of the section we are going to assume that TV(Σ) is a smooth projective
toric variety of Picard rank 3, which has exactly five primitive collections. Following [Bat91] we
give a more precise description of the fan. There is a decomposition of the rays Σ(1) into five
disjoint subsets Xα and the primitive collections are given by Xα ∪Xα+1 for α ∈ Z/

5Z .

Proposition 2.47 ([Bat91, Thm 6.6]). Let us denote Pα = Xα ∪Xα+1, where α ∈ Z/
5Z ,

X0 = {v1, . . . , vp0}, X1 = {y1, . . . , yp1}, X2 = {z1, . . . , zp2},

X3 = {t1, . . . , tp3}, X4 = {u1, . . . , up4},

and p0 + · · · + p4 = d + 3. Then any complete regular d-dimensional fan Σ with the set of
generators Σ(1) =

⋃
Xα and five primitive collections Pα can be described up to a symmetry
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of the pentagon by the following primitive relations with non-negative integral coefficients
c2, . . . , cp2 , b1, . . . bp3 :

p0∑
i=1

vi +

p1∑
i=1

yi −
p2∑
i=2

cizi −
p3∑
i=1

(bi + 1)ti = 0,

p1∑
i=1

yi +

p2∑
i=1

zi −
p4∑
i=1

ui = 0,

p2∑
i=1

zi +

p3∑
i=1

ti = 0,

p3∑
i=1

ti +

p4∑
i=1

ui −
p1∑
i=1

yi = 0,

p4∑
i=1

ui +

p0∑
i=1

vi −
p2∑
i=2

cizi −
p3∑
i=1

biti = 0.

It looks less scary if we write those equations as a matrix whose rows indicate the five primitive
relations. This matrix consists of five blocks of columns of sizes p0, . . . , p4. By 0 = (0, 0, . . . , 0)
and 1 = (1, 1, . . . , 1) we mean row vectors of the appropriate size to fit into the indicated block.
Denoting c = (0, c2, . . . , cp2) ∈ Zp2

≥0 and b = (b1, . . . , bp3) ∈ Zp3
≥0, the primitive relation matrix

looks like 
1 1 −c −(b+ 1) 0
0 1 1 0 −1
0 0 1 1 0
0 −1 0 1 1
1 0 −c −b 1

 .

Lemma 2.48. For all parameters b = (b1, . . . , bp3) ∈ Zp3
≥0 and c = (0, c2, . . . , cp2) ∈ Zp2

≥0 we
obtain a smooth fan of Picard rank 3. This means the converse of Proposition 2.47.

Proof. This follows from subsection 2.3.1: We chose a submatrix of of the primitive relation
matrix that forms a lattice basis, e.g. the first, second and fourth row. Then all the 3-minors
with respect to the columns chosen from the blocks (α, α+ 1, α+ 3) for α ∈ Z/5Z are always
1.

2.5.2 Tempting Subsets

As above we suppose TV(Σ) is a smooth projective toric variety of dimension d and Picard rank
3, whose fan Σ has five primitive relations.

For determining the immaculate locus the first step is to find the tempting subsets of Σ(1).
We have seen in Proposition 2.24 that the primitive collections, their complements, the empty
set and the full subset Σ(1) are tempting and we will see now that those are indeed the only
tempting subsets. This is a special situation. Remember that out of the 34 tempting subsets
for the hexagon only 20 are of this shape (see Example 2.5 and Example 2.26). And also for
splitting fan varieties of Picard rank greater than 3 not all tempting subsets are of this shape,
see Lemma 2.36.

Lemma 2.49. The only tempting subsets are primitive collections, their complements, the
empty set and the full subset Σ(1).
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Proof. By Proposition 2.28 we know that if R ⊂ Σ(1) is tempting, then R and its complement
are unions of primitive collections. If R is the union of three (or more) primitive collections,
then R = Σ(1). In the case that R is the union of two primitive collections, it can be the union
of two consecutive Pα. Then R = Xα ∪Xα+1 ∪Xα+2 and Σ(1) \ R = Xα−1 ∪Xα−2 = Pα−2 is
a primitive collection, and by Proposition 2.24 it is tempting, thence R is tempting, too. But in
particular, in this case R is the complement of a primitive collection.

If it is the union of two non-consecutive primitive collections, then R is the union of four Xα

and the complement cannot be the union of primitive collections and thus is not tempting.

With this knowledge we can already narrow down the degrees in which non-vanishing cohomo-
logy can occur.

Proposition 2.50. Suppose as above that X = TV(Σ) is a smooth projective toric variety
of Picard rank 3 with five primitive collections Pα and a decomposition of Σ(1) into five
disjoint sets Xα of lengths pα. If L is a line bundle on X such that Hi(X,L) ̸= 0, then
i ∈ {0, pα + pα+1 − 1, pα−1 + pα−2 + pα−3 − 2, dimX}

α∈Z
/
5Z

.

Proof. The tempting subset ∅ and Σ(1) lead to line bundles with non-trivial cohomology in
degrees 0 and dimX respectively.

By Proposition 2.24 V >(Pα) is homotopy equivalent to Sl−2 with l = #Pα = pα+ pα+1, with
(i) from Proposition 2.9 this gives line bundles L with H l−1(X,L) ̸= 0. The Serre dual L∨ of L is
then a line bundle with HdimX−(l−1)(X,L∨) ̸= 0 with L∨ = OX(D) and [D] ∈ MZ(Σ(1) \ Pα).
Since dimX =

∑4
α=0 pα − 3, dimX − (l − 1) = pα−1 + pα−2 + pα−3 − 2. Since there are no

other tempting subsets, there cannot occur other degrees.

2.5.3 Immaculate locus for Picard rank 3

We can calculate the immaculate line bundles as described in Proposition 2.9. For this we have
to consider π(ZΣ(1)\R

≥0 ×ZR
≤−1) for all maculate R where π is given as the transposed of the map

embedding the kernel of the ray map into ZΣ(1). This can be realized by selecting a Z-basis out
of the rows of the matrix of primitive relations presented at the end of subsection 2.5.1. Picking
its first, second and fourth row, we obtain

π =

 1 1 −c −(b+ 1) 0
0 1 1 0 −1
0 −1 0 1 1

 .

These are the primitive relations that, being understood as classes of 1-cycles, correspond to
the rays of the Mori cone which in this case is a three-dimensional simplicial cone.

Let us start by investigating the maculate regions MR(R) for the maculate R. They are all
shifted cones, first we will have a look at the vertices. Denote c :=

∑p2
i=2 ci and b =

∑p3
i=1 bi.
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R sign pattern vertex
Σ(1) −−−−− (−p0 − p1 + p3 + c+ b, −p1 − p2 + p4, p1 − p3 − p4)
∅ +++++ (0, 0, 0)
P0 −−+++ (−p0 − p1, −p1, p1)
Pc
0 ++−−− (p3 + c+ b, −p2 + p4, −p3 − p4)

P1 +−−++ (−p1 + c, −p1 − p2, p1)

Pc
1 −++−− (−p0 + p3 + b, p4, −p3 − p4)

P2 ++−−+ (p3 + c+ b, −p2, −p3)
Pc
2 −−++− (−p0 − p1, −p1 + p4, p1 − p4)

P3 +++−− (p3 + b, p4, −p3 − p4)
Pc
3 −−−++ (−p0 − p1 + c, −p1 − p2, p1)

P4 −+++− (−p0, p4, −p4)
Pc
4 +−−−+ (−p1 + p3 + c+ b, −p1 − p2, p1 − p3)

In the following we will denote the vertex of Pi and Pc
i by vi and vic , respectively.

Next, we will have a look at the cones. The red entries indicate those generators of the cones
that are a negative multiple of a column of π.

R generators reduced generators

∅
1 1 0 −cp2 −(b1 + 1) −(bp3 + 1) 0
0 1 1 1 0 0 −1
0 −1 0 0 1 1 1

1 −cp2 −(bp3 + 1) 0
1 1 0 −1
−1 0 1 1

P0

−1 −1 0 −cp2 −(b1 + 1) −(bp3 + 1) 0
0 −1 1 1 0 0 −1
0 1 0 0 1 1 1

−1 0 0
0 1 −1
0 0 1

P1

1 −1 0 cp2 −(b1 + 1) −(bp3 + 1) 0
0 −1 −1 −1 0 0 −1
0 1 0 0 1 1 1

1 0 −(bp3 + 1)
0 −1 0
0 0 1

P2

1 1 0 cp2 b1 + 1 bp3 + 1 0
0 1 −1 −1 0 0 −1
0 −1 0 0 −1 −1 1

1 0 0
1 −1 −1
−1 0 1

P3

1 1 0 −cp2 b1 + 1 bp3 0
0 1 1 1 0 0 1
0 −1 0 0 −1 −1 −1

1 −cp2 b1 + 1 0
0 1 0 1
0 0 −1 −1

P4

−1 1 0 −cp2 −(b1 + 1) −(bp3 + 1) 0
0 1 1 1 0 0 1
0 −1 0 0 1 1 −1

−1 1 0 −(b1 + 1)
0 1 1 0
0 −1 0 1

Summing this up, we obtain the following vertices, and Hilbert basis of the cones in Table 2.1.
With this we deduce that all immaculate line bundles are also R-immaculate.

Lemma 2.51. For all twelve tempting subsets R ⊂ Σ(1) the rays of the tail cone of the
respective maculate region MR(R) also form its Hilbert basis.

Proof. In Table 2.1 we see the vertices and the rays of the maculate regions. Most of the cones
are simplicial cones, checking the determinants shows that they are smooth. In the other cases
the cone is over a square which can be subdivided into two smooth cones.
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Table 2.1: The maculate regions

R vertex condition rays / Hilbert basis

∅

 0
0
0

 bp3 ≥ cp2

1 −(bp3 + 1) 0
1 0 −1
−1 1 1

bp3 < cp2

1 −cp2 0
1 1 −1
−1 0 1

P0

 −p0 − p1
−p1
p1

 −1 0 0
0 1 −1
0 0 1

P1

 −p1 + c
−p1 − p2

p1

 1 0 −(bp3 + 1)
0 −1 0
0 0 1

P2

 p3 + c+ b
−p2
−p3

 1 0 0
1 −1 −1
−1 0 1

P3

 p3 + b
p4

−p3 − p4

 cp2 ≥ b1 + 1
1 −cp2 b1 + 1
0 1 0
0 0 −1

cp2 < b1 + 1
1 −cp2 b1 + 1 0
0 1 0 1
0 0 −1 −1

P4

 −p0
p4
−p4

 b1 = 0
−1 1 −(b1 + 1)
0 1 0
0 −1 1

b1 > 0
−1 1 0 −(b1 + 1)
0 1 1 0
0 −1 0 1

Proposition 2.52. From 2.51 it follows that, independently of the parameters b, c, we always
have that MZ(R) = MR(R) ∩ PicX and thus ImmZ(X) = ImmR(X).

We will distinguish three classes (F), (A), (B) of line bundles which will become the main
components for the immaculate locus. To locate these classes in Z3 we will use the horizontal
projection (x, y, z) 7→ (y, z) and start with some geography on the target space.

Definition 2.53. Denote by Q1 and Q2 the following two planar parallelograms:

Q1 = conv

(
(−p1 − p2 − p3 + 2, p1 − 1), (−p1, p1 − 1),
(−p2 + p4, −p3 − p4 + 1), (p3 + p4 − 2, −p3 − p4 + 1)

)
,

Q2 = conv

(
(−p1 − p2 + 1, p1 + p2 − 2), (p4 − 1, −p4),
(−p1 − p2 + 1, p1 − p3), (p4 − 1, −p2 − p3 − p4 + 2)

)
.

They are depicted in blue and red in Figure 2.4, and we will be interested in their union. Note
the following two and a half special cases:
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• If p2 = 1, then Q2 ⊂ Q1 and the simplified vertices of Q1 are:

(−p1 − p3 + 1, p1 − 1), (−p1, p1 − 1), (p4 − 1,−p3 − p4 + 1), (p3 + p4 − 2,−p3 − p4 + 1)

• If p3 = 1, then Q1 ⊂ Q2 and the simplified vertices of Q2 are:

(−p1 − p2 + 1, p1 + p2 − 2), (−p1 − p2 + 1, p1 − 1), (p4 − 1,−p4), (p4 − 1,−p2 − p4 + 1)

• If p2 = p3 = 1, then Q1 = Q2 is only a line segment with vertices

(−p1, p1 − 1), (p4 − 1,−p4).

Now we can describe the three classes of our immaculates. They consist of entire “horizontal”
lines or line segments, that is, being always parallel to the x-axis.

Proposition 2.54 (Full horizontal lines (F).). Let X = TV(Σ) be smooth, projective, toric
variety of Picard rank 3 with exactly 5 primitive collections. Independent of the parameters c
and b from Proposition 2.47, the line bundles (∗, x, y) with (x, y) ∈ Q1 ∪Q2 are immaculate.

Proof. For all temptings R consider M(R), the projection of M(R) to the (y, z)-plane by
omitting the x-coordinate. The projected maculate regions M(R) do not depend on the
parameters c and b.

If a line bundle D is maculate, then there exists an R such that D ∈ M(R), and thus
D ∈ M(R).

So if D ∈ Z2 \
⋃

R tempting M(R), all D′ in the line through D parallel to the kernel of
the projection are immaculate. Thus, the problem of finding lines in x-direction reduces to
investigating Z2 without the union of twelve shifted cones.

We have M(R) = vR + σR and M(Σ(1) \ R) = (K − vR)− σR

R vR vΣ(1)\R rays of σR
∅ (0, 0) (−p1 − p2 + p4, p1 − p3 − p4) (1,−1), (−1, 1)
P0 (−p1, p1) (−p2 + p4,−p3 − p4) (−1, 1), (1, 0)
P1 (−p1 − p2, p1) (p4,−p3 − p4) (−1, 0), (0, 1)
P2 (−p2,−p3) (−p1 + p4, p1 − p4) (1,−1), (−1, 1)
P3 (p4,−p3 − p4) (−p1 − p2, p1) (1, 0), (0,−1)
P4 (p4,−p4) (−p1 − p2, p1 − p3) (1,−1), (0, 1)

The following containment relations

• M(Σ(1)) = M(P2), implying M(∅) = M(Pc
2)

• M(P1) = M(Pc
3), implying M(Pc

1) = M(P3), and

• M(Pc
0),M(Pc

4) ⊂ M(Σ(1)),

lead to

Z2 \
⋃

R tempting
M(R) = Z2 \ (M(Σ(1)) ∪M(∅) ∪M(P1) ∪M(Pc

1)) = (Q1 ∪Q2) ∩ Z2.
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vΣ(1)
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b
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a

a

Point Coordinates Point Coordinates

vΣ(1) = −K (−p1 − p2 + p4, p1 − p3 − p4) v∅ (0, 0)

v0c (−p2 + p4, −p3 − p4) v0 (−p1, p1)
v1c = v3 (p4, −p3 − p4) v1 = v3c (−p1 − p2, p1)
v2c (−p1 + p4, p1 − p4) v2 (−p2, −p3)
v4c (−p1 − p2, p1 − p3) v4 (p4, −p4)

Figure 2.4: p2, p3 > 1
The projected maculate regions to the (y, z)-plane for the example (p1, p2, p3, p4) = (4, 3, 2, 5)

and a table with the general coordinates of the projected vertices of the maculate regions,
where vi and vic denotes the projected vertex of the maculate region MR(R) for R = Pi

respectively R = Pc
i . The polyhedra Q1 and Q2 from Definition 2.53 are depicted in blue and

red. The letters A and B indicate where the line segments of immaculate line bundles are
located in the projection, and the letters a, b denote the location of their Serre duals.
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Figure 2.5: p2 = 1
(p1, p2, p3, p4) = (4, 1, 2, 5).

B

B

B

b

b

b

A

A

A

A

A

A

A

A

A

A

A

A

a

a

a

a

a

a

a

a

a

a

a

a

Figure 2.6: p3 = 1
(p1, p2, p3, p4) = (4, 3, 1, 5).
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Proposition 2.55 (Line Segements of Type (A).). There are line segments located over the
diagonal (∗, y, −y) containing immaculate line bundles for y ∈ [−p3 − p4 + 1, p1 + p2 − 1].
Denote Dx,y = (x, y, −y), and for any y ∈ [−p1 − p2 + 1, p3 + p4 − 1] let

Iy := {Dx,y | x0(y) ≤ x ≤ x1(y)}

be the set of lattice points on the segment with x coordinate varying from x0(y) to x1(y). It
holds that

x0(y) =


−p0 − p1 + 1 for y ∈ [−p1 − p2 + 1,−p1]
−p0 − p4 + y + 1 for y ∈ [−p1 + 1,−p1 + p4 − 1]

−p0 − p1 + 1 for y ∈ [−p1 + p4, p4 − 1]

−p0 − p4 + y + 1 for y ∈ [p4, p3 + p4 − 1]

and

x1(y) =

{
−1 for y ∈ [−p1 − p2 + 1,−1]

y − 1 for y ∈ [0, p3 + p4 − 1]
.

Depending on p1 and p4 we obtain different combinations and different numbers of lattice points
on the segments. The values of x0(y), x1(y) and the number of elements of Iy is in Table 2.2.
Notice that they do not depend on b or c, as in the case of type (F).

Proof. The divisor Dx,y is immaculate if and only if it is not in any maculate region M(R) for
any tempting subset R ⊂ Σ(1). By considering Dx,y we will narrow down the possible R that
could make Dx,y maculate.

Independent on y it holds Dx,y ∈ M(Σ(1)) and Dx,y ∈ M(Pc
2). For y ≥ p4 we have

Dx,y ∈ M(P4). For y ≤ −p1 we get Dx,y ∈ M(P0).
So we obtain the following:

I1 I2 ∪ I3 ∪ I4 I5
(−p1 − p2,−p1] [−p1 + 1, p4 − 1] [p4, p3 + p4)

∅ ∅ ∅
Pc
2 Pc

2 Pc
2

P0 P4

We will analyze now when Dx,y belongs to any of the possible maculate regions:

• ∅ : The Hilbert basis of σ∅ is

ρ1 = (1, 1, −1), ρ2,1 = (−(bp3 + 1), 0, 1), ρ2,2 = (−cp2 , 0, 1), ρ3 = (0, −1, 1),

where ρ2,1 is part of the Hilbert basis if cp2 ≤ bp3 and ρ2,2 otherwise. The vertex is
v∅ = (0, 0, 0). We get Dx,y as linear combination of the Hilbert basis in the following
way:

Dx,y = x · ρ1 + (x− y) · ρ3

In order to be in the cone, we want it to be a positive linear combination, so x ≥ 0 and
x− y ≥ 0 ⇐⇒ x ≥ y, that is for y ≤ 0 the two conditions reduce to x ≥ 0 and for y ≥ 0,
they reduce to x ≥ y.
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Table 2.2: Isolated immaculate line bundles type A.

• ≤ y y ≤ • x0(y) x1(y) #Iy

Case p1 < p4

−p1 − p2 + 1 −p1 −p0 − p1 + 1 −1 p0 + p1 − 1
−p1 + 1 −1 −p0 − p4 + y + 1 −1 p0 + p4 + |y| − 1

0 −p1 + p4 − 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1
−p1 + p4 p4 − 1 −p0 − p1 + 1 y − 1 p0 + p1 + |y| − 1

p4 p3 + p4 − 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1

Case p1 > p4

−p1 − p2 + 1 −p1 −p0 − p1 + 1 −1 p0 + p1 − 1
−p1 + 1 −p1 + p4 − 1 −p0 − p4 + y + 1 −1 p0 + p4 + |y| − 1
−p1 + p4 −1 −p0 − p1 + 1 −1 p0 + p1 − 1

0 p4 − 1 −p0 − p1 + 1 y − 1 p0 + p1 + |y| − 1
p4 p3 + p4 − 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1

Case p1 = p4

−p1 − p2 + 1 −p1 −p0 − p1 + 1 −1 p0 + p1 − 1
−p1 + 1 −1 −p0 − p4 + y + 1 −1 p0 + p4 + |y| − 1

0 p4 − 1 −p0 − p1 + 1 y − 1 p0 + p1 + |y| − 1
p4 p3 + p4 − 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1
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Thus:

Dx,y ∈ M(∅) ⇔ x ≥

{
0 for y ≤ 0

y for y ≥ 0
.

• Pc
2 : The Hilbert basis of the tail cone of this maculate region is the following:

ρ1 = (−1, −1, 1), ρ2 = (0, 1, 0), ρ3 = (0, 1, −1).

And we have the vertex v2c = (−p0 − p1, −p1 + p4, p1 − p4).

Dx,y = v2c + (−p0 − p1 − x) · ρ1 + (−p0 − p4 + y − x) · ρ3

We want this to be a positive linear combination, so: −p0−p1−x ≥ 0 ⇐⇒ −p0−p1 ≥ x
and −p0 − p4 + y − x ≥ 0 ⇐⇒ −p0 − p4 + y ≥ x. For both inequalities to hold we get
x ≤ min(−p0 − p1,−p0 − p4 + y). If y ≥ −p1 + p4, the minimum is obtained in the first
argument, otherwise in the second.

Thus:

Dx,y ∈ M(Pc
2) ⇔ x ≤

{
−p0 − p4 + y for y ≤ −p1 + p4

−p0 − p1 for y ≥ −p1 + p4
.

• P0 : Here the Hilbert basis consists of the following elements

ρ1 = (−1, 0, 0), ρ2 = (0, 1, 0), ρ3 = (0, −1, 1).

v0 = (−p0 − p1, −p1, p1)

y ≤ −p1: It is clear that we have to use the last element of the Hilbert basis:

Dx,y = v0 + (−p0 − p1 − x) · ρ1 + (−p1 − y) · ρ3

Thus:
Dx,y ∈ M(P0) ⇔ x ≤ −p0 − p1 and y ≤ −p1.

• P4 : In this case the Hilbert basis consists of the following four elements (and if b1 = 0
only the first two and the last of them):

ρ1 = (−1, 0, 0), ρ2 = (1, 1, −1), ρ3 = (0, 1, 0), ρ4 = (−(b1 + 1), 0, 1).

Again we are left with no choice how to create Dx,y, we have to use the second element of
the Hilbert basis:

Dx,y = v4 + (−p0 − p4 + y − x) · ρ1 + (−p4 + y) · ρ2

Thus:
Dx,y ∈ M(P4) ⇔ x ≤ −p0 − p4 + y and y ≥ p4.

So we get
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•

Dx,y ∈ M(∅) ⇔ y ≤ 0
x ≥ 0

or y ≥ 0
x ≥ y.

•

Dx,y ∈ M(Pc
2) ⇔

y ≤ −p1 + p4
x ≤ −p0 − p4 + y.

or y ≥ −p1 + p4
x ≤ −p0 − p1

•

Dx,y ∈ M(P0) ⇔
y ≤ −p1

x ≤ −p0 − p1.

•

Dx,y ∈ M(P4) ⇔
y ≥ p4

x ≤ −p0 − p4 + y.

On the other hand it means:

•

Dx,y /∈ M(∅) ⇔ y ≤ 0
x ≤ −1

or y ≥ 0
x ≤ y − 1.

•

Dx,y /∈ M(Pc
2) ⇔

y ≤ −p1 + p4
x ≥ −p0 − p4 + y + 1.

or y ≥ −p1 + p4
x ≥ −p0 − p1 + 1

•

Dx,y /∈ M(P0) ⇔
y ≤ −p1

x ≥ −p0 − p1 + 1
or y > −p1

•

Dx,y /∈ M(P4) ⇔ y < p4 or y ≥ p4
x ≥ −p0 − p4 + y + 1.

In conclusion:

• For y ∈ I1 = [−p1 − p2 + 1, p1]:

x ≤ −1 (∅)
x ≥ −p0 − p4 + y + 1 (Pc

2)
x ≥ −p0 − p1 + 1 (P0)

With

−y ≥ p1−p4 ⇔ −p1−y ≥ −p4 ⇔ −p0−p1+1−y ≥ −p0−p4+1 ⇔ −p0−p1+1 ≥ −p0−p4+y+1

we obtain
x ∈ [−p0 − p1 + 1,−1].

• For y ∈ I2 ∪ I3 ∪ I4 = [−p1 + 1, p4 − 1], the candidates are only ∅,Pc
2. We will subdivide

this case into sub-cases that depend on p1 and p4:
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(i) For −p1 + p4 ≤ y ≤ p4 − 1:

x ≤ y − 1 (∅)
x ≥ −p0 − p1 + 1 (Pc

2)

So x ∈ [−p0 − p1 + 1, y − 1].

(ii) For 0 ≤ y ≤ −p1 + p4:

x ≤ y − 1 (∅)
x ≥ −p0 − p4 + y + 1 (Pc

2)

So x ∈ [−p0 − p4 + y + 1, y − 1].

(iii) For −p1 + 1 ≤ y ≤ 0

x ≤ −1 (∅)
x ≥ −p0 − p4 + y + 1 (Pc

2)

So x ∈ [−p0 − p4 + y + 1,−1].

(iv) For −p1 + p4 ≤ y ≤ 0:
x ≤ −1 (∅)
x ≥ −p0 − p1 + 1 (Pc

2)

x ∈ [−p0 − p1 + 1,−1].

(v) −p1 + 1 ≤ y ≤ −p1 + p4:

x ≤ −1 (∅)
x ≥ −p0 − p4 + y + 1 (Pc

2)

x ∈ [−p0 − p4 + y + 1,−1].

• For y ∈ I5 = [p4, p3 + p4 − 1]: the candidate temptings were ∅,Pc
2,P4:

x ≤ y − 1 (∅)
x ≥ −p0 − p1 + 1 (Pc

2)
x ≥ −p0 − p4 + y + 1 (P4)

Since y ≥ p4:

−p0 − p4 + y + 1 ≥ −p0 − p4 + p4 + 1 = −p0 + 1 ≥ −p0 − p1 + 1

So
x ∈ [−p0 − p4 + y + 1, y − 1].

These are exactly the values of Table 2.2.

Proposition 2.56 (Line segments of type (B).). The line bundles in the line segments mentioned
below are immaculate. Line bundles on the line that do not belong to the mentioned segment
are not immaculate. The segments of this type depend on p2 and p3 via the parallelograms Q1

and Q2 elaborated in Definition 2.53.
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• If p2, p3 ≥ 2, then this type consist of just one horizontal segment whose projection to the
(y, z)-plane is located left/above the intersection of the upper edges of the parallelograms
Q1 and Q2, see the point marked as B on Figure 2.4. The line segment contains p0 − 1
immaculate line bundles with coordinates

([−p0 − p1 + c+ 1,−p1 + c− 1], −p1 − p2, p1),

where c :=
∑
ci.

• If p2 = 1, then the points of Type (B) consist of p3 horizontal line segments, each containing
p0 − 1 immaculate line bundles. The coordinates are

([−p0 − p1 + 1,−p1 − 1], −p1 − p2 − y, p1)

for y ∈ [0, p3 − 1]. On Figure 2.5 their projections onto (y, z) plane are indicated by the
letter B. Roughly speaking, their projections are at each lattice point directly above the
upper edge of the parallelogram Q1,

• For p3 = 1, there are p2 horizontal line segments of Type (B) each containing p0 − 1
immaculate line bundles. The coordinates are

([−p0 − p1 + c− y(b+ 1) + 1,−p1 + c− y(b+ 1)− 1], −p1 − p2, p1 + y)

for y ∈ [0, p2 − 1]. On Figure 2.6 their locations in the projection are indicated by the
letter B, as for the previous case. In this case the projections are located directly left of
Q2.

Proof. • p2, p3 ≥ 2 The divisor Dx = (x, −p1 − p2, p1)) is immaculate, if there is no R
such that Dx ∈ M(R). Since Dx is only in M(R), for R = P1,P

c
3, we only have to check

those two temptings.

v1 = (−p1 + c, −p1 − p2, p1) and (1, 0, 0) ∈ σ1 (and (−1, 0, 0) /∈ σ1), thus Dx ∈ M(P1)
if and only if x ∈ [−p1 + c,∞).

v3c = (−p0 − p1 + c, −p1 − p2, p1) and (−1, 0, 0) ∈ σ3c (and (1, 0, 0) /∈ σ3c), thus
Dx ∈ M(Pc

3) if and only if x ∈ (−∞,−p0 − p1 + c].

• p2 = 1 Now we consider the divisor Dx,y = (x, −p1 − p2 − y, p1)) for y ∈ [0, p3 − 1].
This divisor can only be in the maculate regions for the tempting sets P1 or Pc

3. With
v1 = (−p1 + c, −p1 − p2, p1) and

ρ1 = (1, 0, 0), ρ2 = (0, −1, 0), ρ3 = (−(bp3 + 1), 0, 1),

we have
M(P1) = v1 + cone (ρ1, ρ2, ρ3) .

Now
Dx,y = v1 + (p1 − c+ x) · ρ1 + y · ρ2.

There is no other possible way of expressing Dx,y with the rays (since we have only these
two rays we can use - the others would increase the third coordinate), so Dx,y ∈ M(P1) ⇔
x ≥ −p1 + c.
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With v3c = (−p0 − p1 + c, −p1 − p2, p1) and

ρ1 = (−1, 0, 0), ρ2 = (cp2 , −1, 0), ρ3 = (−(b1 + 1), 0, 1), ρ4 = (0, −1, 1),

we have
M(P1) = v3c + cone (ρ1, ρ2, ρ3, ρ4) ,

where ρ4 only forms a ray if cp2 < b1 + 1.

Now
Dx,y = v3c + (−p0 − p1 + c+ ycp2 − x) · ρ1 + y · ρ2.

Again, this is our only chance of expressing Dx,y as an element in the shifted cone, so
Dx,y ∈ M(Pc

3) ⇔ −p0 − p1 + c+ ycp2 ≥ x.

Thus Dx,y is immaculate if and only if

−p0 − p1 + c+ ycp2 + 1 ≤ x ≤ −p1 + c− 1

So for each y ∈ [0, p3 − 1] we get p0 − ycp2 − 1 immaculates.

In the case that p2 = 1, c = cp2 = 0 and we obtain Dx,y immaculate for y ∈ [0, p3 − 1]
and x ∈ [−p0 − p1 + 1,−p1 − 1].

If p2 ≥ 1 and cp2 ≥ p0 − 1, we only obtain immaculate Dx,y for y = 0.

(Let cp2 ≥ 1, then Dx,y is maculate for y ≥ p0−1
cp2

and any x.)

• p3 = 1 Now let us consider Dx,y = (x,−p1 − p2, p1 + y) for y ∈ [0, p2 − 1]. Again, P1 and
Pc
3 are the only tempting sets we have to investigate further.

Dx,y = v1 + (p1 − c+ y + ybp3 + x) · ρ1 + y · ρ3

So Dx,y ∈ M(P1) ⇔ x ≥ −p1 + c− y − ybp3 .

(⇐ is clear, the other one follows from the fact, that using other rays would increase the
second coordinate.)

Dx,y = v3c + (−p0 − p1 + c− y − yb1 − x) · ρ1 + y · ρ3

So Dx,y ∈ M(Pc
3) ⇔ −p0 − p1 + c− y − yb1 ≥ x. (⇐ is clear, the other one follows from

the fact, that using other rays would increase the second coordinate.)

Thence, Dx,y is immaculate if and only if

−p0 − p1 + c− y − yb1 + 1 ≤ x ≤ −p1 + c− y − ybp3 − 1

which gives p0 − 1− y(bp3 − b1) immaculates for each y ∈ [0, p2 − 1].

If now p3 = 1, bp3 = b1 and we obtain p0 − 1 immaculates for each y ∈ [0, p2 − 1].

But if p3 > 1 and bp3 − b1 ≥ p0 − 1, the only immaculate Dx,y occur for y = 0.

(Let bp3 > b1, then Dx,y is maculate for y ≥ p0−1
bp3−b1

and any x.)
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We have now seen that the types (F), (A), (B) are always immaculate. Moreover, for
sufficiently “general” parameters the listed line bundles and their Serre duals are all immaculate
line bundles.

Proposition 2.57. Let b, c be large enough, in the sense that the following conditions are
satisfied:

• max(bp3 , cp2) ≥ p0 + p1 +max(p2, p3) + p4,

• cp2 ≥ p0 − 1 if p2 ≥ 2,

• bp3 − b1 ≥ p0 − 1 if p3 ≥ 2.

Then the only immaculate line bundles are the previously mentioned and their Serre duals.

Proof. We will divide the proof into two parts.
First we show that for D with D ∈ M(∅) \ int(M(P1) ∪M(Pc

1)) the line bundles of type A
are the only immaculate ones.

Then we consider D with D ∈ M(P1), and show that the line bundles of type B are the only
immaculates among those.

Using Serre duality one can conclude that there are no further immaculate line bundles D
with D ∈ ∪R temptingM(R).

• Let D with D ∈ M(∅) \ int(M(P1) ∪M(Pc
1)). We will restrict our considerations to the

maculate regions for the tempting subset ∅ and Pc
2.

We consider the divisors Dx,y,a = (x, −y, y + a) and Ex,y,a = (x, −y + a, y). The
condition from above reduces to y ∈ [−p3− p4, p1+ p2]. By writing the divisors as positive
linear combinations of the rays (which are also the Hilbert basis) of the maculate regions,
we can give inequalities for x which ”decide” whether Dx,y,a or Ex,y,a is in the given
macualte region.

So we will have that Dx,y,a ∈ M(∅) ⇐⇒ x ≤ d∅ and Dx,y,a ∈ M(Pc
2) ⇐⇒ x ≥ dPc

2
.

Then if d∅ + 1 ≥ dPc
2

all Dx,y,a are maculate.

First we will consider Pc
2, since its Hilbert basis does not depend on the values of b, c. The

vertex of the maculate region is v2c = (−p0 − p1, −p1 + p4, p1 − p4). And the‘ Hilbert
basis is

ρ1 = (−1, 1, 1), ρ2 = (0, 1, 0), ρ3 = (0, 1, −1).

Then we obtain

Dx,y,a = v2c + (−x− p0 − p1) · ρ1 + a · ρ2 + (−x− y − p0 − p4 − a) · ρ3.

For this to be a positive linear combination we need to require

x ≤ min(−p0 − p1,−y − p0 − p4 − a) =

{
−p0 − p1 y ≤ p1 − p4 − a

−y − p0 − p4 − a y ≥ p1 − p4 − a
.

We also get

Ex,y,a = v2c + (−x− p0 − p1) · ρ1 + a · ρ2 + (−x− y − p0 − p4) · ρ3.
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Here we require

x ≤ min(−p0 − p1,−y − p0 − p4) =

{
−p0 − p1 y ≤ p1 − p4

−y − p0 − p4 y ≥ p1 − p4
.

Now let us consider the tempting subset ∅. Here the vertex is (0, 0, 0). We have

ρ1 = (1, 1, −1), ρ2,1 = (−(bp3 + 1), 0, 1), ρ2,2 = (−cp2 , 1, 0) and ρ3 = (0, −1, 1),

where ρ2,1 is a ray when bp3 ≥ cp2 and ρ2,2 if bp3 < cp2 .

– We will start with the case bp3 ≥ cp2 :

Here we get Dx,y,a as the following linear combination

Dx,y,a = (x+ a · (bp3 + 1)) · ρ1 + a · ρ2,1 + (x+ y + a · (bp3 + 1)) · ρ3.

For containment in the maculate region, we obtain the following condition

x ≥ max(−a · (bp3 + 1),−y − a · (bp3 + 1)) =

{
−y − a · (bp3 + 1) y ≤ 0

−a · (bp3 + 1) y ≥ 0
.

Similarly for Ex,y,a,

Ex,y,a = (x+ a · (bp3 + 1)) · ρ1 + a · ρ2,1 + (x+ y + a · bp3) · ρ3

we obtain the condition

x ≥ max(−a · (bp3 + 1),−y − a · bp3) =

{
−y − a · bp3 y ≤ a

−a · (bp3 + 1) y ≥ a
.

– Now let us consider bp3 < cp2 :

The following linear combination

Dx,y,a = (x+ a · cp2) · ρ1 + a · ρ2,2 + (x+ y + a · (cp2 + 1))) · ρ3

leads to these inequalities:

x ≥ max(−a · cp2 ,−y − a · (cp2 + 1)) =

{
−y − a · (cp2 + 1) y ≤ a

−a · cp2 y ≥ a
.

And once again:

Ex,y,a = (x+ a · cp2) · ρ1 + a · ρ2,2 + (x+ y + a · cp2) · ρ3

we get the condition on x:

x ≥ max(−a · cp2 ,−y − a · cp2) =

{
−y − a · cp2 y ≤ 0

−a · cp2 y ≥ 0
.
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Now, we put the cases together. First for bp3 ≥ cp2 :

y ≤ 0 y ≤ p1 − p4 − a −p0 − p1 + 1 ≥ −y − a · (bp3 + 1)
y ≤ 0 y ≥ p1 − p4 − a −y − p0 − p4 − a+ 1 ≥ −y − a · (bp3 + 1)
y ≥ 0 y ≤ p1 − p4 − a −p0 − p1 + 1 ≥ −a · (bp3 + 1)
y ≥ 0 y ≥ p1 − p4 − a −y − p0 − p4 − a+ 1 ≥ −a · (bp3 + 1)

y ≤ a y ≤ p1 − p4 −p0 − p1 + 1 ≥ −y − a · bp3
y ≤ a y ≥ p1 − p4 −y − p0 − p4 + 1 ≥ −y − a · bp3
y ≥ a y ≤ p1 − p4 −p0 − p1 + 1 ≥ −a · (bp3 + 1)
y ≥ a y ≥ p1 − p4 −y − p0 − p4 + 1 ≥ −a · (bp3 + 1)

y ≤ 0 y ≤ p1 − p4 − a a · (bp3 + 1) ≥ −y + p0 + p1 − 1
y ≤ 0 y ≥ p1 − p4 − a a · bp3 ≥ p0 + p4 − 1
y ≥ 0 y ≤ p1 − p4 − a a · (bp3 + 1) ≥ p0 + p1 − 1
y ≥ 0 y ≥ p1 − p4 − a a · bp3 ≥ y + p0 + p4 − 1

y ≤ a y ≤ p1 − p4 a · bp3 ≥ −y + p0 + p1 − 1
y ≤ a y ≥ p1 − p4 a · bp3 ≥ p0 + p4 − 1
y ≥ a y ≤ p1 − p4 a · (bp3 + 1) ≥ p0 + p1 − 1
y ≥ a y ≥ p1 − p4 a · (bp3 + 1) ≥ y + p0 + p4 − 1

By putting the boundary values for y and a = 1, we can make sure that the inequalities
are satisfied for all other possible values:

y ≤ 0 y ≤ p1 − p4 − a bp3 ≥ p0 + p1 + p3 + p4 − 2
y ≤ 0 y ≥ p1 − p4 − a bp3 ≥ p0 + p4 − 1
y ≥ 0 y ≤ p1 − p4 − a bp3 ≥ p0 + p1 − 2
y ≥ 0 y ≥ p1 − p4 − a bp3 ≥ p0 + p1 + p2 + p4 − 1

y ≤ a y ≤ p1 − p4 bp3 ≥ p0 + p1 + p3 + p4 − 1
y ≤ a y ≥ p1 − p4 bp3 ≥ p0 + p4 − 1
y ≥ a y ≤ p1 − p4 bp3 ≥ p0 + p1 − 2
y ≥ a y ≥ p1 − p4 bp3 ≥ p0 + p1 + p2 + p4 − 2

So bp3 ≥ p0 + p1 +max(p2, p3) + p4 − 1.

Now we do the same steps for the case bp3 < cp2 :

y ≤ a y ≤ p1 − p4 − a −p0 − p1 + 1 ≥ −y − a · (cp2 + 1)
y ≤ a y ≥ p1 − p4 − a −y − p0 − p4 − a+ 1 ≥ −y − a · (cp2 + 1)
y ≥ a y ≤ p1 − p4 − a −p0 − p1 + 1 ≥ −a · cp2
y ≥ a y ≥ p1 − p4 − a −y − p0 − p4 − a+ 1 ≥ −a · cp2
y ≤ 0 y ≤ p1 − p4 −p0 − p1 + 1 ≥ −y − a · cp2
y ≤ 0 y ≥ p1 − p4 −y − p0 − p4 + 1 ≥ −y − a · cp2
y ≥ 0 y ≤ p1 − p4 −p0 − p1 + 1 ≥ −a · cp2
y ≥ 0 y ≥ p1 − p4 −y − p0 − p4 + 1 ≥ −a · cp2
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y ≤ 0 y ≤ p1 − p4 − a a · (cp2 + 1) ≥ −y + p0 + p1 − 1
y ≤ 0 y ≥ p1 − p4 − a a · cp2 ≥ p0 + p4 − 1
y ≥ 0 y ≤ p1 − p4 − a a · cp2 ≥ p0 + p1 − 1
y ≥ 0 y ≥ p1 − p4 − a a · cp2 ≥ y + p0 + p4 + a− 1

y ≤ a y ≤ p1 − p4 a · cp2 ≥ −y + p0 + p1 − 1
y ≤ a y ≥ p1 − p4 a · cp2 ≥ p0 + p4 − 1
y ≥ a y ≤ p1 − p4 a · cp2 ≥ p0 + p1 − 1
y ≥ a y ≥ p1 − p4 a · cp2 ≥ y + p0 + p4 − 1

Putting the boundary values for y and a = 1.

y ≤ 0 y ≤ p1 − p4 − a cp2 ≥ p0 + p1 + p3 + p4 − 2
y ≤ 0 y ≥ p1 − p4 − a cp2 ≥ p0 + p4 − 1
y ≥ 0 y ≤ p1 − p4 − a cp2 ≥ p0 + p1 − 1
y ≥ 0 y ≥ p1 − p4 − a cp2 ≥ p0 + p1 + p2 + p4
y ≤ a y ≤ p1 − p4 cp2 ≥ p0 + p1 + p3 + p4 − 1
y ≤ a y ≥ p1 − p4 cp2 ≥ p0 + p4 − 1
y ≥ a y ≤ p1 − p4 cp2 ≥ p0 + p1 − 1
y ≥ a y ≥ p1 − p4 cp2 ≥ p0 + p1 + p2 + p4 − 1

So if cp2 ≥ p0 + p1 +max(p2, p3 − 1) + p4 we are safe.

In conclusion, if we require max(cp2 , bp3) ≥ p0 + p1 + max(p2, p3 − 1) + p4, D∗,y,a and
E∗,y,a are maculate for y ∈ [−p3 − p4, p1 + p2] and a ≥ 1.

So now we have shown that (∗, −y + a, y) and (∗, −y, y + a) are always maculate for
sufficiently general c and b, for y ∈ [−p3 − p4, p1 + p2].

We are left to show that (∗, g, h) is always maculate for g > p3+p4 and h > p1+p2. But we
can write (∗, g, h) = (∗, −y, y+(h−y))+(g−y)·(0, 1, 0) = D∗,y,(h−y)+(g−y)·(0, 1, 0)
with y ∈ [−p3 − p4, p1 + p2], h − y ≥ 1 and g − y ≥ 1 and we know that D∗,y,(h−y) ∈
M(∅)∪M(Pc

2) and (0, 1, 0) ∈ σ∅ and also (0, 1, 0) ∈ σ2c , so (∗, g, h) is always maculate
as well.

• We will now consider D with D ∈ M(P1), that is divisors Dx,y,z = (x, −p1−p2−y, p1+z)
for y, z ≥ 0. The only candidate maculate regions come form the tempting sets P1 and Pc

3.

For M(P1) we have the vertex v1 = (−p1 + c, −p1 − p2, p1) and the cone σ1 has the
Hilbert basis

ρ1 = (1, 0, 0), ρ2 = (0, −1, 0) and ρ3 = (−(bp3 + 1), 0, 1).

We obtain Dx,y,z as the following linear combination:

Dx,y,z = v1 + (x+ p1 − c+ z · (bp3 + 1)) · ρ1 + y · ρ2 + z · ρ3.

So Dx,y,z ∈ M(P1) ⇔ x ≥ −p1 + c− z · (bp3 + 1).

For M(Pc
3) we have the vertex v3c = (−p0 − p1 + c, −p1 − p2, p1) and the cone σ3c has

the Hilbert basis

ρ1 = (−1, 0, 0), ρ2 = (cp2 , −1, 0), ρ3 = (−(b1 + 1), 0, 1)
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and if cp2 < b1 + 1 we get the additional element ρ4 = (0, −1, 1).

We obtain Dx,y,z as the following linear combination:

Dx,y,z = v3c + (−x− p0 − p1 + c+ y · cp2 − z · (b1 + 1)) · ρ1 + y · ρ2 + z · ρ3

So here we want x ≤ −p0 − p1 + c+ y · cp2 − z · (b1 + 1).

Hence to get that all D∗,y,z are maculate we want

−p0 − p1 + c+ y · cp2 − z · (b1 + 1) + 1 ≥ −p1 + c− z · (bp3 + 1).

y · cp2 + z · (bp3 − b1) ≥ p0 − 1

For the general case, we get cp2 ≥ p0 − 1 and bp3 − b1 ≥ p0 − 1. If p3 = 1, then the Dx,0,z

are immaculate for z ∈ [0, p2 − 1] and the values of x as shown in Proposition 2.56. The
case of p2 = 1 is a sub-case of the following case.

Now if cp2 < b1 + 1, we get the following linear combination:

Dx,y,z =


v3c + (−x− p0 − p1 + c) · ρ1 + y · ρ4 for y = z

v3c + (−x− p0 − p1 + c+ (y − z)cp2) · ρ1 + (y − z) · ρ2 + z · ρ4 for y > z

v3c + (−x− p0 − p1 + c− (z − y)(b1 + 1)) · ρ1 + (z − y) · ρ3 + y · ρ4 for y < z

And we require:

x ≤


−p0 − p1 + c for y = z

−p0 − p1 + c+ (y − z) · cp2 for y > z

−p0 − p1 + c− (z − y) · (b1 + 1) for y < z

So by putting together the inequalities we obtain

−p0 − p1 + c+ 1 ≥ −p1 + c− z · (bp3 + 1) for y = z
−p0 − p1 + c+ (y − z) · cp2 + 1 ≥ −p1 + c− z · (bp3 + 1) for y > z
−p0 − p1 + c− (z − y) · (b1 + 1) + 1 ≥ −p1 + c− z · (bp3 + 1) for y < z

z(bp3 + 1) ≥ p0 − 1 for y = z
(y − z) · cp2 + z · (bp3 + 1) ≥ p0 − 1 for y > z
z · (bp3 − b1) + y · (b1 + 1) ≥ p0 − 1 for y < z

So we get bp3 + 1 ≥ p0 − 1, but since cp2 ≤ b1 we have bp3 = max(cp2 , bp3) ≥ p0 + p1 +
max(p2, p3 − 1) + p4, thus this is satisfied anyways. The case y > z gives cp2 ≥ p0 − 1.
If p2 = 1, then there are Dx,y,0 with y ∈ [0, p3 − 1] which are immaculate, as shown in
Proposition 2.56. The case y < z gives us that the difference bp3 − b1 ≥ p0 − 1. If p3 = 1,
the bp3 = b1 and we get the additional condition that b1 ≥ p0 − 2, but here b1 = bp3 , thus
as above, this is already satisfied by the condition from the first part of the proof.
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2.5.4 Changing parameters

When changing to another (dimensional) Picard rank 3 variety, we can study how the immaculate
locus changes. This could be interesting when trying to construct exceptional sequences
inductively.

We will start with the behavior of the two parallelograms from Definition 2.53 that determine
the full lines of immaculate line bundles described in Proposition 2.54.

Lemma 2.58. Let p = (p0, p1, p2, p3, p4) and p′ = (p
′
0, p

′
1, p

′
2, p

′
3, p

′
4), and p ≤ p

′ componentwise.
We denote Qi := Qi(p) and Q′

i := Qi(p
′
) for i = 1, 2. Then it holds that

Qi ⊆ Q
′
i.

Proof. Both Q1 and Q2 each have two vertices on the line {y + z = −1}. These are: (−p1, p1 −
1), (p3 + p4 − 2,−p3 − p4 + 1) for Q1 and (−p1 − p2 + 1, p1 + p2 − 2), (p4 − 1,−p4) for Q2. It is
obvious that increasing the pi componentwise will lead to line segments which are including the
previous ones. Now the rest of the parallelograms is defined by their width (either in y- or in
z-direction), which in both cases is p2 + p3 − 2. Increasing the parameters here will lead to the
inclusion of the parallelograms.

Lemma 2.59. Now we will look at the containment of the parallelograms in more detail, when
we only increase one parameter by one.

• p0: If we increase p0 the Q1 and Q2 stay the same.

• p1: We get the following new points:

– (−p1 − p2, p1) in both Q1 and Q2,

– (−p1 − p2, p1 + 1), . . . , (−p1 − p2, p1 + p2 − 1) in Q1, and

– (−p1 − p2 − p3 + 1, p1), . . . , (−p1 − p2 − 1, p1) in Q2.

That is in total p2 + p3 − 1 more points.

• p2: We get the following new points:

– (−p1 − p2, p1), . . . , (−p1 − p2, p1 + p2 − 1) in Q1,

– (−p1 − p2 − p3 + 1, p1 − 1), . . . , (−p1 − p2 − 1, p1 − p3 + 1) in Q2,

– (−p1 − p2, p1 − p3), . . . , (−p2 + p4 − 1, −p3 − p4 + 1) in Q1 and Q2 and

– (−p2 + p4, −p3 − p4), . . . , (p4 − 1, −p2 − p3 − p4 + 1) in Q1.

That is in total p1 + 2p2 + p3 + p4 − 1 more points.

• p3: We get the following new points:

– (−p1 − p2 − p3 + 1, p1 − 1), . . . , (−p1 − p2, p1 − p3) in Q2,

– (−p1 − p2 + 1, p1 − p3 − 1), . . . , (−p2 + p4, −p3 − p4) in Q1 and Q2,

– (−p2 + p4 + 1, −p3 − p4 − 1), . . . , (p4 − 1, −p2 − p3 − p4 + 1) in Q1, and

– (p4, −p3 − p4), . . . , (p3 + p4 − 1, −p3 − p4) in Q2.

That is in total p1 + p2 + 2p3 + p4 − 1 more points.

• p4: We get the following new points:
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– (p4, −p3 − p4) in both Q1 and Q2,

– (p4, −p3 − p4 − 1), . . . , (p4, −p2 − p3 − p4 + 1) in Q1, and

– (p4 + 1, −p3 − p4), . . . , (p3 + p4 − 1, −p3 − p4) in Q2.

That is in total p2 + p3 − 1 more points.

Proof. The proof is a simple calculation.

Now, we can see how the immaculate line bundles of type (A) from Proposition 2.55 behave.

Lemma 2.60. If p ≤ p′ componentwise, then the immaculate line bundles of type (A) for p are
contained in the line bundles of type (A) for p′.

Proof. Since if y ≤ −1 the value of x1(y) = −1 and if y ≥ 0 x1(y) = y − 1, we will only have
to investigate x0(y) or #Iy. If only p0 varies, then it is obvious that the claim holds, since
#Iy = p0 − 1 + ∗ with ∗(y) being a positive integer, and the intervals staying the same.

For p2 and p3 it is also easy, since it only makes the intervals J1 respectively J5 longer, but
inside of the others nothing is changed - also not the number of line bundles.

So the interesting cases are those, when p1 and p4 vary.
Showing that M(R)(p′) ⊂ M(R)(p) for R ∈ {∅,Pc

2,P4,P0} implies that ImmA(p) ⊂
ImmA(p

′
)

Remember that the maculate regions are shifted cones. The cones do not depend on p, but
the vertices vi do.

• ∅:
The vertex v∅ = 0, so it does not depend on p and it is clear that M(R)(p′) = M(R)(p)

• Pc
2:

The vertex vc2(p) = (−p0−p1, −p1+p4, p1−p4), so vc2(p′) = (−p′0−p′1, −p′1+p′4, p′1−p′4) =
(−p0−p1−d0−d1, −p1+p4−d1+d4, p1−p4+d1−d4) = vc2(p)+(d0+d1) ·(−1, −1, 1)+
(d0 + d4) · (0, 1, −1), where di := p′i − pi ≥ 0 for p′ ≥ p componentwise.

• P0:

The vertex v0(p) = (−p0 − p4, −p1, p1) and v0(p′) = v0(p) + (d0 + d4) · (−1, 0, 0) + d1 ·
(0, −1, 1).

• P4:

The vertex v4(p) = (−p0, p4, −p4) and v4(p′) = v4(p)+(d0+d4)·(−1, 0, 0)+d4·(1, 1, −1).

Let us look at this in greater detail:

Lemma 2.61. • When increasing p0 by one we obtain p1+p2+p3+p4−1 more immaculate
line bundles of type (A), namely

(i) for y ∈ [−p1 − p2 + 1,−p1]: (−p0 − p1, y, −y),
(ii) for y ∈ [−p1 + 1,−p1 + p4 − 1]: (−p0 − p4 + y, y, −y),
(iii) for y ∈ [−p1 + p4, p4 − 1]: (−p0 − p1, y, −y),
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(iv) and for y ∈ [p4, p3 + p4 − 1]: (−p0 − p4 + y, y, −y).

• p1: There are p0 + 2p1 + p2 + p4 − 1 more line bundles of type (A), namely

(i) ([−p0 − p1,−1], −p1 − p2, p1 + p2),

(ii) for y ∈ [−p1 − p2 + 1,−p1 − 1]: (−p0 − p1, y, −y),
(iii) ([−p0 − p1 − p4 + 1,−p0 − p1], −p1, p1),
(iv) and for y ∈ [−p1 + p4, p4 − 1]: (−p0 − p1, y, −y).

• p2: There are p0+p1−1 more line bundles of type (A), namely ([−p0−p1+1,−1], −p1−
p2, p1 + p2).

• p3: There are p0 + p4 − 1 more line bundles of type (A), namely ([−p0 + p3 + 1, p3 + p4 −
1], p3 + p4, −p3 − p4).

• p4: There are p0 + p1 + p3 + 2p4 − 1 more line bundles of type (A), namely

(i) for y ∈ [−p1 + 1,−p1 + p4]: (−p0 − p4 + y, y, −y),
(ii) ([−p0 − p1 + 1,−p0], p4, −p4),
(iii) for y ∈ [p4 + 1, p3 + p4 − 1]: (−p0 − p4 + y, y, −y),
(iv) and ([−p0 + p3, p3 + p4 − 1], p3 + p4, −p3 − p4).

Proof. • p0: When changing p0, the bounds for y are not changed. Also the upper bound
x1(y) stays the same. Only the lower bound x0(y) is different. x0(y) = −p0 + ∗(y), so for
p0 + 1 we obtain x′0(y) = x0(y)− 1.

So in each line segment we have one line bundle more and there are p1 + p2 + p3 + p4 − 1
line segments.

The new line bundles are:

(i) for y ∈ [−p1 − p2 + 1,−p1]: (−p0 − p1, y, −y),
(ii) for y ∈ [−p1 + 1,−p1 + p4 − 1]: (−p0 − p4 + y, y, −y),
(iii) for y ∈ [−p1 + p4, p4 − 1]: (−p0 − p1, y, −y),
(iv) and for y ∈ [p4, p3 + p4 − 1]: (−p0 − p4 + y, y, −y).

• p1:

(i) p1 > p4:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) = x′1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 0 −p0 − p1 −1 0 p0 + p1 p0 + p1
2 −p1 − p2 + 1 −p1 − 1 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
3 −p1 −p0 − p1 + 1 −p0 − p1 − p4 + 1 −1 p0 + p1 − 1 p0 + p1 + p4 − 1 p4
4 −p1 + 1 −p1 + p4 − 2 −p0 − p4 + y + 1 −p0 − p4 + y + 1 −1 p0 + p4 − y − 1 p0 + p4 − y − 1 0
5 −p1 + p4 − 1 −p0 − p1 −p0 − p1 −1 p0 + p1 p0 + p1 0
6 −p1 + p4 −1 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
7 0 p4 − 1 −p0 − p1 + 1 −p0 − p1 y − 1 p0 + p1 + y − 1 p0 + p1 + y 1
8 p4 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1 p0 + p4 − 1 0

(ii) p1 = p4:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 0 −p0 − p1 −1 0 p0 + p1 p0 + p1
2 −p1 − p2 + 1 −p1 − 1 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
3 −p1 −p0 − p1 + 1 −p0 − p1 − p4 + 1 −1 p0 + p1 − 1 p0 + p1 + p4 − 1 p4
4 −p1 + 1 −2 −p0 − p4 + y + 1 −p0 − p4 + y + 1 −1 p0 + p4 − y − 1 p0 + p4 − y − 1 0
5 −1 −p0 − p1 −p0 − p1 −1 p0 + p1 p0 + p1 0
6 0 p4 − 1 −p0 − p1 + 1 −p0 − p1 y − 1 p0 + p1 + y − 1 p0 + p1 + y 1
7 p4 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1 p0 + p4 − 1 0
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(iii) p1 < p4:

a) p1 + 1 < p4:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) = x′1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 0 −p0 − p1 −1 0 p0 + p1 p0 + p1
2 −p1 − p2 + 1 −p1 − 1 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
3 −p1 −p0 − p1 + 1 −p0 − p1 − p4 + 1 −1 p0 + p1 − 1 p0 + p1 + p4 − 1 p4
4 −p1 + 1 −1 −p0 − p4 + y + 1 −p0 − p4 + y + 1 −1 p0 + p4 − y − 1 p0 + p4 − y − 1 0
5 0 −p1 + p4 − 2 −p0 − p4 + y + 1 −p0 − p4 + y + 1 y − 1 p0 + p1 p0 + p1 0
6 −p1 + p4 − 1 −p0 − p1 −p0 − p1 y − 1 p0 + p1 − 1 p0 + p1 0
7 −p1 + p4 p4 − 1 −p0 − p1 + 1 −p0 − p1 y − 1 p0 + p1 + y − 1 p0 + p1 + y 1
8 p4 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1 p0 + p4 − 1 0

b) p1 + 1 = p4:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) = x′1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 0 −p0 − p1 −1 0 p0 + p1 p0 + p1
2 −p1 − p2 + 1 −p1 − 1 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
3 −p1 −p0 − p1 + 1 −p0 − p1 − p4 + 1 −1 p0 + p1 − 1 p0 + p1 + p4 − 1 p4
4 −p1 + 1 −p1 + p4 − 2 = −1 −p0 − p4 + y + 1 −p0 − p4 + y + 1 −1 p0 + p4 − y − 1 p0 + p4 − y − 1 0
5 −p1 + p4 − 1 = 0 −p0 − p1 −p0 − p1 y − 1 p0 + p1 p0 + p1 0
6 −p1 + p4 = 1 p4 − 1 −p0 − p1 + 1 −p0 − p1 y − 1 p0 + p1 − 1 p0 + p1 1
7 p4 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y + 1 y − 1 p0 + p4 − 1 p0 + p4 − 1 0

In all cases we have in total p0 + 2p1 + p2 + p4 − 1 more immaculate line bundles than
before. Those are

(i) ([−p0 − p1,−1], −p1 − p2, p1 + p2),

(ii) for y ∈ [−p1 − p2 + 1,−p1 − 1]: (−p0 − p1, y, −y),

(iii) ([−p0 − p1 − p4 + 1,−p0 − p1], −p1, p1),

(iv) and for y ∈ [−p1 + p4, p4 − 1]: (−p0 − p1, y, −y).

• p2: When p2 is increased by one, we get one more line segment of line bundles. This is
the line segment ([−p0 − p1 + 1,−1], −p1 − p2, p1 + p2). This are p0 + p1 − 1 more line
bundles of type A.

• p3: By increasing p3 by one, we obtain also one more line segment. It is at the other end
of the type A points, with the following coordinates: ([−p0 + p3 + 1, p3 + p4 − 1], p3 +
p4, −p3 − p4). This are p0 + p4 − 1 more line bundles of type A.

• p4:

(i) p1 > p4:

a) p1 = p4 + 1:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) = x′1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 + 1 −p1 −p0 − p1 + 1 −p0 − p1 + 1 −1 p0 + p1 − 1 p0 + p1 − 1 0
2 −p1 + 1 −p1 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y −1 p0 + p4 − y − 1 p0 + p4 − y 1
3 −p1 + p4 = −1 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
4 0 −p4 − 1 −p0 − p1 + 1 −p0 − p1 + 1 y − 1 p0 + p1 + y − 1 p0 + p1 + y − 1 0
5 p4 −p0 + 1 −p0 − p1 + 1 p4 − 1 p0 + p4 − 1 p0 + p1 + p4 − 1 p1
6 p4 + 1 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y y − 1 p0 + p4 − 1 p0 + p4 1
7 p3 + p4 p3 + p4 −p0 + p3 p3 + p4 − 1 0 p0 + p4 p0 + p4

b) p1 > p4:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) = x′1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 + 1 −p1 −p0 − p1 + 1 −p0 − p1 + 1 −1 p0 + p1 − 1 p0 + p1 − 1 0
2 −p1 + 1 −p1 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y −1 p0 + p4 − y − 1 p0 + p4 − y 1
3 −p1 + p4 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
4 −p1 + p4 + 1 −1 −p0 − p1 + 1 −p0 − p1 + 1 −1 p0 + p1 − 1 p0 + p1 − 1 0
5 0 −p4 − 1 −p0 − p1 + 1 −p0 − p1 + 1 y − 1 p0 + p1 + y − 1 p0 + p1 + y − 1 0
6 p4 −p0 + 1 −p0 − p1 + 1 p4 − 1 p0 + p4 − 1 p0 + p1 + p4 − 1 p1
7 p4 + 1 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y y − 1 p0 + p4 − 1 p0 + p4 1
8 p3 + p4 p3 + p4 −p0 + p3 p3 + p4 − 1 0 p0 + p4 p0 + p4
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(ii) p1 = p4:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) = x′1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 + 1 −p1 −p0 − p1 + 1 −p0 − p1 + 1 −1 p0 + p1 − 1 p0 + p1 − 1 0
2 −p1 + 1 −1 −p0 − p4 + y + 1 −p0 − p4 + y −1 p0 + p4 − y − 1 p0 + p4 − y 1
3 0 −p0 − p1 + 1 −p0 − p1 −1 p0 + p1 − 1 p0 + p1 1
4 1 −p4 − 1 −p0 − p1 + 1 −p0 − p1 + 1 y − 1 p0 + p1 + y − 1 p0 + p1 + y − 1 0
5 p4 −p0 + 1 −p0 − p1 + 1 p4 − 1 p0 + p4 − 1 p0 + p1 + p4 − 1 p1
6 p4 + 1 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y y − 1 p0 + p4 − 1 p0 + p4 1
7 p3 + p4 p3 + p4 −p0 + p3 p3 + p4 − 1 0 p0 + p4 p0 + p4

(iii) p1 < p4:
• ≤ y y ≤ • x0(y) x′0(y) x1(y) = x′1(y) #Iy #I ′y #I ′y −#Iy

1 −p1 − p2 + 1 −p1 −p0 − p1 + 1 −p0 − p1 + 1 −1 p0 + p1 − 1 p0 + p1 − 1 0
2 −p1 + 1 −1 −p0 − p4 + y + 1 −p0 − p4 + y −1 p0 + p4 − y − 1 p0 + p4 − y 1
3 0 −p1 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y y − 1 p0 + p4 − 1 p0 + p4 1
4 −p1 + p4 −p0 − p1 + 1 −p0 − p4 + y −p1 + p4 − 1 p0 + p4 − 1 p0 + p4 1
5 −p1 + p4 + 1 −p4 − 1 −p0 − p1 + 1 −p0 − p1 + 1 y − 1 p0 + p1 + y − 1 p0 + p1 + y − 1 0
6 p4 −p0 + 1 −p0 − p1 + 1 p4 − 1 p0 + p4 − 1 p0 + p1 + p4 − 1 p1
7 p4 + 1 p3 + p4 − 1 −p0 − p4 + y + 1 −p0 − p4 + y y − 1 p0 + p4 − 1 p0 + p4 1
8 p3 + p4 p3 + p4 −p0 + p3 p3 + p4 − 1 0 p0 + p4 p0 + p4

Here we have in total p0 + p1 + p3 + 2p4 − 1 more immaculate line bundles than before.

Those are exactly:

(i) for y ∈ [−p1 + 1,−p1 + p4]: (−p0 − p4 + y, y, −y),

(ii) ([−p0 − p1 + 1,−p0], p4, −p4),

(iii) for y ∈ [p4 + 1, p3 + p4 − 1]: (−p0 − p4 + y, y, −y),

(iv) and ([−p0 + p3, p3 + p4 − 1], p3 + p4, −p3 − p4).

2.5.5 Vanishing parameters

When the parameters b and c from Proposition 2.47 are set to zero, we obtain an additional
class of lines of immaculate line bundles. The lines in this class are in y-direction. Let us have a
look at the situation in this set-up.

The map π : ZΣ(1) → Cl(X) simplifies to

π =

 1 1 0 −1 0
0 1 1 0 −1
0 −1 0 1 1

 .

Proposition 2.62 (Lines in y-direction). Let X = TV(Σ) be a projective toric variety of Picard
rank 3 with exactly 5 primitive collections, and let b and c from Proposition 2.47 be zero. Then
the line bundles (x, ∗, z) are immaculate for (x, z) ∈ Q̃1 ∪ Q̃2, with

Q̃1 = conv

(
(p3 − p0, −p3 − p4 + 1), (p3 + p4 − 2, −p3 − p4 + 1),
(−p0 − p1 − p4 + 2, p1 − 1), (−p1, p1 − 1)

)
and

Q̃2 = conv

(
(p0 − p1 + 1, p1 − p4), (p0 − p1 + 1, p0 + p1 − 2),
(p3 − 1, −p0 − p3 − p4 + 2), (p3 − 1, −p3)

)
.
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Table 2.3: The maculate regions for b = 0, c = 0

R vertex rays / Hilbert basis

∅

 0
0
0

 1 −1 0
1 0 −1
−1 1 1

P0

 −p0 − p1
−p1
p1

 −1 0 0
0 1 −1
0 0 1

P1

 −p1
−p1 − p2

p1

 1 0 −1
0 −1 0
0 0 1

P2

 p3
−p2
−p3

 1 0 0
1 −1 −1
−1 0 1

P3

 p3
p4

−p3 − p4

 1 0 1 0
0 1 0 1
0 0 −1 −1

P4

 −p0
p4
−p4

 −1 1 −1
0 1 0
0 −1 1

Proof. We look at the projection of the maculate regions M(R) in Table 2.3 to the (x, z)-plane.
Remember that the maculate region can be written as M(R) = vR+σR, and M(Rc) = vRc−σR.
Denote the projections by vR and σR.

R vR vRc rays of σR
∅ (0, 0) (−p0 − p1 + p3, p1 − p3 − p4) (1, −1), (0, 1)
P0 (−p0 − p1, p1) (p3, −p3 − p4) (−1, 0), (0, 1)
P1 (−p1, p1) (−p0 + p3, −p3 − p4) (1, 0), (−1, 1)
P2 (p3, −p3) (−p0 − p1, p1 − p4) (1, −1), (0, 1)
P3 (p3, −p3 − p4) (−p0 − p1, p1) (1, 0), (0, −1)
P4 (−p0, −p4) (−p1 + p3, p1 − p3) (−1, 0),±(1, −1)

We see that M(P0) = M(Pc
3) and with v2 = v∅+p3 · (1, −1) and v∅ = v4c +(p1−p3) · (1, −1),

we get the inclusions M(P2) ⊂ M(∅) ⊂ M(Pc
4). Since v1 = v4c + p3 · (−1, 1), it also holds that

M(P1) ⊂ M(Pc
4),

In conclusion, the line through D is immaculate if and only if

D ∈ Z2 \
(
M(P0) ∪M(Pc

0) ∪M(P4) ∪M(Pc
4)
)
.

Remark 2.63. There are two (and a half) special cases.
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• p0 = 1: In this case Q̃2 ⊂ Q̃1 and the simplified vertices of Q̃1 are

(p3−1, −p3−p4+1), (p3+p4−2, −p3−p4+1), (−p1−p4+1, p1−1) and (−p1, p1−1).

• p4 = 1: In this case Q̃1 ⊂ Q̃2 and the simplified vertices of Q̃2 are

(p0− p1+1, p1− 1), (p0− p1+1, p0+ p1− 2), (p3− 1, −p0− p3+1) and (p3− 1, −p3).

• p0 = p4 = 1: In this case Q̃1 ⊂ Q̃2 ⊂ Q̃1, thus we have a segment with vertices

(p3 − 1, −p3), (−p1, p1 − 1).

To determine all immaculate line bundles one could proceed in a similar manner as in the
previous section. For specific examples, that is for fixed values of p0, . . . , p4, there are polymake
scripts in the GitHub repository that can be used to calculate the immaculate locus. In the
next section we are going to speak about the computational aspects.

2.6 Computational aspects

In this section we want to highlight the computational advantages of immaculate line bundles and
maculate regions. All of these objects and conditions give rise to nice combinatorial algorithms.
Throughout the development of this paper we have implemented these as a polymake [GJ00]
extension. The combinatorial nature of these algorithms makes them very fast, as opposed to
many algorithms from commutative algebra. This stresses the main computational advantage of
working with toric varieties. We will give a short sketch of the resulting algorithms. The polymake
extension itself can be found at https://github.com/lkastner/immaculatePolymake.

Table 2.4: Lines of immaculate line bundles for the hexagon

unbounded direction basepoint

1 1 0 0

0 0 -1 -1
1 0 -1 0
0 0 -1 0
-1 0 -1 -1

1 0 1 1

0 -1 -1 0
0 -1 0 0
-1 -1 0 0
-1 -1 -1 0

0 1 1 0

-1 0 0 0
-1 0 1 0
-1 0 0 -1
-1 0 -1 -1

To compute the immaculate locus of a projective toric variety TV(Σ), we need to find the
tempting R ⊆ Σ(1). For this we need to check if V >(R) is k-acyclic. The easiest way is
to brute force this by checking any subset of rays and then compute the homology. The
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Table 2.5: Isolated immaculate line bundles for the hexagon

Pic(X) coordinates

-2 -2 -2 -2
-2 -2 -2 0
0 0 0 -1
0 0 0 1

homology computation is already built in polymake and many other software frameworks
for combinatorial software as well. One can also imagine a more sophisticated approach by
considering sub-diagrams of the Hasse diagram of Σ or using the different characterizations
obtained in subsection 2.2.2. So far this has never been a bottleneck in our examples, though in
case this happens, results of subsection 2.2.2 might be of use.

From the collection of all tempting R we can finally compute the immaculate locus ImmR(X),
or rather the lattice points thereof. We only need to compute the intersection of all complements
of the MR(R). It is not difficult to see that this is a union of polyhedra. Since MR(R) is
a rational polyhedral cone, we can write it as a finite intersection of halfspaces. Taking the
complement of this cone means taking the union of the complementary halfspaces. Since we
are only interested in the lattice points of ImmR(X), we just move the bounding hyperplane by
one away from MR(R) and do not worry about openness of the complement. Now we get the
polyhedra giving the lattice points of ImmR(X) by picking one complementary halfspace for
every R and then intersecting these. Consider any possible combination and take the union of
the resulting polyhedra.

We now restrict our attention to the hexagon example (see Examples 2.1 and 2.5). We
immediately see that the main bottleneck of the algorithm for ImmR(X) is the amount of
intersections to compute. There are 34 tempting R’s and if every MR(R) was bounded by
only two hyperplanes, we would have to compute 234 intersections. In fact, all MR(R) are
actually bounded by more than two hyperplanes. This issue can be overcome by building the
intersections step by step and eliminating trivial intersections in between. We start by building
the complementary halfspaces of MR(R1) and MR(R2), then we consider any intersection. If
an intersection is empty already, we eliminate it. Furthermore, we choose the inclusion maximal
intersections. Then we intersect the resulting polyhedra with the complementary halfspaces of
MR(R3) and so on.

Thus we have computed the immaculate loci ImmZ(X) = ImmR(X). They are equal to a
union of three unbounded polyhedra and four isolated lattice points that are listed in Table 2.5.
Each unbounded polyhedron consists of four parallel lines, that is lattice lines. The exact lines
are collected in Table 2.4. Each pair of quadruples of lines intersects in four points.

Now it is easy to compute all exceptional sequences that are contained in the projection of the
cube π([−1, 0]6) ⊆ Cl(X). One just collects the lattice points in the projected cube and then
runs a depth first search. There are 228 exceptional sequences of length six in the projected
cube. Under the group action on the hexagon these 228 exceptional sequences correspond to 19
orbits of size 12. In Table 2.6 we list one representative from each orbit. Note that we do not
need to use the four isolated points for these exceptional sequences. This is different than in the
case of the splitting fans, for example the Picard rank 2 case (see [CM04]).
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Table 2.6: Exceptional sequences of line bundles for the hexagon

D0 = [0, 0, 0, 0]

D1 D2 D3 D4 D5

-2 -1 -1 -1 -1 -2 -1 0 -2 -2 -1 -1 -2 -2 -1 0 -1 -1 -2 -1
-1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 -2 -1 -2 -2 -1 -2 -2 -1
-1 -1 -1 -1 -2 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 -2 -1 -2 -2
-1 -1 -1 -1 -2 -1 -1 -1 -1 -2 -1 0 -2 -2 -1 -1 -1 -1 -2 -1
-1 -1 -1 -1 -1 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 0 -1 -1 -2 -1
-1 -1 0 0 -2 -1 -1 -1 -1 -2 -1 0 -2 -2 -1 -1 -2 -2 -1 0
-1 -1 0 0 -1 -1 -1 -1 -2 -1 -1 -1 -1 -2 -1 0 -2 -2 -1 -1
-1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 0
-1 -1 0 0 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -2 -1 -1 -1
-1 -1 0 0 -1 0 -1 -1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 0
-1 -1 0 0 0 0 -1 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 -1 -1
-1 -1 0 0 0 0 -1 -1 0 0 -1 0 -1 0 -1 -1 0 -1 -1 0
-1 0 0 -1 -1 -1 -1 -1 -2 -1 -1 -1 -2 -2 -1 -1 -2 -1 -2 -2
-1 0 0 -1 -1 -1 0 0 -1 -1 -1 -1 -2 -1 -1 -1 -2 -2 -1 -1
-1 0 0 -1 -1 -1 0 0 -1 0 -1 -1 -1 -1 -1 -1 -2 -1 -1 -1
-1 0 0 -1 -1 -1 0 0 0 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1
-1 0 0 -1 -1 0 0 0 -1 -1 0 0 -1 0 -1 -1 -2 -1 -1 -1
-1 0 0 -1 0 -1 0 0 -1 -1 0 0 -1 -1 -1 -1 -2 -2 -1 -1
-1 0 0 -1 0 -1 0 0 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 -1
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Canonical Hilbert-Burch Matrices

The following chapter is on canonical Hilbert-Burch matrices. The first part of this chapter (in
particular section 3.1 – section 3.4) is adapted from the paper “Canonical Hilbert-Burch matrices
for power series” [HW21] by Roser Homs and me that was published in “Journal of Algebra”. The
publication is available at https://doi.org/10.1016/j.jalgebra.2021.04.021. The results
of section 3.5 and a shorter version of section 3.6 will be published in the follow-up paper
“Deformations of local Artin rings via Hilbert-Burch matrices” [HW23] by Roser Homs and me
that is accepted for publication in the proceedings of “Grenoble Deformations AMS-SMF-EMS,
meeting 18-22 July, 2022.” in “Contemporary Mathematics (CONM)”. A preprint version of this
paper is available at https://arxiv.org/abs/2309.06871.

The project started as part of my PhD thesis with a visit in Genova at Maria Evilina Rossi’s
working group suggested by Alexandru Constantinescu. During the stay I had some preliminary
results and conjectures that I continued to work on, but then left the project for a while.
Roser Homs made a research stay later on with Maria Evilina Rossi’s working group and was
suggested to look into my preliminary results, since they were relevant for her research concerning
Gorenstein rings. She continued to work on it and used some of the results in her thesis, [Hom19].
After a while, we continued to work on the project together, resulting in [HW21]. In the process
of writing the paper we had a very intense collaboration, rethinking/rechecking many of the
results, and writing and rewriting many parts of the paper. This makes it not possible to
attribute every single part of the paper to only one of us. The structure and presentation
of the first part of the paper [HW21] is similar to [Hom19]. However, one can say that the
observation that for ideals in the power series ring with lex-segment leading term ideal the
reduced lex-enhanced standard basis is a Gröbner basis with respect to the lexicographic order
and the idea to use this for the parametrization of the Gröbner cell was by me. The application
to the construction of Gorenstein rings [HW21, section 6] was done by Roser Homs and is not
presented in this thesis.

In 2022 we decided to continue to work on the topic resulting in [HW23]. The ideas and
concepts were mostly established while working together, making it difficult to attribute them
to only one of us. The writing of section 3 of that paper was done mostly by Roser Homs and
the writing of section 4 mostly by me.

The following list contains a detailed comparison between the chapter and the papers [HW21;
HW23]:

• section 3.1 slightly adapted from [HW21, section 2] expanded Theorem 3.4, added Ex-
ample 3.5 and smaller changes

• section 3.2 is slightly adapted from [HW21, section 3], added Example 3.14

• section 3.3 is [HW21, section 4]
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• section 3.4 is adapted from [HW21, section 5]

– changed the proof of Proposition 3.29, by adding Definition 3.30 and Lemma 3.31

– adapted Remark 3.33

– added Definition 3.35 and adapted the statements and notations in the rest of the
chapter accordingly

– adapted the proof of Lemma 3.36

– added Remark 3.37

– small correction in Corollary 3.39

– other example in Example 3.41

– correction in Example 3.43 and added a remark about Betti numbers

– changed the paragraph before Lemma 3.44

– added Lemma 3.46 (this is a version of [HW23, Proposition 3.11, Lemma 4.3]) +
paragraph afterwards,

– added Remark 3.49,

• section 3.5 contains some results of [HW23, section 3]

• section 3.6 is a longer version of [HW23, section 4]

3.1 Parametrization of ideals in k[x, y]

In the present section we review the parametrization of Gröbner cells in P = k[x, y] in terms of
Hilbert-Burch matrices given by Conca-Valla in [CV08] and Constantinescu in [Con11]. Let
k be an arbitrary field. Given a term ordering τ on a polynomial ring P over k and an ideal
I ⊂ P , the leading term ideal of I is defined as follows.

Definition 3.1. The leading term ideal Ltτ (I) of the ideal I ⊂ P with respect to a term
ordering τ in the polynomial ring P is the monomial ideal generated by all leading terms of
elements in I, i.e. Ltτ (I) = (Ltτ (f) : f ∈ I).

A subset {f0, . . . ft} ⊂ I such that Ltτ (I) = (Ltτ (f0), . . . ,Ltτ (ft)) is called Gröbner basis of
I with respect to the term order τ .

In this section we will consider the lexicographical term ordering (lex) and the degree-
lexicographical term ordering (deglex) on P = k[x, y]. Recall that with the former we first
compare the exponents of x of two monomials, whereas with the latter we first compare their
degree. Note that in a polynomial ring in two variables the lexicographical term ordering is
equivalent to the reverse lexicographical term ordering.

Consider a zero-dimensional monomial ideal E in P . By taking the smallest integer t such
that xt ∈ E and the smallest integers mi such that xt−iymi ∈ E for any 1 ≤ i ≤ t, we can
always express such a monomial ideal as

E = (xt, xt−1ym1 , . . . , xt−iymi , . . . , ymt), (3.1)

where 0 = m0 < m1 ≤ · · · ≤ mt is an increasing sequence. If all the inequalities are strict, we
call E a lex-segment ideal.
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After fixing a term order τ , we can ask for all ideals I in P with leading term ideal E, that is
the Gröbner cell of E with respect to τ , denoted by Vτ (E). Reduced Gröbner bases provide
a parametrization of this set of ideals. However, explicitly describing such a parametrization
is not always straightforward. In [CV08], Conca and Valla consider a different approach:
instead of focusing on the generators of I, they study the relations or syzygies among the
generators. A Hilbert-Burch matrix of the ideal I encodes these relations. Therefore, giving
such a parametrization is equivalent to choosing a canonical Hilbert-Burch matrix for each ideal
I.

Definition 3.2. Let E be the monomial ideal E = (xt, xt−1ym1 , . . . , ymt). The canonical
Hilbert-Burch matrix H of E is the Hilbert-Burch matrix of E of the form

H =



yd1 0 · · · 0
−x yd2 · · · 0
0 −x · · · 0
...

...
...

0 0 · · · ydt

0 0 · · · −x


,

where di = mi −mi−1 for any 1 ≤ i ≤ t.
The degree matrix U of E is the (t+1)× t matrix with integer entries ui,j = mj −mi−1+ i− j,

for 1 ≤ i ≤ t+ 1 and 1 ≤ j ≤ t.

It follows from the definition that ui,i = di and ui+1,i = 1, for 1 ≤ i ≤ t.
Conca-Valla parametrize the set V0(E) = Vlex(E) of all ideals I in P that share the same

zero-dimensional leading term ideal E with respect to the lexicographical term ordering. They
give a set of matrices that deform the canonical Hilbert-Burch matrix of the monomial ideal E
into Hilbert-Burch matrices of each I. We use the same notation as in [CV08].

Definition 3.3. We denote by T0(E) the set of matrices N = (ni,j) of size (t + 1) × t with
entries in k[y] such that

• ni,j = 0 for any i < j,

• deg(ni,j) < dj for any i ≥ j.

The subset T2(E) ⊂ T0(E) is defined as the set of matrices N ∈ T0(E) where the entries
additionally satisfy that

• the diagonal entries ni,i = 0 for all i = 1, . . . , t

• the entry ni,j has no constant term for every i = j + 1, . . . , k + 1 where k = max{ν : j ≤
ν ≤ t | mν = mj}.

Notice that when E is a lex-segment ideal the second condition reduces to nj+1,j not having
a constant term.

Theorem 3.4. [CV08, Theorem 3.3] Given a zero-dimensional monomial ideal E in P = k[x, y]
with canonical Hilbert-Burch matrix H, the map

Φ : T0(E) → V0(E)
N 7→ It(H +N)
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is a bijection that restricts to a bijection

Φ|T2(E) : T2(E) → V2(E)

on the subset of (x, y)-primary ideals V2(E) ⊂ V0(E).
Additionally, the t-minors of H +N form a Gröbner basis of It(H +N) with respect to the

lexicographic order.

This theorem allows us to define a canonical Hilbert-Burch matrix of any zero-dimensional
ideal I of P as H +Φ−1(I), where H is the canonical Hilbert-Burch matrix of the monomial
ideal Ltlex(I).

Example 3.5. We will consider a small example with n = 3. Let E = (x2, xy, y2), so m = (1, 2),
d = (1, 1) and the canonical Hilbert-Burch matrix H of E as below. The set T0(E) consists of
matrices with constant polynomials at each position, except for a zero at position (1, 2). So
V0(E) is a 5-dimensional affine space.

H =

 y 0
−x y
0 −x

 N =

 c1 0
c2 c3
c4 c5


The (x, y)-primary ideals among those in V0(E) – V2(E) – are parametrized by T2(E). The first
condition of T2(E) implies c1 = c3 = 0 and the second condition that c2 = c5 = 0. Thus, V2(E)
is a 1-dimensional affine space. The canonical Hilbert-Burch matrix of an ideal I ∈ V2(E) is

H +Φ−1(I) =

 y 0
−x y
c −x

 ,

and {x2 − cy, xy, y2} forms a lex-Gröbner basis of I.

In [Con11], Constantinescu parametrizes the Gröbner cell of lex-segment ideals E with respect
to the degree-lexicographic term ordering

Vdeglex(E) = {I ⊂ P : Ltdeglex(I) = E}.

Definition 3.6. Let E = (xt, xt−1ym1 , . . . , ymt) ⊂ P be a monomial ideal, and U = (ui,j) its
associated degree matrix. Denote by A(E) the set of (t+ 1)× t matrices A = (ai,j) with entries
in k[y] such that all its non-zero entries satisfy

deg(ai,j) ≤

{
min(ui,j − 1, di − 1), i ≤ j;

min(ui,j , dj − 1), i > j.

Theorem 3.7. [Con11, Theorem 3.1] Given a zero-dimensional lex-segment ideal L in P =
k[x, y] with canonical Hilbert-Burch matrix H, the map

Φ : A(L) → Vdeglex(L)
A 7→ It(H +A)

is a bijection and the t-minors form a Gröbner basis of It(H +A) with respect to deglex.

The proofs of well-definedness and surjectivity of Φ in [Con11] hold for any monomial ideal and,
although the lex-segment hypothesis is needed in his proof of injectivity, the author conjectures
that Φ is a proper parametrization in the general case.
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3.2 From polynomials to power series

We are interested in a construction of Gröbner cells for m-primary ideals of P = k[x, y] in the
same spirit as the ones presented in section 3.1 but compatible with the local structure in the
sense that all ideals in the same Gröbner cell have the same Hilbert function. So from now on
we will work in the ring of formal power series R = k[[x, y]].

The goal of this section is to provide the necessary tools to extend the strategies in the proofs
by Conca-Valla and Constantinescu to the local setting. In the first part, we define a local term
ordering τ and the notion of τ -enhanced standard basis, the local analogous to Gröbner basis
and revisit results about the lifting of syzygies in the second subsection. Although our focus is
on the polynomial and the power series ring with two variables, we will state those definitions
and results for the general case of polynomial and power series rings in n variables.

3.2.1 Enhanced standard basis and Grauert’s division

Definition 3.8. A term ordering τ in the polynomial ring P = k[x1, . . . , xn] induces a reverse-
degree ordering τ in R = k[[x1, . . . , xn]] such that for any monomials M,M ′ in R,

M >τ M
′ if and only if deg(M) < deg(M ′) or

deg(M) = deg(M ′) and M >τ M
′.

We call τ the local term ordering induced by the global term ordering τ .

Note that the local term orderings induced by the lexicographical and the degree lexicographical
term orderings are the same.

Analogously to the notion of leading term ideal with respect to a global term ordering and
Gröbner bases in the polynomial ring P , we define the leading term ideal with respect to a local
term ordering and τ -enhanced standard bases.

Definition 3.9. Let J ⊂ R be an ideal, we define the leading term ideal of J as the monomial
ideal generated by the leading terms with respect to the local term ordering τ , i.e.

Ltτ (J) = (Ltτ (f) : f ∈ J) ⊂ P.

A subset {f1, . . . , fm} of J is a τ -enhanced standard basis of J if the leading terms of the
elements generate the leading term ideal Ltτ (J), i.e. Ltτ (J) = (Ltτ (f1), . . . ,Ltτ (fm)).

Definition 3.10. The initial form f∗ of an element f ∈ R is the homogeneous polynomial
consisting of the terms in f of lowest degree – called the order of f , denoted by ord(f).

The initial ideal J∗ ⊂ P is the homogeneous ideal generated by the initial forms of elements
in J ⊂ R.

Remark 3.11. By definition of local term ordering, the leading terms Ltτ (f) = Ltτ (f
∗) agree.

Therefore, Ltτ (J) = Ltτ (J
∗). Let HFR/J = h denote the Hilbert function of R/J . Then

HFR/J = HFP/J∗ = HFP/Ltτ (J∗) = HFP/Ltτ (J) = HFP/Lex(h),

where Lex(h) is the unique lex-segment ideal with the same Hilbert function.
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Remark 3.12. The term standard basis was first used by Hironaka in [Hir64, Definition 3] to
refer to systems of generators of J such that their initial forms generate the initial ideal J∗.
However, this terminology is not consistent in literature and in other sources standard basis
refers to what we here define as τ -enhanced standard basis, e.g. [GP07]. The notation used in
this paper is the same as in [Ber09]. Notice that a τ -enhanced standard basis of an ideal in
particular forms a standard basis in the sense of [Hir64].

Example 3.13. Comparison between leading terms w.r.t. global and local term orderings.
Consider the lex-segment ideal L = (x3, x2y, xy3, y5) ⊂ k[x, y], H its canonical Hilbert-Burch
matrix and U its degree matrix from Definition 3.2:

H =


y 0 0
−x y2 0
0 −x y2

0 0 −x

 , U =


1 2 3
1 2 3
0 1 2
−1 0 1

 .

Consider the matrix M = H + N , where N is a 4 × 3 matrix with all zero entries except
for 1 in the (4, 3)-entry. From Conca-Valla parametrization in Theorem 3.4, we know that
I = I3(M) ⊂ k[x, y] is an ideal in V0(L). Indeed, the maximal minors of M give the lex-Gröbner
basis {x3 − x2, x2y − xy, xy3 − y3, y5} of I and Ltlex(I) = L.

However, the 3×3-minors of M are not a lex-enhanced standard basis of the ideal J = Ik[[x, y]],
namely the extension of I in the power series ring. Since N /∈ T2(L), the ideal I is not (x, y)-
primary, so J ∩ k[x, y] ̸= I. In fact, J = (x2, xy, y3) is itself a monomial ideal. The reason why
the leading term ideal changes when computed with respect to lex is that n4,3 = 1 has a term
of degree lower than u4,3 = 1. Finally, note that Ltlex(I) ̸= Ltlex(I

∗) = Ltlex(J) = J .

Example 3.14. (x, y)-primary ideal with changing leading terms In the previous example,
the ideal of maximal minors was not (x, y)-primary, so we might have already suspected that
the leading term ideals would be different. We continue Example 3.5 with E = (x2, xy, y2).
Remember that the canonical Hilbert-Burch matrix of an (x, y)-primary ideal I in V0(E) was

H +Φ−1(I) =

 y 0
−x y
c −x

 ,

and the signed minors {x2−cy, xy, y2} form a lex-Gröbner basis of I. But if c ≠ 0, Ltτ (x2−cy) =
y /∈ E = Ltlex(I), thence Ltτ (Ik[[x, y]]) ̸= Ltlex(I). The reason is again that an entry has a term
of degree lower than the corresponding entry in the degree matrix of E,

U =

 1 1
1 1
1 1

 .

Buchberger division is the essential tool in Buchberger’s algorithm to calculate Gröbner
bases. In the power series ring it can be replaced by Grauert’s division, see [Gra72]. Later on,
Mora gave an analogous method to Buchberger’s algorithm to calculate τ -enhanced standard
bases in the local case: the tangent cone algorithm, see [Mor82]. We reproduce next a modern
formulation of Grauert’s division theorem in k[[x1, . . . , xn]] from [GP07, Theorem 6.4.1]:
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Theorem 3.15. [Grauert’s Division Theorem] Let f, f0, . . . , ft be in R. Then there exist
q0, . . . , qt, r ∈ R such that

f =

t∑
i=0

qifi + r

satisfying the following properties:

(i) No monomial of r is divisible by any Ltτ (fi), for 0 ≤ i ≤ t.

(ii) If qi ̸= 0, Ltτ (qifi) ≤τ Ltτ (f).

These techniques can be used to extend results that are well-understood for graded algebras
to the local case. In [ERV14], they have been successfully applied to characterize the Hilbert
function of one dimensional quadratic complete intersections.

3.2.2 Lifting of syzygies in local rings

The connection between the lifting of syzygies and Gröbner bases has been widely studied in
polynomial rings, see [KR00, Theorem 2.4.1]. Analogous results hold for rings of formal power
series.

Let F be a subset {f0, . . . , ft} of R and set Ltτ (F) = {Ltτ (f0), . . . ,Ltτ (ft)}. By a slight
abuse of notation, F and Ltτ (F) will be regarded as (t+ 1)-tuples of Rt+1 when convenient.
Mora, Pfister and Traverso prove in [MPT89, Theorem 3] that F is a τ -enhanced standard basis
of an ideal of R if and only if any homogeneous syzygy of Ltτ (F) can be lifted to a syzygy of F .

For the sake of completeness, we will now give a precise definition of lifting in this setting
following the notation of [Ber09, Definition 1.7]. We define the degree of m = (m1, . . . ,mt+1) ∈
Rt+1 with respect to the (t+ 1)-tuple F ∈ Rt+1 and the local term ordering τ as

deg(τ ,F)(m) = max
τ

{Ltτ (mifi−1) : 1 ≤ i ≤ t+ 1 and mi ̸= 0}.

An element σ = {σ1, . . . , σt+1} ∈ Rt+1 is homogeneous with respect to (τ ,F)-degree if all its
non-zero components reach the maximum leading term, namely Ltτ (σifi−1) = deg(τ ,F)(σ) for
any i ∈ {1, . . . , t+ 1} such that σi ̸= 0.

Definition 3.16. We call m ∈ Rt+1 a (τ ,F)-lifting of a (τ ,F)-homogeneous element σ ∈ Rt+1

if m = σ + n, where n = (n1, . . . , nt+1) ∈ Rt+1 satisfies

Ltτ (nifi−1) <τ deg(τ ,F)(σ) (3.2)

for any 1 ≤ i ≤ t+ 1 such that ni ̸= 0. Conversely, we call σ the (τ ,F)-leading form of m and
denote it by LF(τ ,F)(m) = σ ∈ Rt+1.

If both τ and F are clear from the context, we will just say that m is a lifting of σ, which in
its turn is the leading form of m. The shift on the indices of n and F in (3.2) is convenient for
our specific setting, as we will see in the following example.

Example 3.17. Liftings of homogeneous elements in R-free modules. Consider a monomial
ideal E = (xt, xt−1ym1 , . . . , ymt) ⊂ k[[x, y]] =: R and take F = (f0, . . . , ft) ∈ Rt+1 such
that Ltτ (fi) = xt−iymi for any 0 ≤ i ≤ t. The columns σ1, . . . , σt of the canonical Hilbert-
Burch matrix H of E are (τ ,F)-homogeneous elements with deg(τ ,F)(σ

j) = xt−j+1ymj for any
1 ≤ j ≤ t. We can build liftings mj of σj by taking mj = σj + nj , where nj = (n1,j , . . . , nt+1,j)
is a (t+ 1)-tuple of Rt+1 such that either ni,j = 0 or Ltτ (ni,j)x

t−i+1ymi−1 <τ x
t−j+1ymj .
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As in the polynomial case, Bertella proves in [Ber09, Theorem 1.10] that the module of
syzygies of F is generated by liftings of homogeneous generators of the module of syzygies of
Ltτ (F). Recall that the fact that syzygies lift is equivalent to the existence of a flat family It
where I0 = Ltτ (F) and I1 = (F), see [Ste03, Chapter 1] and [MS05, Lemma 18.8].

In the same paper, Bertella provides a very explicit characterization of τ -enhanced standard
bases in codimension two in terms of matrices that encode leading forms of the generators of
the module of syzygies of the ideal:

Theorem 3.18. [Ber09, Theorem 1.11] Let M be a (t+ 1)× t matrix with entries in R. For
0 ≤ i ≤ t, let fi be the determinant of M after removing row i+ 1 and set F = (f0, . . . , ft). Let
H be the matrix whose columns are the (τ ,F)-leading forms of the columns of M . Assume that:

• ht(f0, . . . , ft) = 2,

• It(H) = (Ltτ (f0), . . . ,Ltτ (ft)).

Then the following are equivalent:

(i) {f0, . . . , ft} is a τ -enhanced standard basis of the ideal It(M).

(ii) ht(Ltτ (f0), . . . ,Ltτ (ft)) = 2.

In other words, for zero-dimensional ideals J in R = k[[x, y]], a τ -enhanced standard basis F
arises from maximal minors of a Hilbert-Burch matrix M that encodes liftings of syzygies of
Ltτ (F).

3.3 Towards a parametrization of ideals in k[[x, y]]

From now on we turn our attention to the case of two variables. By τ we denote the lexicographical
term ordering on P = k[x, y], and R = k[[x, y]].

Definition 3.19. Given a zero-dimensional monomial E ideal in P , we denote by V(E) the set
of ideals J ⊂ R such that Ltτ (J) = E.

Let us start by defining a set of matrices whose maximal minors generate all the ideals with
the same leading term ideal with respect to the local term ordering τ .

Definition 3.20. Let E be a zero-dimensional monomial ideal with canonical Hilbert-Burch
matrix H and associated degree matrix U = (ui,j). We define the set N (E) of (t + 1) × t
matrices N = (ni,j) with entries in k[[y]] such that all its non-zero entries satisfy

ord(ni,j) ≥

{
ui,j + 1, i ≤ j;

ui,j , i > j
,

where ord(ni,j) denotes the degree of the initial form of ni,j .

Theorem 3.21. Given a monomial ideal E = (xt, xt−1ym1 , . . . , ymt) in P with canonical Hilbert-
Burch matrix H and degree matrix U , let V(E) be the set of ideals in Definition 3.19 and let
N (E) be the set of matrices in Definition 3.20. The map

φ : N (E) → V(E)
N 7→ It(H +N)

is surjective.
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We prove Theorem 3.21 in two steps: well-definedness in Lemma 3.22 and surjectivity in
Lemma 3.23.

Lemma 3.22. The map φ is well-defined.

Proof. We need to prove that the leading term ideal Ltτ (It(H +N)) is the monomial ideal E
for any matrix N = (ni,j) ∈ N (E).

Consider the matrix M = H +N . The order bounds on the entries of N yield

ord(mi,j) ≥
{
ui,j + 1, i < j;
ui,j , i ≥ j.

Set fi = det[M ]i+1, for any 0 ≤ i ≤ t, where [M ]i+1 is the square matrix that we get after
removing row i+ 1 of M . Since

fi =
∑
σ∈St

sgn(σ)
∏

1≤k≤t+1, k ̸=i+1

mk,σ(k),

we study the leading terms of polynomials of the form h =
∏

1≤k≤t+1, k ̸=i+1mk,σ(k).
If h is the product of all elements in the main diagonal of [M ]i+1, then Ltτ (h) = xt−iymi . We

claim that any other h ̸= 0 satisfies Ltτ (h) <τ x
t−iymi . Indeed, since

Ltτ (h) =
∏

1≤k≤t+1, k ̸=i+1

Ltτ (mk,σ(k)),

then
ord(h) =

∑
1≤k≤t+1, k ̸=i+1

ord(mk,σ(k)) ≥
∑

1≤k≤t+1, k ̸=i+1

uk,σ(k).

Equality can only be reached if (i, j) satisfy i ≥ j, namely

h =
i∏

k=1

(ydk + nk,k)
t+1∏

k=i+1

mk,σ(k),

hence the maximal power of x is only reached at the main diagonal. Thus, any h ≠ 0 away from
the main diagonal satisfies Ltτ (h) <τ x

t−iymi and, therefore, Ltτ (fi) = xt−iymi .
Now we need to show that {f0, . . . , ft} forms a τ -enhanced standard basis of It(M). From

the order bounds on the entries ni,j of N , it follows that the columns of M are liftings of the
columns of H. See Example 3.17 for more details. By Theorem 3.18, it is enough to show
that ht ((Ltτ (f0), . . . ,Ltτ (ft))) = 2, which is clear because this ideal contains the pure powers
xt = Ltτ (f0) and ymt = Ltτ (ft). Therefore, Ltτ (It(M)) = E.

Lemma 3.23. The map φ is surjective.

Proof. Consider a τ -enhanced standard basis {f0, . . . , ft} of J ∈ V(E) such that Ltτ (fi) =
xt−iymi . We can assume that the monomials in the support of the fi’s are not divisible by xt,
except for Ltτ (f0).

For any 1 ≤ j ≤ t, consider the S-polynomials Sj := S(fj−1, fj) = ydjfj−1 − xfj . Note that
no monomial in Supp(Sj) is divisible by xt+1 for any 1 ≤ j ≤ t. By Theorem 3.15 we have

Sj =
t∑

i=0

qi,jfi,
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for some qi,j ∈ k[[x, y]] such that Ltτ (qi,jfi) ≤ Ltτ (Sj). We claim that qi,j ∈ k[[y]].
In fact, we will prove that this holds for any f ∈ J such that xt+1 does not divide any monomial

in Supp(f). Assume LCτ (f) = 1. Consider such an f , then Ltτ (f) = xsyr for some 0 ≤ s ≤ t.
On the other hand, from the fact that Ltτ (f) belongs to Ltτ (J), it follows that xt−iymi must
divide Ltτ (f) for some 0 ≤ i ≤ t. Then t− i ≤ s and mi ≤ r, hence mt−s ≤ mi ≤ r. Define

g = f − yr−mt−sft−s.

The new element g still belongs to J and satisfies again that none of its monomials is divisible
by xt+1. In this way we can define a sequence (gi)i∈N, starting by g0 = f , whose elements have
decreasing leading terms with respect to τ . As in the proof of Grauert’s division theorem in
[GP07, Theorem 6.4.1],

∑
i∈N gk converges with respect to the m-adic topology and

f =
∑
k∈N

(gk − gk+1) =

t∑
i=0

 ∑
k∈N,sk=t−i

yrk−mt−sk

 fi.

Therefore, for any 1 ≤ j ≤ t, the S-polynomial Sj provides a relation between generators of J

ydjfj−1 − xfj +
t+1∑
i=1

ni,jfi−1 = 0,

where ni,j = −qi−1,j ∈ k[[y]]. This expression can be encoded in the matrix M = H +N , where
N = (ni,j). From Ltτ (ni,jfi−1) ≤τ Ltτ (Sj) it follows that any column mi of M is a lifting of a
column σi of H. The columns σ1, . . . , σt of H constitute a homogeneous system of generators of
Syz(Ltτ (J)). Then, by [Ber09, Theorem 1.10], m1, . . . ,mt generate Syz(J). The Hilbert-Burch
theorem ensures that J is generated by the maximal minors of M .

Finally, the order bounds on the entries of N are obtained again from Ltτ (ni,jfi−1) ≤τ Ltτ (Sj).
Indeed, xt−i+1ymi−1+βi,j <τ x

t−j+1ymj , where Ltτ (ni,j) = yβi,j . Since

βi,j + t− i+ 1 +mi−1 ≥ t− j + 1 +mj , (3.3)

we have βi,j ≥ i− j +mj −mi−1 = ui,j . If βi,j = ui,j , then equality holds in (3.3) and hence
t− i+ 1 < t− j + 1. In other words, βi,j ≥ ui,j and equality is only reachable when i > j.

The proof of Lemma 3.23 provides a constructive method to obtain a matrix N ∈ N (E) from
any τ -enhanced standard basis {f0, f1, . . . , ft} of J ∈ V(E) such that Ltτ (fi) = xt−iymi and xt

does not divide any term of any fi except for Ltτ (f0).

Example 3.24. Matrices in N (E) with power series entries and how to avoid them. Set
J = (x4 + x3y, y2 + x3 + x2y) and consider the τ -enhanced standard basis

f0 = x4 + x3y,
f1 = x3y2 + y5,
f2 = x2y2,
f3 = xy2,
f4 = y2 + x3 + x2y.
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It can be checked that it satisfies the conditions of Lemma 3.23. The first S-polynomial is
y2f0 − xf1 =

(∑
i≥1 y

i
)
f1 +

(∑
i≥3 y

i
)
f2 − y3f3 −

(∑
i≥4 y

i
)
f4. The matrix N ∈ N (E) with

proper power series as entries, where the 4-minors are f0, . . . , f4 from above is:

N =


0 0 0 1

−
∑

i≥1 y
i

∑
i≥1 y

i 0 0

−
∑

i≥3 y
i

∑
i≥2 y

i 0 0

y3 0 0 0∑
i≥4 y

i −
∑

i≥3 y
i 0 0

 .

By removing all the terms of degree larger than 3 we get the matrix

N =


0 0 0 1

−y − y2 − y3 y + y2 + y3 0 0
−y3 y2 + y3 0 0
y3 0 0 0
0 −y3 0 0


with polynomial entries. Check that J = φ(N) = φ(N). Observe that, although the behavior
with respect to the syzygies is much better, the τ -enhanced standard basis of J given by the minors
of H+N is less simple, for example f̄0 = x4+x3y+y4−xy4+y5−x2y4−xy5+y6−x2y5−xy6.

Next we will see that for any ideal J ∈ V(E), we can always find a matrix N ∈ N (E) with
polynomial entries such that φ(N) = J . This is achieved by removing the terms in the entries
of N with degree strictly higher than the socle degree of R/J , namely the largest integer s such
that ms+1 ⊂ J .

Definition 3.25. Let E be a monomial ideal and let s be the socle degree of R/E. We define
the set of matrices N (E)≤s := N (E) ∩ (k[[y]]≤s)

(t+1)×t.

Proposition 3.26. The restriction of φ to N (E)≤s is surjective.

Proof. Consider J ∈ V(E), by Lemma 3.23 we know that J = It(H + N) for some N ∈
N (E). Recall that J has the same Hilbert function as E, hence the socle degree of J is
also s. We express N as N = N + Ñ , where N ∈ N (E)≤s and Ñ ∈ (k[[y]]≥s+1)

(t+1)×t. We
decompose Ñ into matrices Ñi,j with at most one non-zero entry at position (i, j) such that
Ñ =

∑
i=1,...t+1,j=1,...,t Ñi,j .

By definition, J = (f0, . . . , ft), where fk = det([H + N ]k+1). Our goal is to prove that
J = (f̄0, . . . , f̄t), where f̄k = det([H +N ]k+1).

Let us use the Laplacian rule to rewrite the determinant. We denote by [M ](l,m),n the (square)
submatrix of M that is obtained by deleting the l-th and m-th rows and the n-th column. Then

fk = det

([
H +N +

∑
i,j Ñi,j

]
k+1

)
= det

([
H +N

]
k+1

)
+
∑

i,j ±ñi,j · det
([
H +N

]
(k+1,i),j

)
= f̄k +

∑
i,j ±ñi,j · det

([
H +N

]
(k+1,i),j

)
.

Since ñi,j ∈ k[[y]]≥s+1, it is clear that fk − f̄k ∈ (x, y)s+1 ⊂ J . Then J ′ = It(H + N) =(
f̄0, . . . , f̄t

)
⊂ J and, because Ltτ (J

′) = Ltτ (J), we deduce that J =
(
f̄0, . . . , f̄t

)
.
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It is important to note that Proposition 3.26 does not provide a parametrization of V(E). In
general, the map φ is not injective even when we restrict it to N (E)≤s.

Example 3.27. The restriction of φ is not injective. Continuing Example 3.24, note that
N ∈ N≤4(E) but also

N ′ =


0 0 0 1
−y 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈ N≤4(E),

with φ(N ′) = φ(N) = J .
The corresponding associated τ -enhanced standard basis of J is {x4+x3y, x3y2, x2y2, xy2, y2+

x3 + x2y}.

Remark 3.28. We have seen that φ : N (E) → V(E) as well as its restriction φ : N≤s(E) → V(E)
are not injective. Although an ideal J can be obtained from different matrices of the form
H +N , the systems of polynomial generators {f0, . . . , ft} of J that arise as maximal minors of
any such matrices are all different. In other words, the map N (E) → Rt+1, that sends N to the
maximal minors of H +N , is injective.

Indeed, if two matrices N,N ′ ∈ N (E) satisfy that the maximal minors of H +N and H +N ′

coincide, it follows that N = N ′. The argument is the same as in the first paragraph of [Con11,
Section 3.2] and we reproduce it here. Let {f0, . . . , ft} be the maximal minors of H +N and
H +N ′. The columns of both matrices are syzygies of {f0, . . . , ft}, thence the columns of their
difference H +N − (H +N ′) = N −N ′ ∈ k[[y]](t+1)×t are also syzygies, but since the leading
terms of the fi involve different powers of x, it follows that N = N ′.

3.4 Parametrization for lex-segment leading term ideals

A special situation occurs when a τ -enhanced standard basis of J and a Gröbner basis of the
ideal I = J ∩ P with respect to the lexicographical term ordering, shortly denoted lex-Gröbner
basis, coincide. In this setting, we can overcome the lack of injectivity of φ : N (E) → V(E) by
using Conca-Valla’s parametrization of V0(E).

Proposition 3.29. Let J ∈ V(E) be an ideal that admits a τ -enhanced standard basis
{f0, . . . , ft} that is also a lex-Gröbner basis of I = J ∩ P with Ltτ (fi) = Ltlex(fi) = xt−iymi .
Then there exists a unique matrix N ∈ N (E) ∩ T0(E) such that J = It(H +N).

Proof. Let {f0, . . . , ft} be a τ -enhanced standard basis of J that is also a lex-Gröbner basis
with Ltτ (fi) = Ltlex(fi) = xt−iymi . Then the fi are the signed maximal minors of H +N for
some N ∈ N (E) that is a strictly lower triangular matrix with polynomial entries. Here by
strictly lower triangular, we mean that ni,j = 0 for all i ≤ j. If there were non-zero entries ni,j
with i ≤ j, the minors {f0, . . . , ft} of H +N could not form a lex-Gröbner basis.

Assume that N is not yet in T0(E), namely there exist (i, j) with deg(ni,j) ≥ dj . In that case
we will perform an (i, j)-reduction move defined in Definition 3.30 and obtain a matrix Ñ .

By Lemma 3.31 the matrix Ñ will still be in N (E), thus the maximal minors of H + Ñ will
form a τ -enhanced standard basis of J .

After performing finitely many reduction steps from the last to the first column, we will obtain
a matrix N0 ∈ T0(E) ∩N (E) with J = It(H +N0). By Theorem 3.4, N0 is unique.
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Definition 3.30. [Con11, Proof of 3] Let E be a monomial ideal with canonical Hilbert-
Burch matrix H, N ∈ N (E) strictly lower triangular with polynomial entries, (i, j) such that
deg(ni,j) ≥ dj , and ri,j , qi,j ∈ k[y] with ni,j = ri,j + ydjqi,j .

The (i, j)-reduction move on N is defined by the following two steps. Note that since N is
strictly lower triangular, it corresponds to the second type of reduction moves from [Con11]:

Step 1. Add the j-th row multiplied by −qi,j to the i-th row of H +N .

Step 2. Add the (i − 1)-th column multiplied by qi,j to the (j − 1)-th column of the matrix
resulting from Step 1.

The matrix Redi,j(N) is the difference of the matrix resulting from Step 2 and H.

The reduction move does not change the ideal of maximal minors – It(H + N) = It(H +
Redi,j(N)) – and the (i, j)-entry of Redi,j(N) has degree strictly less than dj . In the following
lemma we show that the order bounds on the entries are preserved.

Lemma 3.31. Let N ∈ N (E) be a strictly lower triangular matrix with polynomial entries.
Then the matrix we obtain after an (i, j)-reduction move, Redi,j(N) still satisfies the order

bounds defining N (E).

Proof. Let i, j such that e = deg(ni,j) ≥ dj . That is ni,j =
∑e

k=ui,j
ci,j,ky

k with ci,j,k ∈ k. We
rewrite

ni,j =
∑e

k=ui,j
ci,j,ky

k

=
∑dj−1

k=ui,j
ci,j,ky

k +
∑e

k=dj
ci,j,ky

k

= ri,j + ydjqi,j

with

• ord(ri,j) ≥ ui,j and deg(ri,j) ≤ dj − 1,

• ord(qi,j) ≥ max(ui,j − dj , 0) = max(mj −mi−1 + i− j − (mj −mj−1), 0) = max(mj−1 −
mi−1 + i− j, 0) and deg(qi,j) ≤ e− dj .

Then we will use the (i, j)-reduction move defined in Definition 3.30.
Let M = H +N , M ′ be the matrix that is obtained from Step 1, M ′′ the matrix obtained

from Step 2, and Redi,j(N) =M ′′ −H.
Only the i-th row and the (j − 1)-th column of Ñ := Redi,j(N) are different from the entries

of N .
Remember that

ml,k = hl,k + nl,k =


0 l < k

hk,k = ydk l = k

hk+1,k + nk+1,k = −x+ nk+1,k l = k + 1

nl,k l − k ≥ 2

Let us first examine the i-th row, and k ̸= j − 1:

ñi,k = m′′
i,k − hi,k

= m′
i,k − hi,k

= (mi,k − qi,jmj,k)− hi,k
= (hi,k + ni,k − qi,jmj,k)− hi,k
= ni,k − qi,jmj,k
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• k > j, then mj,k = 0, and ñi,k = ni,k.

• k = j, then mj,j = ydj , and ñi,j = ni,j − qi,jy
dj = ri,j . It holds ord(ri,j) ≥ ui,j .

• k < j − 1, then mj,k = nj,k, so ñi,k = ni,k − qi,jnj,k.

ord(qi,jnj,k) = ord(qi,j) + ord(nj,k)
≥ max(ui,j − dj + uj,k, uj,k)
= max(mj−1 −mi−1 + i− j +mk −mj−1 + j − k, uj,k)
= max(ui,k, uj,k) ≥ ui,k

Now we look at the (j − 1)-th column, and k ̸= i:

ñk,j−1 = m′′
k,j−1 − hk,j−1

= (mk,j−1 + qi,jmk,i−1)− hk,j−1

= ((hk,j−1 + nk,j−1) + qi,jmk,i−1)− hk,j−1

= nk,j−1 + qi,jmk,i−1

• k < i− 1, then mk,i−1 = 0.

• k = i− 1, then mi−1,i−1 = ydi−1

• k > i, then mk,i−1 = nk,i−1

In our considerations about the order we combine the last two cases, since the order of the
product satisfy the same bounds. Then

ord(qi,jmk,i−1) ≥ max(ui,j − dj + uk,i−1, uk,i−1)
= max(mj−1 −mi−1 + i− j +mi−1 −mk−1 + k − (i− 1), uk,i−1)
= max(mj−1 −mk−1 + k − (j − 1), uk,i−1)
= max(uk,j−1, uk,i−1) ≥ uk,j−1

,

and ñk,j−1 satisfies the order bounds for k ̸= i.
Now the only entry left to check is

ñi,j−1 = m′′
i,j−1 − hi,j−1

= (m′
i,j−1 + qi,jm̄i,i−1)

= (mi,j−1 − qi,jmj,j−1) + qi,j(mi,i−1 − qi,jmj,i−1)
= (mi,j−1 − qi,j(−x+ nj,j−1)) + qi,j(−x+ ni,i−1 − qi,jmj,i−1)
= ni,j−1 − qi,jnj,j−1 + qi,j(ni,i−1 − qi,jmj,i−1)

i− (j − 1) ≥ 2, so mi,j−1 = ni,j−1 gives the last equality.

ord(qi,jnj,j−1) = ord(qi,j) + ord(nj,j−1)
≥ ord(qi,j) + 1
≥ max(ui,j − dj + 1, 1)
= max(mj−1 −mi−1 + i− j + 1, 1)
= max(ui,j−1, 1) ≥ ui,j−1

ord(qi,jni,i−1) = ord(qi,j) + ord(ni,i−1)
≥ ord(qi,j) + 1 ≥ ui,j−1
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Since i > j,

mj,i−1 =

{
0 j < i− 1

ydj j = i− 1

If j < i− 1, we are done, since the last summand is 0. If j = i− 1, then ni,i−1 − qi,jmj,i−1 =
ñi,i−1 = ri,j , still satisfying the same order bounds, so ord(qi,jñi,i−1) = ord(qi,jni,i−1) ≥ ui,j−1.

This finishes the proof.

Proposition 3.29 allows us to extend the definition of canonical Hilbert-Burch matrix to
any ideal that has a τ -enhanced standard basis {f0, . . . , ft} that satisfies Ltτ (fi) = Ltlex(fi) =
xt−iymi . Moreover, the proof of Proposition 3.29 gives an algorithm to construct the canonical
matrix from the matrix that encodes the S-polynomials of {f0, . . . , ft} via reduction moves.

Definition 3.32. Set M(E) := N (E) ∩ T0(E). Let J ∈ V(E) be an ideal that admits a
τ -enhanced standard basis which is also a lex-Gröbner basis of I = J ∩ P . We define the
canonical Hilbert-Burch matrix of J as H +N , where N is the unique matrix in M(E) such
that J = It(H +N).

Remark 3.33. The subset V2(E) ⊂ V0(E) of (x, y)−primary ideals I such that Ltlex(I) = E is
parametrized by the set of matrices T2(E) (see Definition 3.3). It is not difficult to check that
M(E) = N (E)∩ T0(E) = N (E)∩ T2(E). Since the ideal J ∩P is (x, y)-primary, it is also clear
that the matrix N0 obtained in the proof of Proposition 3.29 is not only an element of T0(E),
but from T2(E).

Example 3.34. Canonical Hilbert-Burch matrix. Consider J = (x6, xy2 − y5, y8) and E =
Ltτ (J) = (x6, x5y2, x4y2, x3y2, x2y2, xy2, y8). Set f0 = x6, fi = xt−iy2 for i = 1, . . . , 4,
f5 = xy2 − y5 and f6 = y8. Note that {f0, . . . , f6} is a τ -enhanced standard basis of J with
Ltlex(fi) = Ltτ (fi) = xt−iymi . The matrix H +N associated to {f0, . . . , f6} is the following:

y2 0 0 0 0 0
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x 1 0
0 0 0 0 −x− y3 y6

0 0 0 0 −1 −x+ y3


.

The matrix N ∈ N (E) is strictly lower triangular, but since deg(n6,5) = 3 ≥ d5 = 0 and
deg(n7,5) = 0 ≥ d5 = 0, we see that N /∈ T0(E). By performing the reduction moves (6, 5) and
(7, 5), we obtain the canonical Hilbert-Burch matrix H +N0 of J , with N0 ∈ M(E):

M0 = H +N0 =



y2 0 0 0 0 0
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x 1 0
0 0 0 0 −x y6

0 0 0 0 0 −x+ y3


.

There is a class of monomial ideals E such that any ideal in V(E) satisfies the hypothesis of
Proposition 3.29:
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Definition 3.35. We call a monomial ideal E = (xt, xt−1ym1 , . . . , ymt) relax-segment ideal if it
satisfies

mj − j − 1 ≤ mi − i for all j < i. (3.4)

Lemma 3.36. Let E = (xt, xt−1ym1 , . . . , ymt) be a relax-segment ideal, then the reduced
τ -enhanced standard basis of J ∈ V(E) is a Gröbner basis of I = J ∩ P with respect to the
lexicographical term ordering and Ltlex(I) = E.

Proof. Let {fi}i∈I with I ⊂ {0, . . . , t} be the unique reduced τ -enhanced standard basis of J
with Ltτ (fi) = xt−iymi . We need to show that the leading terms with respect to lex are the
right ones, and that {fi}i∈I forms a lex-Gröbner basis.

(i) Ltlex(fi) = xt−iymi for any i ∈ I:

Let us suppose that Ltlex(fi) = xkyl ̸= xt−iymi . Since xt−iymi ∈ Supp(fi), then

xkyl >lex x
t−iymi

and hence there are two possible situations:

a) k = t− i and l > mi:

Then Ltlex(fi) = xt−iyl is in the support of tailτ (fi) and xt−iyl ∈ E. But {fj}j∈I is
reduced by assumption.

b) k > t− i:

Then we can set k = t − j for some 0 < j < i. Since Ltlex(fi) = xt−jyl and
Ltτ (fi) = xt−iymi , the following holds

t− i+mi = deg(xt−iymi) < deg(xt−jyl) = t− j + l.

If there was an equality on the degree, the local term ordering and lex, would provide
the same leading terms. If l ≥ mj , we get a contradiction again to the reducedness
of {fj}j∈I . Thus, we obtain the following sequence of strict inequalities

t− i+mi < t− j + l < t− j +mj .

It is equivalent to
mi − i+ 1 ≤ l − j ≤ mj − j − 1

But by assumption mj − j − 1 ≤ mi − i, which leads to a contradiction.

(ii) {fi}i∈I is a Gröbner basis of I with respect to lex:

Since {fi}i∈I is a subset of I, E = (Ltlex(fi))i∈I ⊂ Ltlex(I). We can check the equality
Ltlex(I) = E by looking at the dimensions. From R/J ∼= P/I, it follows that

dimk(P/Ltlex(I)) = dimk(P/I) = dimk(R/J) = dimk(P/Ltτ (J)) = dimk(P/E)

and hence the inclusion E ⊂ Ltlex(I) becomes an equality.
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Remark 3.37. Since for lex-segment ideals the sequence (mi−i)i is strictly increasing, lex-segment
ideals are an instance of relax-segment ideals. But the class of ideals is bigger. For example
ideals with equality mi = mi+1 for exactly one i satisfy this condition, too. The condition (3.4)
for being a relax-segment ideal can be reformulated to

ui+1,j ≤ 2 for all i < j ⇐⇒ ui,j ≥ 0 for all i ≤ j.

Theorem 3.38. Let E = (xt, xt−1ym1 , . . . , ymt) be a relax-segment ideal with canonical Hilbert-
Burch matrix H. Then the restriction of the map φ from Theorem 3.21 to M(E)

φ : M(E) → V(E)
N 7→ It(H +N)

is a bijection.

Proof. The map φ is well-defined by Lemma 3.22. Lemma 3.36 and Proposition 3.29 ensure the
existence of a unique matrix N ∈ M(E) such that J = It(H +N) for any ideal J ∈ V(E).

When E is a relax-segment ideal, then the set M(E) has a simple description. It is formed
by strictly lower triangular matrices of size (t+ 1)× t with entries in k[y] such that

ni,j =

{
0, i ≤ j;

c
vi,j
i,j y

vi,j + c
vi,j+1
i,j yvi,j+1 + · · ·+ c

dj−1
i,j ydj−1, i > j;

where vi,j := max(ui,j , 0).

Corollary 3.39. Let E be the relax-segment ideal (xt, xt−1ym1 , . . . , ymt) with degree matrix
U = (ui,j), vi,j = max(ui,j , 0) and dj = mj −mj−1 for any 1 ≤ i ≤ t+ 1 and 1 ≤ j ≤ t. Then
V(E) ∼= M(E) is an affine space of dimension N, where

N =
∑

2≤j+1≤i≤t+1
vi,j<dj

(dj − vi,j) .

Remark 3.40. Note that when L is the lex-segment ideal with Hilbert function h, a detailed
study of the degree matrix U (as we will do in section 3.5) allows us to rewrite the formula in
terms of h. We obtain

dim(V(L)) = n− t−
∑
l≥2

nl

(
l
2

)
,

where nl denotes the number of jumps of height l in the Hilbert function h, see [HW23,
Proposition 3.9]. This recovers the result on the dimension of the stratum Hilbh(k[[x, y]])
of the punctual Hilbert scheme Hilbn(k[[x, y]]) with prescribed Hilbert function h by [Bri77,
Theorem III.3.1] and [Iar77, Theorem 2.12].

Let us show the details of the parametrization of the Gröbner cell V(E) as an affine space
AN
k with an example:
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Example 3.41. Gröbner cell of a lex-segment ideal. Consider the lex-segment ideal L =
(x3, x2y, xy4, y9) with canonical Hilbert-Burch matrix H. By Theorem 3.38, any canonical
Hilbert-Burch matrix of an ideal J ∈ V(L) is of the form M = H +N with N ∈ M(L):

M =


y 0 0
−x y3 0
c1 −x+ c2y + c3y

2 y5

c4 c5 + c6y + c7y
2 −x+ c8y + c9y

2 + c10y
3 + c11y

4

 .

Any ideal in J ∈ V(L) can be identified with the point (c1, c2, . . . , c11) ∈ A11
k such that J = I3(M).

The monomial ideal L can be obtained as I3(H), so it corresponds to point 0 ∈ A11
k .

Corollary 3.42. Assume char(k) = 0 and let h be an admissible Hilbert function. Let
L = Lex(h) be the unique lex-segment ideal such that HFR/L = h. Then any ideal J ⊂ R
such that HFR/J = h is of the form It(H +N), for some N ∈ M(L), after a generic change of
coordinates.

Proof. It follows from Theorem 3.38 and the fact that for any J ⊂ R such that HFR/J = h
it holds Lex(h) = Ginτ (J). Here Ginτ (J) is the extension to the local case defined in [Ber09,
Theorem–Definition 1.14] of the usual notion of generic initial ideal.

Example 3.43. Two cellular decompositions of Hilb3(k[[x, y]]). There are three monomial
ideals of colength 3 in two variables: E1 = (x, y3), E2 = (x2, xy, y2) (see Example 3.5 and
Example 3.14) and E3 = (x3, y). The punctual Hilbert scheme Hilb3(k[[x, y]]) can be decomposed
into the three corresponding Gröbner cells that depend on the term ordering that we choose.
The following table describes the ideals that we find in each Gröbner cell with respect to the
lexicographical term ordering, namely V2(Ei), and the induced local term ordering, namely
V(Ei), with i = 1, 2, 3. Recall that V2(Ei) is the affine space in Conca-Valla parametrization
introduced in Theorem 3.4 that only considers m-primary ideals in the polynomial ring, hence it
provides a proper stratification of Hilb3(k[[x, y]]).

Ei E1 = (x, y3) E2 = (x2, xy, y2) E3 = (x3, y)

HFR/Ei
(1, 1, 1) (1, 2) (1, 1, 1)

τ J = (x+ c1y + c2y
2, y3) J = (x2, xy, y2) J = (x3, y + cx2)

τ = lex I = (x, y3 + c2y
2 + c1y) I = (x2 + cy, xy, y2) I = (x3, y)

The second row of the table displays the Hilbert function of the local ring (R/Ei, n) as a
sequence of natural numbers such that the element in position t (starting at position 0) is the
dimension of the k-vector space nt/nt+1 and zero-dimensional vector spaces are omitted.

Consider an ideal I ∈ V2(E2) with c ̸= 0 and note that y belongs to the initial ideal I∗.
Therefore E2 = Ltτ (I) ̸= Ltτ (I

∗), hence the Hilbert functions of the local rings P/I and P/E2

differ. In other words, the Gröbner cell V2(E2) contains ideals with different Hilbert functions.
On the other hand, the local Gröbner cell V(E2) consists of a single point. By construction,

such cells will always preserve the Hilbert function. In this sense we say that the Gröbner cells
V(E) respect the Hilbert function stratification of Hilbn(k[[x, y]]).

We can also observe in this example that in both cellular decompositions there is exactly one
cell of dimensions zero, one and two. This is no coincidence. For a scheme X and over C the
vector of these dimensions is an invariant:

#{cells of dimension i in a cellular decomposition of X} = b2i(X),
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where b2i(X) denotes the 2i-th Betti number. We will discuss this in more detail in section 3.6.

In the general case, we have a surjective map φ : N (E)≤s → V(E). Restricting to M(E) we
get an injection to V(E) that is surjective on the subset of ideals whose reduced standard basis
also form a lex-Gröbner basis (including for example all homogeneous ideals J ∈ V(E)). If E is
a relax-segment ideal, it is the whole Gröbner cell V(E). The restriction of φ to M(E) is not
surjective onto V(E) anymore, if E is not a relax-segment ideal.

Lemma 3.44. If E is not a relax-segment ideal, i.e. it does not satisfy (3.4), then there exists
J ∈ V(E) such that Ltlex(J ∩ P ) ̸= E.

Proof. Since condition (3.4) is not satisfied, there exist k < l such that

mk − k − 1 > ml − l. (3.5)

Take i = max{i | ml = mi} and j = min{j | mk = mj}, then

mj − j − 1 > mk − k − 1 > ml − l > mi − i.

Note that (3.5) still holds and now additionally dj ≥ 1 and di+1 ≥ 1.
Set fk = xt−kymk for k ∈ {0, . . . , t} \ {i} and fi = xt−iymi + xt−jymj−1. Consider the ideal

J = (f0, . . . , ft) of R. Clearly, Ltlex(fi) = xt−jymj−1 /∈ E, thus Ltlex(J ∩ P ) ̸= E.
Now we need to prove that Ltτ (J) = E. From (3.5) we have t− i+mi < t− j +mj − 1, so

Ltτ (fi) = xt−iymi . The polynomial fi cannot be reduced by the other (monomial) generators.
The S-polynomials are

Sl =


−xt−j+1ymj−1, l = i;

xt−jymj−1+di+1 , l = i+ 1;

0, otherwise.

If i < t, check that Si = ydj−1fj−1 and Si+1 = ydi+1−1fj . Then the matrix N has only two
non-zero entries nj,i = ydj−1 and nj+1,i+1 = −ydi+1−1. If i = t there is only one non-zero
S-polynomial. In any case, one can check that N ∈ N (E). Thence, {f0, . . . , ft} forms a
τ -enhanced standard basis and J ∈ V(E).

Example 3.45. M(E) → V(E) not surjective. Consider E = (x6, xy2, y8) as in Example 3.34.
E is not a relax-segment ideal because for (i, j) = (5, 1) we have m1 − 1− 1 = 0 > m5 − 5 =
2− 5 = −3. The ideal J from Lemma 3.44 in this case is generated by the monomials x6−kymk

for k = 0, . . . , 4, 6 and xy2 + x5y. J ∩P /∈ V0(E) because Ltlex(J ∩P ) = (x6, x5y, x2y2, xy3, y8).
Therefore, J /∈ φ(M(E)).

Even though we have now seen that for general E the map is not surjective, we can still
parametrize the sub-cell of V(E) of homogeneous ideals.

Lemma 3.46. Let E ∈ P be a zero-dimensional monomial ideal. The homogeneous sub-cell
Vhom(E) of V(E) consisting of all homogeneous ideals of V (E) is an affine space of dimension
#{(i, j) | i > j, 0 ≤ ui,j < dj}.

Moreover, for any J ∈ V(E) and any N ∈ N (E) with J = It(H +N) its initial ideal J∗ can
be computed by projecting N into that affine space.
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Proof. Homogeneous ideals J in V(E) are inside the set of ideals in V (E) admitting a canonical
Hilbert-Burch matrix. This is clear since for homogeneous f , the leading terms Ltτ (f) = Ltlex(f)
coincide, so a homogeneous τ -enhanced standard basis of J will also form a lex-Gröbner basis
of J ∩ k[x, y]. Thence by Proposition 3.29 Vhom(E) ⊂ φ(M(E)), and there exists a unique
N0 ∈ M(E) such that J = It(H +N0).

We claim that an ideal J = It(H +N), for some N ∈ M(E), is homogeneous if and only if
the maximal minors f0, . . . , ft of H +N are homogeneous. Obviously, homogeneity of a system
of generators yields homogeneity of J . For the other direction, note that the maximal minors
f0, . . . , ft of H +N are a τ -enhanced standard basis of J = It(H +N) by construction for any
N ∈ N (E). By Remark 3.11, they also form a standard basis of J , namely J∗ = (f∗0 , . . . , f

∗
t ).

Let us call N∗ the matrix obtained by only keeping the terms of degree ui,j in each entry
ni,j . Clearly, the maximal minors of H + N∗ are f∗0 , . . . , f∗t and J∗ = It(H + N∗), asserting
the second statement of Lemma 3.46. Note that N∗ ∈ M(E). So if J is homogeneous then
J = It(H +N) = It(H +N∗) with N,N∗ ∈ M(E), implies N = N∗ by Proposition 3.29.

In conclusion, Vhom(E) is parametrized by the subset of M(E) where ni,j = c•y
ui,j for i > j

and 0 ≤ ui,j < dj . So it is an affine space of dimension #{(i, j) | i > j, 0 ≤ ui,j < dj}.

The dimension formula in this result agrees with [CV08, Corollary 3.1] and shows that
even though their Gröbner cells differ – as we have seen in Example 3.43 – the sub-cells of
homogeneous ideals agree. This is not a big surprise, since for homogeneous f the leading terms
Ltτ (f) = Ltlex(f) agree by the definition of local term order induced by lex. When E is a
lex-segment ideal with Hilbert function h the dimension formula given in Lemma 3.46 can be
rewritten in terms of the Hilbert function as

dim(Vhom(E)) = t+

s∑
i=t−1

(hi−1 − hi)(hi − hi+1),

see [HW23, Proposition 3.11]. This dimension formula is equivalent to the one for the homogen-
eous subscheme of Hilbh(k[[x, y]]) given and proven by different methods in [Iar77, Theorem 2.12].

Coming back to the Gröbner cell V(E) several computations, comparison to [Con11], consid-
erations about the reduction moves and a detailed study of complete intersections suggest us
how to replace N (E) in Theorem 3.21 in order to obtain a bijection.

Definition 3.47. We define the subset (k[y]<d)
(t+1)×t ⊂ k[y](t+1)×t as matrices where the

non-zero entries satisfy the following degree conditions:

deg(ni,j) <

{
di, i ≤ j;

dj , i > j.

We define the subset N (E)<d of N (E) as N (E)<d := N (E) ∩ (k[y]<d)
(t+1)×t.

Conjecture 3.48. Let E be a monomial ideal. Then the set N (E)<d parametrizes V(E).

For any relax-segment ideal E, the sets N (E)<d and M(E) coincide. By Theorem 3.38, the
conjecture is true for such E, which includes lex-segment ideals. For general E, we have an
inclusion M(E) ⊂ N (E)<d. Moreover, the matrix N constructed in the proof of Lemma 3.44,
which is not in M(E), can also be transformed to a matrix in N (E)<d via reduction moves.
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Remark 3.49. An approach analogous to Proposition 3.29 and [Con11, Proof of 3] with reduction
moves does not work in general. It can be verified that if we start with any N ∈ N (E) the
matrix obtained by a reduction move is in N (E), see Lemma 3.31 where the case i > j is shown.
If the matrix is additionally strictly upper or strictly lower triangular, there is an obvious order
in which one can perform the reduction moves to obtain a matrix in N (E)<d.

For a general matrix N ∈ N (E) this order is not so clear. This problem already arises in
[Con11, Proof of 3] and is solved by considering reduction moves that are maximal for an
element, namely those producing a maximal increase of the degree of the element. In our setting
the situation is worse, since even when starting with a matrix with polynomial entries, an
(i, j)-reduction move can create entries that are proper power series. This happens if the entry
on the diagonal is not zero. And even when starting with a matrix with only zeros on the
diagonal, general reduction moves will create non-zero diagonal entries.

Additionally, reduction moves do not give a way of reducing entries on the diagonal. In
Example 3.24 and its continuation Example 3.27 we have two matrices N,N ′ ∈ N≤s(E) with
J = It(H +N) = It(H +N ′). The matrix N ′ ∈ N (E)<d is our desired matrix, but it cannot
be obtained from N by this type of reduction moves.

Example 3.50. Non-relax-segment ideal E where Conjecture 3.48 holds. Consider the monomial
ideal E = (x4, y2). Using reduced τ -enhanced standard bases, it can be proved that any J ∈ V(E)
is of the form J = (x4+ ax3y, y2+ bx3+ cx3y+ dx2y). The S-polynomials of the standard basis

f0 = x4 + ax3y
f1 = x3y2

f2 = x2y2

f3 = xy2 + (d− ab)x3y + (ad− a2b)x2y2

f4 = y2 + bx3 + cx3y + dx2y + (ad− a2b)xy2 + (a3b2 − 2a2bd+ ad2 + c)x3y

of J give the matrix M = H +N , with N ∈ N (E)<d and I4(M) = J , satisfying the conjecture:

M =


y2 0 (d− ab)y b+ (a3b2 − 2a2bd+ ad2 + c)y

−x− ay 1 0 0
0 −x 1 0
0 0 −x 1
0 0 0 −x

 .

3.5 Betti strata of Gröbner cells

The Gröbner cells V(E) form a stratification of the punctual Hilbert scheme Hilbn(k[[x, y]]). The
cells can be further stratified by considering subsets of ideals with a given minimal number of
generators. For an ideal J , we denote the minimal number of generators by µ(J). The results
and methods of this section are similar to the results obtained in [Ber09, Section 2].

Definition 3.51. For a monomial ideal E = (xt, xt−1ym1 , . . . , ymt) ⊂ P , we denote the d-Betti
stratum of V(E) by

Vd(E) = {J ∈ V(E) | µ(J) = d}.
If Vd(E) ̸= ∅, we will say that d is an admissible number of generators. When d = 2 we will
sometimes refer to V2(E) as VCI(E), since the ideals generated by two elements are complete
intersection ideals. We denote

V≤d(E) = {J ⊂ V(E) | µ(J) ≤ d}.

87



The following lemma describes how to calculate the minimal number of generators of an ideal
J ⊂ R with the help of its Hilbert-Burch matrix. It follows easily by Nakayama’s lemma.

Lemma 3.52. [Ber09, Lemma 2.1] Let E = (xt, xt−1ym1 , . . . , ymt) be a monomial ideal in
P with canonical Hilbert-Burch matrix H and J = It(H + N) with N ∈ N (E). Then
µ(J) = t+ 1− rkH +N , where H +N is the image of H +N in (H +N (E))⊗R

R/m , so the
matrix that consists only of the constant terms of H +N .

If E is a lex-segment ideal, then rkH +N = rk N̄ .

Whenever we have a parametrization of V(E) ∼= AD in terms of canonical Hilbert-Burch
matrices, Lemma 3.52 implies a description of the d-Betti stratum Vd(E) of V(E). The notation
I•(−) in the following proposition will refer to an ideal in k[c1, . . . , cD] and V(I•(−)) denotes
the set of vanishing of the ideal inside AD.

Proposition 3.53. Let E = (xt, xt−1ym1 , . . . , ymt) with canonical Hilbert-Burch matrix H
and φ : T (E) → V(E) by N 7→ It(H +N) be a parametrization, with T (E) ∼= AD. Then the
d-Betti stratum Vd(E) of V(E) can be parametrized as

Vd(E) ∼= V(It+2−d(H +N)) \ V(It+1−d(H +N)) ⊂ V(E).

When E is a lex-segment ideal, φ : M(E) → V(E) from Theorem 3.38 is a parametrization, and

Vd(E) ∼= V(It+2−d(N)) \ V(It+1−d(N)) ⊂ V(E).

Proof. Since φ : T (E) → V(E) is a parametrization, the ideal J can be identified with the matrix
N such that J = It(H +N). By Lemma 3.52, J ∈ Vd(E) if and only if rkH +N = t+ 1− d.
That means that N is in the set of matrices with rkH +N ≤ t+1− d, but not in the set where
rkH +N ≤ t− d. The rank of H +N is ≤ t+1− d if and only if all its minors of size t+2− d
vanish. So

N ∈ V(It+2−d(H +N)) \ V(It+1−d(H +N)).

A parametrization of the affine space V(E) in terms of canonical Hilbert-Burch matrices
allows us to see V≤d(E) as a determinantal variety inside the affine space V(E). When we only
start with the surjection φ : N (E) → V(E), as in Theorem 3.21, we can still obtain a similar
statement.

Proposition 3.54. Let E = (xt, xt−1ym1 , . . . , ymt) and φ : N (E) → V(E) by N 7→ It(H +N),
from Theorem 3.21. Then the restriction of φ to

V(It+2−d(H +N)) \ V(It+1−d(H +N)) → V≤d(E) \ V≤(d−1)(E) ∼= Vd(E)

is well-defined and surjective.

Proof. All the arguments of the proof of Proposition 3.53 can be directly applied to this setting.
The only difference is that here there is no unique matrix N ∈ N (E), so the restriction of φ is
not injective.
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Remark 3.55 (Upper bound for admissible d). For all ideals J ∈ V(E), J has a τ -enhanced
standard basis consisting of µ(E) elements, so µ(J) ≤ µ(E). This can also be seen with
Lemma 3.52, for the canonical Hilbert-Burch matrix H of the monomial ideal E, the rank
rkH = #{i | di = 0} =: l ≥ 0 and rkH +N ≥ l for allN ∈ N (E), so µ(J) = t+1−rkH +N ≤
t+1− l = µ(E). For a lex-segment ideal L, the minimal number of generators µ(J) of J ∈ V(L)
is equal to t+ 1 if and only if N̄ is the zero matrix. So all the constant terms have to vanish, so
Vt+1(E) = AD′ , where D′ = D −#{allowed constant terms in N}.

This affine subspace Vt+1(E) ∼= AD′ of V(E) ∼= AD is actually untouched by the conditions on
the number of generators. All the polynomial equations of Vd(E) do not involve the parameters of
this subspace, so Vd(E) can be understood as the fiber product of V(It+2−d(N̄))\V(It+1−d(N̄)) ⊂
AD−D′ and Vt+1(E) ∼= AD′ .

We will now address the question whether a minimal number of generators is admissible in
V(E). From Proposition 3.54 and Proposition 3.53 we can see that Vd(E) ̸= ∅ if and only if
∅ ≠ V(It+2−d(H +N)) ⊊ V(It+1−d(H +N)). So this question highly depends on the structure
of N̄ or in other words the allowed constant coefficients of matrices N ∈ N (E) or N ∈ M(E).
And by the definitions of N (E) and M(E) this is a question about non-positive entries of the
degree matrix U associated to E.

From now on we will restrict to lex-segment ideals, i.e. L = (xt, xt−1ym1 , . . . , ymt) with
0 = m0 < m1 < · · · < mt. By Theorem 3.38 we know that M(L) parametrizes V(L) and the
matrices N ∈ M(L) are all lower triangular matrices, so we are interested in the non-positive
entries in the lower triangle of the degree matrix U associated to L.

Lemma 3.56. Let L = (xt, xt−1ym1 , . . . , x1ymt−1 , xmt) be a lex-segment ideal and U its associ-
ated degree matrix. Let J be a set of pairs of positive integers defined by

J := {(j, k) | j ≤ t, dj+1 = dj+2 = · · · = dj+k−1 = 1}.

Then uj+k,j = 1 if and only if (j, k) ∈ J . All other entries uj+k,j ≤ 0.

Proof. The following equations can easily be verified:

(i) mj+s = mj +
∑s

l=1 dj+l

(ii) uj+k,j = mj + k −mj+k−1 = k −
∑k−1

l=1 dj+l.

Since L is a lex-segment ideal, di > 0 and with point (ii), uj+k,j ≤ 1. The value 1 is achieved if
and only if dj+1 = dj+2 = · · · = dj+k−1 = 1. Thus uj+k,j = 1 if and only if (j, k) ∈ J . For all
(j, k) /∈ J , the entry uj+k,j ≤ 0.

Notice that d1 does not play a role in the pattern of 1s in the lower left triangle of U .

Remark 3.57. The set J describes the pattern of 1s and non-positive entries of the lower left
triangle of U . It is determined by the consecutive d• = 1. Obviously, the longest sequences of
equations dj+1 = dj+2 = · · · = dj+k−1 = 1 determine the set J completely. Denote by I the
subset of J that corresponds to such maximal sequences. Then if (j, k) ∈ I, dj+1 = dj+2 =
· · · = dj+k−1 = 1, thus clearly dj+1 = dj+2 = · · · = dj+l−1 = 1, for all l ≤ k and (j, l) ∈ J . Also
di+1 = · · · = dj+k−1 for i ≥ j, and (i, l) ∈ J for i ≥ j and l ≤ j + k − i. On the other hand, if
(i, l) ∈ J , then di+1 = · · · = di+l−1 = 1 and this sequence of equations is a sub-sequence of a
maximal sequence dj+1 = dj+2 = · · · = dj+k−1 with j ≤ i and l ≤ k.
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If (j, k) ∈ I, then uj+k,j = 1 (indicated in bold) is a lower corner in the pattern of 1s in U in
the following sense:

U =



d1
1 ̸= 1

1 1
...

. . . . . .
...

. . . 1
1 . . . . . . 1 ̸= 1

1
. . .
. . . . . .

1 ̸= 1
1 1
...

. . . . . .
...

. . . 1
1 . . . . . . 1 ̸= 1

1 1
...

. . . . . .
...

. . . 1
1 . . . . . . 1



,

where all entries in the lower left triangle of U that are left out are non-positive.

The indicated matrix U already indicates how we can construct the pattern of 1s just from
d1, . . . , dt. When dj is the last d• different from 1, we go down to the first column where dj+k

is the first d• different from 1, and set uj+k,j = 1. Then all entries to the right and up from
uj+k,j up to the diagonal are also equal to 1.

Lemma 3.58. Let L = (xt, xt−1ym1 , . . . , ymt) be a lex-segment ideal with associated degree
matrix U , J as in Lemma 3.56 and k0 := max(j,k)∈J k. Then

(i) rk N̄ ≤ t− k0 for all N ∈ M(L),

(ii) for all 0 ≤ r ≤ t− k0, there are matrices N ∈ M(L) with rk N̄ = r.

Proof. By the definition of k0, we know that there exists j0 such that uj0+k0,j0 = 1 is a corner
in the pattern of 1s of the lower left triangle in the U -matrix as in Remark 3.57, and thus all
the entries in the submatrix ui,j with i ≤ j0 + k0 and j ≥ j0 have positive entries, and for the
corresponding submatrix of N̄ this yields a zero submatrix of size (j0 + k0)× (t − j0 + 1) as
indicated here:
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N̄ =



∗ . . . ∗ 0 . . . 0

...
...

...
...

0 . . . 0

∗ . . . ∗
...

...
...

...

∗ . . . ∗ ∗ . . . ∗


.

The first j0 − 1 columns of N̄ have rank at most j0 − 1, and in the columns j0 to t the
only allowed non-zero entries are in rows j0 + k0 + 1 to t + 1, so the rank of N̄ is at most
j0 − 1 + ((t+ 1)− (j0 + k0 + 1) + 1) = t− k0. This proves the first point.

When k0 = max(j,k)∈J k, then ui,j ≤ 0 for all i, j with i − j ≥ k0 + 1. In particular, for
1 ≤ l ≤ t − k0 and j = 1, . . . , t + 1 − k0 − l, the entries uj+k0+l,j ≤ 0 since the inequality
j + k0 + l − j = k0 + l ≥ k0 + 1 holds. Thus, there exists N ∈ M(L) with nj+k0+l,j = 1 for
j = 1, . . . , t + 1 − k0 − l and all other entries vanishing. Then the ranks are rk N̄ = rkN =
t + 1 − k0 − l. For l = 1 we achieve the maximal rank rk N̄ = t − k0 and for l = t − k0 the
constructed matrix is the matrix with only non-vanishing entry nt+1,t = 1 of rank one. The
zero matrix is clearly an element of M(L) of rank zero.

The constructed matrices N ∈ M(L) in the proof of Lemma 3.58 lead to the same matrices
M = H +N as in the proof of [Ber09, Theorem 2.4]. They are obviously not the only matrices
in M(L) with rk N̄ = r. As already discussed in Remark 3.55 all the coefficients of monomials
of positive degree can be chosen freely. This gives an affine space of matrices N ′ ∈ M(L) with
N̄ ′ = N . Another way of obtaining a matrix N ′ ∈ M(L) with rkN ′ = rk N̄ ′ = r is to set
nj+t+1−r,j to any non-zero constant, and the entries below nj+t+1−r+i,j with 1 ≤ i ≤ r − j can
be chosen freely. The following corollary makes it more precise.

Corollary 3.59. Let L be a lex-segment ideal and k0 as in Lemma 3.58, then the d-Betti stratum
Vd(L) = V(It+2−d(N̄)) \ V(It+1−d(N̄)) of V(L) is non-empty if and only if k0 + 1 ≤ d ≤ t+ 1.

The (t+ 1)-Betti stratum Vt+1(L) is an affine space in V(L).
The (k0 + 1)-Betti stratum Vk0+1(L) is the full dimensional quasi-affine variety

V(L) \ V(It−k0(N̄)).

Proof. By Lemma 3.58 there exists N ∈ M(L) with rk N̄ = r, if and only if 0 ≤ r ≤ t− k0. By
Lemma 3.52 µ(It(H +N)) = t+ 1 − rk N̄ . With 0 ≤ r ≤ t − k0, this means that there exist
ideals with minimal number of generators between k0 + 1 and t+ 1, and all ideals J in V(L)
have µ(J) in this range.

The set Vt+1(L) is parametrized by all the matrices N ∈ M(L) with N̄ = 0. So all parameters
of constant coefficients of polynomials ni,j(y) vanish and all other coefficients can be chosen
arbitrarily.

The (k0 + 1)-Betti stratum is

Vk0+1(L) = V(It−k0+1(N̄)) \ V(It−k0(N̄)) = V(L) \ V(It−k0(N̄)).
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Corollary 3.60. The Gröbner cell V(L) of the lex-segment ideal L contains complete intersection
ideals if and only if di > 1 for all i = 2, . . . , t.

Proof. By Corollary 3.59 V(L) contains complete intersection ideals if and only if k0 = 1. That
means for all j = 1, . . . , t, dj+1 > 1, otherwise (j, 2) ∈ J from Lemma 3.56.

For the remainder of the section, we will rewrite k0 in terms of the Hilbert function h of L.
Let ∆(h) := max{|hi − hi−1|} be the maximal jump of the Hilbert function h.

Lemma 3.61. Let L = (xt, xt−1ym1 , . . . , y
mt) be a lex-segment ideal, h := h(L) its Hilbert

function, and k0 as in Lemma 3.58. Then k0 = ∆(h).

Proof. An easy but helpful observation is that the Hilbert function h of a lex-segment ideal L,
can be calculated as follows:

hi =


i+ 1 i < t

t+ 1−#{fj | deg(fj) = t} i = t

hi−1 −#{fj | deg(fj) = i} t+ 1 ≤ i ≤ mt − 1

0 i ≥ mt,

where fj = xt−jymj .
Then the jump at position i |hi − hi−1| is the following:

|hi − hi−1| =


1 i < t

#{fj | deg(fj) = t} − 1 i = t

#{fj | deg(fj) = i} t+ 1 ≤ i ≤ mt

0 i ≥ mt + 1.

Since L is a lex-segment ideal, deg(fj) = t− j +mj ≤ deg(fj+1) = t− (j + 1) +mj+1 and
equality occurs if and only if dj+1 = mj+1 −mj = 1.

Let j be minimal with deg(fj) = i. Then

#{fl | deg(fl) = i} = max{k | deg(fj) = deg(fj+1) = · · · = deg(fj+k−1)}
= max{k | dj+1 = dj+2 = · · · = dj+k−1 = 1}

Let t+ 1 ≤ i ≤ mt and j minimal with deg(fj) = i, then

|hi − hi−1| = max{k | dj+1 = dj+2 = · · · = dj+k−1},

so (j, k) ∈ J from Lemma 3.56 and (j, k + 1) /∈ J . For i = t, deg(f0) = t and

|ht − ht−1| = max{k | d1 = d2 = · · · = dk−1 = 1} − 1

we conclude (1, k − 1) ∈ J and (1, k) /∈ J . So with k0 as in Lemma 3.58

k0 = max{k | (j, k) ∈ J } = max{|hi − hi−1|} = ∆(h).
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Whenever the cell V(L) is dense in Hilbh(k[[x, y]]) we can reformulate Corollary 3.59 with
Lemma 3.61 and obtain the following proposition. The condition for complete intersection ideals
is due to [Mac27] and was reproved with different methods by [Bri77; Iar77; RS10]. The more
general result was proven by [Ber09, Theorem 2.4].

Proposition 3.62. Let char(k) = 0 and h be an admissible Hilbert function. There exists an
ideal J ∈ Hilbh(k[[x, y]]) with µ(J) = d if and only if d ∈ [∆(h) + 1, t+ 1].

In particular, there are complete intersection ideals with Hilbert function h if and only if
∆(h) = 1.

Proof. This follows by combining Corollary 3.59 and Lemma 3.61 and the fact that up to a
generic change of coordinates all ideals in Hilbh(k[[x, y]]) have leading term ideal L. The minimal
number of generators of an ideal is invariant under a change of coordinates.

3.6 A cellular decomposition of the punctual Hilbert scheme

The collection of all Gröbner cells V(E) forms a cellular decomposition of the punctual Hilbert
scheme Hilbn(k[[x, y]]). A cellular decomposition which additionally respects the Hilbert function
stratification of Hilbn(k[[x, y]]) induces a cellular decomposition of Hilbh(k[[x, y]]), the stratum
of Hilbn(k[[x, y]]) with a prescribed Hilbert function h. When working with k = C, this can be
used to calculate the Betti numbers of those spaces. We now give some detailed examples and
evidence for Conjecture 3.48.

Example 3.63 (A cellular decomposition of Hilb6(k[[x, y]])). Let us consider n = 6. There are
eleven partitions of 6, so the punctual Hilbert scheme Hilb6(k[[x, y]]) has a cellular decomposition
into eleven cells. There are four possible Hilbert functions [1, 2, 3], [1, 2, 2, 1], [1, 2, 1, 1, 1] and
[1, 1, 1, 1, 1, 1].

Note that this is significantly different from Briançon’s table in [Bri77, Section IV.2] because
there the author provides a representative of all possible analytic types of ideals in Hilb6(k[[x, y]]),
whereas our cells contain ideals with a common leading term ideal but in general different
analytic types coexist in the same cell (for example, ideals with different number of generators
as discussed in section 3.5).

The Hilbert function [1, 2, 3] is only attained by the ideal (x3, x2y, xy2, y3) = (x, y)3. The
Gröbner cell consists only of the single point corresponding to the monomial ideal itself. It is
minimally generated by four elements.

There are six cells with Hilbert function [1, 2, 2, 1], see Figure 3.1. Admissible parameters
to obtain a homogeneous ideal, i.e. those of Vhom(E), are indicated in bold. General ideals in
this cell will be minimally generated by two elements. If c2 = 0 the ideal is generated by three
elements.

The other five cells with this Hilbert function are not lex-segment. The cells [2, 2, 2] and [3, 3],
corresponding to monomial complete intersection ideals (x3, y2) and (x2, y3), consist only of
complete intersection ideals. The two cells [1, 1, 2, 2] and [1, 1, 1, 3] only contain ideals that are
minimally generated by 3 elements while the cell [1, 1, 4] contains ideals I, J with µ(I) = 2 and
µ(J) = 3. Notice that the difference dim(V(E))− dim(Vhom(E)) = 1 for all E with this Hilbert
function.

There are two cells with Hilbert function [1, 2, 1, 1, 1], see Figure 3.2. Both contain ideals
minimally generated by three elements – in case c3 = 0 for E1 = (x5, xy, y2) or c1 = 0 for
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m boxes H+N dimension µ

[1,2,3]

[1, 2, 3]


y 0 0
−x y 0
0 −x y
0 0 −x

 0 4

[1,2,2,1]

[1, 1, 2, 2]


y 0 0 c1
−x 1 0 0
0 −x y 0
0 0 −x 1
0 0 0 −x

 1 3

[1, 1, 1, 3]


y 0 c1 0
−x 1 0 0
0 −x 1 0
0 0 −x y2

0 0 0 −x+ c2y

 2 3

[2, 2, 2]


y2 0 c1y

−x+ c2y 1 0
0 −x 1
0 0 −x

 2 2

[1, 1, 4]


y 0 0
−x 1 0
0 −x y3

c1 0 −x+ c2y + c3y
2

 3 2,3

[3, 3]

 y3 0
−x+ c1y + c2y

2 1
c3y

2 −x

 3 2

[2, 4]

 y2 0
−x+ c1y y2

c2 + c3y −x+ c4y

 4 2,3

Figure 3.1: Gröbner cells for Hilbert functions [1,2,3] and [1,2,2,1]
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m boxes H+N dimension µ

[1, 2, 1, 1, 1]

[1, 1, 1, 1, 2]



y 0 c1 c2 c3
−x 1 0 0 0
0 −x 1 0 0
0 0 −x 1 0
0 0 0 −x y
0 0 0 0 −x

 3 2,3

[1, 5]

 y 0
−x y4

c1 −x+ c2y + c3y
2 + c4y

3

 4 2,3

Figure 3.2: Gröbner cells with Hilbert function [1,2,1,1,1]

E2 = (x2, xy, y5) – and complete intersection ideals. The difference of dimension of the cell and
the homogeneous sub-cell is

dim(V(E1))− dim(Vhom(E1)) = dim(V (E2))− dim(Vhom(E2)) = 3.

The Hilbert function [1, 1, 1, 1, 1, 1] is attained by the monomial ideals (x6, y) and the lex-
segment monomial ideal (x, y6). Both cells consist only of complete intersection ideals and have
dimensions 4 and 5, see Figure 3.3. The cell of m = [6] is the dense open subset of the punctual
Hilbert scheme Hilb6(k[[x, y]]). The difference of dimension of the cell and the homogeneous
sub-cell is

dim(V((x6, y)))− dim(Vhom((x
6, y))) = dim(V((x, y6)))− dim(Vhom((x, y

6))) = 4.

As stated before, for non-relax-segment ideals E the set N<d(E) contains matrices with non-
zero entries above the diagonal. This is the case form = (1, 1, 2, 2), (1, 1, 1, 3), (2, 2, 2), (1, 1, 1, 1, 2)
and (1, 1, 1, 1, 1, 1). For those ideals we checked by comparing to the reduced standard basis
that the map from Conjecture 3.48 gives a parametrization of the Gröbner cell.

We can investigate the dimensions of the occurring cells. When we define ai as the number of
cells of dimension i, we obtain

a = (a0, a1, a2, a3, a4, a5) = (1, 1, 2, 3, 3, 1).

This vector is an invariant of the space.

When a scheme X over C has a cellular decomposition with dimension vector a as defined
in Example 3.63, then all other cellular decompositions of X will have the same dimension
vector. It holds that ai = b2i(X), the 2i-th Betti number of X, and that the Betti numbers
b2i+1(X) = 0, see [Bia73, Theorem 4.4/4.5] and [Ful98, Chapter 19.1].
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m boxes H+N dimension µ

[1, 1, 1, 1, 1, 1]

[1]6



y 0 c1 c2 c3 c4
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x 1 0
0 0 0 0 −x 1
0 0 0 0 0 −x


4 2

[6]

(
y6

−x+ c1y + c2y
2 + c3y

3 + c4y
4 + c5y

5

)
5 2

Figure 3.3: Gröbner cells with Hilbert function [1,1,1,1,1,1]

In [ES87] this method is used to calculate the Betti numbers of the Hilbert scheme of points
of the projective plane, the affine plane and, of most interest to us, the punctual Hilbert scheme
Hilbn(k[[x, y]]). In [Göt90] the same methods were used to calculate the Betti numbers of the
stratum Hilbh(k[[x, y]]). These results were obtained by representation theoretical methods
without giving explicit parametrizations of the cells.

To state the theorem of [ES87], we need the following definition.

Definition 3.64. Let l, n ∈ Z>0, then we define P (n, l) as the number of partitions of n bounded
by l, i.e. as the number of sequences 0 = m0 < m1 ≤ · · · ≤ mt ≤ l such that

∑t
i=1mi = n.

Theorem 3.65. [ES87, Theorem 1.1 (iv)] The non-zero Betti numbers of the punctual Hilbert
scheme Hilbn(k[[x, y]]) are

b2i(Hilb
n(k[[x, y]])) = P (i, n− i).

This result gives us a way of checking Conjecture 3.48 for plausibility by checking whether
#{E | dim(N<d) = i} = P (i, n− i).

We created a Julia [BEKS17] module that uses Oscar.jl [23] to calculate examples and perform
this plausibility check. The module and Jupyter-notebooks with experiments are available at
https://github.com/anelanna/LocalHilbertBurch.jl.

The function sorted_celllist(n) of the module can calculate the (conjectural) cellular
decomposition for a given n. For all partitions of n it creates a Cell that has the following
properties:

• m – the partition,

• E – its associated monomial ideal,

• d – the vector of differences,

• U – the degree matrix,
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• hilb – the Hilbert function of the ideals in the cell,

• H – the canonical Hilbert-Burch matrix of the monomial ideal,

• M – the general canonical Hilbert-Burch matrix H +N ,

• N – the corresponding element in N<d(E),

• I – the maximal minors of M = H +N ,

• dim – the dimension of the cell,

• M_hom – the general canonical Hilbert-Burch matrix of a homogeneous ideal,

• N_hom – the corresponding matrix N , and

• dim_hom – the dimension of the homogeneous sub-cell cell.

The output of the function sorted_celllist(n) is a dictionary mapping an integer i to
a vector with the cells of dimension i. We use dictionaries rather than vectors, since Julia
indexes from 1 and we wanted to avoid confusion by having to subtract 1 in various places
to get to the correct entry. To avoid having to store a lot of matrices, we also introduced a
structure SmallCell that only has the properties m, hilb, dim and dim_hom. The function
sorted_celllist(n) can be called as sorted_celllist(SmallCell, n), then the output will
be a dictionary mapping i to a vector of SmallCells of dimension i. By recording the sizes of
the vectors in the dictionary, we obtain a dictionary of number of cells of dimension i. We can
understand it as the vector a.

The numbers of bounded partitions can be found in the On-Line Encyclopedia of Integer
Sequences, [Inc23], as (diagonals in) A008284, or relabeled, and thus serving our purposes a bit
better, as (diagonals in) A058398 (see https://oeis.org/A008284 and https://oeis.org/
A058398).

For n ≤ 50 we calculated all dimension vectors of our proposed cellular decomposition and
checked that they are the correct ones. We have included them for n ≤ 30 in Table 3.1.

Example 3.66 (Example 3.63 continued). We can use the connection between cellular decom-
positions and Betti numbers described above to calculate the Betti numbers of Hilbh(k[[x, y]])
for h a Hilbert function in the n = 6 case. We obtain the following Betti numbers:

bi(Hilb
(1,2,3)(k[[x, y]])) =

{
1, i = 0;

0, otherwise.

bi(Hilb
(1,2,2,1)(k[[x, y]])) =


1, i = 2, 8;

2, i = 4, 6;

0, otherwise.

bi(Hilb
(1,1,1,2,1)(k[[x, y]])) =

{
1, i = 6, 8;

0, otherwise.

bi(Hilb
(1,1,1,1,1,1)(k[[x, y]])) =

{
1, i = 8, 10;

0, otherwise.
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n the Betti numbers // dimensions vector
1 1
2 1, 1
3 1, 1, 1
4 1, 1, 2, 1
5 1, 1, 2, 2, 1
6 1, 1, 2, 3, 3, 1
7 1, 1, 2, 3, 4, 3, 1
8 1, 1, 2, 3, 5, 5, 4, 1
9 1, 1, 2, 3, 5, 6, 7, 4, 1
10 1, 1, 2, 3, 5, 7, 9, 8, 5, 1
11 1, 1, 2, 3, 5, 7, 10, 11, 10, 5, 1
12 1, 1, 2, 3, 5, 7, 11, 13, 15, 12, 6, 1
13 1, 1, 2, 3, 5, 7, 11, 14, 18, 18, 14, 6, 1
14 1, 1, 2, 3, 5, 7, 11, 15, 20, 23, 23, 16, 7, 1
15 1, 1, 2, 3, 5, 7, 11, 15, 21, 26, 30, 27, 19, 7, 1
16 1, 1, 2, 3, 5, 7, 11, 15, 22, 28, 35, 37, 34, 21, 8, 1
17 1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 38, 44, 47, 39, 24, 8, 1
18 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 40, 49, 58, 57, 47, 27, 9, 1
19 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 52, 65, 71, 70, 54, 30, 9, 1
20 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 54, 70, 82, 90, 84, 64, 33, 10, 1
21 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 73, 89, 105, 110, 101, 72, 37, 10, 1
22 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 75, 94, 116, 131, 136, 119, 84, 40, 11, 1
23 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 97, 123, 146, 164, 163, 141, 94, 44, 11, 1
24 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 99, 128, 157, 186, 201, 199, 164, 108, 48, 12, 1
25 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 131, 164, 201, 230, 248, 235, 192, 120, 52, 12, 1
26 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 133, 169, 212, 252, 288, 300, 282, 221, 136, 56, 13, 1
27 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 134, 172, 219, 267, 318, 352, 364, 331, 255, 150, 61, 13, 1
28 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 174, 224, 278, 340, 393, 434, 436, 391, 291, 169, 65, 14, 1
29 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 175, 227, 285, 355, 423, 488, 525, 522, 454, 333, 185, 70, 14, 1
30 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 229, 290, 366, 445, 530, 598, 638, 618, 532, 377, 206, 75, 15, 1

Table 3.1: The number of cells of dimension i in the cellular decomposition of Hilbn(k[[x, y]])
for n = 1, . . . , 30. As discussed before these are the Betti numbers of Hilbn(k[[x, y]]).

98



More generally, we can describe the Betti numbers of the subscheme Hilb(1,1,...,1)(k[[x, y]]) of
the punctual Hilbert scheme for any n. Note that this was also stated in [Göt90, Remark 2.2a]

Lemma 3.67. Set h = (1, . . . , 1) with
∑s

i=0 hi = n. Then Hilbh(k[[x, y]]) has only two non-
vanishing Betti numbers:

b2(n−2)(Hilb
h(k[[x, y]])) = b2(n−1)(Hilb

h(k[[x, y]])) = 1.

Proof. There are only two cells with this Hilbert function, namely L = (x, yn) and E = (xn, y).
The ideal L is the lex-segment ideal with this Hilbert function and its cell V(L) has dimension n−1.
By considering the reduced τ -enhanced standard basis of E we can verify that Conjecture 3.48
holds in this case or just directly show that dim(V(E)) = n− 2. So the cellular decomposition
has one cell of dimension n− 2 and one of dimension n− 1.

We study another example in more detail, and refer to the appendix for similar tables with
the cellular decompositions of Hilbn(k[[x, y]]) for n = 1, 2, 3, 4, 5, 8, 9, in Table 3.9 – Table 3.17.

Example 3.68. (A cellular decomposition of Hilb7(k[[x, y]])) Let us now consider the case
of Hilb7(k[[x, y]]). There are 15 cells corresponding to the 15 partitions of the number 7 and
five admissible Hilbert functions (1, 2, 3, 1), (1, 2, 2, 2), (1, 2, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1, 1). By
Conjecture 3.48, we get the following parametrizations of the corresponding cells. By comparing
to reduced standard bases we checked that this is really a parametrization of the Gröbner cells.

• (1, 2, 3, 1): The four cells with this Hilbert function have dimensions zero to three. Hence
Hilb(1,2,3,1)(k[[x, y]]) has the following non-vanishing Betti numbers b0 = b2 = b4 = b6 = 1.

Notice that all ideals with this Hilbert function are homogeneous, so dim(V(E)) −
dim(Vhom(E)) = 0 for all E ∈ Hilbh(k[[x, y]]).

m M dimension

[1, 1, 2, 3]


y 0 0 0
−x 1 0 0
0 −x y 0
0 0 −x y
0 0 0 −x

 0

[2, 2, 3]


y2 0 0

−x+ c1y 1 0
0 −x y
0 0 −x

 1

[1, 3, 3]


y 0 0
−x y2 0
c1 −x+ c2y 1
0 0 −x

 2

[1, 2, 4]


y 0 0
−x y 0
0 −x y2

c1 c2 −x+ c3y

 3
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• (1, 2, 2, 2): The three cells with this Hilbert functions have dimensions two to four, so
Hilb(1,2,2,2)(k[[x, y]]) has the following non-zero Betti numbers b4 = b6 = b8 = 1. The
difference of dimension is dim(V(E))− dim(Vhom(E)) = 2.

m M dimension

[1, 2, 2, 2]


y 0 0 c1
−x y 0 c2
0 −x 1 0
0 0 −x 1
0 0 0 −x

 2

[1, 1, 1, 4]


y 0 c1 0
−x 1 0 0
0 −x 1 0
0 0 −x y3

0 0 0 −x+ c2y + c3y
2

 3

[3, 4]

 y3 0
−x+ c1y + c2y

2 y
c3y + c4y

2 −x

 4

• (1, 2, 2, 1, 1): This is the Hilbert function of four cells with dimensions three to five. The
non-vanishing Betti numbers of Hilb(1,2,2,1,1)(k[[x, y]]) are b6 = b10 = 1 and b8 = 2. The
difference of dimension in this stratum is dim(V(E))− dim(Vhom(E)) = 3.

m M dimension

[1, 1, 1, 2, 2]



y 0 c1 c2 c3
−x 1 0 0 0
0 −x 1 0 0
0 0 −x y 0
0 0 0 −x 1
0 0 0 0 −x

 3

[1, 1, 1, 1, 3]



y 0 c1 c2 c3
−x 1 0 0 0
0 −x 1 0 0
0 0 −x 1 0
0 0 0 −x y2

0 0 0 0 −x+ c4y

 4

[1, 1, 5]


y 0 0
−x 1 0
0 −x y4

c1 0 −x+ c2y + c3y
2 + c4y

3

 4

[2, 5]

 y2 0
−x+ c1y y3

c2 + c3y −x+ c4y + c5y
2

 5

• (1, 2, 1, 1, 1, 1): The non-vanishing Betti numbers ofHilb(1,2,1,1,1,1)(k[[x, y]]) are b8 = b10 = 1.
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The difference of dimensions in this stratum is dim(V(E))− dim(Vhom(E)) = 4.

m M dimension

[1, 1, 1, 1, 1, 2]



y 0 c1 c2 c3 c4
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x 1 0
0 0 0 0 −x y
0 0 0 0 0 −x


4

[1, 6]

 y 0
−x y5

c1 −x+ c2y + c3y
2 + c4y

3 + c5y
4

 5

• (1, 1, 1, 1, 1, 1, 1): The stratum Hilb(1,1,1,1,1,1,1)(k[[x, y]]) has two cells. They correspond to
the ideal (x7, y) and (x, y7) which is the maximal cell of this punctual Hilbert scheme.
The non-vanishing Betti numbers are b10 = b12 = 1, as expected by Lemma 3.67. The
difference of dimensions in this stratum is dim(V(E))− dim(Vhom(E)) = 5.

m M dimension

[1, 1, 1, 1, 1, 1, 1]



y 0 c1 c2 c3 c4 c5
−x 1 0 0 0 0 0
0 −x 1 0 0 0 0
0 0 −x 1 0 0 0
0 0 0 −x 1 0 0
0 0 0 0 −x 1 0
0 0 0 0 0 −x 1
0 0 0 0 0 0 −x


5

[7]

(
y7

−x+ c1y + c2y
2 + c3y

3 + c4y
4 + c5y

5 + c6y
6

)
6

The associated dimension vector of the punctual Hilbert scheme is a = (1, 1, 2, 3, 4, 3, 1).

We have seen in Examples 3.63 and 3.68 that for each stratum Hilbh(k[[x, y]]) of the punctual
Hilbert scheme Hilbn(k[[x, y]]) the difference of dimensions of V(E) and Vhom(E) is constant for
E ∈ Hilbh(k[[x, y]]). This is due to a result by Iarrobino:

Theorem 3.69. [Iar77, Theorem 2.11, Theorem 3.14] The stratum Hilbh(k[[x, y]]) is a locally
trivial bundle over Hilbhhom(k[[x, y]]) having fiber, an affine space, and a global section.

The Gröbner cells V(E) where E are the monomial ideals with Hilbert function h form a
cellular decomposition of Hilbh(k[[x, y]]), and the homogeneous sub-cells Vhom(E) form a cellular
decomposition of Hilbhhom(k[[x, y]]). By Lemma 3.46 the fibration restricts to V(E) → Vhom(E).

Since we also know the dimension of Vhom(E) by Lemma 3.46, we can check (at least in
examples) whether the difference dim(N<d(E))− dim(Vhom(E)) is constant for all E with the
same Hilbert function. If this is the case, it implies that dim(N<d(E)) = dim(V(E)). Using our
Julia module we have checked that for all strata Hilbh(k[[x, y]]) of Hilbn(k[[x, y]]) with n ≤ 50
these differences are constant providing strong evidence for Conjecture 3.48.
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3.7 Back to the polynomial ring: A surjection to the Gröbner cell

Another way to generalize the results by [CV08] and [Con11] is to keep the polynomial ring
P = k[x, y] but change the term ordering τ .

One application of parametrizations of Gröbner cells with other term orders could be to
study the intersection of two Gröbner cells with respect to different term orderings, i.e. to
parametrize all ideals I that have initial ideal E with respect to two different orderings, we do
this in section 3.9. Similar to the results in [Con11, Chapter 6], where the parametrization of
Gröbner cells with respect to deglex is used to parameterize homogeneous ideals in k[x, y, z],
one could use the parametrization of Gröbner cells with respect to other orders to study ideals
in k[x, y, z] that are homogeneous with respect to some non-standard grading.

Varying term orders is not a new idea: in [MR88] all possible initial ideals for a given ideal I
are studied. The cones in the Gröbner fan of an ideal describe the term orders for which the
initial ideal stays the same, see also [Stu96] for an introduction to the topic. In [AS05] the
authors start from a different perspective. They define a graph that has all monomial ideal as
vertices, and two vertices corresponding to monomial ideals E and E′ are joined by an edge
whenever there exists an ideal I such that E and E′ are the only possible occurring initial ideals
with respect to any given term order. These ideals I are called edge providing ideals. Inside the
paper they define the Schubert scheme Ωc(E) of E in direction of c and then the edge providing
ideals are parametrized by the intersection Ωc(E)∩Ω−c(E

′). The Schubert schemes in direction
c are affine schemes, but not affine spaces as our Gröbner cells. The parametrization is done by
considering reduced Gröbner bases.

For a general term order τ on k[x, y] we want to parametrize the set Vτ (E) of all ideals with
leading term ideal E with respect to τ . Remember that by [Bia73, Theorem 4.4] the Vτ (E) are
affine spaces. A term order defines an action of k∗ on the Hilbert scheme of points Hilbn(k[x, y]).
The fixed points of the action are the monomial ideals, and thence isolated, and Hilbn(k[x, y])
is smooth. The sets of ideals specializing to a given fixed point E, are exactly the ideals in
Vτ (E). As before H will denote the canonical Hilbert-Burch matrix of E. We want to find a set
of matrices Nτ (E) ⊂ k[y]t+1×t, such that

Φτ,E : Nτ (E) → Vτ (E)
N 7→ It(H +N)

is a parametrization.
First we recall what term orders on k[x, y] look like. Given a weight vector ω = (a, b) ∈ Z2

≥0,
we define ≤ω on k[x, y] as

xαyβ ≤ω x
α′
yβ

′ if and only if degω(x
αyβ) = aα+ bβ ≤ degω(x

α′
yβ

′
) = aα′ + bβ′,

where degω(M) denotes the weighted degree of the monomial M . The relation given by ≤ω

does not define a term order on k[x, y], since different monomials will have the same weighted
degree. On a finite set of monomials all different term orders can be represented by an ≤ω for a
suitable ω, see for example [Stu96, Proposition 1.11]. Notice that ω defines the k∗-action that
was mentioned in the previous paragraph. Since we do not want to make any restrictions to
guarantee that ≤ω is a term order, we let τ := τω be the term order on k[x, y] where

M <τ M
′ if and only if degω(M) < degω(M

′) or
degω(M) = degω(M

′) and M <lex M
′.
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The facts that in Hilbn(k[x, y]) only finitely many monomials play a role, and on a finite set of
monomials all term orders can be represented by a ≤ω for a suitable ω ensure that by considering
the Gröbner cells with respect to these τ we really describe Gröbner cells with respect to all
possible term orders. Whenever b = 0, then the term order induced by ω is lex. Since the
lexicographic term order is also induced by ω = (a, b) with a ≫ b > 0, we will assume from
now on that b ̸= 0. We will allow a = 0. In that case we obtain the lexicographic order with
y > x which we denote as lexy>x.

Definition 3.70. For a zero-dimensional monomial ideal E = (xt, xt−1ym1 , . . . , xymt−1 , ymt) ⊂
k[x, y] we define W (E) = (wi,j) the weighted degree matrix of E by

wi,j := mj −mi−1 +
a

b
(i− j).

Different to the usual degree matrix U(E) that only has integer values, the weighted degree
matrix W (E) can have non-integer entries.

We define the subset Nτ (E) ⊂ k[y]t+1×t as the set of matrices N = (ni,j) whose non-zero
entries satisfy the following degree bounds:

deg(ni,j)

{
< wi,j i ≤ j

≤ wi,j i > j,
(3.6)

or the equivalent version with integer values:

deg(ni,j) ≤

{
⌈wi,j⌉ − 1 i ≤ j

⌊wi,j⌋ i > j.
(3.7)

While condition 3.7 looks better for specific values of a and b, condition 3.6 is sometimes
easier to work with, so in some cases we will use one and in other cases the other description.

Note that whenever wi,j /∈ Z all the degree bounds become the same, i.e.

deg(ni,j) < wi,j ⇐⇒ deg(ni,j) ≤ wi,j ⇐⇒ deg(ni,j) ≤ ⌈wi,j⌉ − 1 = ⌊wi,j⌋.

Remember that wi,i = di ∈ Z.

Theorem 3.71. Let E = (xt, xt−1ym1 , . . . , ymt) ⊂ k[x, y] be a monomial ideal with canonical
Hilbert-Burch matrix H and Nτ (E) be the set of matrices from Definition 3.70. Then the map

Φτ,E : Nτ (E) → Vτ (E)
N 7→ It(H +N)

is surjective.
In particular, for N ∈ Nτ (E) the t-minors of H +N form a Gröbner basis with respect to τ .

We will prove this theorem in two steps, well-definedness in Lemma 3.72 and surjectivity in
Lemma 3.73.

Lemma 3.72. The map Φτ,E is well defined.

Proof. Let I := It(H + N) be the ideal of maximal minors of H + N . We will show that
Ltτ (I) = E by first showing that the leading terms of the minors are the correct ones and then
showing that they form a τ -Gröbner basis.
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(i) Let fi be the signed i-th minor of H + N , i.e. fi = (−1)i det([H + N ]i+1) where [A]j
denotes the matrix obtained of A by deleting its j-th row. By construction of the weighted
degree matrix W (E) the minors are homogeneous with respect to the weight vector ω if and
only if the entries of N have exactly degree wi,j = mj −mi−1 +

a
b (i− j). Thus, if we have

a summand of ni,j of lower degree, the resulting summand of the minor will have a smaller
weighted degree as well. The cases where equality occurs are the most interesting, since
Ltτ (fi) = Ltτ (inω(fi)). So let M := xαyβ be a monomial in the support of fi, then we
have to show that M ≤τ x

t−iymi . If M /∈ Supp(inω(fi)), then degω(M) < degω(x
t−iymi)

and thence M <τ x
t−iymi .

So let M = xαyβ ∈ Supp(inω(fi)), then M <τ x
t−iymi if and only if α < t− i, and this is

guaranteed by requiring that deg(ni,j) ≤ ⌈wi,j⌉ − 1 for i ≤ j.

(ii) We show that the set {f0, . . . , ft} of signed minors of H +N forms a Gröbner basis of I.

The argument is the same as in the proof of well-definedness in [Con11, Theorem 3.1]
and reproduced here. Since the syzygy-module of E is generated by the columns of
its Hilbert-Burch matrix H, we only have to consider the S-polynomials of the form
ydifi−1 − xfi for i = 1, . . . , t and show that they can be written as

∑t
j=0Qjfj with

Ltτ (Qjfj) ≤τ Ltτ (y
difi−1 − xfi), see [KR00, Remark 2.5.6].

By construction, we know that

ydifi−1 − xfi +
t∑

j=0

nj+1,ifj = 0

The ni,j are polynomials in k[y] and all the leading terms of the fj are products of different
powers of x with a monomial in y, so the same applies for the leading terms of the ni,jfj and
they cannot cancel each other. Thence maxj{Ltτ (ni,jfj) | ni,j ̸= 0} = Ltτ (y

difi−1 − xfi)
and {f0, . . . , ft} forms a Gröbner basis of I. So the map Φτ,E is well-defined.

Lemma 3.73. The map Φτ,E is surjective.

Proof. Let I be an ideal in Vτ (E), that is Ltτ (I) = E. So there exists a Gröbner basis
{f0, . . . , ft} ⊂ I such that Ltτ (fi) = xt−iymi . We can additionally assume that no monomial in
the support of f0, . . . , ft is divisible by xt, except for Ltτ (f0). Then no monomial in the support
of Si := ydifi−1 − xfi is divisible by xt+1. Since Si ∈ I and {f0, . . . , ft} forms a Gröbner basis
the reduction via the Buchberger algorithm will yield zero. To see that the polynomials obtained
by the Buchberger algorithm satisfy the conditions we will study the reduction procedure in
more detail.

The reduction proceeds in the following way: We determine Ltτ (Si) = xαyβ . By assumption
α < t + 1 and find the minimal j such that Ltτ (fj) = xt−jymj divides Ltτ (Si). Then we set
Q = Ltτ (Si)

Ltτ (fj)
. Since we chose the minimal j, Q = yβ−mj . We continue the process with Si −Qfj .

This polynomial has lower degree and no monomial in its support is divisible by xt+1, so we can
apply the same argument. Since Si ∈ I and {f0, . . . , ft} is a Gröbner basis we will reach 0 after
a finite number of steps. The polynomial nj+1,i is the sum of the different Q from the steps
where the initial term was xt−jy•, so in particular, it holds nj+1,i ∈ k[y].
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It remains to show the degree condition. Since

Ltτ (Si) = xt−jyβ <τ x
t−i+1ymi = Ltτ (y

difi−1) = Ltτ (xfi),

it holds that degω(Si) = a(t− j) + bβ ≤ a(t− i+ 1) + bmi. This yields β ≤ a
b (j − i+ 1) +mi

and thus

deg(nj+1,i) = deg(yβ−mj ) = β −mj ≤ mi −mj −
a

b
(j + 1− i) = wj+1,i.

But since we have that Ltτ (Si) is strictly smaller than xt−i+1ymi equality can only happen
when t− j < t− i+ 1 and that is the case for i ≤ j.

Renaming the indices, we obtain the desired degree bounds for nk,l:

deg(nk,l)

{
< wk,l k ≤ l

≤ wk,l k > l
.

As in Lemma 3.23 the proof of surjectivity gives an algorithm to construct the matrix N from
a given τ -Gröbner basis {f0, f1, . . . , ft}, where Ltτ (fi) = xt−iymi and no term in the support of
the fi is divisible by xt except for Ltτ (f0).

Example 3.74. Let us consider m = (2, 3, 5, 7). The associated monomial ideal is E =
(x4, x3y2, x2y3, xy5, y7) with canonical Hilbert-Burch matrix

H =


y2 0 0 0
−x y 0 0
0 −x y2 0
0 0 −x y2

0 0 0 −x

 .

Let τ be the term order induced by ω = (3, 2) and I ∈ Vτ (E) be the following ideal

I = (x4−x2y3−2x2y2, x3y2−xy5−2xy4, x2y3, xy5, y7+2x3y+2xy4+x3−3xy3−2xy2).

The given generators of I form a Gröbner basis with respect to τ with Ltτ (fi) = x4−iymi

and no monomial in the support of the fi is divisible by x4 for i = 1, 2, 3, 4. By the procedure
described in the proof of Lemma 3.73 we obtain the following preimage of I under the map
Φτ,E :

N =


0 0 0 2y + 1
0 0 0 0
0 0 0 4y + 2
0 y + 2 0 0
0 0 0 0

 ∈ Nτ (E).

The degrees of the non-zero entries of N are

• deg(n1,4) = 1 < w1,4 = m4 −m0 +
3
2(1− 4) = 5

2 ,

• deg(n3,4) = 1 < w3,4 = m4 −m2 +
3
2(3− 4) = 3

2 ,
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• deg(n4,2) = 1 ≤ w4,2 = m2 −m3 +
3
2(4− 2) = 1.

All of them satisfy the degree bounds of W (3, 2) from Equation 3.6 and Equation 3.7. To not
overload the notation we just write wi,j for the entries of W (a, b) whenever the corresponding
(a, b) is clear from context.

The given generators of I do not form a Gröbner basis with respect to the term order induced
by (1, 1) – the degreelexicographic order deglex. We can see this already by looking at the
degrees of the non-zero entries of N and comparing them to w1,4 = u1,4 = 4, w3,4 = u3,4 = 3
and w4,2 = u4,2 = 0. It holds that deg(n4,2) = 1 ̸≤ u4,2 = 0. Indeed, the leading terms of the τ -
Gröbner basis {f0, . . . , f4} are not the right ones with respect to deglex: Ltdeglex(f0) = x2y3 ̸= x4

and Ltdeglex(f1) = xy5 ̸= x3y2. We can reduce f0 by f2, and f1 with f3 and obtain a Gröbner
basis of I with respect to deglex:

{x4 − 2x2y2, x3y2 − 2xy4, x2y3, xy5, y7 + 2x3y + 2xy4 + x3 − 3xy3 − 2xy2}.

Those generators give another preimage of I under Φτ,E :

Ñ =


0 0 0 2y + 1
0 0 0 0
0 0 0 2y + 1
0 2 0 0
0 0 0 0

 ∈ Nτ (E).

Different to the preimage N = Φ−1
τ,E(I) /∈ Ndeglex(E), the preimage Ñ also satisfies the degree

bound deg(ñ4,2) ≤ u4,2, and consequently Ñ ∈ Ndeglex(E). In the following section – section 3.8
– we will discuss a procedure how to obtain Ñ from N without considering the associated Gröbner
basis.

Let us consider I with respect to term orders induced by some other (a, b). In the following
table, the matrixW (a, b) and the (integer) degree bounds that are induced by it (see Equation 3.7)
can be found for different values of (a, b). For the term orders τ induced by the first four values
of (a, b) x >τ y. The matrix W for (1, 1) is just the usual degree matrix U . For (1, 18) and
(1, 100) the degree bounds induced by W (a, b) are equal. This is in compliance with the fact
that both values of (a, b) induce lexy>x – the lexicographic order with x being smaller than y –
on Hilb17(k[x, y]).
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(a, b) W (a, b) degree bounds induced by W (a, b)

(100, 1)


2 −97 −195 −293

100 1 −97 −195
199 100 2 −96
297 198 100 2
395 296 198 100




1 −98 −196 −294
100 0 −98 −196
199 100 1 −97
297 198 100 1
395 296 198 100



(17, 1)


2 −14 −29 −44
17 1 −14 −29
33 17 2 −13
48 32 17 2
63 47 32 17




1 −15 −30 −45
17 0 −15 −30
33 17 1 −14
48 32 17 1
63 47 32 17



(3, 2)


2 3//2 2 5//2

3//2 1 3//2 2
2 3//2 2 5//2

3//2 1 3//2 2
1 1//2 1 3//2




1 1 1 2
1 0 1 1
2 1 1 2
1 1 1 1
1 0 1 1



(1, 1)


2 2 3 4
1 1 2 3
1 1 2 3
0 0 1 2
−1 −1 0 1




1 1 2 3
1 0 1 2
1 1 1 2
0 0 1 1
−1 −1 0 1



(5, 8)


2 19//8 15//4 41//8

5//8 1 19//8 15//4
1//4 5//8 2 27//8
−9//8 −3//4 5//8 2
−5//2 −17//8 −3//4 5//8




1 2 3 5
0 0 2 3
0 0 1 3
−2 −1 0 1
−3 −3 −1 0



(1, 18)


2 53//18 44//9 41//6

1//18 1 53//18 44//9
−8//9 1//18 2 71//18
−17//6 −17//9 1//18 2
−43//9 −23//6 −17//9 1//18




1 2 4 6
0 0 2 4
−1 0 1 3
−3 −2 0 1
−5 −4 −2 0



(1, 100)


2 299//100 249//50 697//100

1//100 1 299//100 249//50
−49//50 1//100 2 399//100

−297//100 −99//50 1//100 2
−124//25 −397//100 −99//50 1//100




1 2 4 6
0 0 2 4
−1 0 1 3
−3 −2 0 1
−5 −4 −2 0


Comparing the degrees of the entries of N to the ones in the tabular shows that I is in the

Gröbner cell of E for the term order induced by (3, 2). For term orders τ induced by (100, 1)
and (17, 1) the entries n1,4 and n3,4 of degree 1 lead to N /∈ Nτ (E) and indeed I /∈ Vτ (E). In
both cases the leading term ideal is Ltτ (I) = (x3, x2y3, xy5, y9) = E′ with associated partition
m′ = (3, 5, 9). The matrix describing the syzygies of the reduced Gröbner basis of I with respect
to those orders is

N ′ =


0 0 0
0 0 0

−y + 2 0 0
2y2 − y 0 0

 ,

with deg(n′3,1) = 1 and deg(n′4,1) = 2. The associated degree bounds for those entries are
w3,1 ∈ {198, 32} and w4,1 ∈ {294, 45}, which are obviously satisfied, thus N ′ ∈ Nτ (E

′).
With respect to the order by (5, 8), the leading term ideal is again E′′ = (x6, x4y, x2y2, xy4, y7)

with associated partition m′′ = (1, 1, 2, 2, 4, 7), reduced Gröbner basis

{x6, x4y, x2y2 − 1/2x4, xy4 − 1/4x5, y7 + 1/2x5 − 3xy3 + 2x3y − 2xy2 + x3}
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and

N ′′ =



0 0 −1
2 0 −1

4
1
2

0 0 0 0 0 1
4y

2

0 0 0 0 1
2y

1
2

0 0 0 0 0 0
0 0 0 0 0 −3y − 2
0 0 0 0 0 0
0 0 0 0 0 0


∈ Nτ (E).

The same E′′, m′′ and N ′′ are obtained also for (1, 18) and (1, 100).

3.8 Towards a parametrization

For all I ∈ Vτ (E) Theorem 3.71 already gives a matrix N ∈ Nτ (E), but this matrix is not
unique – we have seen this in Example 3.74 where we found the preimages N and Ñ of I under
Φτ,E , for τ being the term order induced by (3, 2). As we have discussed in Remark 3.28,
the matrix we obtain when we start with a given Gröbner basis {f0, . . . , ft} is unique. That
means that the map Φτ,E : Nτ (E) → k[x, y]t+1 defined by N 7→ (f0, . . . , ft), where the fi are
the signed maximal minors of H +N , is injective. But as a system of generators of an ideal,
and also its Gröbner basis, is not unique, we do not obtain injectivity when we consider the
map Φτ,E : Nτ (E) → Vτ (E).

In the proof of Proposition 3.29 we already encountered the reduction moves Redi,j that were
defined in [Con11]. For a monomial ideal E with canonical Hilbert-Burch matrix E, and a
matrix N ∈ k[y](t+1)×t representing the syzygies of I ∈ Vτ (E), it holds that the maximal minors
of H +N and H + Redi,j(N) are different, but the ideals of maximal minors will be equal.

Definition 3.75 (Reduction moves Redi,j). Let N ∈ Nτ (E), then we define the polynomial
qi,j ∈ k[y] in the following way:

ni,j(y) =

{
(ydi + ni,i(y)) · qi,j(y) + ri,j(y) i ≤ j

(ydj + nj,j(y)) · qi,j(y) + ri,j(y) i > j,

with deg(ri,j) < di respectively deg(ri,j) < dj .
Then for i < j the reduction move Redi,j is defined as follows: (M = H+N , M ′ is the matrix

obtained after the first part of the reduction move and M ′′ is the matrix obtained in the end.)

• Add the i-th column of M multiplied with −qi,j to the j-th column of M .

• Add the j + 1-th row of M ′ multiplied with qi,j to the i+ 1-th row of M ′.

The reduction move for i > j is defined similarly:

• Add the j-th row of M multiplied with −qi,j to the i-th row of M .

• Add the i− 1-th column of M ′ multiplied with qi,j to the j − 1-th column of M ′.

If j = 1 only do the first part of this move.
We define Redi,j(N) as the difference of matrix obtained at the end and H, Redi,j(N) :=

M ′′ −H. Note that Redi,j(N) ∈ k[y]t+1×t.

108



Example 3.76. In the following example, we will show how to obtain Ñ from N by a series of
reduction moves.

Remember that m = (2, 3, 5, 7), d = (2, 1, 2, 2),

N =


0 0 0 2y + 1
0 0 0 0
0 0 0 4y + 2
0 y + 2 0 0
0 0 0 0

 and H +N =


y2 0 0 2y + 1
−x y 0 0
0 −x y2 4y + 2
0 y + 2 −x y2

0 0 0 −x

 .

The entry (4, 2) of the matrix N satisfies 1 = deg(n4,2) ≥ d2 = 1. We perform the reduction
move Red4,2 on N by subtracting the second row of H + N from the fourth row, and then
adding the third column from the first column.

Step 1:


y2 0 0 2y + 1
−x y 0 0
0 −x y2 4y + 2
x 2 −x y2

0 0 0 −x

 Step 2:


y2 0 0 2y + 1
−x y 0 0
y2 −x y2 4y + 2
0 2 −x y2

0 0 0 −x

 .

Now deg(Red4,2(N)3,1) = 2 ≥ d1, and we can perform the (3, 1) reduction move on Red4,2(N),
i.e. subtract the first row of H + Red4,2(N) from the third row, and obtain

Red3,1(Red4,2(N)) = Ñ .

We will show now that ifN ∈ Nτ (E), also Redi,j(N) ∈ Nτ (E). Therefore, a matrixN ∈ Nτ (E)
and a matrix that is obtained from N by performing a (sequence of) reduction move(s) are a
source of non-injectivity of Φτ,E : Nτ (E) → Vτ (E).

Lemma 3.77. If we start with a matrix N ∈ Nτ (E), i.e. a matrix satisfying the degree
conditions Equation 3.6, Ñ := Redi,j(N) will also satisfy the degree conditions:

deg(ñk,l)

{
< wk,l k ≤ l

≤ wk,l k > l

Proof. Let Ñ := Redi,j(N). Notice that wi,i = mi −mi−1 +
a
b (i − i) = di, thus the diagonal

entry of N satisfies deg(ni,i) < di already. So there are the two remaining cases:

• (i < j):

Remember that ni,j = qi,j(y
di + ni,i) + ri,j . From the degree bound deg(ni,j) < wi,j , we

obtain the following degree bound for qi,j

deg(qi,j) < wi,j − di = wi+1,j −
a

b
.

For the following calculations this observation will be useful:

wi+1,j −
a

b
+ wk,l =

{
wk,j l = i

wi+1,l k = j + 1.
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Here are the calculations:

wi+1,j − a
b + wk,i = mj −mi +

a
b ((i+ 1)− j)− a

b +mi −mk−1 +
a
b (k − i)

= mj −mk−1 +
a
b (k − j) = wk,j

wi+1,j − a
b + wj+1,l = mj −mi +

a
b ((i+ 1)− j)− a

b +ml −mj +
a
b ((j + 1)− l)

= ml −mi +
a
b ((i+ 1)− l) = wi+1,l

We will now check the degree bounds for the entries of Ñ . Most of the entries of Ñ are
just the entries of N , only the once in j-th column and in the i+ 1-th row are changed.
These entries of Ñ are just the sum of an entry of N with a product of qi,j and a second
factor. For the degree bounds we will only have to check the new summand. Since qi,j
satisfies a strict degree bound, we can be a bit less careful with the degree bounds of the
second factor in the product and will just always assume the non-strict inequality, since in
any case we obtain a strict inequality for the product.

(i) k = i; l = j:

ñk,l = ri,j satisfies the degree bounds by construction.

(ii) k ̸= i, i+ 1; l = j:

ñk,l = nk,j − qi,jnk,i

deg(qi,jnk,i) < wi+1,j − a
b + deg(nk,i)

≤ wi+1,j − a
b + wk,i = wk,j

(iii) k = i+ 1; l = j + 1:

ñk,l = ni+1,j+1 + qi,j(y
dj+1 + nj+1,j+1)

deg(qi,j(y
dj+1 + nj+1,j+1)) < wi+1,j − a

b + deg(ydj+1)
≤ wi+1,j − a

b + wj+1,j+1 = wi+1,j+1

(iv) k = i+ 1; l ̸= j, j + 1:

ñk,l = ni+1,l + qi,jnj+1,l

deg(qi,jnj+1,l) < wi+1,j − a
b + deg(nj+1,l)

≤ wi+1,j − a
b + wj+1,l = wi+1,l

(v) k = i+ 1; l = j:

ñk,l = ni+1,j − qi,jni+1,i + qi,jñj+1,j

deg(qi,jni+1,i) < wi+1,j − a
b + deg(ni+1,i)

≤ wi+1,j − a
b + wi+1,i = wi+1,j

deg(qi,jñj+1,j) < wi+1,j − a
b + deg(nj+1,j)

≤ wi+1,j − a
b + wj+1,j = wi+1,j

The matrix Ñ satisfies all necessary degree bounds.
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• (i > j): Remember that ni,j = qi,j(y
dj+nj,j)+ri,j . From the degree bound deg(ni,j) ≤ wi,j ,

we get the following degree bound for qi,j :

deg(qi,j) ≤ wi,j − dj = wi,j−1 −
a

b
.

For the following calculations, this observation will be useful.

wi,j−1 −
a

b
+ wk,l =

{
wi,l k = j

wk,j−1 l = i− 1

Here are the calculations:

wi,j−1 − a
b + wj,l = mj−1 −mi−1 +

a
b (i− (j − 1)− 1) +ml −mj−1 +

a
b (j − l)

= ml −mi−1 +
a
b (i− l) = wi,l

wi,j−1 − a
b + wk,i−1 = mj−1 −mi−1 +

a
b (i− (j − 1)− 1) +mi−1 −mk−1 +

a
b (k − (i− 1))

= mj−1 −mk−1 +
a
b (k − (j − 1)) = wk,j−1

As in the previous case, we have to check the degree bounds for the new summand. Since
in this case the degree bound that qi,j satisfies is non-strict, we have to be a bit more
careful what degree bounds the second factor satisfies.

(i) k = i; l = j:

ñk,l = ri,j satisfies the degree bounds by construction.

(ii) k = i; l ̸= j, j − 1:

ñk,l = ni,l − qi,jnj,l

deg(qi,jnj,l) ≤ wi,j−1 − a
b + deg(nj,l){

< wi,j−1 − a
b + wj,l = wi,l j ≤ l

≤ wi,j−1 − a
b + wj,l = wi,l j > l

< wi,j−1 − a
b + wj,l = wi,l i ≤ l

< wi,j−1 − a
b + wj,l = wi,l j ≤ l < i

≤ wi,j−1 − a
b + wj,l = wi,l i > j > l

For i ≤ l, we get the strict inequality. For i > l the non-strict inequality is enough.
But for some of the entries we even get the strict one.

(iii) k = i− 1; l = j − 1:

nñk,l =i−1,j−1 +qi,j(y
di−1 + ni−1,i−1)

deg(qi,j(y
di−1 + ni−1,i−1)) ≤ wi,j−1 − a

b + deg(ydi−1)
≤ wi,j−1 − a

b + wi−1,i−1 = wi−1,j−1

Since i− 1 > j − 1 this (non-strict) inequality is the one we hoped for.

111



(iv) k ̸= i, i− 1, l = j − 1:

ñk,l = nk,j−1 + qi,jnk,i−1

deg(qi,jnk,i−1) ≤ wi,j−1 − a
b + deg(nk,i−1){

< wi,j−1 − a
b + wk,i−1 = wk,j−1 k ≤ i− 1

≤ wi,j−1 − a
b + wk,i−1 = wk,j−1 k > i− 1

< wi,j−1 − a
b + wk,i−1 = wk,j−1 k ≤ j − 1

< wi,j−1 − a
b + wk,i−1 = wk,j−1 j ≤ k ≤ i− 1

≤ wi,j−1 − a
b + wk,i−1 = wk,j−1 k > i− 1

For k ≤ j − 1 we get the strict inequality that we need. For the cases k > j − 1 we
only need the non-strict inequality, but in some of the cases we even get the strict
one.

(v) k = i, l = j − 1:

ñk,l = ni,j−1 − qi,jnj,j−1 + qi,jñi,i−1

deg(qi,jnj,j−1) ≤ wi,j−1 − a
b + deg(nj,j−1)

≤ wi,j−1 − a
b + wj,j−1 = wi,j−1

deg(qi,jñi,i−1) ≤ wi,j−1 − a
b + deg(ni,i−1)

≤ wi,j−1 − a
b + wi,i−1 = wi,j−1

Since i > j > j − 1 this is exactly the inequality we need.

The matrix Ñ satisfies all necessary degree bounds.

As in Definition 3.47, (k[y]<d)
(t+1)×t ⊂ k[y](t+1)×t will denote the subset of matrices N where

the entries satisfy the following degree conditions:

deg(ni,j) <

{
di, i ≤ j;

dj , i > j

Definition 3.78. We define the set Nτ (E)<d := Nτ (E) ∩ k[y]<d.

We state the following conjecture:

Conjecture 3.79. Let E = (xt, xt−1ym1 , . . . , ymt) be a monomial ideal and τ be a term order
on k[x, y]. Then restriction of Φτ,E from Theorem 3.71 to Nτ (E)<d

Φτ,E : Nτ (E)<d → Vτ (E)

is a bijection.

It is clear from the construction that it is not possible to perform further reduction moves on
matrices from Nτ (E)<d. This does not necessarily proof injectivity of the map, but it eliminates
one obvious source of non-injectivity. However, it is not clear that the map is even surjective,
as we do not know if it is possible to perform a series of reduction moves on a given matrix
N ∈ Nτ (E) until it reaches the desired form.
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For ω = (1, 1) the weighted degree matrix W is just the usual degree matrix U and the set
of matrices from Conjecture 3.79 is the set of matrices of [Con11, Theorem 3.1] and thence
Conjecture 3.79 holds when E is lex-segment. Whenever ω = (a, b) with a ≫ b the resulting
term order will be equivalent to the lexicographic term order. Then the structure of W (a, b) is
the following:

wi,j =


di i = j

mj −mi−1 +
a
b (i− j) < 0 i < j

mj −mi−1 +
a
b (i− j) ≫ 0 i > j

So for N ∈ Nτ (E)<d the entries are ni,j = 0 for i < j, and for i ≥ j they satisfy deg(ni,j) ≤
dj − 1. This is exactly the description by [CV08, Definition 3.2], so by [CV08, Theorem 3.3] the
conjecture also holds for lex.

Remark 3.80. We easily see that Conjecture 3.79 holds for the trivial case of E = (x, yn).
Well-definedness of the map is clear, since Nτ (E)<d ⊂ Nτ (E). By surjectivity of Theorem 3.71,
we obtain for all I ∈ Vτ (E), a matrix N ∈ Nτ (E). The additional degree condition of Nτ (E)<d

is trivially satisfied for the diagonal entry n1,1. And after at most one reduction move n2,1 also
satisfies the additional degree bound deg(n2,1) < d1.

Injectivity is easily shown, too: Suppose there exist N,N ′ ∈ Nτ (E)<d with It(H + N) =
It(H +N ′). Then we denote the minors of H +N and H +N ′ as f0, f1 and f ′0, f ′1 respectively.
f ′0 ∈ (f0, f1), so f ′0 − f0 = (x − n′2,1) − (x − n2,1) = n2,1 − n′2,1 ∈ I. But the difference is
a polynomial in y with all terms of degree less than d1 = n, so unless the difference is zero,
f ′0 − f0 /∈ I. The same argument can be applied for f ′1 − f1 = (yn + n′1,1) − (yn + n1,1). So
N = N ′, and the map is injective.

A strategy to prove surjectivity of Nτ (E)<d → Vτ (E) of Conjecture 3.79 for general E could
be a similar one as in [Con11], by induction on t. Then E = (x, yn) is the base case.

Example 3.81. Continuing Example 3.74, we describe different Nτ (E)<d as in Definition 3.78
for E = (x4, x3y2, x2y3, xy5, y7) ∈ Hilb17(k[x, y]). The corresponding partition of 17 is m =
(2, 3, 5, 7) with vector of differences d = (2, 1, 2, 2).
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(a, b) M = H +N with N ∈ Nτ (E) degree bounds by W

(100, 1)


y2 + yc2 + c1 0 0 0
−x+ yc4 + c3 y + c5 0 0

yc7 + c6 −x+ c8 y2 + yc10 + c9 0
yc12 + c11 c13 −x+ yc15 + c14 y2 + yc17 + c16
yc19 + c18 c20 yc22 + c21 −x+ yc24 + c23




1 −98 −196 −294
100 0 −98 −196
199 100 1 −97
297 198 100 1
395 296 198 100



(17, 1)


y2 + yc2 + c1 0 0 0
−x+ yc4 + c3 y + c5 0 0

yc7 + c6 −x+ c8 y2 + yc10 + c9 0
yc12 + c11 c13 −x+ yc15 + c14 y2 + yc17 + c16
yc19 + c18 c20 yc22 + c21 −x+ yc24 + c23




1 −15 −30 −45
17 0 −15 −30
33 17 1 −14
48 32 17 1
63 47 32 17



(3, 2)


y2 + yc2 + c1 yc4 + c3 yc6 + c5 yc8 + c7
−x+ yc10 + c9 y + c11 c12 c13

yc15 + c14 −x+ c16 y2 + yc18 + c17 yc20 + c19
yc22 + c21 c23 −x+ yc25 + c24 y2 + yc27 + c26
yc29 + c28 c30 yc32 + c31 −x+ yc34 + c33




1 1 1 2
1 0 1 1
2 1 1 2
1 1 1 1
1 0 1 1



(1, 1)


y2 + yc2 + c1 yc4 + c3 yc6 + c5 yc8 + c7
−x+ yc10 + c9 y + c11 c12 c13

yc15 + c14 −x+ c16 y2 + yc18 + c17 yc20 + c19
c21 c22 −x+ yc24 + c23 y2 + yc26 + c25
0 0 c27 −x+ yc29 + c28




1 1 2 3
1 0 1 2
1 1 1 2
0 0 1 1
−1 −1 0 1



(5, 8)


y2 + yc2 + c1 yc4 + c3 yc6 + c5 yc8 + c7

−x+ c9 y + c10 c11 c12
c13 −x+ c14 y2 + yc16 + c15 yc18 + c17
0 0 −x+ c19 y2 + yc21 + c20
0 0 0 −x+ c22




1 2 3 5
0 0 2 3
0 0 1 3
−2 −1 0 1
−3 −3 −1 0



(1, 18)


y2 + yc2 + c1 yc4 + c3 yc6 + c5 yc8 + c7

−x+ c9 y + c10 c11 c12
0 −x+ c13 y2 + yc15 + c14 yc17 + c16
0 0 −x+ c18 y2 + yc20 + c19
0 0 0 −x+ c21




1 2 4 6
0 0 2 4
−1 0 1 3
−3 −2 0 1
−5 −4 −2 0



(1, 100)


y2 + yc2 + c1 yc4 + c3 yc6 + c5 yc8 + c7

−x+ c9 y + c10 c11 c12
0 −x+ c13 y2 + yc15 + c14 yc17 + c16
0 0 −x+ c18 y2 + yc20 + c19
0 0 0 −x+ c21




1 2 4 6
0 0 2 4
−1 0 1 3
−3 −2 0 1
−5 −4 −2 0



We see that (100, 1) and (17, 1) give the same sets Nτ (E)<d. This is clear, since both induce
lexx>y on Hilb17(k[x, y]). They agree with the description of the Gröbner cell with respect to
the lexicographic order given by [CV08], as already elaborated for the general case above. The
dimension of Nτ (E)<d in both cases is 24 = 17 + 7 = n+mt.

For the term orders induced by (3, 2), (1, 1), (5, 8) and (1, 18), we used Singular to
confirm that Φτ,E : Nτ (E)<d → Vτ (E) is surjective. We created a general N ∈ Nτ (E) and
performed series of reduction moves to finally obtain an N ∈ Nτ (E)<d. The number of reduction
moves needed was 9, 8, 11 and 12, respectively.

We have already see in Example 3.74 that (1, 18) and (1, 100) both induce lexy>x on
Hilb17(k[x, y]) and the degree bounds induced by W as in Equation 3.7 agree. Thus also the
sets Nτ (E)<d are equal. They have dimension 21 = 17 + 4 = n+ t.

For the term orders by (1, 1), and (5, 8) the dimensions of Nτ (E)<d are 29 and 21, for (3, 2)
the dimension is 34 = 2n. If Φτ,E : Nτ (E)<d → Vτ (E) is really a parametrization, then it is
the (unique) cell of maximal dimension. And a general ideal of Hilb17(k[x, y]) will have E as
leading term ideal with respect to τ (at least whenever char(k) = 0). Computer experiments
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with the software Singular suggest that this is true.

3.8.1 Lexicographic order with y > x

In this subsection we study the term order lexy>x which corresponds to (a, b) = (0, 1) or a≪ b.
We start with a more detailed description of Vlexy>x(E)<d.

Proposition 3.82. Let E = (xt, xt−1ym1 , . . . , ymt) be a monomial ideal. The set Nlexy>x(E)<d

consists of matrices N ∈ k[y](t+1)×t where

(i) for i ≤ j, ni,j is a polynomial of degree less than di,

(ii) for i > j, ni,j can be a non-zero constant polynomial if and only if mj−1 < mj = mi−1.

For lex-segment ideals E, (ii) can be reformulated to

• ni+1,i is a constant polynomial and all other ni,j with i+ 1 > j are zero.

Proof. The proof boils down to comparing the degree bounds by W as in Equation 3.7 and
those by d.

The entries of the weighted degree matrix are wi,j = mj −mi−1 +
a
b (i− j) = mj −mi−1. For

i ≤ j, mi ≤ mj and thus mj −mi−1 ≤ di, so the bounds by W are always already imposed by
the degree bounds of d, min(mj −mi−1 − 1, di − 1) = di − 1 and ni,j is a polynomial of degree
at most di − 1.

In the lower left corner, that is for i > j, the degree bounds by W are deg(ni,j) ≤ mj −mi−1.
Since mj ≤ mi−1, mj −mi−1 ≤ 0 with equality if and only if mj = mi−1. Thus, the entry ni,j of
N ∈ Nlexy>x(E)<d can be at most of degree 0, and this is allowed if and only if dj = mj−mj−1 > 0.
If E is lex-segment, then the entries of m are strictly increasing and mj = mi−1 is only possible
when i− 1 = j. Since all mj−1 < mj , deg(ni+1,i) = 0 is always allowed.

Corollary 3.83. The dimension of Nlexy>x(E)<d is

dim(Nlexy>x(E)<d) = n+ t.

Proof. We will determine the dimension by counting the number of admissible coefficients in
Nlexy>x(E)<d. We start by counting those from the upper right corner diagonal by diagonal,
starting with the main diagonal. The entries ni,i for i = 1, . . . , t are all polynomials of degree at
most di − 1, so for each of them we have di coefficients. This leads to

∑t
i=1 di = mt.

For the entries on the next diagonal, ni,i+1 is a polynomial of degree at most di − 1 for
i = 1, . . . , t− 1, so

∑t−1
i=1 di = mt−1. In conclusion, the upper right corner gives

t−1∑
l=0

(
t−l∑
i=1

di

)
=

t−1∑
l=0

mt−l = n

coefficients.
It remains to count the number of admissible coefficients in the lower left corner. If E

is lex-segment, then the only non-zero entries there are the constant polynomials ni+1,i for
i = 1, . . . , t. Therefore, the lower left corner adds another t admissible coefficients and

dim(Nlexy>x(E)<d) = n+ t.
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In general, we have to determine #{(i, j) | i > j, mj−1 < mj = mi−1}. Let us split the set

#{(i, j) | i > j, mj−1 < mj = mi−1} = #{j | dj > 0}+
t∑

k=1, dk>0

#{l | l > 0, mk = mk+l}.

That is, the positive dj are counted in the first summand, and the sum in the second summand
counts all dj = 0, so in total #{(i, j) | i > j, mj−1 < mj = mi−1} = #{j | dj > 0} +#{j |
dj = 0} = t.

Since the dimension of Vlexy>x(E) can be calculated by using [CV08] and renaming x and
y, we see that dim(Nlexy>x(E)<d) = dim(Vlexy>x(E)), providing additional evidence for Conjec-
ture 3.79.

3.9 Intersecting Gröbner cells

One application of parametrizations of Gröbner cells is to study the intersection of two different
Gröbner cells. For τ, τ ′ being two term orders on k[x, y] we denote the intersection of two
Gröbner cells as Vτ,τ ′(E) = {I ⊂ k[x, y] | Ltτ (I) = Ltτ ′(I) = E}. In [JS19, Example 7.9] it was
shown that this is an affine space by using a generalization of the Białynicki-Birula-decomposition
for actions of Gm to actions of general reductive groups, in this specific case Gm ×Gm. We are
interested in a concrete parametrization of the space.

Definition 3.84. Let E = (xt, xt−1ym1 , . . . , ymt), ω = (a, b), ω′ = (a′, b′) as above with a
b >

a′

b′

and τ ,τ ′ the associated term orders. Then we define the set of matrices Nτ,τ ′(E) ⊂ k[y]t+1×t,
as those N = (ni,j) where its non-zero entries satisfy the following degree condition:

deg(ni,j)


< wi,j = mj −mi−1 +

a
b (i− j) i < j

< wi,j = di i = j

≤ w′
i,j = mj −mi−1 +

a′

b′ (i− j) i > j

. (3.8)

Lemma 3.85. With the same notation as in Definition 3.84, the map

Φτ,τ ′,E : Nτ,τ ′(E) → Vτ,τ ′(E)
N 7→ It(H +N)

is well-defined.

Proof. Since Nτ,τ ′(E) ⊂ Nτ (E),Nτ ′(E) well-definedness follows by Lemma 3.72.

It is natural to assume that the map is also surjective, because the two maps ϕτ and ϕτ ′

are surjective by Theorem 3.71. The ideal I is in Vτ (E), so there exists N ∈ Nτ (E) such that
I = It(H +N). And also I ∈ Vτ ′(E), so there exists N ′ ∈ Nτ ′(E) with I = It(H +N ′). But
the map in Theorem 3.71 is not injective, so in general N ̸= N ′, even if we start with τ = τ ′.
So it is also not clear that N ∈ Nτ ′(E). That would be equivalent to the fact that the signed
t-minors of H +N also form a τ ′-Gröbner basis.

Example 3.86. Let a = 2 and a′ = b′ = b = 1. Then {f0 = x − y2, f1 = y} is a τ -Gröbner
basis of I = (x − y2, y), and {f0, f1} are the 1-minors of H + N = (ym1 ,−x + y2)t. Since
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2 ≤ w2,1 =
a
b = 2, N ∈ Nτ (E), but 2 > w′

2,1 =
a′

b′ = 1, so N /∈ Nτ ′(E). Indeed {x− y2, y} does
not form a Gröbner basis of I with respect to the degreelexicographic order.

The choice of the τ -Gröbner basis or equivalently of N is not good. The ideal I is the
monomial ideal itself and a better Gröbner basis would have been the monomial generators.

In Example 3.74 we have also seen an instance of this. The Gröbner basis of I with respect to
the term order induced by (3, 2) lead to the matrix N that was not an element of Ndeglex(E),
even though I ∈ Vdeglex(E).

We can overcome this problem in general by considering reduced Gröbner bases. The following
lemma will be the key ingredient.

Lemma 3.87. Let τ, τ ′ be two term orders on a polynomial ring P and I ⊂ P such that
Ltτ (I) = Ltτ ′(I). Then a reduced Gröbner basis of I with respect to τ is a reduced Gröbner
basis of I with respect to τ ′.

Proof. Let {f0, . . . , ft} be a reduced Gröbner basis of I with respect to τ . Then no monomial
in the support of the tail of fi, i.e. in the support of fi − Ltτ (fi) is in Ltτ (I). Clearly the
monomial Ltτ ′(fi) is one of the monomials in the support of fi, and an element of the ideal
Ltτ ′(I). By assumption Ltτ ′(I) = Ltτ (I), but Ltτ (fi) is the only monomial in the support of fi
that is in Ltτ (I). Thence Ltτ ′(fi) = Ltτ (fi) and thus {f0, . . . , ft} forms a Gröbner basis of I
with respect to τ ′ as well.

Remark 3.88. Note that this is generally known. Algorithms for computing universal Gröbner
bases of ideals – a set of polynomials that forms a Gröbner basis of an ideal with respect to any
term order – as described for example in [Stu96, Chapter 3], determine the universal Gröbner
basis by taking the union of the reduced Gröbner bases for one term order in each cone of the
Gröbner fan. A cone inside the Gröbner fan is exactly the region where the leading term ideal
of a given ideal does not change with varying term order.

Lemma 3.89. The map Φτ,τ ′,E of Lemma 3.85 is surjective.

Proof. Let I ∈ Vτ,τ ′(E), then by Lemma 3.87 the reduced Gröbner bases of I with respect to
τ and τ ′ coincide. If E is not lex-segment, i.e. the sequence 0 = m0 ≤ m1 ≤ · · · ≤ mt is not
strictly increasing, we add some generators to the reduced Gröbner basis, relabel such that
Ltτ (fi) = Ltτ ′(fi) = xt−iymi and possibly reduce with f0 such that no term of the fi other than
Ltτ (f0) is divisible by xt.

By Theorem 3.71 there is a matrix N ∈ Nτ (E) and a matrix N ′ ∈ Nτ ′(E) such that the
signed maximal minors of H +N and H +N ′ are {f0, . . . , ft}. By Remark 3.28 N = N ′.

The parametrizations in [CV08] and [Con11] help us to overcome the lack of injectivity of the
general case, whenever we intersect with the Gröbner cell of the lexicographic or degreelexico-
graphic order.

Proposition 3.90. Let τ be any term order on k[x, y] and τ ′ be the lexicographic or the
degreelexicographic ordering. Let E = (xt, xt−1ym1 , . . . , ymt) be a monomial ideal (or in the
case of deglex a lex-segment ideal). Then we have a parametrization of Vτ,τ ′(E) by Nτ,τ ′(E)<d.

Proof. Let I ∈ Vτ,τ ′(E), then by Lemma 3.89 we obtain N ∈ Nτ,τ ′(E). Now by [CV08,
Theorem 3.3] or [Con11, Theorem 3.1] we can perform a sequence of reduction moves on N such
that the resulting matrix Ñ satisfies the additional degree conditions deg(ni,j) < dmin(i,j). By
the injectivity part of the above cited theorems the matrix Ñ is unique. By Lemma 3.77 the
matrix Ñ still satisfies the relevant degree bounds for τ , thus Ñ ∈ Nτ,τ ′(E)<d.
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Notice that Proposition 3.90 gives us a parametrization of certain subsets of Vτ (E). Namely
of those ideals I ∈ Vτ (E) that satisfy Ltlex(I) = E or Ltdeglex(I) = E. Thence we can define
canonical Hilbert-Burch matrices with respect to τ of those ideals as H + Φ−1

τ,τ ′,E(I), where
τ ′ ∈ {lex, deglex}. The notion of canonical Hilbert-Burch matrix highly depends on the term
order. In general the canonical Hilbert-Burch matrix of I with respect to lex and with respect
to deglex will be different, even the sizes of them will often not coincide. It depends on the
leading term ideals Ltlex(I) and Ltdeglex(I).

Proposition 3.90 also gives us a way of describing the set of all ideals I that have the same
leading term ideal E with respect to all term orders.

Definition 3.91. Let E = (xt, xt−1ym1 , . . . , ymt) ⊂ k[x, y] be a monomial ideal, then we define

Vuni(E) = {I ⊂ k[x, y] | Ltτ (I) = E for all term orders τ}

Let Nuni(E) ⊂ k[y]t+1×t be the set of matrices such that

• deg(ni,j) ≤ di − 1 for i = j

• deg(ni,j) = 0 for i > j and mj−1 < mj = mi−1,

• ni,j = 0 else.

Corollary 3.92. Let E = (xt, xt−1ym1 , . . . , ymt) ⊂ k[x, y] be a monomial ideal with canonical
Hilbert-Burch matrix H. Then the set of ideals that has E as leading term ideal with respect
to all possible term orders Vuni(E) can be parametrized by

Φuni,E : Nuni(E) → Vuni(E)
N 7→ It(H +N).

Proof. An ideal I has the same leading term ideal with respect to all term orders if and only if
I has the same leading term ideal with respect to the lexicographic orders lexx>y and lexy>x.

One direction is obvious. The other follows by the fact that the region where the leading term
ideal stays constant is a cone. See literature about the Gröbner fan, e.g. [Stu96; Bay82; BM88].
The order lexx>y corresponds to ω = (1, 0) and lexy>x to ω = (0, 1). Thus if the leading term
of I is equal with respect to both lex orders, it has to be the same for all term orders.

Thus Vuni(E) = Vτ,τ ′(E) with τ = lexx>y and τ ′ = lexy>x. By Proposition 3.90 we have a
parametrization Φτ,τ ′,E : Nτ,τ ′(E)<d → Vτ,τ ′(E) = Vuni(E). The vanishing of ni,j with i < j is
guaranteed by I ∈ Vτ (E). In Proposition 3.82 we have studied the structure of Nlexy>x(E)<d in
detail and obtained the condition for i > j.

Example 3.93. When considering E form Example 3.74 with m = (2, 3, 5, 7), then Vuni(E) ∼=
A11 with canonical Hilbert-Burch matrix of I ∈ Vuni(E) being

y2 + yc2 + c1 0 0 0
−x+ c3 y + c4 0 0

0 −x+ c5 y2 + yc6 + c7 0
0 0 −x+ c8 y2 + yc9 + c10
0 0 0 −x+ c11

 .

We see that the only non-zero entries are on the first two diagonals. The ideal E is lex-segment,
so let us also investigate the set Vuni(E2) for a monomial ideal E2 that is not lex-segment.
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Let E2 = (x4, x2y2, xy6, y7) with partition (2, 2, 6, 7), then dim(Vuni(E2)) = 11, too, and the
canonical Hilbert-Burch matrix of an ideal in Vuni(E2) is

y2 + yc2 + c1 0 0 0
−x+ c3 1 0 0
c4 −x y4 + y3c6 + y2c5 + yc8 + c7 0
0 0 −x+ c9 y + c10
0 0 0 −x+ c11

 .

Here, the entry (3, 1) below the second diagonal is allowed to be non-zero.
For the monomial ideal E3 = (x6, x3y, xy4, y6) ∈ Hilb17(k[x, y]) with partition (1, 1, 1, 4, 4, 6)

the canonical Hilbert-Burch matrix of ideals in Vuni(E3) is

y + c1 0 0 0 0 0
−x+ c2 1 0 0 0 0
c3 −x 1 0 0 0
c4 0 −x y3 + y2c7 + yc6 + c5 0 0
0 0 0 −x+ c8 1 0
0 0 0 c9 −x y2 + yc11 + c10
0 0 0 0 0 −x+ c12


and dim(Vuni(E3)) = 12.

We can determine the dimension of Vuni(E) for general monomial ideals E.

Corollary 3.94. Let E = (xt, xt−1ym1 , . . . , ymt), and Vuni(E) as in Definition 3.91, then the
dimension of Vuni(E) is

dim(Vuni(E)) = mt + t.

Proof. By Corollary 3.92 we have to count the number of coefficients in Nuni(E), thus

dim(Vuni(E)) =
∑t

i=1 di +#{(i, j) | i > j, mj−1 < mj = mi−1}
= mt + t,

where the last equality follows by the proof of Corollary 3.83.

Remark 3.95. If one only cares about all term orders τ such that x >τ y, then the intersection
of the Gröbner cells with respect to those orders τ can be obtained as Vlex,deglex(E). By
Proposition 3.90 this set is parametrized by Nlex,deglex(E), that is the set of (t+ 1)× t matrices
N with entries in k[y] where

• ni,j = 0 for i < j

• for i ≥ j the non-zero entries satisfy deg(ni,j) ≤ min(ui,j , dj − 1).

For E = (x, yn) the following holds

Vlex(E) = Vdeglex(E) = Vlex,deglex(E) = Vlexx>y ,lexy>x(E) ⊂ Vlexy>x(E).
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In this section we have studied intersections of Gröbner cells Vτ (E) ∩ Vτ ′(E). Another
interesting object of study would be intersections of Gröbner cells not only of different term
order τ and τ ′ of the same ideal E, but to vary the monomial ideal as well, i.e. Vτ (E)∩ Vτ ′(E′).
In [AS05] a subset of those ideals is studied, the edge-providing ideals. Those are ideals such that
E and E′ are the only possible leading term ideals. They provide an edge in the so-called graph
of monomial ideals. It is not clear whether general intersections of Gröbner cells are still affine
spaces, see [JS19, Example 7.9]. The main point in studying the intersections Vτ (E) ∩ Vτ ′(E)
with (canonical) Hilbert-Burch matrices was that the minors of H +N , with N being a matrix
in the intersection Nτ,τ ′(E), form a Gröbner basis with respect to τ and τ ′, and that a reduced
Gröbner basis of I ∈ Vτ (E)∩ Vτ ′(E) with respect to τ is a reduced Gröbner basis of I also with
respect to τ ′. When changing the ideal E to E′ even the formats of the Hilbert-Burch matrices
are most often not the same, so a new strategy for studying this situation would be needed.

3.10 Cellular decompositions of Hilbn(k[x, y])

For each term order τ on k[x, y] the Gröbner cells {Vτ (E)} of all monomial ideals E ∈
Hilbn(k[x, y]) form a cellular decomposition of Hilbn(k[x, y]). As in section 3.6 we can check
Conjecture 3.79 for plausibility by using the results of [ES87] about the Betti numbers of
Hilbn(k[x, y]) and compare them to the numbers that would result from Conjecture 3.79.

Theorem 3.96. [ES87, Theorem 1.1 (iii)] The non-zero Betti numbers of the Hilbert scheme
of points Hilbn(k[x, y]) are

b2i(Hilbn(k[x, y])) = P (2n− i, i− n),

where P (n, l), defined in Definition 3.64, is the number of partitions of n bounded by l.

Remember that for a scheme X over C with a cellular decomposition, the Betti num-
bers can be recovered by the number of cells of a given dimension, more precisely b2i(X) =
#{cells of dimension i}.

We have checked for n ≤ 23 and the term orders τ induced by (a, b) for a ≤ 23, b ≤ 24 with
gcd(a, b) = 1 that for each of these cases

#{monomial ideals E ∈ Hilbn(k[x, y]) | dim(Nτ (E)<d) = i} = P (2n− i, i− n).

The module and a Jupyter-notebook with the calculations is available on GitHub, https:
//github.com/anelanna/LocalHilbertBurch.jl. We give a brief description of the parts of
the module relevant for term orders, similar to the one in section 3.6.

For this case – the so-called graded case – the module can calculate the (conjectural) cellular
decomposition from Conjecture 3.79 for a given n, a, b. For all partitions of n it creates a
GradedCell that has the following properties:

• a – the weight a,

• b – the weight b,

• m – the partition,

• E – its associated monomial ideal,
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n the Betti numbers // dimensions vector
1 1
2 1, 1
3 1, 1, 1
4 1, 2, 1, 1
5 1, 2, 2, 1, 1
6 1, 3, 3, 2, 1, 1
7 1, 3, 4, 3, 2, 1, 1
8 1, 4, 5, 5, 3, 2, 1, 1
9 1, 4, 7, 6, 5, 3, 2, 1, 1
10 1, 5, 8, 9, 7, 5, 3, 2, 1, 1
11 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1
12 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1
13 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
14 1, 7, 16, 23, 23, 20, 15, 11, 7, 5, 3, 2, 1, 1
15 1, 7, 19, 27, 30, 26, 21, 15, 11, 7, 5, 3, 2, 1, 1
16 1, 8, 21, 34, 37, 35, 28, 22, 15, 11, 7, 5, 3, 2, 1, 1
17 1, 8, 24, 39, 47, 44, 38, 29, 22, 15, 11, 7, 5, 3, 2, 1, 1
18 1, 9, 27, 47, 57, 58, 49, 40, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
19 1, 9, 30, 54, 70, 71, 65, 52, 41, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
20 1, 10, 33, 64, 84, 90, 82, 70, 54, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
21 1, 10, 37, 72, 101, 110, 105, 89, 73, 55, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
22 1, 11, 40, 84, 119, 136, 131, 116, 94, 75, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
23 1, 11, 44, 94, 141, 163, 164, 146, 123, 97, 76, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
24 1, 12, 48, 108, 164, 199, 201, 186, 157, 128, 99, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
25 1, 12, 52, 120, 192, 235, 248, 230, 201, 164, 131, 100, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
26 1, 13, 56, 136, 221, 282, 300, 288, 252, 212, 169, 133, 101, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
27 1, 13, 61, 150, 255, 331, 364, 352, 318, 267, 219, 172, 134, 101, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
28 1, 14, 65, 169, 291, 391, 436, 434, 393, 340, 278, 224, 174, 135, 101, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
29 1, 14, 70, 185, 333, 454, 522, 525, 488, 423, 355, 285, 227, 175, 135, 101, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1
30 1, 15, 75, 206, 377, 532, 618, 638, 598, 530, 445, 366, 290, 229, 176, 135, 101, 77, 56, 42, 30, 22, 15, 11, 7, 5, 3, 2, 1, 1

Table 3.2: The vectors of number of cells of dimension i for i = n+ 1, . . . , 2n. There are no
cells of lower dimensions, so for a nicer presentation we left those out. As discussed
before these numbers are also the Betti numbers of Hilbn(k[x, y]) for n = 1, . . . , 30.

• d – the vector of differences,

• W – the weighted degree matrix,

• rW – the (integer) degree bounds arising by the matrix W as in Equation 3.7,

• hilb – the Hilbert function of the monomial ideal,

• H – the canonical Hilbert-Burch matrix of the monomial ideal,

• M – the general canonical Hilbert-Burch matrix H +N ,

• N – the corresponding element in Nτ (E)<d,

• I – the maximal minors of M = H +N , and

• dim – the dimension of the cell.

The vector of dimensions can be computed with graded_sorted_celllist(n), a function
that returns a dictionary mapping an integer i to a vector with the cells of dimension i.

In Table 3.2 we see these dimension vectors for n = 1, . . . , 30. The minimal dimension of a
cell is n+ 1. We left out the occurring zeros for nicer presentation. For the calculation of these
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numbers we used the weights a = b = 1. For n ≤ 23 we have checked that those are also the
dimension vectors for any other a ≤ 23, b ≤ 24.

Example 3.97 (Five cellular decompositions of Hilb6(k[x, y])). We finish this section by
studying five cellular decompositions of Hilb6(k[x, y]) for term orders τ given by different values
of (a, b). In Table 3.3 – Table 3.7 we find the (conjectural) parametrizations of the cells
corresponding to the term orders τ given by (a, b) ∈ {(6, 1), (3, 2), (1, 1), (2, 3), (1, 7)}. For
each partition m = (m1, . . . ,mt) of 6, we obtain a monomial ideal E = (xt, xt−1ym1 , . . . , ymt)
and its associated cell Vτ (E) – a partition gives one row in each table. Since there are 11
partitions of 6, we obtain 11 cells and 11 rows in each table. The dimension of Nτ (E)<d is found
in the first column, the second column gives the partition m, the next column contains the
(conjectural) canonical Hilbert-Burch matrix of a general ideal in Vτ (E). In the last column we
find the (integer) matrix that describes the degree bounds corresponding to W from Equation 3.7.
The cells in the tables are ordered by increasing dimension. Using Singular we have checked
that in all cases all matrices N ∈ Nτ (E) can be transformed into matrices of Nτ (E)<d. This
guarantees surjectivity of Φτ,E : Nτ (E)<d → Vτ (E) and thus dim(Vτ (E)) ≤ dim(Nτ (E)<d).
With the additional knowledge that

#{E | dim(Vτ (E)) = i} = #{E | dim(Nτ (E)<d) = i}

for all i, we can conclude that dim(Vτ (E)) = dim(Nτ (E)<d).
In Table 3.3, we start with (a, b) = (6, 1). In Hilb6(k[x, y]) this corresponds to the

lexicographic order with x > y. The cells we obtain are as a consequence the same as in [CV08,
Theorem 3.3], see Theorem 3.4, and thus the dimension of Vτ (E) is dim(Vτ (E)) = n+mt, in
particular, the cell of minimal dimension is Vτ ((x6, y)) and the cell of maximal dimension is
Vτ ((x, y

6)). As long as x >τ y, the minimal dimensional cell is Vτ ((x6, y)), this is the case in
Tables 3.3, 3.4 and 3.5, when a ≥ b. When x <τ y, that is a < b, as in Tables 3.6 and 3.7, then
Vτ ((x, y

6)) is the cell of minimal dimension.
The cell with maximal dimension is

• Vτ ((x, y
6)) for (a, b) = (6, 1) – it is the cell corresponding to m = (6),

• Vτ ((x
2, xy2, y4)) for (a, b) = (3, 2) – it is the cell corresponding to m = (2, 4),

• Vτ ((x
3, x2y, xy2, y3)) for (a, b) = (1, 1) and (a, b) = (2, 3) – it is the cell corresponding

to m = (1, 2, 3),

• Vτ ((x
6, y)) for (a, b) = (1, 7) – it is the cell corresponding to m = (1, 1, 1, 1, 1, 1).

In Table 3.8 a comparison of the dimensions of all cells can be found.
Notice that the term order in Table 3.7 given by (a, b) = (1, 7) corresponds to lexy>x. The

dimension of the cell corresponding to the partition m = (m1, . . . ,mt) is 6 + t, analogous to
the case of lexx>y – the roles of t and mt are interchanged. This holds also for general E as
we have seen in Corollary 3.83. The canonical Hilbert-Burch matrix of an ideal in a cell, may
have non-zero entries in the lower-left corner of degree zero, namely for all (i < j) such that
mj−1 < mj = mi−1. In particular, nj+1,j can be a non-zero constant as long as dj > 0. The
dimension of the cells has to be the same as we would obtain by renaming the variables and
then considering lexx>y, but the canonical Hilbert-Burch matrices look different, even their
sizes are different. The canonical Hilbert-Burch matrices in the maximal cell in lexx>y (as in
Table 3.3) are 2 × 1 matrices, whereas the canonical Hilbert-Burch matrices in the maximal
dimensional cell in lexx<y are 7× 6 matrices.
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dimension m M = H +N degree bounds by W

7 [1, 1, 1, 1, 1, 1]



y + c1 0 0 0 0 0
−x+ c2 1 0 0 0 0

c3 −x 1 0 0 0
c4 0 −x 1 0 0
c5 0 0 −x 1 0
c6 0 0 0 −x 1
c7 0 0 0 0 −x





0 −6 −12 −18 −24 −30
6 −1 −7 −13 −19 −25
12 6 −1 −7 −13 −19
18 12 6 −1 −7 −13
24 18 12 6 −1 −7
30 24 18 12 6 −1
36 30 24 18 12 6



8 [1, 1, 1, 1, 2]


y + c1 0 0 0 0
−x+ c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0
c5 0 0 −x y + c6
c7 0 0 0 −x+ c8




0 −6 −12 −18 −23
6 −1 −7 −13 −18
12 6 −1 −7 −12
18 12 6 −1 −6
24 18 12 6 0
29 23 17 11 6



8 [1, 1, 2, 2]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x y + c4 0
c5 0 −x+ c6 1
c7 0 c8 −x




0 −6 −11 −17
6 −1 −6 −12
12 6 0 −6
17 11 6 −1
23 17 12 6



8 [2, 2, 2]


y2 + yc2 + c1 0 0
−x+ yc4 + c3 1 0

yc6 + c5 −x 1
yc8 + c7 0 −x




1 −5 −11
6 −1 −7
12 6 −1
18 12 6



9 [1, 1, 1, 3]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x y2 + yc6 + c5
c7 0 0 −x+ yc9 + c8




0 −6 −12 −16
6 −1 −7 −11
12 6 −1 −5
18 12 6 1
22 16 10 6



9 [1, 2, 3]


y + c1 0 0
−x+ c2 y + c3 0

c4 −x+ c5 y + c6
c7 c8 −x+ c9




0 −5 −10
6 0 −5
11 6 0
16 11 6


9 [3, 3]

 y3 + y2c3 + yc2 + c1 0
−x+ y2c6 + yc5 + c4 1

y2c9 + yc8 + c7 −x

  2 −4
6 −1
12 6


10 [1, 1, 4]


y + c1 0 0
−x+ c2 1 0

c3 −x y3 + y2c6 + yc5 + c4
c7 0 −x+ y2c10 + yc9 + c8




0 −6 −9
6 −1 −4
12 6 2
15 9 6


10 [2, 4]

 y2 + yc2 + c1 0
−x+ yc4 + c3 y2 + yc6 + c5

yc8 + c7 −x+ yc10 + c9

  1 −3
6 1
10 6


11 [1, 5]

 y + c1 0
−x+ c2 y4 + y3c6 + y2c5 + yc4 + c3

c7 −x+ y3c11 + y2c10 + yc9 + c8

  0 −2
6 3
8 6


12 [6]

(
y6 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ y5c12 + y4c11 + y3c10 + y2c9 + yc8 + c7

) (
5
6

)

Table 3.3: n = 6, a = 6, b = 1
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dimension m M = H +N degree bounds by W

7 [1, 1, 1, 1, 1, 1]



y + c1 0 0 0 0 0
−x+ c2 1 0 0 0 0

c3 −x 1 0 0 0
c4 0 −x 1 0 0
c5 0 0 −x 1 0
c6 0 0 0 −x 1
c7 0 0 0 0 −x





0 −1 −3 −4 −6 −7
1 −1 −2 −4 −5 −7
3 1 −1 −2 −4 −5
4 3 1 −1 −2 −4
6 4 3 1 −1 −2
7 6 4 3 1 −1
9 7 6 4 3 1



8 [1, 1, 1, 1, 2]


y + c1 0 0 0 0
−x+ c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0
c5 0 0 −x y + c6
c7 0 0 0 −x+ c8




0 −1 −3 −4 −5
1 −1 −2 −4 −4
3 1 −1 −2 −3
4 3 1 −1 −1
6 4 3 1 0
6 5 3 2 1



8 [1, 1, 2, 2]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x y + c4 0
c5 0 −x+ c6 1
c7 0 c8 −x




0 −1 −2 −3
1 −1 −1 −3
3 1 0 −1
3 2 1 −1
5 3 3 1


8 [6]

(
y6 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ yc8 + c7

) (
5
1

)

9 [1, 1, 1, 3]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x y2 + yc6 + c5
c7 0 0 −x+ yc9 + c8




0 −1 −3 −2
1 −1 −2 −2
3 1 −1 0
4 3 1 1
4 2 1 1


9 [1, 5]

 y + c1 c2
−x+ c3 y4 + y3c7 + y2c6 + yc5 + c4

0 −x+ yc9 + c8

  0 3
1 3
−1 1


9 [2, 2, 2]


y2 + yc2 + c1 c3 0
−x+ yc5 + c4 1 0

yc7 + c6 −x 1
yc9 + c8 0 −x




1 0 −2
1 −1 −2
3 1 −1
4 3 1


10 [1, 1, 4]


y + c1 0 c2
−x+ c3 1 0

c4 −x y3 + y2c7 + yc6 + c5
c8 0 −x+ yc10 + c9




0 −1 0
1 −1 1
3 1 2
1 0 1


10 [3, 3]

 y3 + y2c3 + yc2 + c1 yc5 + c4
−x+ yc7 + c6 1

y2c10 + yc9 + c8 −x

  2 1
1 −1
3 1


11 [1, 2, 3]


y + c1 c2 0
−x+ c3 y + c4 c5

c6 −x+ c7 y + c8
c9 c10 −x+ c11




0 0 −1
1 0 0
2 1 0
2 2 1


12 [2, 4]

 y2 + yc2 + c1 yc4 + c3
−x+ yc6 + c5 y2 + yc8 + c7

yc10 + c9 −x+ yc12 + c11

  1 2
1 1
1 1


Table 3.4: n = 6, a = 3, b = 2
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7 [1, 1, 1, 1, 1, 1]



y + c1 0 0 0 0 0
−x+ c2 1 0 0 0 0

c3 −x 1 0 0 0
c4 0 −x 1 0 0
c5 0 0 −x 1 0
c6 0 0 0 −x 1
c7 0 0 0 0 −x





0 −1 −2 −3 −4 −5
1 −1 −2 −3 −4 −5
2 1 −1 −2 −3 −4
3 2 1 −1 −2 −3
4 3 2 1 −1 −2
5 4 3 2 1 −1
6 5 4 3 2 1



8 [1, 1, 1, 1, 2]


y + c1 0 0 0 0
−x+ c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0
c5 0 0 −x y + c6
c7 0 0 0 −x+ c8




0 −1 −2 −3 −3
1 −1 −2 −3 −3
2 1 −1 −2 −2
3 2 1 −1 −1
4 3 2 1 0
4 3 2 1 1



8 [1, 1, 2, 2]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x y + c4 0
c5 0 −x+ c6 1
c7 0 c8 −x




0 −1 −1 −2
1 −1 −1 −2
2 1 0 −1
2 1 1 −1
3 2 2 1


8 [6]

(
y6 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ yc8 + c7

) (
5
1

)

9 [1, 1, 1, 3]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x y2 + yc6 + c5
c7 0 0 −x+ yc9 + c8




0 −1 −2 −1
1 −1 −2 −1
2 1 −1 0
3 2 1 1
2 1 0 1


9 [1, 5]

 y + c1 c2
−x+ c3 y4 + y3c7 + y2c6 + yc5 + c4

0 −x+ yc9 + c8

  0 3
1 3
−2 1


9 [2, 2, 2]


y2 + yc2 + c1 c3 0
−x+ yc5 + c4 1 0

yc7 + c6 −x 1
yc9 + c8 0 −x




1 0 −1
1 −1 −2
2 1 −1
3 2 1


10 [1, 1, 4]


y + c1 0 c2
−x+ c3 1 0

c4 −x y3 + y2c7 + yc6 + c5
c8 0 −x+ yc10 + c9




0 −1 1
1 −1 1
2 1 2
0 −1 1


10 [3, 3]

 y3 + y2c3 + yc2 + c1 yc5 + c4
−x+ yc7 + c6 1

y2c10 + yc9 + c8 −x

  2 1
1 −1
2 1


11 [2, 4]

 y2 + yc2 + c1 yc4 + c3
−x+ yc6 + c5 y2 + yc8 + c7

c9 −x+ yc11 + c10

  1 2
1 1
0 1


12 [1, 2, 3]


y + c1 c2 c3
−x+ c4 y + c5 c6

c7 −x+ c8 y + c9
c10 c11 −x+ c12




0 0 0
1 0 0
1 1 0
1 1 1


Table 3.5: n = 6, a = 1, b = 1
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7 [6]

(
y6 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ c7

) (
5
0

)

8 [1, 1, 1, 1, 1, 1]



y + c1 c2 0 0 0 0
−x+ c3 1 0 0 0 0

c4 −x 1 0 0 0
c5 0 −x 1 0 0
c6 0 0 −x 1 0
c7 0 0 0 −x 1
c8 0 0 0 0 −x





0 0 −1 −2 −2 −3
0 −1 −1 −2 −3 −3
1 0 −1 −1 −2 −3
2 1 0 −1 −1 −2
2 2 1 0 −1 −1
3 2 2 1 0 −1
4 3 2 2 1 0


8 [1, 5]

 y + c1 c2
−x+ c3 y4 + y3c7 + y2c6 + yc5 + c4

0 −x+ c8

  0 4
0 3
−3 0


8 [2, 4]

 y2 + yc2 + c1 yc4 + c3
−x+ c5 y2 + yc7 + c6

0 −x+ c8

  1 3
0 1
−1 0



9 [1, 1, 1, 1, 2]


y + c1 c2 0 0 0
−x+ c3 1 0 0 0

c4 −x 1 0 0
c5 0 −x 1 0
c6 0 0 −x y + c7
c8 0 0 0 −x+ c9




0 0 −1 −2 −1
0 −1 −1 −2 −2
1 0 −1 −1 −1
2 1 0 −1 0
2 2 1 0 0
2 1 1 0 0



9 [1, 1, 4]


y + c1 c2 c3
−x+ c4 1 0

c5 −x y3 + y2c8 + yc7 + c6
0 0 −x+ c9




0 0 2
0 −1 2
1 0 2
−1 −2 0


9 [3, 3]

 y3 + y2c3 + yc2 + c1 y2c6 + yc5 + c4
−x+ c7 1
yc9 + c8 −x

  2 2
0 −1
1 0



10 [1, 1, 1, 3]


y + c1 c2 0 c3
−x+ c4 1 0 0

c5 −x 1 0
c6 0 −x y2 + yc8 + c7
c9 0 0 −x+ c10




0 0 −1 0
0 −1 −1 0
1 0 −1 1
2 1 0 1
0 0 −1 0



10 [2, 2, 2]


y2 + yc2 + c1 yc4 + c3 c5

−x+ c6 1 0
yc8 + c7 −x 1
yc10 + c9 0 −x




1 1 0
0 −1 −1
1 0 −1
2 1 0



11 [1, 1, 2, 2]


y + c1 c2 c3 0
−x+ c4 1 0 0

c5 −x y + c6 c7
c8 0 −x+ c9 1
c10 0 c11 −x




0 0 0 −1
0 −1 0 −1
1 0 0 0
1 0 0 −1
1 1 1 0



12 [1, 2, 3]


y + c1 c2 c3
−x+ c4 y + c5 c6

c7 −x+ c8 y + c9
c10 c11 −x+ c12




0 1 1
0 0 1
0 0 0
0 0 0


Table 3.6: n = 6, a = 2, b = 3
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7 [6]

(
y6 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ c7

) (
5
0

)
8 [1, 5]

 y + c1 c2
−x+ c3 y4 + y3c7 + y2c6 + yc5 + c4

0 −x+ c8

  0 4
0 3
−4 0


8 [2, 4]

 y2 + yc2 + c1 yc4 + c3
−x+ c5 y2 + yc7 + c6

0 −x+ c8

  1 3
0 1
−2 0


8 [3, 3]

 y3 + y2c3 + yc2 + c1 y2c6 + yc5 + c4
−x+ c7 1

c8 −x

  2 2
0 −1
0 0


9 [1, 1, 4]


y + c1 c2 c3
−x+ c4 1 0

c5 −x y3 + y2c8 + yc7 + c6
0 0 −x+ c9




0 0 3
0 −1 2
0 0 2
−3 −3 0


9 [1, 2, 3]


y + c1 c2 c3
−x+ c4 y + c5 c6

0 −x+ c7 y + c8
0 0 −x+ c9




0 1 2
0 0 1
−1 0 0
−2 −1 0


9 [2, 2, 2]


y2 + yc2 + c1 yc4 + c3 yc6 + c5

−x+ c7 1 0
c8 −x 1
c9 0 −x




1 1 1
0 −1 −1
0 0 −1
0 0 0



10 [1, 1, 1, 3]


y + c1 c2 c3 c4
−x+ c5 1 0 0

c6 −x 1 0
c7 0 −x y2 + yc9 + c8
0 0 0 −x+ c10




0 0 0 2
0 −1 −1 1
0 0 −1 1
0 0 0 1
−2 −2 −2 0



10 [1, 1, 2, 2]


y + c1 c2 c3 c4
−x+ c5 1 0 0

c6 −x y + c7 c8
0 0 −x+ c9 1
0 0 c10 −x




0 0 1 1
0 −1 0 0
0 0 0 0
−1 −1 0 −1
−1 −1 0 0



11 [1, 1, 1, 1, 2]


y + c1 c2 c3 c4 c5
−x+ c6 1 0 0 0

c7 −x 1 0 0
c8 0 −x 1 0
c9 0 0 −x y + c10
0 0 0 0 −x+ c11




0 0 0 0 1
0 −1 −1 −1 0
0 0 −1 −1 0
0 0 0 −1 0
0 0 0 0 0
−1 −1 −1 −1 0



12 [1, 1, 1, 1, 1, 1]



y + c1 c2 c3 c4 c5 c6
−x+ c7 1 0 0 0 0

c8 −x 1 0 0 0
c9 0 −x 1 0 0
c10 0 0 −x 1 0
c11 0 0 0 −x 1
c12 0 0 0 0 −x





0 0 0 0 0 0
0 −1 −1 −1 −1 −1
0 0 −1 −1 −1 −1
0 0 0 −1 −1 −1
0 0 0 0 −1 −1
0 0 0 0 0 −1
0 0 0 0 0 0


Table 3.7: n = 6, a = 1, b = 7
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m (6, 1) (3, 2) (1, 1) (2, 3) (1, 7)

[1, 1, 1, 1, 1, 1] 7 7 7 8 12
[1, 1, 1, 1, 2] 8 8 8 9 11
[2, 2, 2] 8 9 9 10 9
[1, 1, 2, 2] 8 8 8 11 10
[1, 1, 1, 3] 9 9 9 10 10
[1, 2, 3] 9 11 12 12 9
[3, 3] 9 10 10 9 8
[1, 1, 4] 10 10 10 9 9
[2, 4] 10 12 11 8 8
[1, 5] 11 9 9 8 8
[6] 12 8 8 7 7

Table 3.8: Comparison between the dimension of the cells Vτ (E) for term orders given by
different values of (a, b), where E = (xt, xt−1ym1 , . . . , ymt).
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Summary

This dissertation contains two chapters on the use of torus actions in algebraic geometry.
In chapter 2 we study ”immaculate line bundles” on projective toric varieties. The cohomology

groups of those line bundles vanish in all degrees, including the 0-th degree. Immaculate line
bundles can be seen as building blocks of full exceptional sequences of line bundles of the variety.
All the immaculate line bundles of a toric variety X = TV(Σ) can be identified in two steps.
First identify those subsets of the rays Σ(1) whose geometric realization is not k-acyclic, they
will be called tempting. Those subsets of the rays give ”maculate sets/regions” in the class group
of the variety. A line bundle is immaculate, if it is not in any of those maculate sets. So the first
step in finding immaculate line bundles is to find all tempting subsets. When X is projective,
the main result for this is that primitive collections – subsets of the rays that do not span a
cone, but each proper subset spans a cone – are always tempting. And a subset of rays can only
be tempting if it is the union of primitive collections. The same has to hold for the complement,
too. We give descriptions of the immaculate line bundles for different examples. In particular,
we describe the immaculate locus for projective toric varieties of Picard rank 3. Most of the
results have been published in [ABKW20].

In chapter 3 we study the Hilbert scheme of n points in affine plane. It describes all ideals
in the polynomial ring of two variables whose quotient is an n-dimensional vector space. The
Hilbert scheme can be decomposed into so called Gröbner cells. They consist of those ideals
that have a prescribed leading term ideal with respect to a given term order. The Gröbner
cells for the lexicographic and the degree-lexicographic order are parametrized in [CV08] and
[Con11], respectively, by canonical Hilbert-Burch matrices. A Hilbert-Burch matrix of an ideal is
a matrix generating the syzygies of the ideal. Its maximal minors also generate the ideal. These
results are generalized in two directions. Firstly, we consider the ring of formal power series.
Here we give a parametrization of the cells that respects the Hilbert function stratification of
the punctual Hilbert scheme. In particular, this cellular decomposition restricts to a cellular
decomposition of the subscheme consisting of ideals with a prescribed Hilbert function. We use
the parametrization to describe subsets of the Gröbner cells associated to lex-segment ideals
with a given minimal number of generators. These subsets are quasi-affine varieties inside the
cell. Most of these results have been published in [HW21] and [HW23]. The second way of
changing the setting is to consider a general term order on the polynomial ring. We give a
surjection to the Gröbner cell with respect to this ordering and parametrizations of subsets of
the cell, as well as a conjecture how the parametrization of the whole cell should look like. We
also study intersections of Gröbner cells with respect to different term orders.
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Zusammenfassung

Die vorliegende Dissertation besteht aus zwei Kapiteln zu zwei unterschiedlichen Anwendungen
von Toruswirkungen in der algebraischen Geometrie.

Die wichtigsten Objekte des Kapitels 2 sind unbefleckte Geradenbündel auf projektiven tor-
ischen Varietäten X = TV(Σ), Geradenbündel, deren Kohomologiegruppen alle verschwinden.
Unbefleckte Geradenbündel können als Bausteine für exzeptionelle Sequenzen aus Geraden-
bündeln dienen und somit die derivierte Kategorie der Varietät beschreiben. Die Bestimmung
von unbefleckten Geradenbündeln lässt sich in zwei Schritte aufteilen. Es lassen sich Teilmengen
der Strahlen Σ(1) des die torische Varietät beschreibenden Fächers Σ identifizieren, deren
geometrische Realisierungen nicht k-azyklisch sind. Diese verlockenden Teilmengen der Strahlen
definieren befleckte Teilmengen der Klassengruppe Cl(X). Ein Geradenbündel ist genau dann
unbefleckt, wenn es in keiner befleckten Teilmenge von Cl(X) liegt. Die Bestimmung aller
unbefleckten Geradenbündel lässt sich also in zwei Schritte aufteilen. Das Bestimmen der
verlockenden Teilmengen der Strahlen und das Bestimmen der zugehörigen befleckten Regionen.
Primitive Kollektionen – Teilmengen der Strahlen, die selbst keinen Kegel des Fächers auf-
spannen, aber jede ihrer Teilmenge spannt einen Kegel des Fächers auf – sind verlockend und
außerdem ist eine Teilmenge nur dann verlockend, wenn sie eine Vereinigung von primitiven
Kollektionen ist. Dies muss auch für das Komplement gelten. Wir geben die Beschreibung
für die unbefleckten Geradenbündel für verschiedene Beispielklassen von projektiven torischen
Varietäten. Insbesondere beschreiben wir die unbefleckten Geradenbündel für projektive torische
Varietäten von Picardrang 3. Die meisten dieser Ergebnisse sind in [ABKW20] erschienen.

In Kapitel 3 geht es um das Hilbertschema von n Punkten in der affinen Ebene. Seine Punkte
sind Ideale im Polynomenring k[x, y], deren Quotient ein n-dimensionaler k-Vektorraum ist.
Das Hilbertschema kann in sogenannte Gröbnerzellen unterteilt werden. Sie umfassen Ideale,
die bezüglich einer Termordnung τ ein festgelegtes Leitideal haben. In [CV08] und [Con11]
werden für die lexikographische und gradlexikographische Termordnung Parametrisierung der
Gröbnerzellen durch kanonische Hilbert-Burch Matrizen angegeben. Hilbert-Burch Matrizen
beschreiben die Syzygien des Ideals und ihre maximalen Minoren erzeugen das Ideal. Die
Ergebnisse werden in zwei Richtungen verallgemeinert. Zunächst betrachten wir Ideale im Ring
der formalen Potenzreihen. Wir geben eine Parametrisierung der Zellen, bei der die lokale
Struktur der Ideale berücksichtigt wird. Insbesondere lässt sich diese zelluläre Unterteilung des
lokalen Hilbertschemas auf eine zelluläre Unterteilung des Unterschemas einschränken, das nur
Ideale mit einer gegebenen Hilbertfunktion beinhaltet. Durch diese Parametrisierung lassen sich
für Ideale in diesen Zellen kanonische Hilbert-Burch Matrizen definieren. Diese benutzen wir
um Teilmengen der Gröbnerzellen mit einer vorgegebenen minimalen Anzahl von Erzeugern zu
beschreiben. Diese Teilmengen sind quasi-affine Varietäten in der Gröbnerzelle. Die meisten
der Resultate sind in [HW21] und [HW23] erschienen. Die zweite Möglichkeit das Setting zu
ändern, ist beliebige Termordnungen auf dem Polynomenring zu betrachten. Im zweiten Teil
von Kapitel 3 geben wir eine Surjektion auf diese Gröbnerzellen, sowie Parametrisierungen von
Teilmengen und geben eine Vermutung, wie eine Parametrisierung der ganzen Zelle aussieht.
Außerdem untersuchen wir Schnitte von Gröbnerzellen bezüglich verschiedener Termordnungen.
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Appendix

In Tables 3.9 – 3.17 show the cellular decompositions of Hilbn(k[[x, y]]) that are compatible with
its Hilbert function stratification, for n = 1, 2, 3, 4, 5, 8, 9. The ones for n = 6, 7 can be found
with a detailed explanation in Example 3.63 and Example 3.68, respectively.

Tables 3.18 – 3.43 show the (conjectural) cellular decompositions in terms of canonical Hilbert-
Burch matrices for n = 1, 2, 3, 4, 5, 7, and term orders induced by different values of (a, b). More
precisely, for all monomial ideals in Hilbn(k[x, y]) we give the dimension of the associated cell
Vτ (E) and M = H +N , where H is the canonical Hilbert-Burch matrix of E and N ∈ Nτ (E)<d.
As in Example 3.97, where we have studied five different cellular decompositions of Hilb6(k[x, y]),
we have used Singular to assert that Φτ,E : Nτ (E)<d → Vτ (E) is surjective.

m Hilbert function M dimension

[1] [1]

(
y
−x

)
0

Table 3.9: The Gröbner cells for Hilb1(k[[x, y]])
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m Hilbert function M dimension

[1, 1] [1, 1]

 y 0
−x 1
0 −x

 0

[2] [1, 1]

(
y2

−x+ yc1

)
1

Table 3.10: The Gröbner cells for Hilb2(k[[x, y]])

m Hilbert function M dimension

[1, 2] [1, 2]

 y 0
−x y
0 −x

 0

[1, 1, 1] [1, 1, 1]


y 0 c1
−x 1 0
0 −x 1
0 0 −x

 1

[3] [1, 1, 1]

(
y3

−x+ y2c2 + yc1

)
2

Table 3.11: The Gröbner cells for Hilb3(k[[x, y]])

m Hilbert function M dimension

[1, 1, 2] [1, 2, 1]


y 0 0
−x 1 0
0 −x y
0 0 −x

 0

[2, 2] [1, 2, 1]

 y2 0
−x+ yc1 1

0 −x

 1

[1, 3] [1, 2, 1]

 y 0
−x y2

c1 −x+ yc2

 2

[1, 1, 1, 1] [1, 1, 1, 1]


y 0 c1 c2
−x 1 0 0
0 −x 1 0
0 0 −x 1
0 0 0 −x

 2

[4] [1, 1, 1, 1]

(
y4

−x+ y3c3 + y2c2 + yc1

)
3

Table 3.12: The Gröbner cells for Hilb4(k[[x, y]])
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m Hilbert function M dimension

[1, 2, 2] [1, 2, 2]


y 0 0
−x y 0
0 −x 1
0 0 −x

 0

[1, 1, 3] [1, 2, 2]


y 0 0
−x 1 0
0 −x y2

0 0 −x+ yc1

 1

[2, 3] [1, 2, 2]

 y2 0
−x+ yc1 y
yc2 −x

 2

[1, 1, 1, 2] [1, 2, 1, 1]


y 0 c1 c2
−x 1 0 0
0 −x 1 0
0 0 −x y
0 0 0 −x

 2

[1, 4] [1, 2, 1, 1]

 y 0
−x y3

c1 −x+ y2c3 + yc2

 3

[1, 1, 1, 1, 1] [1, 1, 1, 1, 1]



y 0 c1 c2 c3
−x 1 0 0 0
0 −x 1 0 0
0 0 −x 1 0
0 0 0 −x 1
0 0 0 0 −x

 3

[5] [1, 1, 1, 1, 1]

(
y5

−x+ y4c4 + y3c3 + y2c2 + yc1

)
4

Table 3.13: The Gröbner cells for Hilb5(k[[x, y]])
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m Hilbert function M dimension

[1, 2, 2, 3] [1, 2, 3, 2]


y 0 0 0
−x y 0 0
0 −x 1 0
0 0 −x y
0 0 0 −x

 0

[1, 1, 3, 3] [1, 2, 3, 2]


y 0 0 0
−x 1 0 0
0 −x y2 0
0 0 −x+ yc1 1
0 0 0 −x

 1

[1, 1, 2, 4] [1, 2, 3, 2]


y 0 0 0
−x 1 0 0
0 −x y 0
0 0 −x y2

0 0 c1 −x+ yc2

 2

[2, 3, 3] [1, 2, 3, 2]


y2 0 0

−x+ yc1 y 0
yc2 −x 1
0 0 −x

 2

[1, 1, 1, 2, 3] [1, 2, 3, 1, 1]


y 0 c1 c2 c3
−x 1 0 0 0
0 −x 1 0 0
0 0 −x y 0
0 0 0 −x y
0 0 0 0 −x

 3

[1, 1, 2, 2, 2] [1, 2, 2, 2, 1]


y 0 0 c1 c2
−x 1 0 0 0
0 −x y 0 c3
0 0 −x 1 0
0 0 0 −x 1
0 0 0 0 −x

 3

[2, 2, 4] [1, 2, 3, 2]


y2 0 0

−x+ yc1 1 0
0 −x y2

yc2 0 −x+ yc3

 3

[1, 1, 1, 1, 2, 2] [1, 2, 2, 1, 1, 1]



y 0 c1 c2 c3 c4
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x y 0
0 0 0 0 −x 1
0 0 0 0 0 −x


4

[1, 1, 1, 1, 4] [1, 2, 2, 2, 1]


y 0 c1 c2 0
−x 1 0 0 0
0 −x 1 0 0
0 0 −x 1 0
0 0 0 −x y3

0 0 0 0 −x+ y2c4 + yc3

 4

[1, 2, 5] [1, 2, 3, 1, 1]


y 0 0
−x y 0
0 −x y3

c1 c2 −x+ y2c4 + yc3

 4

[1, 3, 4] [1, 2, 3, 2]


y 0 0
−x y2 0
c1 −x+ yc2 y
c3 yc4 −x

 4

[2, 2, 2, 2] [1, 2, 2, 2, 1]


y2 0 yc1 yc3 + c2

−x+ yc4 1 0 0
0 −x 1 0
0 0 −x 1
0 0 0 −x

 4

Table 3.14: The Gröbner cells for Hilb8(k[[x, y]]),part 1
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m Hilbert function M dimension

[1, 1, 1, 1, 1, 1, 2] [1, 2, 1, 1, 1, 1, 1]



y 0 c1 c2 c3 c4 c5
−x 1 0 0 0 0 0
0 −x 1 0 0 0 0
0 0 −x 1 0 0 0
0 0 0 −x 1 0 0
0 0 0 0 −x 1 0
0 0 0 0 0 −x y
0 0 0 0 0 0 −x


5

[1, 1, 1, 1, 1, 3] [1, 2, 2, 1, 1, 1]



y 0 c1 c2 c3 c4
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x 1 0
0 0 0 0 −x y2

0 0 0 0 0 −x+ yc5


5

[1, 1, 1, 5] [1, 2, 2, 2, 1]


y 0 c1 0
−x 1 0 0
0 −x 1 0
0 0 −x y4

c2 0 0 −x+ y3c5 + y2c4 + yc3

 5

[1, 1, 6] [1, 2, 2, 1, 1, 1]


y 0 0
−x 1 0
0 −x y5

c1 0 −x+ y4c5 + y3c4 + y2c3 + yc2

 5

[4, 4] [1, 2, 2, 2, 1]

 y4 0
−x+ y3c3 + y2c2 + yc1 1

y3c5 + y2c4 −x

 5

[1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1]



y 0 c1 c2 c3 c4 c5 c6
−x 1 0 0 0 0 0 0
0 −x 1 0 0 0 0 0
0 0 −x 1 0 0 0 0
0 0 0 −x 1 0 0 0
0 0 0 0 −x 1 0 0
0 0 0 0 0 −x 1 0
0 0 0 0 0 0 −x 1
0 0 0 0 0 0 0 −x


6

[1, 7] [1, 2, 1, 1, 1, 1, 1]

 y 0
−x y6

c1 −x+ y5c6 + y4c5 + y3c4 + y2c3 + yc2

 6

[2, 6] [1, 2, 2, 1, 1, 1]

 y2 0
−x+ yc1 y4

yc3 + c2 −x+ y3c6 + y2c5 + yc4

 6

[3, 5] [1, 2, 2, 2, 1]

 y3 0
−x+ y2c2 + yc1 y2

y2c5 + yc4 + c3 −x+ yc6

 6

[8] [1, 1, 1, 1, 1, 1, 1, 1]

(
y8

−x+ y7c7 + y6c6 + y5c5 + y4c4 + y3c3 + y2c2 + yc1

)
7

Table 3.15: The Gröbner cells for Hilb8(k[[x, y]]),part 2
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m Hilbert function M dimension

[1, 2, 3, 3] [1, 2, 3, 3]


y 0 0 0
−x y 0 0
0 −x y 0
0 0 −x 1
0 0 0 −x

 0

[1, 2, 2, 4] [1, 2, 3, 3]


y 0 0 0
−x y 0 0
0 −x 1 0

0 0 −x y2

0 0 0 −x + yc1

 1

[1, 1, 2, 2, 3] [1, 2, 3, 2, 1]


y 0 0 c1 c2
−x 1 0 0 0
0 −x y 0 0
0 0 −x 1 0
0 0 0 −x y
0 0 0 0 −x

 2

[1, 1, 3, 4] [1, 2, 3, 3]


y 0 0 0
−x 1 0 0

0 −x y2 0
0 0 −x + yc1 y
0 0 yc2 −x

 2

[1, 1, 1, 3, 3] [1, 2, 3, 2, 1]


y 0 c1 0 c2
−x 1 0 0 0
0 −x 1 0 0

0 0 −x y2 0
0 0 0 −x + yc3 1
0 0 0 0 −x

 3

[2, 2, 2, 3] [1, 2, 3, 2, 1]


y2 0 yc1 yc2

−x + yc3 1 0 0
0 −x 1 0
0 0 −x y
0 0 0 −x

 3

[2, 3, 4] [1, 2, 3, 3]


y2 0 0

−x + yc1 y 0
yc2 −x y
yc3 0 −x

 3

[1, 1, 1, 1, 2, 3] [1, 2, 3, 1, 1, 1]



y 0 c1 c2 c3 c4
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x y 0
0 0 0 0 −x y
0 0 0 0 0 −x


4

[1, 1, 1, 2, 4] [1, 2, 3, 2, 1]


y 0 c1 c2 0
−x 1 0 0 0
0 −x 1 0 0
0 0 −x y 0

0 0 0 −x y2

0 0 0 c3 −x + yc4

 4

[1, 1, 2, 5] [1, 2, 3, 2, 1]


y 0 0 0
−x 1 0 0
0 −x y 0

0 0 −x y3

c1 0 c2 −x + y2c4 + yc3

 4

[1, 2, 2, 2, 2] [1, 2, 2, 2, 2]


y 0 0 c1 c2
−x y 0 c3 c4
0 −x 1 0 0
0 0 −x 1 0
0 0 0 −x 1
0 0 0 0 −x

 4

[3, 3, 3] [1, 2, 3, 2, 1]


y3 0 y2c1

−x + y2c3 + yc2 1 0

y2c4 −x 1
0 0 −x

 4

[1, 1, 1, 1, 1, 2, 2] [1, 2, 2, 1, 1, 1, 1]



y 0 c1 c2 c3 c4 c5
−x 1 0 0 0 0 0
0 −x 1 0 0 0 0
0 0 −x 1 0 0 0
0 0 0 −x 1 0 0
0 0 0 0 −x y 0
0 0 0 0 0 −x 1
0 0 0 0 0 0 −x


5

[1, 1, 1, 1, 5] [1, 2, 2, 2, 2]


y 0 c1 c2 0
−x 1 0 0 0
0 −x 1 0 0
0 0 −x 1 0

0 0 0 −x y4

0 0 0 0 −x + y3c5 + y2c4 + yc3

 5

[1, 1, 1, 2, 2, 2] [1, 2, 2, 2, 1, 1]



y 0 c1 c2 c3 c4
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x y 0 c5
0 0 0 −x 1 0
0 0 0 0 −x 1
0 0 0 0 0 −x


5

Table 3.16: The Gröbner cells for Hilb9(k[[x, y]]),part 1
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m Hilbert function M dimension

[1, 2, 6] [1, 2, 3, 1, 1, 1]


y 0 0
−x y 0

0 −x y4

c1 c2 −x + y3c5 + y2c4 + yc3

 5

[1, 4, 4] [1, 2, 3, 2, 1]


y 0 0

−x y3 0

c1 −x + y2c3 + yc2 1

c4 y2c5 −x

 5

[2, 2, 5] [1, 2, 3, 2, 1]


y2 0 0

−x + yc1 1 0

0 −x y3

yc3 + c2 0 −x + y2c5 + yc4

 5

[1, 1, 1, 1, 1, 1, 1, 2] [1, 2, 1, 1, 1, 1, 1, 1]



y 0 c1 c2 c3 c4 c5 c6
−x 1 0 0 0 0 0 0
0 −x 1 0 0 0 0 0
0 0 −x 1 0 0 0 0
0 0 0 −x 1 0 0 0
0 0 0 0 −x 1 0 0
0 0 0 0 0 −x 1 0
0 0 0 0 0 0 −x y
0 0 0 0 0 0 0 −x


6

[1, 1, 1, 1, 1, 1, 3] [1, 2, 2, 1, 1, 1, 1]



y 0 c1 c2 c3 c4 c5
−x 1 0 0 0 0 0
0 −x 1 0 0 0 0
0 0 −x 1 0 0 0
0 0 0 −x 1 0 0
0 0 0 0 −x 1 0

0 0 0 0 0 −x y2

0 0 0 0 0 0 −x + yc6


6

[1, 1, 1, 1, 1, 4] [1, 2, 2, 2, 1, 1]



y 0 c1 c2 c3 c4
−x 1 0 0 0 0
0 −x 1 0 0 0
0 0 −x 1 0 0
0 0 0 −x 1 0

0 0 0 0 −x y3

0 0 0 0 0 −x + y2c6 + yc5


6

[1, 1, 1, 6] [1, 2, 2, 2, 1, 1]


y 0 c1 0
−x 1 0 0
0 −x 1 0

0 0 −x y5

c2 0 0 −x + y4c6 + y3c5 + y2c4 + yc3

 6

[1, 1, 7] [1, 2, 2, 1, 1, 1, 1]


y 0 0
−x 1 0

0 −x y6

c1 0 −x + y5c6 + y4c5 + y3c4 + y2c3 + yc2

 6

[1, 3, 5] [1, 2, 3, 2, 1]


y 0 0

−x y2 0

c1 −x + yc2 y2

c3 yc5 + c4 −x + yc6

 6

[4, 5] [1, 2, 2, 2, 2]

 y4 0

−x + y3c3 + y2c2 + yc1 y

y3c6 + y2c5 + yc4 −x

 6

[1, 1, 1, 1, 1, 1, 1, 1, 1] [1, 1, 1, 1, 1, 1, 1, 1, 1]



y 0 c1 c2 c3 c4 c5 c6 c7
−x 1 0 0 0 0 0 0 0
0 −x 1 0 0 0 0 0 0
0 0 −x 1 0 0 0 0 0
0 0 0 −x 1 0 0 0 0
0 0 0 0 −x 1 0 0 0
0 0 0 0 0 −x 1 0 0
0 0 0 0 0 0 −x 1 0
0 0 0 0 0 0 0 −x 1
0 0 0 0 0 0 0 0 −x


7

[1, 8] [1, 2, 1, 1, 1, 1, 1, 1]

 y 0

−x y7

c1 −x + y6c7 + y5c6 + y4c5 + y3c4 + y2c3 + yc2

 7

[2, 7] [1, 2, 2, 1, 1, 1, 1]

 y2 0

−x + yc1 y5

yc3 + c2 −x + y4c7 + y3c6 + y2c5 + yc4

 7

[3, 6] [1, 2, 2, 2, 1, 1]

 y3 0

−x + y2c2 + yc1 y3

y2c5 + yc4 + c3 −x + y2c7 + yc6

 7

[9] [1, 1, 1, 1, 1, 1, 1, 1, 1]

(
y9

−x + y8c8 + y7c7 + y6c6 + y5c5 + y4c4 + y3c3 + y2c2 + yc1

)
8

Table 3.17: The Gröbner cells for Hilb9(k[[x, y]]),part 2
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

2 [1]

(
y + c1
−x+ c2

) (
0
6

)

Table 3.18: n = 1, a = 6, b = 1

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

2 [1]

(
y + c1
−x+ c2

) (
0
1

)

Table 3.19: n = 1, a = 1, b = 1

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

2 [1]

(
y + c1
−x+ c2

) (
0
0

)

Table 3.20: n = 1, a = 1, b = 7

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

3 [1, 1]

 y + c1 0
−x+ c2 1

c3 −x

  0 −2
2 −1
4 2


4 [2]

(
y2 + yc2 + c1
−x+ yc4 + c3

) (
1
2

)

Table 3.21: n = 2, a = 2, b = 1

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

3 [1, 1]

 y + c1 0
−x+ c2 1

c3 −x

  0 −1
1 −1
2 1


4 [2]

(
y2 + yc2 + c1
−x+ yc4 + c3

) (
1
1

)

Table 3.22: n = 2, a = 1, b = 1

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

3 [2]

(
y2 + yc2 + c1

−x+ c3

) (
1
0

)

4 [1, 1]

 y + c1 c2
−x+ c3 1

c4 −x

  0 0
0 −1
0 0



Table 3.23: n = 2, a = 1, b = 3
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

4 [1, 1, 1]


y + c1 0 0
−x+ c2 1 0

c3 −x 1
c4 0 −x




0 −3 −6
3 −1 −4
6 3 −1
9 6 3



5 [1, 2]

 y + c1 0
−x+ c2 y + c3

c4 −x+ c5

  0 −2
3 0
5 3


6 [3]

(
y3 + y2c3 + yc2 + c1
−x+ y2c6 + yc5 + c4

) (
2
3

)

Table 3.24: n = 3, a = 3, b = 1

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

4 [1, 1, 1]


y + c1 0 0
−x+ c2 1 0

c3 −x 1
c4 0 −x




0 −1 −3
1 −1 −2
3 1 −1
4 3 1


5 [3]

(
y3 + y2c3 + yc2 + c1

−x+ yc5 + c4

) (
2
1

)

6 [1, 2]

 y + c1 c2
−x+ c3 y + c4

c5 −x+ c6

  0 0
1 0
2 1



Table 3.25: n = 3, a = 3, b = 2

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

4 [1, 1, 1]


y + c1 0 0
−x+ c2 1 0

c3 −x 1
c4 0 −x




0 −1 −2
1 −1 −2
2 1 −1
3 2 1


5 [3]

(
y3 + y2c3 + yc2 + c1

−x+ yc5 + c4

) (
2
1

)

6 [1, 2]

 y + c1 c2
−x+ c3 y + c4

c5 −x+ c6

  0 0
1 0
1 1



Table 3.26: n = 3, a = 1, b = 1
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

4 [3]

(
y3 + y2c3 + yc2 + c1

−x+ c4

) (
2
0

)

5 [1, 2]

 y + c1 c2
−x+ c3 y + c4

0 −x+ c5

  0 1
0 0
−1 0



6 [1, 1, 1]


y + c1 c2 c3
−x+ c4 1 0

c5 −x 1
c6 0 −x




0 0 0
0 −1 −1
0 0 −1
0 0 0



Table 3.27: n = 3, a = 1, b = 4

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

5 [1, 1, 1, 1]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x 1
c5 0 0 −x




0 −4 −8 −12
4 −1 −5 −9
8 4 −1 −5
12 8 4 −1
16 12 8 4



6 [1, 1, 2]


y + c1 0 0
−x+ c2 1 0

c3 −x y + c4
c5 0 −x+ c6




0 −4 −7
4 −1 −4
8 4 0
11 7 4



6 [2, 2]

 y2 + yc2 + c1 0
−x+ yc4 + c3 1

yc6 + c5 −x

  1 −3
4 −1
8 4



7 [1, 3]

 y + c1 0
−x+ c2 y2 + yc4 + c3

c5 −x+ yc7 + c6

  0 −2
4 1
6 4


8 [4]

(
y4 + y3c4 + y2c3 + yc2 + c1
−x+ y3c8 + y2c7 + yc6 + c5

) (
3
4

)

Table 3.28: n = 4, a = 4, b = 1
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

5 [1, 1, 1, 1]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x 1
c5 0 0 −x




0 −1 −3 −4
1 −1 −2 −4
3 1 −1 −2
4 3 1 −1
6 4 3 1



6 [1, 1, 2]


y + c1 0 0
−x+ c2 1 0

c3 −x y + c4
c5 0 −x+ c6




0 −1 −2
1 −1 −1
3 1 0
3 2 1


6 [4]

(
y4 + y3c4 + y2c3 + yc2 + c1

−x+ yc6 + c5

) (
3
1

)

7 [2, 2]

 y2 + yc2 + c1 c3
−x+ yc5 + c4 1

yc7 + c6 −x

  1 0
1 −1
3 1



8 [1, 3]

 y + c1 c2
−x+ c3 y2 + yc5 + c4

c6 −x+ yc8 + c7

  0 1
1 1
1 1



Table 3.29: n = 4, a = 3, b = 2

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

5 [1, 1, 1, 1]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x 1
c5 0 0 −x




0 −1 −2 −3
1 −1 −2 −3
2 1 −1 −2
3 2 1 −1
4 3 2 1



6 [1, 1, 2]


y + c1 0 0
−x+ c2 1 0

c3 −x y + c4
c5 0 −x+ c6




0 −1 −1
1 −1 −1
2 1 0
2 1 1


6 [4]

(
y4 + y3c4 + y2c3 + yc2 + c1

−x+ yc6 + c5

) (
3
1

)

7 [2, 2]

 y2 + yc2 + c1 c3
−x+ yc5 + c4 1

yc7 + c6 −x

  1 0
1 −1
2 1



8 [1, 3]

 y + c1 c2
−x+ c3 y2 + yc5 + c4

c6 −x+ yc8 + c7

  0 1
1 1
0 1



Table 3.30: n = 4, a = 1, b = 1
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

5 [4]

(
y4 + y3c4 + y2c3 + yc2 + c1

−x+ c5

) (
3
0

)

6 [1, 1, 1, 1]


y + c1 c2 0 0
−x+ c3 1 0 0

c4 −x 1 0
c5 0 −x 1
c6 0 0 −x




0 0 −1 −2
0 −1 −1 −2
1 0 −1 −1
2 1 0 −1
2 2 1 0



6 [1, 3]

 y + c1 c2
−x+ c3 y2 + yc5 + c4

0 −x+ c6

  0 2
0 1
−1 0



7 [2, 2]

 y2 + yc2 + c1 yc4 + c3
−x+ c5 1
yc7 + c6 −x

  1 1
0 −1
1 0



8 [1, 1, 2]


y + c1 c2 c3
−x+ c4 1 0

c5 −x y + c6
c7 0 −x+ c8




0 0 0
0 −1 0
1 0 0
1 0 0



Table 3.31: n = 4, a = 2, b = 3

dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

5 [4]

(
y4 + y3c4 + y2c3 + yc2 + c1

−x+ c5

) (
3
0

)

6 [1, 3]

 y + c1 c2
−x+ c3 y2 + yc5 + c4

0 −x+ c6

  0 2
0 1
−2 0



6 [2, 2]

 y2 + yc2 + c1 yc4 + c3
−x+ c5 1

c6 −x

  1 1
0 −1
0 0



7 [1, 1, 2]


y + c1 c2 c3
−x+ c4 1 0

c5 −x y + c6
0 0 −x+ c7




0 0 1
0 −1 0
0 0 0
−1 −1 0



8 [1, 1, 1, 1]


y + c1 c2 c3 c4
−x+ c5 1 0 0

c6 −x 1 0
c7 0 −x 1
c8 0 0 −x




0 0 0 0
0 −1 −1 −1
0 0 −1 −1
0 0 0 −1
0 0 0 0



Table 3.32: n = 4, a = 1, b = 5
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

6 [1, 1, 1, 1, 1]


y + c1 0 0 0 0
−x+ c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0
c5 0 0 −x 1
c6 0 0 0 −x




0 −5 −10 −15 −20
5 −1 −6 −11 −16
10 5 −1 −6 −11
15 10 5 −1 −6
20 15 10 5 −1
25 20 15 10 5



7 [1, 1, 1, 2]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x y + c5
c6 0 0 −x+ c7




0 −5 −10 −14
5 −1 −6 −10
10 5 −1 −5
15 10 5 0
19 14 9 5



7 [1, 2, 2]


y + c1 0 0
−x+ c2 y + c3 0

c4 −x+ c5 1
c6 c7 −x




0 −4 −9
5 0 −5
9 5 −1
14 10 5



8 [1, 1, 3]


y + c1 0 0
−x+ c2 1 0

c3 −x y2 + yc5 + c4
c6 0 −x+ yc8 + c7




0 −5 −8
5 −1 −4
10 5 1
13 8 5



8 [2, 3]

 y2 + yc2 + c1 0
−x+ yc4 + c3 y + c5

yc7 + c6 −x+ c8

  1 −3
5 0
9 5



9 [1, 4]

 y + c1 0
−x+ c2 y3 + y2c5 + yc4 + c3

c6 −x+ y2c9 + yc8 + c7

  0 −2
5 2
7 5


10 [5]

(
y5 + y4c5 + y3c4 + y2c3 + yc2 + c1
−x+ y4c10 + y3c9 + y2c8 + yc7 + c6

) (
4
5

)

Table 3.33: n = 5, a = 5, b = 1
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6 [1, 1, 1, 1, 1]


y + c1 0 0 0 0
−x+ c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0
c5 0 0 −x 1
c6 0 0 0 −x




0 −1 −3 −4 −6
1 −1 −2 −4 −5
3 1 −1 −2 −4
4 3 1 −1 −2
6 4 3 1 −1
7 6 4 3 1



7 [1, 1, 1, 2]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x y + c5
c6 0 0 −x+ c7




0 −1 −3 −3
1 −1 −2 −3
3 1 −1 −1
4 3 1 0
5 3 2 1



7 [5]

(
y5 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ yc7 + c6

) (
4
1

)

8 [1, 1, 3]


y + c1 0 0
−x+ c2 1 0

c3 −x y2 + yc5 + c4
c6 0 −x+ yc8 + c7




0 −1 −1
1 −1 0
3 1 1
2 1 1



8 [1, 2, 2]


y + c1 c2 0
−x+ c3 y + c4 0

c5 −x+ c6 1
c7 c8 −x




0 0 −2
1 0 −1
2 1 −1
3 3 1



9 [1, 4]

 y + c1 c2
−x+ c3 y3 + y2c6 + yc5 + c4

c7 −x+ yc9 + c8

  0 2
1 2
0 1



10 [2, 3]

 y2 + yc2 + c1 yc4 + c3
−x+ yc6 + c5 y + c7

yc9 + c8 −x+ c10

  1 1
1 0
2 1



Table 3.34: n = 5, a = 3, b = 2
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6 [1, 1, 1, 1, 1]


y + c1 0 0 0 0
−x+ c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0
c5 0 0 −x 1
c6 0 0 0 −x




0 −1 −2 −3 −4
1 −1 −2 −3 −4
2 1 −1 −2 −3
3 2 1 −1 −2
4 3 2 1 −1
5 4 3 2 1



7 [1, 1, 1, 2]


y + c1 0 0 0
−x+ c2 1 0 0

c3 −x 1 0
c4 0 −x y + c5
c6 0 0 −x+ c7




0 −1 −2 −2
1 −1 −2 −2
2 1 −1 −1
3 2 1 0
3 2 1 1



7 [5]

(
y5 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ yc7 + c6

) (
4
1

)

8 [1, 2, 2]


y + c1 c2 0
−x+ c3 y + c4 0

c5 −x+ c6 1
c7 c8 −x




0 0 −1
1 0 −1
1 1 −1
2 2 1



8 [1, 4]

 y + c1 c2
−x+ c3 y3 + y2c6 + yc5 + c4

0 −x+ yc8 + c7

  0 2
1 2
−1 1



9 [1, 1, 3]


y + c1 0 c2
−x+ c3 1 0

c4 −x y2 + yc6 + c5
c7 0 −x+ yc9 + c8




0 −1 0
1 −1 0
2 1 1
1 0 1



10 [2, 3]

 y2 + yc2 + c1 yc4 + c3
−x+ yc6 + c5 y + c7

yc9 + c8 −x+ c10

  1 1
1 0
1 1



Table 3.35: n = 5, a = 1, b = 1

152



dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

6 [5]

(
y5 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ c6

) (
4
0

)

7 [1, 1, 1, 1, 1]


y + c1 c2 0 0 0
−x+ c3 1 0 0 0

c4 −x 1 0 0
c5 0 −x 1 0
c6 0 0 −x 1
c7 0 0 0 −x




0 0 −1 −2 −2
0 −1 −1 −2 −3
1 0 −1 −1 −2
2 1 0 −1 −1
2 2 1 0 −1
3 2 2 1 0



7 [1, 4]

 y + c1 c2
−x+ c3 y3 + y2c6 + yc5 + c4

0 −x+ c7

  0 3
0 2
−2 0



8 [1, 1, 1, 2]


y + c1 c2 0 0
−x+ c3 1 0 0

c4 −x 1 0
c5 0 −x y + c6
c7 0 0 −x+ c8




0 0 −1 −1
0 −1 −1 −1
1 0 −1 0
2 1 0 0
1 1 0 0



8 [2, 3]

 y2 + yc2 + c1 yc4 + c3
−x+ c5 y + c6

c7 −x+ c8

  1 2
0 0
0 0



9 [1, 1, 3]


y + c1 c2 c3
−x+ c4 1 0

c5 −x y2 + yc7 + c6
c8 0 −x+ c9




0 0 1
0 −1 1
1 0 1
0 −1 0



10 [1, 2, 2]


y + c1 c2 c3
−x+ c4 y + c5 c6

c7 −x+ c8 1
c9 c10 −x




0 1 0
0 0 0
0 0 −1
1 1 0



Table 3.36: n = 5, a = 2, b = 3
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6 [5]

(
y5 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x+ c6

) (
4
0

)

7 [1, 4]

 y + c1 c2
−x+ c3 y3 + y2c6 + yc5 + c4

0 −x+ c7

  0 3
0 2
−3 0



7 [2, 3]

 y2 + yc2 + c1 yc4 + c3
−x+ c5 y + c6

0 −x+ c7

  1 2
0 0
−1 0



8 [1, 1, 3]


y + c1 c2 c3
−x+ c4 1 0

c5 −x y2 + yc7 + c6
0 0 −x+ c8




0 0 2
0 −1 1
0 0 1
−2 −2 0



8 [1, 2, 2]


y + c1 c2 c3
−x+ c4 y + c5 c6

0 −x+ c7 1
0 c8 −x




0 1 1
0 0 0
−1 0 −1
−1 0 0



9 [1, 1, 1, 2]


y + c1 c2 c3 c4
−x+ c5 1 0 0

c6 −x 1 0
c7 0 −x y + c8
0 0 0 −x+ c9




0 0 0 1
0 −1 −1 0
0 0 −1 0
0 0 0 0
−1 −1 −1 0



10 [1, 1, 1, 1, 1]


y + c1 c2 c3 c4 c5
−x+ c6 1 0 0 0

c7 −x 1 0 0
c8 0 −x 1 0
c9 0 0 −x 1
c10 0 0 0 −x




0 0 0 0 0
0 −1 −1 −1 −1
0 0 −1 −1 −1
0 0 0 −1 −1
0 0 0 0 −1
0 0 0 0 0



Table 3.37: n = 5, a = 1, b = 6
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8 [1, 1, 1, 1, 1, 1, 1]



y + c1 0 0 0 0 0 0
−x + c2 1 0 0 0 0 0

c3 −x 1 0 0 0 0
c4 0 −x 1 0 0 0
c5 0 0 −x 1 0 0
c6 0 0 0 −x 1 0
c7 0 0 0 0 −x 1
c8 0 0 0 0 0 −x





0 −7 −14 −21 −28 −35 −42
7 −1 −8 −15 −22 −29 −36
14 7 −1 −8 −15 −22 −29
21 14 7 −1 −8 −15 −22
28 21 14 7 −1 −8 −15
35 28 21 14 7 −1 −8
42 35 28 21 14 7 −1
49 42 35 28 21 14 7



9 [1, 1, 1, 1, 1, 2]



y + c1 0 0 0 0 0
−x + c2 1 0 0 0 0

c3 −x 1 0 0 0
c4 0 −x 1 0 0
c5 0 0 −x 1 0
c6 0 0 0 −x y + c7
c8 0 0 0 0 −x + c9





0 −7 −14 −21 −28 −34
7 −1 −8 −15 −22 −28
14 7 −1 −8 −15 −21
21 14 7 −1 −8 −14
28 21 14 7 −1 −7
35 28 21 14 7 0
41 34 27 20 13 7



9 [1, 1, 1, 2, 2]


y + c1 0 0 0 0
−x + c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x y + c5 0
c6 0 0 −x + c7 1
c8 0 0 c9 −x




0 −7 −14 −20 −27
7 −1 −8 −14 −21
14 7 −1 −7 −14
21 14 7 0 −7
27 20 13 7 −1
34 27 20 14 7



9 [1, 2, 2, 2]


y + c1 0 0 0
−x + c2 y + c3 0 0

c4 −x + c5 1 0
c6 c7 −x 1
c8 c9 0 −x




0 −6 −13 −20
7 0 −7 −14
13 7 −1 −8
20 14 7 −1
27 21 14 7



10 [1, 1, 1, 1, 3]


y + c1 0 0 0 0
−x + c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0

c5 0 0 −x y2 + yc7 + c6
c8 0 0 0 −x + yc10 + c9




0 −7 −14 −21 −26
7 −1 −8 −15 −20
14 7 −1 −8 −13
21 14 7 −1 −6
28 21 14 7 1
33 26 19 12 7



10 [1, 1, 2, 3]


y + c1 0 0 0
−x + c2 1 0 0

c3 −x y + c4 0
c5 0 −x + c6 y + c7
c8 0 c9 −x + c10




0 −7 −13 −19
7 −1 −7 −13
14 7 0 −6
20 13 7 0
26 19 13 7



10 [1, 3, 3]


y + c1 0 0

−x + c2 y2 + yc4 + c3 0
c5 −x + yc7 + c6 1
c8 yc10 + c9 −x




0 −5 −12
7 1 −6
12 7 −1
19 14 7



10 [2, 2, 3]


y2 + yc2 + c1 0 0
−x + yc4 + c3 1 0

yc6 + c5 −x y + c7
yc9 + c8 0 −x + c10




1 −6 −12
7 −1 −7
14 7 0
20 13 7



11 [1, 1, 1, 4]


y + c1 0 0 0
−x + c2 1 0 0

c3 −x 1 0

c4 0 −x y3 + y2c7 + yc6 + c5
c8 0 0 −x + y2c11 + yc10 + c9




0 −7 −14 −18
7 −1 −8 −12
14 7 −1 −5
21 14 7 2
25 18 11 7



11 [1, 2, 4]


y + c1 0 0
−x + c2 y + c3 0

c4 −x + c5 y2 + yc7 + c6
c8 c9 −x + yc11 + c10




0 −6 −11
7 0 −5
13 7 1
18 12 7



11 [3, 4]

 y3 + y2c3 + yc2 + c1 0

−x + y2c6 + yc5 + c4 y + c7
y2c10 + yc9 + c8 −x + c11

  2 −4
7 0
13 7



12 [1, 1, 5]


y + c1 0 0
−x + c2 1 0

c3 −x y4 + y3c7 + y2c6 + yc5 + c4
c8 0 −x + y3c12 + y2c11 + yc10 + c9




0 −7 −10
7 −1 −4
14 7 3
17 10 7



12 [2, 5]

 y2 + yc2 + c1 0

−x + yc4 + c3 y3 + y2c7 + yc6 + c5
yc9 + c8 −x + y2c12 + yc11 + c10

  1 −3
7 2
11 7



13 [1, 6]

 y + c1 0

−x + c2 y5 + y4c7 + y3c6 + y2c5 + yc4 + c3
c8 −x + y4c13 + y3c12 + y2c11 + yc10 + c9

  0 −2
7 4
9 7


14 [7]

(
y7 + y6c7 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x + y6c14 + y5c13 + y4c12 + y3c11 + y2c10 + yc9 + c8

) (
6
7

)

Table 3.38: n = 7, a = 7, b = 1
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8 [1, 1, 1, 1, 1, 1, 1]



y + c1 0 0 0 0 0 0
−x + c2 1 0 0 0 0 0

c3 −x 1 0 0 0 0
c4 0 −x 1 0 0 0
c5 0 0 −x 1 0 0
c6 0 0 0 −x 1 0
c7 0 0 0 0 −x 1
c8 0 0 0 0 0 −x





0 −1 −3 −4 −6 −7 −9
1 −1 −2 −4 −5 −7 −8
3 1 −1 −2 −4 −5 −7
4 3 1 −1 −2 −4 −5
6 4 3 1 −1 −2 −4
7 6 4 3 1 −1 −2
9 7 6 4 3 1 −1
10 9 7 6 4 3 1



9 [1, 1, 1, 1, 1, 2]



y + c1 0 0 0 0 0
−x + c2 1 0 0 0 0

c3 −x 1 0 0 0
c4 0 −x 1 0 0
c5 0 0 −x 1 0
c6 0 0 0 −x y + c7
c8 0 0 0 0 −x + c9





0 −1 −3 −4 −6 −6
1 −1 −2 −4 −5 −6
3 1 −1 −2 −4 −4
4 3 1 −1 −2 −3
6 4 3 1 −1 −1
7 6 4 3 1 0
8 6 5 3 2 1



9 [1, 1, 1, 2, 2]


y + c1 0 0 0 0
−x + c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x y + c5 0
c6 0 0 −x + c7 1
c8 0 0 c9 −x




0 −1 −3 −3 −5
1 −1 −2 −3 −4
3 1 −1 −1 −3
4 3 1 0 −1
5 3 2 1 −1
6 5 3 3 1


9 [7]

(
y7 + y6c7 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x + yc9 + c8

) (
6
1

)

10 [1, 1, 1, 1, 3]


y + c1 0 0 0 0
−x + c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0

c5 0 0 −x y2 + yc7 + c6
c8 0 0 0 −x + yc10 + c9




0 −1 −3 −4 −4
1 −1 −2 −4 −3
3 1 −1 −2 −2
4 3 1 −1 0
6 4 3 1 1
5 4 2 1 1



10 [1, 1, 1, 4]


y + c1 0 0 0
−x + c2 1 0 0

c3 −x 1 0

c4 0 −x y3 + y2c7 + yc6 + c5
c8 0 0 −x + yc10 + c9




0 −1 −3 −1
1 −1 −2 −1
3 1 −1 1
4 3 1 2
3 1 0 1



10 [1, 2, 2, 2]


y + c1 c2 0 0
−x + c3 y + c4 0 0

c5 −x + c6 1 0
c7 c8 −x 1
c9 c10 0 −x




0 0 −2 −3
1 0 −1 −3
2 1 −1 −2
3 3 1 −1
5 4 3 1



10 [1, 6]

 y + c1 c2
−x + c3 y5 + y4c8 + y3c7 + y2c6 + yc5 + c4

0 −x + yc10 + c9

  0 4
1 4
−2 1



11 [1, 1, 2, 3]


y + c1 0 0 0
−x + c2 1 0 0

c3 −x y + c4 c5
c6 0 −x + c7 y + c8
c9 0 c10 −x + c11




0 −1 −2 −2
1 −1 −1 −2
3 1 0 0
3 2 1 0
4 2 2 1



11 [1, 1, 5]


y + c1 0 c2
−x + c3 1 0

c4 −x y4 + y3c8 + y2c7 + yc6 + c5
c9 0 −x + yc11 + c10




0 −1 1
1 −1 2
3 1 3
0 −1 1



11 [2, 2, 3]


y2 + yc2 + c1 c3 0
−x + yc5 + c4 1 0

yc7 + c6 −x y + c8
yc10 + c9 0 −x + c11




1 0 −1
1 −1 −1
3 1 0
3 2 1



12 [1, 3, 3]


y + c1 c2 0

−x + c3 y2 + yc5 + c4 c6
c7 −x + yc9 + c8 1
c10 yc12 + c11 −x




0 1 −1
1 1 0
1 1 −1
2 3 1



12 [2, 5]

 y2 + yc2 + c1 yc4 + c3
−x + yc6 + c5 y3 + y2c9 + yc8 + c7

c10 −x + yc12 + c11

  1 3
1 2
0 1



13 [3, 4]

 y3 + y2c3 + yc2 + c1 y2c6 + yc5 + c4
−x + yc8 + c7 y + c9

y2c12 + yc11 + c10 −x + c13

  2 2
1 0
2 1



14 [1, 2, 4]


y + c1 c2 c3
−x + c4 y + c5 c6

c7 −x + c8 y2 + yc10 + c9
c11 c12 −x + yc14 + c13




0 0 0
1 0 1
2 1 1
1 1 1



Table 3.39: n = 7, a = 3, b = 2
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W

8 [1, 1, 1, 1, 1, 1, 1]



y + c1 0 0 0 0 0 0
−x + c2 1 0 0 0 0 0

c3 −x 1 0 0 0 0
c4 0 −x 1 0 0 0
c5 0 0 −x 1 0 0
c6 0 0 0 −x 1 0
c7 0 0 0 0 −x 1
c8 0 0 0 0 0 −x





0 −1 −2 −3 −4 −5 −6
1 −1 −2 −3 −4 −5 −6
2 1 −1 −2 −3 −4 −5
3 2 1 −1 −2 −3 −4
4 3 2 1 −1 −2 −3
5 4 3 2 1 −1 −2
6 5 4 3 2 1 −1
7 6 5 4 3 2 1



9 [1, 1, 1, 1, 1, 2]



y + c1 0 0 0 0 0
−x + c2 1 0 0 0 0

c3 −x 1 0 0 0
c4 0 −x 1 0 0
c5 0 0 −x 1 0
c6 0 0 0 −x y + c7
c8 0 0 0 0 −x + c9





0 −1 −2 −3 −4 −4
1 −1 −2 −3 −4 −4
2 1 −1 −2 −3 −3
3 2 1 −1 −2 −2
4 3 2 1 −1 −1
5 4 3 2 1 0
5 4 3 2 1 1



9 [1, 1, 1, 2, 2]


y + c1 0 0 0 0
−x + c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x y + c5 0
c6 0 0 −x + c7 1
c8 0 0 c9 −x




0 −1 −2 −2 −3
1 −1 −2 −2 −3
2 1 −1 −1 −2
3 2 1 0 −1
3 2 1 1 −1
4 3 2 2 1


9 [7]

(
y7 + y6c7 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x + yc9 + c8

) (
6
1

)

10 [1, 1, 1, 1, 3]


y + c1 0 0 0 0
−x + c2 1 0 0 0

c3 −x 1 0 0
c4 0 −x 1 0

c5 0 0 −x y2 + yc7 + c6
c8 0 0 0 −x + yc10 + c9




0 −1 −2 −3 −2
1 −1 −2 −3 −2
2 1 −1 −2 −1
3 2 1 −1 0
4 3 2 1 1
3 2 1 0 1



10 [1, 1, 5]


y + c1 0 c2
−x + c3 1 0

c4 −x y4 + y3c8 + y2c7 + yc6 + c5
0 0 −x + yc10 + c9




0 −1 2
1 −1 2
2 1 3
−1 −2 1



10 [1, 2, 2, 2]


y + c1 c2 0 0
−x + c3 y + c4 0 0

c5 −x + c6 1 0
c7 c8 −x 1
c9 c10 0 −x




0 0 −1 −2
1 0 −1 −2
1 1 −1 −2
2 2 1 −1
3 3 2 1



10 [1, 6]

 y + c1 c2
−x + c3 y5 + y4c8 + y3c7 + y2c6 + yc5 + c4

0 −x + yc10 + c9

  0 4
1 4
−3 1



11 [1, 1, 1, 4]


y + c1 0 0 c2
−x + c3 1 0 0

c4 −x 1 0

c5 0 −x y3 + y2c8 + yc7 + c6
c9 0 0 −x + yc11 + c10




0 −1 −2 0
1 −1 −2 0
2 1 −1 1
3 2 1 2
1 0 −1 1



11 [1, 1, 2, 3]


y + c1 0 0 0
−x + c2 1 0 0

c3 −x y + c4 c5
c6 0 −x + c7 y + c8
c9 0 c10 −x + c11




0 −1 −1 −1
1 −1 −1 −1
2 1 0 0
2 1 1 0
2 1 1 1



11 [2, 5]

 y2 + yc2 + c1 yc4 + c3
−x + yc6 + c5 y3 + y2c9 + yc8 + c7

0 −x + yc11 + c10

  1 3
1 2
−1 1



12 [2, 2, 3]


y2 + yc2 + c1 c3 c4
−x + yc6 + c5 1 0

yc8 + c7 −x y + c9
yc11 + c10 0 −x + c12




1 0 0
1 −1 −1
2 1 0
2 1 1



12 [3, 4]

 y3 + y2c3 + yc2 + c1 y2c6 + yc5 + c4
−x + yc8 + c7 y + c9

yc11 + c10 −x + c12

  2 2
1 0
1 1



13 [1, 3, 3]


y + c1 c2 c3
−x + c4 y2 + yc6 + c5 c7

c8 −x + yc10 + c9 1
c11 yc13 + c12 −x




0 1 0
1 1 0
0 1 −1
1 2 1



14 [1, 2, 4]


y + c1 c2 c3
−x + c4 y + c5 c6

c7 −x + c8 y2 + yc10 + c9
c11 c12 −x + yc14 + c13




0 0 1
1 0 1
1 1 1
0 0 1



Table 3.40: n = 7, a = 1, b = 1
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W
8 [7]

(
y7 + y6c7 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x + c8

) (
6
0

)

9 [1, 1, 1, 1, 1, 1, 1]



y + c1 c2 0 0 0 0 0
−x + c3 1 0 0 0 0 0

c4 −x 1 0 0 0 0
c5 0 −x 1 0 0 0
c6 0 0 −x 1 0 0
c7 0 0 0 −x 1 0
c8 0 0 0 0 −x 1
c9 0 0 0 0 0 −x





0 0 −1 −2 −2 −3 −4
0 −1 −1 −2 −3 −3 −4
1 0 −1 −1 −2 −3 −3
2 1 0 −1 −1 −2 −3
2 2 1 0 −1 −1 −2
3 2 2 1 0 −1 −1
4 3 2 2 1 0 −1
4 4 3 2 2 1 0



9 [1, 6]

 y + c1 c2
−x + c3 y5 + y4c8 + y3c7 + y2c6 + yc5 + c4

0 −x + c9

  0 5
0 4
−4 0



9 [2, 5]

 y2 + yc2 + c1 yc4 + c3
−x + c5 y3 + y2c8 + yc7 + c6

0 −x + c9

  1 4
0 2
−2 0



10 [1, 1, 1, 1, 1, 2]



y + c1 c2 0 0 0 0
−x + c3 1 0 0 0 0

c4 −x 1 0 0 0
c5 0 −x 1 0 0
c6 0 0 −x 1 0
c7 0 0 0 −x y + c8
c9 0 0 0 0 −x + c10





0 0 −1 −2 −2 −2
0 −1 −1 −2 −3 −2
1 0 −1 −1 −2 −2
2 1 0 −1 −1 −1
2 2 1 0 −1 0
3 2 2 1 0 0
3 2 1 1 0 0



10 [1, 1, 1, 4]


y + c1 c2 0 c3
−x + c4 1 0 0

c5 −x 1 0

c6 0 −x y3 + y2c9 + yc8 + c7
0 0 0 −x + c10




0 0 −1 1
0 −1 −1 1
1 0 −1 2
2 1 0 2
−1 −1 −2 0



10 [1, 1, 5]


y + c1 c2 c3
−x + c4 1 0

c5 −x y4 + y3c9 + y2c8 + yc7 + c6
0 0 −x + c10




0 0 3
0 −1 3
1 0 3
−2 −3 0



10 [3, 4]

 y3 + y2c3 + yc2 + c1 y2c6 + yc5 + c4
−x + c7 y + c8

c9 −x + c10

  2 3
0 0
0 0



11 [1, 1, 1, 1, 3]


y + c1 c2 0 0 c3
−x + c4 1 0 0 0

c5 −x 1 0 0
c6 0 −x 1 0

c7 0 0 −x y2 + yc9 + c8
c10 0 0 0 −x + c11




0 0 −1 −2 0
0 −1 −1 −2 −1
1 0 −1 −1 0
2 1 0 −1 1
2 2 1 0 1
1 0 0 −1 0



11 [1, 1, 1, 2, 2]


y + c1 c2 0 0 0
−x + c3 1 0 0 0

c4 −x 1 0 0
c5 0 −x y + c6 c7
c8 0 0 −x + c9 1
c10 0 0 c11 −x




0 0 −1 −1 −1
0 −1 −1 −1 −2
1 0 −1 0 −1
2 1 0 0 0
1 1 0 0 −1
2 1 1 1 0



11 [1, 2, 4]


y + c1 c2 c3
−x + c4 y + c5 c6

c7 −x + c8 y2 + yc10 + c9
0 0 −x + c11




0 1 2
0 0 2
0 0 1
−1 −1 0



12 [1, 2, 2, 2]


y + c1 c2 c3 0
−x + c4 y + c5 c6 0

c7 −x + c8 1 0
c9 c10 −x 1
c11 c12 0 −x




0 1 0 −1
0 0 0 −1
0 0 −1 −1
1 1 0 −1
1 2 1 0



12 [1, 3, 3]


y + c1 c2 c3
−x + c4 y2 + yc6 + c5 yc8 + c7

0 −x + c9 1
c10 yc12 + c11 −x




0 2 1
0 1 1
−1 0 −1
0 1 0



13 [2, 2, 3]


y2 + yc2 + c1 yc4 + c3 yc6 + c5

−x + c7 1 0
yc9 + c8 −x y + c10

yc12 + c11 0 −x + c13




1 1 1
0 −1 0
1 0 0
1 0 0



14 [1, 1, 2, 3]


y + c1 c2 c3 c4
−x + c5 1 0 0

c6 −x y + c7 c8
c9 0 −x + c10 y + c11
c12 0 c13 −x + c14




0 0 0 0
0 −1 0 0
1 0 0 1
1 0 0 0
0 0 0 0



Table 3.41: n = 7, a = 2, b = 3
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W
8 [7]

(
y7 + y6c7 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x + c8

) (
6
0

)

9 [1, 6]

 y + c1 c2
−x + c3 y5 + y4c8 + y3c7 + y2c6 + yc5 + c4

0 −x + c9

  0 5
0 4
−5 0



9 [2, 5]

 y2 + yc2 + c1 yc4 + c3
−x + c5 y3 + y2c8 + yc7 + c6

0 −x + c9

  1 4
0 2
−3 0



9 [3, 4]

 y3 + y2c3 + yc2 + c1 y2c6 + yc5 + c4
−x + c7 y + c8

0 −x + c9

  2 3
0 0
−1 0



10 [1, 1, 1, 1, 1, 1, 1]



y + c1 c2 c3 0 0 0 0
−x + c4 1 0 0 0 0 0

c5 −x 1 0 0 0 0
c6 0 −x 1 0 0 0
c7 0 0 −x 1 0 0
c8 0 0 0 −x 1 0
c9 0 0 0 0 −x 1
c10 0 0 0 0 0 −x





0 0 0 −1 −1 −1 −2
0 −1 −1 −1 −2 −2 −2
0 0 −1 −1 −1 −2 −2
1 0 0 −1 −1 −1 −2
1 1 0 0 −1 −1 −1
1 1 1 0 0 −1 −1
2 1 1 1 0 0 −1
2 2 1 1 1 0 0



10 [1, 1, 5]


y + c1 c2 c3
−x + c4 1 0

c5 −x y4 + y3c9 + y2c8 + yc7 + c6
0 0 −x + c10




0 0 4
0 −1 3
0 0 3
−3 −4 0



10 [1, 2, 4]


y + c1 c2 c3
−x + c4 y + c5 c6

0 −x + c7 y2 + yc9 + c8
0 0 −x + c10




0 1 3
0 0 2
−1 0 1
−2 −2 0



10 [1, 3, 3]


y + c1 c2 c3
−x + c4 y2 + yc6 + c5 yc8 + c7

0 −x + c9 1
0 c10 −x




0 2 2
0 1 1
−2 0 −1
−1 0 0



11 [1, 1, 1, 1, 3]


y + c1 c2 c3 0 c4
−x + c5 1 0 0 0

c6 −x 1 0 0
c7 0 −x 1 0

c8 0 0 −x y2 + yc10 + c9
0 0 0 0 −x + c11




0 0 0 −1 1
0 −1 −1 −1 0
0 0 −1 −1 1
1 0 0 −1 1
1 1 0 0 1
−1 −1 −1 −2 0



11 [1, 1, 1, 4]


y + c1 c2 c3 c4
−x + c5 1 0 0

c6 −x 1 0

c7 0 −x y3 + y2c10 + yc9 + c8
0 0 0 −x + c11




0 0 0 2
0 −1 −1 2
0 0 −1 2
1 0 0 2
−2 −2 −3 0



11 [2, 2, 3]


y2 + yc2 + c1 yc4 + c3 yc6 + c5

−x + c7 1 0
c8 −x y + c9
c10 0 −x + c11




1 1 2
0 −1 0
0 0 0
0 −1 0



12 [1, 1, 1, 1, 1, 2]



y + c1 c2 c3 0 0 c4
−x + c5 1 0 0 0 0

c6 −x 1 0 0 0
c7 0 −x 1 0 0
c8 0 0 −x 1 0
c9 0 0 0 −x y + c10
c11 0 0 0 0 −x + c12





0 0 0 −1 −1 0
0 −1 −1 −1 −2 −1
0 0 −1 −1 −1 −1
1 0 0 −1 −1 0
1 1 0 0 −1 0
1 1 1 0 0 0
1 0 0 0 −1 0



12 [1, 1, 2, 3]


y + c1 c2 c3 c4
−x + c5 1 0 0

c6 −x y + c7 c8
c9 0 −x + c10 y + c11
0 0 0 −x + c12




0 0 1 1
0 −1 0 1
0 0 0 1
0 −1 0 0
−1 −1 −1 0



13 [1, 2, 2, 2]


y + c1 c2 c3 c4
−x + c5 y + c6 c7 c8

0 −x + c9 1 0
c10 c11 −x 1
c12 c13 0 −x




0 1 1 0
0 0 0 0
−1 0 −1 −1
0 0 0 −1
0 1 0 0



14 [1, 1, 1, 2, 2]


y + c1 c2 c3 c4 c5
−x + c6 1 0 0 0

c7 −x 1 0 0
c8 0 −x y + c9 c10
c11 0 0 −x + c12 1
c13 0 0 c14 −x




0 0 0 0 0
0 −1 −1 0 −1
0 0 −1 0 0
1 0 0 0 0
0 0 −1 0 −1
0 0 0 0 0



Table 3.42: n = 7, a = 1, b = 3
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dimension m canonical Hilbert-Burch matrix M = H +N degree bounds by W
8 [7]

(
y7 + y6c7 + y5c6 + y4c5 + y3c4 + y2c3 + yc2 + c1

−x + c8

) (
6
0

)

9 [1, 6]

 y + c1 c2
−x + c3 y5 + y4c8 + y3c7 + y2c6 + yc5 + c4

0 −x + c9

  0 5
0 4
−5 0



9 [2, 5]

 y2 + yc2 + c1 yc4 + c3
−x + c5 y3 + y2c8 + yc7 + c6

0 −x + c9

  1 4
0 2
−3 0



9 [3, 4]

 y3 + y2c3 + yc2 + c1 y2c6 + yc5 + c4
−x + c7 y + c8

0 −x + c9

  2 3
0 0
−1 0



10 [1, 1, 5]


y + c1 c2 c3
−x + c4 1 0

c5 −x y4 + y3c9 + y2c8 + yc7 + c6
0 0 −x + c10




0 0 4
0 −1 3
0 0 3
−4 −4 0



10 [1, 2, 4]


y + c1 c2 c3
−x + c4 y + c5 c6

0 −x + c7 y2 + yc9 + c8
0 0 −x + c10




0 1 3
0 0 2
−1 0 1
−3 −2 0



10 [1, 3, 3]


y + c1 c2 c3
−x + c4 y2 + yc6 + c5 yc8 + c7

0 −x + c9 1
0 c10 −x




0 2 2
0 1 1
−2 0 −1
−2 0 0



10 [2, 2, 3]


y2 + yc2 + c1 yc4 + c3 yc6 + c5

−x + c7 1 0
c8 −x y + c9
0 0 −x + c10




1 1 2
0 −1 0
0 0 0
−1 −1 0



11 [1, 1, 1, 4]


y + c1 c2 c3 c4
−x + c5 1 0 0

c6 −x 1 0

c7 0 −x y3 + y2c10 + yc9 + c8
0 0 0 −x + c11




0 0 0 3
0 −1 −1 2
0 0 −1 2
0 0 0 2
−3 −3 −3 0



11 [1, 1, 2, 3]


y + c1 c2 c3 c4
−x + c5 1 0 0

c6 −x y + c7 c8
0 0 −x + c9 y + c10
0 0 0 −x + c11




0 0 1 2
0 −1 0 1
0 0 0 1
−1 −1 0 0
−2 −2 −1 0



11 [1, 2, 2, 2]


y + c1 c2 c3 c4
−x + c5 y + c6 c7 c8

0 −x + c9 1 0
0 c10 −x 1
0 c11 0 −x




0 1 1 1
0 0 0 0
−1 0 −1 −1
−1 0 0 −1
−1 0 0 0



12 [1, 1, 1, 1, 3]


y + c1 c2 c3 c4 c5
−x + c6 1 0 0 0

c7 −x 1 0 0
c8 0 −x 1 0

c9 0 0 −x y2 + yc11 + c10
0 0 0 0 −x + c12




0 0 0 0 2
0 −1 −1 −1 1
0 0 −1 −1 1
0 0 0 −1 1
0 0 0 0 1
−2 −2 −2 −2 0



12 [1, 1, 1, 2, 2]


y + c1 c2 c3 c4 c5
−x + c6 1 0 0 0

c7 −x 1 0 0
c8 0 −x y + c9 c10
0 0 0 −x + c11 1
0 0 0 c12 −x




0 0 0 1 1
0 −1 −1 0 0
0 0 −1 0 0
0 0 0 0 0
−1 −1 −1 0 −1
−1 −1 −1 0 0



13 [1, 1, 1, 1, 1, 2]



y + c1 c2 c3 c4 c5 c6
−x + c7 1 0 0 0 0

c8 −x 1 0 0 0
c9 0 −x 1 0 0
c10 0 0 −x 1 0
c11 0 0 0 −x y + c12
0 0 0 0 0 −x + c13





0 0 0 0 0 1
0 −1 −1 −1 −1 0
0 0 −1 −1 −1 0
0 0 0 −1 −1 0
0 0 0 0 −1 0
0 0 0 0 0 0
−1 −1 −1 −1 −1 0



14 [1, 1, 1, 1, 1, 1, 1]



y + c1 c2 c3 c4 c5 c6 c7
−x + c8 1 0 0 0 0 0

c9 −x 1 0 0 0 0
c10 0 −x 1 0 0 0
c11 0 0 −x 1 0 0
c12 0 0 0 −x 1 0
c13 0 0 0 0 −x 1
c14 0 0 0 0 0 −x





0 0 0 0 0 0 0
0 −1 −1 −1 −1 −1 −1
0 0 −1 −1 −1 −1 −1
0 0 0 −1 −1 −1 −1
0 0 0 0 −1 −1 −1
0 0 0 0 0 −1 −1
0 0 0 0 0 0 −1
0 0 0 0 0 0 0



Table 3.43: n = 7, a = 1, b = 8

160


	Introduction
	Immaculate Line Bundles on Toric Varieties, chapter 2
	Canonical Hilbert-Burch Matrices, chapter 3

	Immaculate Line Bundles on Toric Varieties
	Toric geometry
	Toric cohomology

	The immaculate locus in Pic(X)
	Temptations
	Conditions on presence or absence of temptations

	Toric varieties with Picard rank 2
	Spotting smoothness via Gale duality
	Immaculate locus for Picard rank 2

	Toric varieties with splitting fans
	Primitive relations
	Temptation for splitting fans
	Immaculate locus of splitting fans

	Toric varieties of Picard rank 3
	Classification by Batyrev
	Tempting Subsets
	Immaculate locus for Picard rank 3
	Changing parameters
	Vanishing parameters

	Computational aspects

	Canonical Hilbert-Burch Matrices
	Parametrization of ideals in k[x,y]
	From polynomials to power series
	Enhanced standard basis and Grauert's division
	Lifting of syzygies in local rings

	Towards a parametrization of ideals in k[[x,y]]
	Parametrization for lex-segment leading term ideals
	Betti strata of Gröbner cells
	A cellular decomposition of the punctual Hilbert scheme
	Back to the polynomial ring: A surjection to the Gröbner cell
	Towards a parametrization
	Lexicographic order with y>x

	Intersecting Gröbner cells
	Cellular decompositions of `3́9`42`"̇613A``45`47`"603A`3́9`42`"̇613A``45`47`"603AHilbn(k[x,y])


