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SHORT COMMUNICATION

Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background 
requires a functional stromal Ascorbate Peroxidase
Dominic Schütte, Margarete Baier , and Thomas Griebel

Plant Physiology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany

ABSTRACT
24 h cold exposure (4°C) is sufficient to reduce pathogen susceptibility in Arabidopsis thaliana against the 
virulent Pseudomonas syringae pv. tomato (Pst) strain even when the infection occurs five days later. This 
priming effect is independent of the immune regulator Enhanced Disease Susceptibility 1 (EDS1) and can 
be observed in the immune-compromised eds1–2 null mutant. In contrast, cold priming-reduced Pst 
susceptibility is strongly impaired in knock-out lines of the stromal and thylakoid ascorbate peroxidases 
(sAPX/tAPX) highlighting their relevance for abiotic stress-related increased immune resilience. Here, we 
extended our analysis by generating an eds1 sapx double mutant. eds1 sapx showed eds1-like resistance 
and susceptibility phenotypes against Pst strains containing the effectors avrRPM1 and avrRPS4. In 
comparison to eds1–2, susceptibility against the wildtype Pst strain was constitutively enhanced in eds1 
sapx. Although a prior cold priming exposure resulted in reduced Pst titers in eds1–2, it did not alter Pst 
resistance in eds1 sapx. This demonstrates that the genetic sAPX requirement for cold priming of basal 
plant immunity applies also to an eds1 null mutant background.
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Short communication

Plants have evolved strategies for improved stress responses 
based on prior stress experiences. One such strategy that differs 
from acclimation and adaptation but requires a molecular 
stress imprint or memory is defined as priming.1,2 A diverse 
set of stimuli has been shown for being effective in priming the 
plant immune system against pathogens.3,4 This includes abio-
tic changes and pretreatments with altered environmental con-
ditions as a consequence of activated cross-tolerance. Several 
short (1.5 h) and repetitive cold (4°C) or heat (38°C) treat-
ments increase the resistance of Arabidopsis thaliana 
(Arabidopsis) against the hemi-biotrophic, virulent pathogen 
Pseudomonas syringae pv. tomato DC3000 (Pst).5 Improved 
plant resistance was also observed when the light period 
the day prior to the Pst infection is extended from 8 h to 16– 
32 h as a consequence of photoperiod stress.6 A 24 h pre- 
exposure of Arabidopsis to an extended or continuous light 
phase increases the ability for a strong apoplastic production of 
reactive oxygen species, boosts pathogen-driven salicylic acid 
accumulation and signaling, and reduces the capability of Pst 
for inducing so-called water-soaking leasions.7,8

Recently, we showed that a 24 h cold exposure (4°C) is 
sufficient to prime plant immunity for an infection with Pst 
occurring 5 days later and resulting in reduced bacterial titers 
in cold pre-treated Arabidopsis plants (accession: Col-0) com-
pared to naïve control plants.9 This effect is independent of the 
plant immune regulator Enhanced Disease Susceptibility 1 
(EDS1) and can be observed in the highly susceptible null 
mutant eds1–2. 9 In contrast, cold priming did not lead to 

reduced bacterial titers when Pst strains delivering the patho-
gen effector proteins avrRPM1 or avrRPS4 were used.9 When 
detected by the host, these strains initiate strong and robust 
plant immune responses in the context of effector-triggered 
immunity (ETI).10–13 While avrRPS4-triggered ETI is strongly 
EDS1-dependent, defense activation triggered by the recogni-
tion of avrRPM1 is mainly EDS1-independent.14

EDS1 is part of a small family of nucleocytoplasmic lipase- 
like proteins.15–18 Together with its other family members 
Phytoalexin-Deficient 4 (PAD4) and Senescence-Associated 
Gene 101 (SAG101), EDS1 forms exclusive heterodimers and 
functions as a central regulator of ETI, basal immunity, and 
systemic acquired resistance.17,19–21 Intracellular immune 
receptors containing Toll-Interleukin 1 receptor (TIR) 
domains catalyze ribosylated nucleotide second messengers 
that specifically bind either to EDS1-PAD4 or to EDS1- 
SAG101 heterodimers and initiate complex activation.22–25 

Mobilized EDS1 complexes contribute to the activation of 
pathogen-triggered transcriptional defense reprogramming 
and cell death, and boost accumulation of immune enhancing 
metabolites, such as salicylic acid and pipecolic acid 
derivatives.20,21,26

As mentioned above, EDS1-dependent signaling is dispensa-
ble for cold priming-enhanced Pst resistance. However, func-
tional plastid ascorbate peroxidases (APX) are indispensable.9 

Two APX isoforms reside in the chloroplasts of Arabidopsis and 
most tracheophytes: a soluble stromal APX (sAPX) and thyla-
koid-bound APX (tAPX).27–29 While tAPX specifically resides in 
the plastids, sAPX is dual targeted to the chloroplast stroma and 
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the mitochondrial matrix.30,31 Based on homologies, a further 
plastid APX-like protein, named TL29, was identified with loca-
tion to the thylakoid lumen, but does not possess peroxidase 
activities.32,33 The interplay of tAPX and sAPX provides two 
spatial layers for scavenging photosynthesis-related H2O2 in 
the plastid.27,28 In this context, sAPX and tAPX have mainly 
redundant functions for photooxidative protection under abiotic 
stress situations in mature plants.34–36 However, also distinct 
roles are reported. Photoprotection in seedlings rather requires 
sAPX, while tAPX functions in leaves as central regulator of cold 
priming mediated-repression of core stress-responsive genes 
during a second cold phase.35–38 In the priming control, tAPX- 
mediated suppression of chloroplast NADPH dehydrogenase 
subunits resulting in less cyclic electron transport provides 
a source for altered chloroplast-to-nucleus stress signaling.39 

While cold priming-reduced Pst susceptibility is significantly 
weakened in tapx-knockout (KO) lines compared to Col-0, Pst 
titers are similar in cold-pretreated and control sapx-KO (here-
after: sapx) plants indicating a stronger contribution of sAPX.9

To test, whether cold priming-reduced Pst susceptibility 
requires plastid ascorbate peroxidases also in the back-
ground of the null mutant eds1–2, we generated an eds1 
sapx line (Figure 1a) using the eds1–2 null mutant and the 
sapx line (SALK_083737).9,35,40 We tested EDS1 and sAPX 
protein abundance in the eds1 sapx line using a plastid APX 
serum37 and a commercial EDS1 antibody (AS13 2751, 
Agrisera, Sweden) confirming (in addition to prior geno-
typing) lack of EDS1 and sAPX in the eds1 sapx line 

(Figure 1b). Growth and developmental phenotype of 
5-week-old plants did not differ between eds1 sapx and 
parental lines (Figure 1c).

Next, we analyzed the impact of sAPX for EDS1-dependent 
and -independent immunity. For this purpose, we infiltrated 
the eds1 sapx double line either with Pst avrRPM1 or Pst 
avrRPS4. We could neither detect differences in bacterial titers 
between the wildtype Col-0 and the sapx nor between eds1–2 
and eds1 sapx (Figure 1d, e). The bacterial titers of Pst 
avrRPM1 determined three days after inoculation were equally  
~ 0.5 log10 higher in eds1–2 and eds1 sapx compared to Col-0 
(Figure 1d). In contrast, bacterial numbers of Pst avrRPS4 
were ~ 3 log10 higher in eds1–2 and eds1 sapx than in Col-0 
and sapx (Figure 1e). This demonstrates that under stable 
conditions sAPX does not affect plant immunity and that 
eds1 sapx largely resembles the immune phenotype of eds1–2.

Our main aim with this study was to investigate whether 
sAPX is not only required for cold priming-reduced Pst sus-
ceptibility in Col-0 but also in eds1–2. We repeated the cold 
priming experiments from our recent study9 in the exact same 
way, but compared this time eds1–2 and eds1 sapx (Figure 2a). 
As shown before,9 a 24 h lasting cold exposure reduced the 
enhanced susceptibility of eds1–2 when the Pst inoculation was 
performed 5 days later (Figure 2b). Pst titers were lower in 
cold-primed eds1–2 than in the non-primed control group 
(Figure 2b). Pst numbers in eds1 sapx were already significantly 
lower without a pre-cold exposure (Figure 2b), which was 
similar but not significant between Col-0 and sapx in our 
earlier study.9 The cold priming exposure did not further 

Figure 1. Generation and first analyses of an eds1 sapx double mutant line. (a) The eds1–2 null mutant was crossed with the T-DNA-inserted sapx-knockout line (sapx) to 
receive an eds1 sapx line. (b) Protein detection of stromal Ascorbate Peroxidase (sAPX) and Enhanced disease Susceptibility1 (EDS1) in leaf extracts of eds1 sapx and 
corresponding single lines. Ponceau S staining of the rubisco large subunit (rbcL) is shown as loading control. (c) Representative picture of rosettes of 5-week-old plants. 
Scale bar = 1 cm. (d,e) Pathogen-related immune phenotyping of eds1 sapx line and parental single lines (5-week-old) was verified by leaf syringe infiltration using 
Pseudomonas syringae pv. tomato DC3000 (Pst) strains (OD600 = 0.001 in 10 mM MgCl2) delivering either the EDS1-independent effector avrRPM1 (d) or the EDS1- 
dependent effector avrRPS4 (e). Bacteria were re-isolated 3 days post infection (dpi) and colony-forming units per leaf disk area (CFU/cm2) were determined. Bars show 
mean of log10-transformed CFU/cm2 and standard error (n = 18 from 3 independent experiments). Different letters above the bars denote statistically significant 
differences (Tukey HSD, P < .05).
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alter Pst titers in eds1 sapx. This confirms our recent finding, (i) 
that a prior cold exposure does not alter Pst susceptibility when 
sAPX is lacking. (ii) It additionally shows, that the requirement 
of sAPX for cold priming-reduced susceptibility also exists in 
eds1–2. (iii) It further highlights, that in the absence of sAPX, 
Pst susceptibility in eds1 sapx is constitutively reduced to the 
level of cold-primed eds1–2. As outlined above, EDS1 is 
required for many different pathogen responses, but not the 
main player in the cold priming signaling cascade. The gener-
ated eds1 sapx line provides the opportunity to further analyze 
the cold priming signaling response on plant immunity in the 
absence of well-known and strong EDS1-dependent defense 
responses.
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