
C A S E I D D E T E C T I O N I N U N L A B E L L E D E V E N T
L O G S F O R P R O C E S S M I N I N G

andré alexandre dos santos vicente

Leiria, September of 2023

C A S E I D D E T E C T I O N I N U N L A B E L L E D E V E N T
L O G S F O R P R O C E S S M I N I N G

andré alexandre dos santos vicente

Master’s thesis project carried out under the supervision of Professors Rui Pedro
Charters Lopes Rijo, Ricardo Filipe Gonçalves Martinho, and Carlos Fernando de
Almeida Grilo, faculty members of the School of Technology and Management at
the Polytechnic University of Leiria.

Leiria, September of 2023

A C K N O W L E D G E M E N T S

I extend my heartfelt gratitude to all who have played a pivotal role in the successful
completion of my master’s project. This journey has been both a challenge and a
source of great reward, and it is with immense appreciation that I acknowledge the
contributions of numerous individuals.

Foremost, I express my profound thanks to my academic advisors and co-advisors,
Professor Rui Pedro Charters Lopes Rijo, Professor Ricardo Filipes Gonçalves
Martinho, and Professor Carlos Fernando de Almeida Grilo. Their unwavering
guidance, profound insights, and constant encouragement were instrumental in
shaping the direction of this work.

To my family, particularly my mother, Célia Santos, I owe an immeasurable
debt of gratitude. Your unwavering love, steadfast support, and enduring belief in
my capabilities have served as the bedrock and driving force behind my academic
journey.

I extend my gratitude to the countless others who have contributed in diverse ways,
collectively forming the support network that made this significant achievement
possible. Your involvement has been invaluable.

Thank you all for being integral to this milestone accomplishment.

i

A B S T R A C T

In the realm of data science, event logs serve as valuable sources of information,
capturing sequences of events or activities in various processes. However, when
dealing with unlabelled event logs, the absence of a designated Case ID column poses
a critical challenge, hindering the understanding of relationships and dependencies
among events within a case or process.

Motivated by the increasing adoption of data-driven decision-making and the
need for efficient data analysis techniques, this master’s project presents the "Case
ID Column Identification Library" project. This library aims to streamline data
preprocessing and enhance the efficiency of subsequent data analysis tasks by
automatically identifying the Case ID column in unlabelled event logs.

The project’s objective is to develop a versatile and user-friendly library that
incorporates multiple methods, including a Convolutional Neural Network (CNN)
and a parameterizable heuristic approach, to accurately identify the Case ID column.
By offering flexibility to users, they can choose individual methods or a combination
of methods based on their specific requirements, along with adjusting heuristic-based
formula coefficients and settings for fine-tuning the identification process.

This report presents a comprehensive exploration of related work, methodology,
data understanding, methods for Case ID column identification, software library
development, and experimental results. The results demonstrate the effectiveness of
the proposed methods and their implications for decision support systems.

Keywords: Process Mining, CNN, Case ID Identification, Attribute Identification

iii

R E S U M O

No âmbito da ciência de dados, os registos de eventos servem como fontes valiosas de
informação, capturando sequências de eventos ou atividades em vários processos. No
entanto, ao lidar com registos de eventos não rotulados, a ausência de uma coluna
designada de Case ID representa um desafio crítico, dificultando a compreensão das
relações e dependências entre eventos dentro de um caso ou processo.

Motivado pela crescente adoção da tomada de decisão baseada em dados e pela
necessidade de técnicas eficientes de análise de dados, este projeto de mestrado
apresenta o projeto "Biblioteca de Identificação da coluna Case ID". Esta biblioteca
tem como objetivo simplificar o pré-processamento de dados e melhorar a eficiência
das tarefas subsequentes de análise de dados, identificando automaticamente a
coluna em registos de eventos não rotulados.

O objetivo do projeto é desenvolver uma biblioteca versátil e de fácil utilização
que incorpore múltiplos métodos, incluindo uma Rede Neural Convolucional e uma
abordagem heurística parametrizável, para identificar com precisão a coluna Case ID.
Ao oferecer flexibilidade aos utilizadores, eles podem escolher métodos individuais
ou uma combinação de métodos com base nos seus requisitos específicos, além de
ajustar os coeficientes de fórmulas baseadas em heurísticas e configurações para
ajustar o processo de identificação.

Este relatório apresenta uma exploração abrangente do trabalho relacionado,
metodologia, compreensão dos dados, métodos para identificação da coluna Case ID,
desenvolvimento da biblioteca de software e resultados experimentais. Os resultados
demonstram a eficácia dos métodos propostos e as suas implicações para sistemas
de apoio à decisão.

Palavras-chave: Process Mining, CNN, Identificação de Case ID, Identificação de
Atributos

v

C O N T E N T S

Acknowledgements i
Abstract iii
Resumo v
Contents vii
List of Figures ix
List of Tables xi
List of Acronyms xiii

1 Introduction 1

2 Background and Related Work 5
2.1 Concepts and fundamentals . 5

2.1.1 Process mining . 5
2.1.2 Event Log . 6
2.1.3 Process Mining tools . 8

2.2 Problem statement . 9
2.3 Related work . 10

2.3.1 Data Quality . 11
2.3.2 Attribute identification . 11

2.4 Conclusion . 13

3 Methodology 15
3.1 Project Phases . 15
3.2 Development Methodology . 17
3.3 Development Environments . 17

4 Data Collection, Understanding and Preparation 21
4.1 Selected Event Logs Dataset . 21
4.2 Data Understanding . 23
4.3 Refined Exploratory Data Analysis: Start Date Analysis 28
4.4 Data Preparation . 31

vii

contents

5 Convolutional Neural Network Model 33
5.1 Understanding Neural Networks and CNNs 33
5.2 Dataset Creation, Preparation and Preprocessing 35
5.3 Evaluation Metrics . 37
5.4 Overview of the steps taken to build the CNN model 38
5.5 Definition of the model architecture hyperparameters and training

process hyperparameters . 38
5.6 CNN Results . 40

6 A Heuristic for Case ID Column Identification 43
6.1 The heuristic . 43
6.2 Heuristics Results and Discussion . 45

7 Software library development 49
7.1 Development Environment . 49
7.2 Architecture and Design . 50
7.3 Development . 51

7.3.1 Data Load . 52
7.3.2 Identifier . 52
7.3.3 Metrics . 53
7.3.4 Convert XES . 54

7.4 Testing . 54

8 Conclusion and Future Work 57
8.1 Future Work . 58

Bibliography 61

Appendices

a Appendix A: Library documentation 67
a.1 Module Name . 67
a.2 Description . 67
a.3 Functions . 67

Declaração 73

viii

L I S T O F F I G U R E S

Figure 1 Process mining overview. 6
Figure 2 Example of an XES file, displaying a partial view. 7
Figure 3 CSV example. 8
Figure 4 Project phases. 16
Figure 5 Frequency graph of the Diagnosis code attribute in the BPI

Challenge 2011 event log. 25
Figure 6 Box plot of the case attribute in the BPI Challenge 2011

event log. 26
Figure 7 Dispersion Graph of BPI Challenge 2011 attribute age. . . . 27
Figure 8 Histogram graph depicting the distribution of ages within

the BPI Challenge 2011 event log. 27
Figure 9 Representation of event log columns with nulls and uniques

and basic information. 28
Figure 10 Example graphics with start date as X-axis. 29
Figure 11 Example graphics of Case ID in different event logs. 30
Figure 12 Illustration of the neural network architecture. 34
Figure 13 CNN Architecture example. 34
Figure 14 Example graphics of case and not case in different datasets. 36
Figure 15 Heuristic expression variables example. 44
Figure 16 Architecture of the Software Library. 51

ix

L I S T O F TA B L E S

Table 1 Paper characteristics. 10
Table 2 Papers of case id selection summary. 12
Table 3 PC specs. 18
Table 4 Event Logs Description. 22
Table 5 Summary of Event logs. 24
Table 6 Model Architecture Layers Options. 39
Table 7 Model Architecture Hyperparameters. 41
Table 8 Train Hyperparameters. 41
Table 9 Summary Metrics Table. 41
Table 10 Heuristics Configurations. 45
Table 11 Comparison of expression configurations on different event

logs. 46

xi

L I S T O F A C R O N Y M S

AI Artificial Intelligence.

ANNs Artificial Neural Networks.

AUC-ROC Area Under the Receiver Operating Characteristic
Curve.

BPI Business Process Intelligence.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

CSV Comma-Separated Values.

DSS Decision Support System.

EDE Event Density Embedding.

GPU Graphics Processing Unit.

IEEE Institute of Electrical and Electronics Engineers.

MCC Matthews Correlation Coefficient.

PM Process Mining.

SNA Social Network Analysis.

SNNs Simulated Neural Networks.

xiii

List of Acronyms

XES eXtensible Event Stream.

xiv

1
I N T R O D U C T I O N

The development of advanced data analysis techniques and the increasing adoption
of data-driven decision-making have significantly impacted various domains, from
business and healthcare to engineering and research. In this context, event logs
have emerged as valuable sources of information, capturing sequences of events or
activities in various business processes, within organizations.

Event logs consist of structured records of events or activities in organizational
processes, documenting actions chronologically with timestamps and relevant data
such as user actions. Process Mining (PM), a set of techniques and tools, is used to
extract insights, monitor, and optimize real processes by analysing event logs. It
plays a crucial role in understanding process efficiency and potential improvements.
PM relies on event logs to reconstruct and analyse processes effectively.

Event logs are extensively used for process analysis, optimization, and anomaly
detection. However, when dealing with unlabelled event logs, a critical challenge
arises: the absence of a designated Case ID column. The Case ID column is crucial
for understanding the relationships and dependencies among events within a case
or process.

In the realm of Data Science, researchers and analysts often face the arduous task
of manually labelling event logs, which can be time-consuming and prone to errors,
especially for large datasets [1]. Additionally, the lack of a Case ID column restricts
the effective application of PM techniques, limiting the ability to gain valuable
insights and conduct comprehensive analyses.

The objective of this work is to develop a versatile and user-friendly library for
labelling unlabelled event logs, often used to record sequences of events of business
processes in various domains. These logs often lack a designated identifier, such as a
Case ID, essential for further analysis and insights. Emphasizing the importance of
data preprocessing and automated tools in facilitating data analysis, the proposed
library aims to contribute to ongoing research in PM, data analytics, and data-
driven decision-making. Additionally, it is a component of the Prom4Prod project,
co-funded by the Portugal 2020 program, aimed at developing a comprehensive
PM-based decision support and production management system for various industry

1

introduction

sectors. By automating Case ID identification and streamlining the data preparation
process, the proposed library becomes an important tool to foster PM analysis and
visualizations, and thus facilitating decision-making within these industries.

The motivation behind this work stems from the need to overcome limitations
posed by unlabelled event logs, i.e., event logs which do not present, upfront,
a clear identification of which column is the designated Case ID of a certain
business process. By developing a library that offers multiple methods for Case ID
identification, we aim to alleviate manual efforts required for preprocessing data and
accelerate the data analysis process. The library aims to empower users from diverse
domains, including Data Science, Data Engineering, Business Process Management,
to efficiently preprocess their event log data and conduct PM, derive valuable
insights, identify bottlenecks, optimize workflows, and improve decision-making.
By automating Case ID identification, this library not only reduces the burden
of manual labour but also enhances the reliability and accuracy of subsequent
PM-related analyses.

Part of the motivation of this project aligns with the growing demand for data-
driven solutions, allowing data scientists, analysts, and practitioners to efficiently
extract valuable insights from event log data. It serves as a resource for professionals
across diverse domains aiming to optimize processes, pinpoint bottlenecks, and
instigate data-driven improvements.

This library should aim to offer flexibility to developers, enabling them to select
and apply individual methods or combinations based on their specific requirements.
Developers should be able to adjust coefficients and settings of the expression to
fine-tune the identification process.

With the library’s support, developers should also streamline their data prepara-
tion workflow, saving valuable time and resources. Additionally, automated Case ID
identification enhances the quality and reliability of subsequent analyses, fostering
data-driven decision-making and research across fields.

Ultimately, our goal is to contribute to the broader data science community by
offering an accessible and robust tool to developers, serving as a decision support
system for efficiently and accurately labelling unlabelled event logs.

The rest of the document is structured as follows:

• Chapter 2 - Background and Related Work: In this chapter, we review the
existing literature and research related to Case ID column identification

2

introduction

in event logs. We explore various methods and approaches used by other
researchers in this field, identifying gaps and potential areas for improvement.

• Chapter 3 - Methodology: The methodology chapter outlines the overall
approach taken in the project. It describes the steps and procedures used to
achieve the project’s goals, including data collection, preprocessing, model
development, and evaluation.

• Chapter 4 - Data Collection, Understanding and Preparation: In this chapter,
we explore the initial steps of the project, focusing on data collection, under-
standing, and preparation. We explain how we processed and prepared the
event logs for further analysis, emphasizing the importance of data quality
and completeness.

• Chapter 5 - Convolutional Neural Network Model: This chapter delves into
the Convolutional Neural Network (CNN) method used for Case ID column
identification. We provide insights into the architecture and training process
of the CNN, showcasing its role as one of the key methods in our library.

• Chapter 6 - A Heuristic for Case ID Column Identification: Here, we explore
the user-configurable expressions utilized for Case ID column identification.
We describe the parameters involved and their impact on the identification
process, highlighting their flexibility and adaptability.

• Chapter 7 - Software Library Development: Here, we detail the process of
developing the software library that incorporates the case ID identification
methods. We discuss the architecture, implementation, and functionalities of
the library.

• Chapter 8 - Conclusion and Future Work: The conclusion chapter summarizes
the key findings of the project and provides insights into the effectiveness of
the proposed methods. It discusses the limitations of the project and potential
areas for future research. Additionally, we highlight the project’s implications
for decision support systems and its contribution to the broader field of data
science.

3

2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter aims to provide the necessary background information to contextualize
the undertaken research. The chapter begins by introducing the main concepts
surrounding this work. Then, the current state of knowledge in this area is described,
highlighting main research findings that form the foundation of the work. Next, the
research gaps and challenges that this study aims to address are discussed, as well
as the potential contributions to the corresponding research field.

2.1 concepts and fundamentals

In this section, we delve into fundamental concepts at the core of PM. Our exploration
is divided into three critical subsections: Process Mining, Event Log, and Process
Mining Tools. These sections provide foundational insights for process analysis.

2.1.1 Process mining

PM is a research field that stays somewhere between data mining [2] and process
modelling [3] and analysis [4], that aims to improve operational business processes
through the use of event data [5]. Performing PM starts with the extraction of data
from databases in the form of events logs. These event logs then serve as input
for the PM algorithms, resulting in analysed data. Finally, the outcomes can be
presented in a variety of forms, including Directly-Follows Graphs (DFG) and Petri
nets, time-based dotted charts, activity histograms, case tracing and Social Network
Analysis (SNA) diagrams (Figure 1).

Figure 1 presents a portrait of the real world, where human interactions take
place within an environment. Information systems capture these interactions, giving
rise to unlabelled event logs. These event logs serve as the foundation for the PM
process. They flow through a sequence involving PM algorithms, leading to the
revelation of crucial insights from data. This process facilitates the acquisition

5

background and related work

Figure 1: Process mining overview (adapted from [6]).

of key business process perspectives, including performance, data, organizational
(resources), and control-flow.

The yielded results extend their utility beyond their visualization. They offer
insights, identifying bottlenecks and deviations, and even anticipating and diagnosing
performance and compliance issues. This approach is adaptable across a broad
spectrum of organizations and industries, underlining the wide applicability of PM
principles.

2.1.2 Event Log

An event log is a record of events that describes all the activities (events) registered
during the execution of a business process. In order to be effective, a log should
contain certain key pieces of information:

• Case ID: A unique identifier assigned to each business process instance or
case within the log;

• Event: Descriptive label for the event or activity being recorded;

• Start Date: Indicating the precise moment when the event commenced;

• End Date: Marking the conclusion of the event.

While event logs can include additional attributes to provide more context, these
four attributes are considered essential for accurately and effectively tracking and
analysing the events recorded in the log.

6

2.1 concepts and fundamentals

Figure 2: Example of an XES file, displaying a partial view.

The standard format for an event log is the eXtensible Event Stream (XES)1

format, which is supported by the majority of PM tools. This format is a standard
that was adopted in 2010 by the IEEE Task Force on PM, and it became an official
Institute of Electrical and Electronics Engineers (IEEE) standard in 2016 [7]. Figure
2 displays a XES file configuration, illustrating its key components for PM. The
file encompasses crucial attributes relevant to process analysis, such as resource
details, roles, timestamps, and product information, among others. This structured
format captures the essential data needed for process exploration, analysis, and
optimization.

In between the extraction of data from a data source and the creation of an
event log in the XES, it is common to use Comma-Separated Values (CSV) as an
intermediate format. CSV is a format used for storing tabular data, in which the
first row normally represent the name of the field of each column and the following
rows are for values. The values in the fields are separated by commas. CSV files are
commonly used for storing data from spreadsheets and databases, and are often
used for importing and exporting data between different software tools. Figure 3
presents a sample of a CSV file used in the project, specifically sourced from [8].

1 https://xes-standard.org/

7

background and related work

Figure 3: CSV example, displaying a partial view.

2.1.3 Process Mining tools

PM tools are becoming more and more prevalent as businesses look to improve their
operations. These tools use data mining algorithms to analyse data from business
processes, providing valuable insights that can help organizations streamline their
operations and make more informed decisions. As the demand for PM tools grows,
competition in the market is also increasing, with more and more companies adding
PM features to their existing software or developing new tools to meet the needs of
businesses.

In this work, we have explored the following PM tools: ProM2, Disco3 and
PM4Py4.

ProM is a general-purpose PM framework implemented in Java. It offers a wide
range of tools and plug-ins for various PM tasks, including process discovery,
process conformance checking, and process performance analysis. ProM has a large
community of developers and users, and offers a range of support resources such as
documentation and forums.

PM4Py is a PM library implemented in Python. It provides a range of PM
algorithms and tools that can be used to discover, analyse, and improve business

2 https://www.promtools.org/
3 https://fluxicon.com/disco/
4 https://pm4py.fit.fraunhofer.de/

8

2.2 problem statement

processes. PM4Py is designed to be developer-friendly and easy to integrate with
other Python libraries and frameworks. It also includes a number of visualization
tools for presenting PM results in a clear and intuitive way.

Disco is also a PM tool implemented in Java. It offers similar capabilities to ProM
and PM4Py, including process discovery, process conformance checking, and process
performance analysis. One of the key benefits of Disco is its ability to handle large
amounts of data efficiently, making it well-suited for use with very large datasets.
Disco also includes a number of visualization tools for presenting PM results in a
clear and intuitive way.

Disco and ProM automatically suggest a column as the Case ID during the event
log importation, primarily based on the column’s name, especially when it includes
“case” in its name. PM4Py does not offer an automatic Case ID identification feature.
Additionally, a ProM plugin [9] has been developed for Case ID column identification
during event log import.

2.2 problem statement

PM is a technique that is becoming increasingly popular as a way to improve
business processes in a variety of industries. As more and more opportunities to use
PM are discovered, people with all kinds of knowledge and expertise are starting
to explore how they can leverage this approach to improve their processes and
operations.

The current event log creation process involves a manual selection of the Case ID
column. This selection requires users to have a deep understanding of the business
processes, database structure, and domain-specific knowledge. This process can be
challenging when dealing with event logs containing many columns.

Some people who are less familiar with PM may struggle to effectively use it
due to their lack of knowledge and understanding of the technique. Despite this
difficulty, they may still be interested in using PM to improve their processes, but
may need to invest more time and effort into learning about the approach and how
to apply it effectively.

Additionally, the goal of this project is to develop a library that, at the end,
allows assisting users in making informed decisions regarding the selection of the
column to serve as a process Case ID. The library aims to facilitate the generation
of XES files, streamlining the process of preparing data for PM analysis.

9

background and related work

Table 1: Paper characteristics.

Paper Data Quality Attribute Identification
[10] X
[11] X
[12] X
[13] X
[14] X
[9] X
[15] X
[16] X
[17] X
[18] X

2.3 related work

This section details the process of identifying and reviewing relevant literature for
the research about this project. The criteria for selecting these related works are
also explained, along with a description of each individual study. A summary table
is included, highlighting the coverage of the closest studies in relation to the theme
of the project. This information helps to provide context and background for the
research being presented, and demonstrates how the current study builds upon or
extends previous work in the field.

In conducting the literature review for this research project, we used a variety
of online tools and databases, including Google Scholar and Research Gate. We
conducted keyword searches for terms such as “Process Mining”, “Attribute Iden-
tification”, “Data Quality” and “Log” in order to identify relevant articles and
studies. We carefully reviewed the abstracts of these articles to assess their potential
relevance and value for our research. Those studies that seemed particularly relevant
or promising were saved for further consultation as needed. This process helped us
to identify and select a range of relevant literature to inform our research.

Table 1 provides a summary of the key characteristics of the main studies that
were investigated as part of the literature review. This summary table is intended to
provide an overview of the relevant literature and to highlight the key contributions
of each study.

10

2.3 related work

2.3.1 Data Quality

In [11], the authors propose a process for improving data quality that involves
understanding data quality requirements, measuring data quality, and promoting
data quality awareness. This process is intended to help organizations ensuring that
the data they use for PM is of high quality, which is essential for obtaining reliable
insights and making informed decisions. The process starts by understanding the
data quality requirements for the specific PM application, which helps to identify
potential sources of data quality issues and prioritize efforts to address them. The
process then involves measuring data quality using appropriate metrics and tools,
which helps to identify and quantify any existing data quality issues.

In [10], the author examines various types of data quality taxonomies that classify
the quality of data represented in the log, to then make use of an open source data
quality assessment tool R-package DaQAPO to verify the quality of data. It also
foresees the use of data cleaning heuristics for fixing incorrect timestamps, missing
case identifiers, missing events and incorrect/missing attribute values.

2.3.2 Attribute identification

In [16]–[18], decision trees serve as the foundational method for Case ID identification
within event logs. However, what sets them apart is their distinct approaches to
this task, all hinging on the utilization of event column information. These studies
adopt varying decision tree-based approaches to Case ID identification within event
logs, using techniques such as filtering, cycling, and heuristics. Despite their use of
decision trees, these papers emphasize the flexibility of this approach in case of ID
identification, underlined by the role played by information from the event column.

In [12]–[14], authors investigate different approaches for Case ID identification
within event logs. All stress the necessity of event-related information in this
context. In [12], Neural Networks are applied with a focus on utilizing event data.
Likewise, [13] employs an event pattern-based method, emphasizing the relevance
of event-related data for Case ID identification. Lastly, in [14], non-overlaping
sequence partitioning is explored as a means of identifying Case IDs. These studies
collectively contribute to the variety of techniques available for Case ID identification,
underscoring the essential nature of event information in this process.

11

background and related work

Table 2: Papers of case id selection summary.

Paper Identity Method Information
Case ID Event

[19] X X CNN
[12] X Neural Networks Event
[13] X Distinct event pattern Event
[14] X Sequence partitioning Event
[9] X ICI Timestamp and Event
[15] X Case notion discovery Timestamp and Event
[16] X Decision Trees Event
[17] X Decision Trees Event
[18] X Decision Trees Event

In papers [9], [15], researchers investigate strategies for case ID identification
within event logs, emphasizing the importance of both timestamp and event-related
information. In [9], the authors employ ICI (Inter-Case Information) for case ID
identification, while [15] explores Case Notion Discovery. These studies contribute
to the field by highlighting the need for both timestamp and event information in
their methodologies.

In [19], the authors presented a new approach for automatic attribute selection
in event logs using a CNN. The CNN is able to classify four key PM entities:
case ID, activity, originator label, and attribute label. This approach represents a
significant advance in the field of PM, as it allows for the automatic identification
of important attributes in event logs, which can be used to improve process analysis
and optimization efforts.

The input data for this CNN-based approach is derived from event data and
undergoes a series of transformations. Initially, the event data is converted from a
table format to an array. Subsequently, this array is further processed, including
a conversion into RGB format. Notably, a key innovation in this approach is the
utilization of Event Density Embedding (EDE). EDE involves a projection from
the transformed data into linear and after nonlinear functions.

Table 2 presents a summary of all the key points discussed in this section. It
provides a clear overview of the main findings from the literature on the topic,
highlighting the methods from the studies reviewed, and helps to provide a clear and
concise overview of the current state of knowledge on the topic. The “Information”
column indicates whether the methods in the papers require related information.

12

2.4 conclusion

2.4 conclusion

The purpose of this chapter has been to review the existing literature in the field and
providing an overview of the current state of knowledge. Through reviewing studies,
articles, and research papers, we gained a better understanding of the significant
contributions and advancements made in the field. While some progress has been
made, there is still ample opportunity for growth and improvement in certain areas,
presenting opportunities for future research. This conclusion summarizes the key
findings and trends we have identified in our review of the literature, and discuss
their implications for our research and the field as a whole.

We analyse event logs to uncover information for identifying key attributes. This
addresses limitations and offers a comprehensive solution for PM.

Finally, this report presents a challenge focused on creating a comprehensive
approach to identify the Case ID, a key attribute used for PM. The primary focus is
on improving process accessibility and user-friendliness, which would be particularly
beneficial for newcomers in the field of PM, while also assisting others. This initiative
seeks to elevate the quality of event logs and enable more efficient PM analysis,
thereby advancing the field’s progress and delivering improved solutions for PM.

13

3
M E T H O D O L O G Y

The methodology employed in this study comprises two key aspects: project phases
and development methodology. These components provide a systematic and orga-
nized approach to conducting the research and achieving the defined objectives.

3.1 project phases

To make the demonstration of the project’s various phases more intuitive and straight-
forward, a diagram (Figure 4) was created, illustrating the workflow throughout
the project’s development. The phases are the following:

• Datasets Collection - Systematically gathering relevant event logs for the
project, ensuring the inclusion of high-quality and representative data for
analysis and modelling;

• Data Understanding - Exploring the available dataset and identifying the
columns or variables that could potentially serve as the Case ID. Understanding
the nature of the data, its structure, and any existing metadata that can aid
in the selection process;

• Data Preparation - Cleansing and preprocessing the dataset to ensure
data quality and consistency. Handling missing values, outliers, and any data
anomalies that may impact the selection of the Case ID column;

• Metric Selection - Identifying and prioritizing relevant metrics aligned with
the project objectives, considering factors such as measurability, interpretabil-
ity, and potential impact. The selected metrics provide valuable insights for
effective evaluation and decision-making;

• Modelling - Developing and implementing attribute selection methods that
can effectively identify the Case ID column from the dataset. This involves
applying various techniques and algorithms to determine the most suitable
attribute(s) for the purpose of PM;

15

methodology

Adaptive CRISP-DM for
caseid column selectionDatasets Collection

Dataset

Dataset
Understanding Data Preparation

Metric Selection

Modelling
Model Evaluation

Adaptive CRISP-DM for caseid column selection

Model
Deployment

Figure 4: Project phases.

16

3.2 development methodology

• Model Evaluation - Evaluating the candidate model based on predefined
criteria. Considering the uniqueness and stability of the values in each column,
as well as the model’s ability to uniquely identify each case or record in the
dataset;

• Model Deployment - After establishing a model for identifying the Case ID
column, implementing it within data analysis and PM tools for effective use.

3.2 development methodology

Our methodology revolves around a structured weekly meeting format to track
progress and address challenges promptly. These meetings involve active participa-
tion from the research team and advisors to facilitate knowledge sharing and issue
resolution.

During these meetings, we conduct a comprehensive review of the previous
week’s progress, identifying any encountered obstacles and collectively devising
solutions. The discussions delve deep into research findings and emerging trends,
fostering critical analysis and stimulating innovative thinking. This iterative process
culminates in the establishment of well-defined objectives for the upcoming week.

This methodology places a strong emphasis on flexibility, responsiveness, and
adaptability. It allows us to seamlessly integrate new insights, fine-tune our re-
search methods, and explore additional research avenues, all of which significantly
contribute to the overall success of the project.

3.3 development environments

In order to support the development and execution of our research project, we
established specific development environments that provided the necessary hard-
ware resources and software configurations. These environments were designed
to accommodate the computational requirements of our analysis and ensure the
reproducibility of our experiments.

The key hardware components of our development environments are included in
Table 3.

17

methodology

Table 3: PC specs.

CPU Intel i7-10750H
RAM 16GB 2667 MHz
GPU NVIDIA GeForce RTX 2060

Listing 1: Jupiter CPU Service Configuration.

1 version: "3.8"
2 jupiter:
3 shm_size: '5gb'
4 security_opt:
5 - seccomp:unconfined
6 deploy:
7 resources:
8 limits:
9 cpus: '5.0'

10 memory: 7GB
11 reservations:
12 cpus: '5'
13 memory: 4GB

This hardware configuration provided substantial computational power, enabling
us to process and analyse large datasets, perform complex machine learning tasks,
and leverage GPU acceleration for certain algorithms.

To ensure reproducibility and ease of deployment, we employed Docker and Docker
Compose to create consistent development environments across different systems.
Docker containers encapsulated the necessary software dependencies, libraries, and
configurations, allowing for seamless replication and distribution of our research
environment.

We present two example Docker Compose setups that illustrate the composition
of our development environments in Listing 1 and Listing 2.

In Listing 1, we used an image from jupyter/datascience-notebook to provide a
Jupyter environment with Central Processing Unit (CPU) support. The container
was configured with appropriate volumes for library scripts, datasets, glscpu note-
books, and result storage. The service had access to the specified hardware resources,
including 5 CPU cores and 11GB of memory.

For Listing 2, we used an image from rapidsai/rapidsai:cuda11.8-runtime-ubuntu22
.04-py3.10, which included Graphics Processing Unit (GPU) support for accelerated
computations. The container had access to volumes for library scripts, datasets,
GPU notebooks, result storage, cache, logs, and Artificial Intelligence (AI). The
setup was configured to use 5 CPU cores, 11GB of memory, and an NVIDIA GeForce
RTX 2060 GPU.

18

3.3 development environments

Listing 2: Jupiter CPU Service Configuration.

1 version: "3.8"
2 jupitergpu:
3 shm_size: '5gb'
4 security_opt:
5 - seccomp:unconfined
6 deploy:
7 resources:
8 limits:
9 cpus: '5.0'

10 memory: 7GB
11 reservations:
12 cpus: '5'
13 memory: 4GB
14 devices:
15 - driver: nvidia
16 count: 1
17 capabilities: [gpu]

19

4
D ATA C O L L E C T I O N , U N D E R S TA N D I N G A N D
P R E PA R AT I O N

The data understanding process is a fundamental stage in any data analysis or
research project. It involves selecting the appropriate event logs, exploring its
characteristics, and preparing it for further analysis. This chapter serves as a
comprehensive overview of the data understanding process undertaken in this study.
We selected a dataset that aligns with our research objectives and provides the
necessary information to answer our research questions. Through exploratory data
analysis, we gained valuable insights into the dataset, including its size, structure,
and temporal context. We assessed the data quality, identified patterns and trends,
and explored potential relationships among variables. The insights and preparations
made in this chapter lay the foundation for the subsequent chapters, where we apply
specific methodologies and conduct in-depth analyses to extract valuable insights
and findings from the data.

4.1 selected event logs dataset

The selected event logs dataset for this study plays a crucial role in addressing the
research objectives and is derived from various reputable sources. In the state-of-
the-art literature review, it was observed that the majority of the referenced papers
use event logs from the Business Process Intelligence (BPI) Challenge. Therefore,
to ensure the comprehensiveness of our analysis, we collected all available BPI
Challenge event logs, except for those from 2014 and 2016, which were excluded
due to being in the German language and for the process mining attributes being
unlabelled.

Additionally, to implement and evaluate our proposed solution, we incorporated
an event log from an ongoing project related to the manufacturing of moulds. This
event log is of significant importance as it reflects the real-world context of the
project and enables us to validate the effectiveness of our approach in a practical
setting.

21

data collection, understanding and preparation

By combining the BPI Challenge event logs and the proprietary event log, we
aim to leverage a diverse range of business process data and foster a comprehensive
understanding of process behaviour, patterns, and performance. The inclusion
of these event logs facilitates robust analysis and enhances the applicability and
generalizability of our findings to real-world scenarios. Table 5 provides a summary
of the event log names and a brief description of what they represent.

Table 4: Event Logs Description.

Name Short Description Reference

BPI 2011 Real life log of a Dutch academic hospital [20]

BPI 2012 Event log of a loan application process [8]

BPI 2013 closed
problems

[21]

BPI 2013 inci-
dents

Logs of Volvo IT incident and problem
management

[22]

BPI 2013 open
problems

[23]

BPI 2015 1 [24]

BPI 2015 2 [25]

BPI 2015 3 Logs of five Dutch municipalities [26]

BPI 2015 4 [27]

BPI 2015 5 [28]

BPI 2017 Event log pertains to a loan application
process of a Dutch financial institute

[29]

BPI 2018 Event log of the handling of applications
for EU direct payments

[30]

BPI 2019 Event log from a large multinational com-
pany operating from The Netherlands in
the area of coatings and paints

[31]

BPI 2020 domes-
tic declarations

[32]

BPI 2020 inter-
national declara-
tions

[33]

22

4.2 data understanding

Name Short Description Reference

BPI 2020 pre-
paid travel costs

Logs from a University for request, per-
mits, and cost

[34]

BPI 2020
request for
payment

[35]

BPI 2020 travel
permits

[36]

Moulds Log from moulds production

4.2 data understanding

In this section, we begin by examining the complexity of the datasets used in our
analyses. The complexity is assessed based on factors such as the number of rows,
number of columns, event log time span, and file size. Table 5 provides a summary
of these characteristics for each event log.

Analysing the number of rows in each event log gives us an indication of the
amount of data available for analysis. For instance, the BPI 2018 event log contains
an extensive 2,514,266 rows, suggesting a substantial volume of instances to be
explored. On the other hand, the Moulds event log consists of 32,512 rows, indicating
a relatively smaller sample size.

The number of columns in an event log provides insights into the dimensionality
and complexity of the data. For example, the BPI 2020 travel permits event log
contains a considerable 174 columns, suggesting a rich set of variables that may
contribute to the complexity of the event log. Conversely, the BPI 2012 event log
consists of only six columns, indicating a more streamlined set of attributes.

Furthermore, the event log time span represents the duration covered by the data,
offering insights into the temporal context of the analysis. The BPI 2011 event log
spans 1,172 days, indicating data collected over a considerable period. In contrast,
the BPI 2017 event log covers a shorter time span of 397 days, implying a more
focused temporal scope.

Considering the size of the BPI 2018 event log, which is approximately 1.75
GB, it becomes evident that analysing such a large event log may require us to
adapt our approach to ensure efficient processing within a reasonable timeframe.

23

data collection, understanding and preparation

Table 5: Summary of Event logs.

Event Log Name Number of
Rows

Number
of
Columns

Event Log
Time Span

Size

BPI 2011 150,291 128 1,172 days 79.2 MB
BPI 2012 150,291 6 165 days 18.9 MB
BPI 2013 closed prob-
lems

6,660 13 2,332 days 758 KB

BPI 2013 incidents 65,533 13 783 days 7.23 MB
BPI 2013 open problems 2,351 12 2,047 days 250 KB
BPI 2015 1 52,217 29 1,761 days 14.2 MB
BPI 2015 2 44,354 28 1,709 days 16.5 MB
BPI 2015 3 59,681 29 1,889 days 16.0 MB
BPI 2015 4 47,293 29 1,933 days 18.2 MB
BPI 2015 5 59,083 29 1,926 days 23.7 MB
BPI 2017 561,671 19 397 days 129 MB
BPI 2018 2,514,266 75 1,356 days 1.75 GB
BPI 2019 1,595,923 22 26,372 days 519 MB
BPI 2020 domestic 56,437 11 889 days 12.6 MB
BPI 2020 international 72,151 24 1,313 days 33.6 MB
BPI 2020 prepaid travel 18,246 23 772 days 8.03 MB
BPI 2020 request for pay-
ment

36,796 15 941 days 11.3 MB

BPI 2020 travel permits 86,581 174 1,792 days 51.2 MB
Moulds 32,512 24 343 days 6.41 MB

To address this challenge, we transitioned from a CPU-based Jupyter environment
to a GPU-accelerated environment, which leverages the power of the GPU and the
cuDF1 library. This transition enables us to process the dataset more efficiently and
significantly reduce the processing time.

To provide a comparison of the impact of CPU and GPU processing on tasks
involving data calculations, we conducted analysis on the BPI 2018 event log. Using
the CPU-based Jupyter environment, the analysis took 8 minutes. These initial
processing times using CPU alone served as benchmarks for our subsequent analysis.

After transitioning to the GPU-accelerated environment, we re-conducted the
analysis on the event log. The processing time was reduced to 46 seconds, showcasing
the significant time savings achieved through the utilization of the GPU and cuDF.

1 https://docs.rapids.ai/api/cudf/stable/

24

4.2 data understanding

Figure 5: Frequency graph of the Diagnosis code attribute in the BPI 2011 event log. The
x-axis represents the attribute values, while the y-axis indicates the frequency
count.

By leveraging the computational power of the GPU and employing the cuDF
library, we were able to expedite the processing of both small and large event logs.
This accelerated processing time allows us to perform more comprehensive analysis
and iterate more rapidly on our research objectives.

Understanding the complexity of the dataset is essential for framing our subse-
quent analysis appropriately. By considering these factors, we can make informed
decisions regarding the choice of analytical techniques, potential challenges, and
the significance of the findings.

For a thorough understanding of the dataset, we conducted exploratory data
analysis techniques to gain insights into the data as a whole in each event log. The
following analyses were performed:

• Frequency Charts: We created frequency charts for each attribute across the
event logs (see Figure 5). These charts allowed us to visualize the occurrence
and distribution of different attribute values, enabling us to identify any major
trends or imbalances.

• Box Plots: Box plots were generated to detect the presence of outliers across
the event logs (see Figure 6). By analysing the distribution of data points
and the position of outliers, we gained insights into the potential presence of
extreme values that could impact our analysis.

• Dispersion Charts: Dispersion charts were utilized to explore the variability
and spread of values within the datasets (see Figure 7 and 8). These charts

25

data collection, understanding and preparation

Figure 6: Box plot of the case attribute in the BPI Challenge 2011 event log, illustrating a
balanced distribution with no outliers. The values range from 1 to 1000, and the
quartiles are equally spaced.

enabled us to identify any patterns, clusters, or discrepancies in the data
distribution.

• Column Analysis: We examined the number of columns in the event logs
to understand their complexity and dimensionality. This analysis provided
insights into the overall structure of the event logs and the number of variables
available for further exploration. Figure 9 provides a comprehensive overview of
our column analysis, missing values assessment, and unique values calculation.

• Missing Values: To assess the data quality, we determined the number of
null values in each event log. This step helped us identify any missing data
that would require imputation or handling during the preprocessing phase.

• Unique Values: We calculated the number of unique values for each event
log. This analysis enabled us to identify categorical variables and assess the
cardinality of different features.

By performing these exploratory analyses collectively, we gained a comprehensive
understanding of the dataset, allowing us to proceed with further data processing
and analysis in subsequent chapters.

Upon conducting exploratory analysis on the dataset using various techniques,
we found that extracting the “Start Date” and “End Date” columns from the
event logs was straightforward. This observation is significant because it does not
require detailed knowledge about the event logs construction. The “Start Date” and
“End Date” columns, capturing event initiation and completion dates, are vital for
understanding temporal patterns in the data.

26

4.2 data understanding

Figure 7: Dispersion Graph of BPI Challenge 2011 attribute age. The y-axis represents
the age value, while the x-axis denotes the Start Time with an adjustment that
subtracts the oldest recorded Start Time.

Figure 8: Histogram graph depicting the distribution of ages within the BPI Challenge
2011 event log. This graph illustrates the frequency of different age groups or
values present in the event log, segmented into 10 distinct groups. The age range
spans from 25 to almost 100, and the graph reveals any predominant age groups,
outliers, or noteworthy trends in the data.

27

data collection, understanding and preparation

Figure 9: Representation of event log columns with nulls and uniques and basic information.

For the dates extraction process, we begin by obtaining an event log. Then, we
launch a parsing procedure to identify columns containing date information in
this event log. This parsing process methodically checks for various date formats,
including timestamps, and converts them into timestamps for consistency. Afterward,
we examine the data columns to locate a row in the event log where all date columns
are fully populated. From this specific row, we extract the oldest date, known as the
“Start Date”, and the newest date, referred to as the “End Date”. This systematic
approach ensures the accurate retrieval of temporal information from the event log.

4.3 refined exploratory data analysis: start date analysis

In this section, we explore the impact of the “Start Date” column on the event logs
and how it can serve as a pivotal point for further analysis. By considering the
temporal dimension of the data, we aim to uncover patterns, trends, and correlations
that might have been overlooked in the previous analysis. This refined approach
allows us to delve deeper into the event logs and extract meaningful information
related to time-based dynamics and relationships.

We begin by revisiting the event logs and examining the “Start Date” column
in detail. We analyse the distribution of start dates, identify any anomalies or
discrepancies, and gain a comprehensive understanding of the temporal context of
the data. With this foundation, we proceed to explore the interplay between the

28

4.3 refined exploratory data analysis: start date analysis

Figure 10: Example graphics with start date as X-axis.

“Start Date” column and other attributes. We investigate how different variables
interact with the start dates, potentially shedding light on causal relationships or
dependencies.

Through this refined exploratory data analysis, we uncover new insights and
enhance our understanding of the dataset. By leveraging the “Start Date” column
as a pivot, we anticipate identifying temporal patterns, seasonality effects, and
potential correlations that informed our subsequent analysis and contributed to the
overall findings of our research.

To gain insights into the relationships between the “Start Date” column and other
attributes, we created plot charts for each column of the event log, with the “Start
Date” as the X-axis and the respective attribute values as the Y-axis. This visual
representation allowed us to observe the distribution and behaviour of different
variables over time. As we analysed the charts, a pattern emerged, suggesting the
presence of a distinct temporal pattern across multiple attributes, as shown in
Figure 10.

In Figure 10 there are six images labelled: A, B, C, D, E, and F. Image A
represents the Case ID, while Image B represents the activity. The remaining images
provide insights into various columns within a event log. These visualizations are
derived from the [20] event log. Importantly, these graphics are generated based on

29

data collection, understanding and preparation

Figure 11: Example graphics of Case ID in different event logs.

the ordering of the “Start Date” column alongside the respective attribute columns.
The Case ID image exhibits a different pattern than the other columns.

Building on this, we have generated Figure 11, comprising six labelled images: A,
B, C, D, E, and F. These images represent the Case ID for event logs [20], [8], [29],
[24], [26], [27]. These graphics were created using the same chronological ordering
as the previous figure but without axes, facilitating pattern analysis.

In Figure 11, a noticeable recurring pattern emerges, characterized by a diagonal
orientation at the starting point of each row. Particularly in images A and E,
there is a distinct shape reminiscent of a triangle. As we understand, a process
case inherently comprises a beginning and an end, and almost all images seem to
illustrate that fundamental concept. This observation leads us to formulate the
hypothesis that mature event logs, those containing numerous completed processes,
tend to exhibit this diagonal pattern and “younger” event logs tend to exhibit a
triangle pattern because they have numerous unfinished processes.

It is crucial to realize that the process timeline’s characteristics may be influenced
by the duration of processes within the company and the specific type of company.
These factors can contribute to variations in the observed patterns, highlighting the
complex interplay between data characteristics and real-world processes.

30

4.4 data preparation

Our data exploration led to an observation. We hypothesized that the median
time span of values in the “Case ID” column is shorter compared to other columns in
the event log. This insight contributed to the development of an expression outlined
in Chapter 6. This expression forms the basis for the heuristic we used to identify
the “Case ID” column. It also led us to the approach based on CNNs, where the
model’s input images are charts. The goal in this approach was to develop neural
networks able to identify the pattern described above.

4.4 data preparation

In this section, we outline the steps taken to prepare the dataset for further analysis.
The data preparation process comprises two main steps, with each main step
consisting of multiple sub-steps. The first main step is dedicated to the removal of
specific columns:

1. Date Extraction: We begin by employing a date extraction procedure to
identify the “Start Date” and “End Date” columns within the event log.
This step involves parsing the data to locate date information, converting it
into timestamps, and selecting the earliest date as the “Start Date” while
discarding all other date columns;

2. Removing Empty Columns: To streamline the event log, we identify and remove
columns that are entirely empty. These empty columns do not contribute to
the analysis and can be safely eliminated;

3. Handling Columns with Two Unique Values: In some cases, columns with only
two unique values may not provide significant information for our analysis.
Therefore, we identify such columns and consider whether they should be
retained or excluded from the event log;

4. Correlation-Based Column Aggregation: In this step, we use the Correlation-
Based Column Aggregation method to identify columns with a correlation
coefficient of 1. These columns are combined into single columns, simplifying
the event log while retaining crucial information.

We perform these data preparation tasks using the Pandas2 library, a data
manipulation tool in Python that helps with data cleansing and transformation
tasks.

2 https://pandas.pydata.org/

31

data collection, understanding and preparation

For the second step, we perform column preparation by creating duplicates of
the “column” and “Start Date” columns. This serves as the final step, establishing
the starting point for testing our hypothesis and generating images for the CNN:

1. Data Filtering: Initially, we filter the event log to include only the “Start Date”
column and one additional specified column;

2. Null Value Exclusion: In the subsequent stage, we remove rows containing
null values in either of these two columns, ensuring complete records remain
for further analysis;

3. Data Sorting: To enhance data organization, we arrange the event log in a
specific order. Firstly, we sort it chronologically based on the “Start Date”
column, capturing the temporal progression of events. Then, we arrange the
data based on the designated column, improving its structure for efficient
attribute-based analysis;

4. Categorical Transformation: Finally, we optimize the event log for subsequent
analysis by transforming the values within the designated column into a
categorical type, providing a structured foundation for our research.

By implementing these data preparation steps, we ensure that the dataset is
cleansed and optimized for subsequent analysis, enabling us to focus on the most
relevant attributes and data for our research.

32

5
C O N V O L U T I O N A L N E U R A L N E T W O R K M O D E L

In this chapter, we explore the application of Convolutional Neural Networks (CNN)
for Case ID column identification. CNNs are a class of deep learning models widely
used in computer vision tasks, and we use them to automatically learn relevant
patterns and features from our dataset.

5.1 understanding neural networks and cnns

In this section, we delve into the world of neural networks, a core component of
modern data science and deep learning algorithms. Neural networks, also known as
Artificial Neural Networks (ANNs), are a subset of machine learning models used in
deep learning. They are inspired by the human brain, mimicking the way biological
neurons signal to each other [37].

Neural networks are typically organized as a series of layers of interconnected
nodes, comprising an input layer, one or more hidden layers, and an output layer.
Each node receives signals from nodes in the preceding layer. These signals undergo
a weighted sum calculation, which is then passed through an activation function to
produce the node’s output. This architecture is visually represented in Figure 12.
This process can be mathematically expressed as:

Node Output =Activation
(∑

i

Inputi × Weighti

)

Here, weights play a crucial role as they determine the strength of connections
between nodes. During training, these weights are iteratively adjusted to minimize
the difference between the network’s predictions and the actual data, a process known
as backpropagation. This training process continues until the network achieves the
desired level of performance.

CNNs, a specialized subset of neural networks, are particularly effective for image-
related tasks. They excel in automatically identifying patterns and features within

33

convolutional neural network model

Figure 12: Illustration of the neural network architecture [38].

Figure 13: CNN Architecture example (adapted from [39]).

image data, revolutionizing fields like computer vision, image recognition, object
detection, and autonomous driving.

A CNN consists of two main sections: feature extraction and classification. The
feature extraction section identifies significant image features, like edges and textures,
through convolution and pooling layers. The classification section utilizes these
features for tasks like object identification or classification. Figure 13 provides an
example of this architecture.

In order to allow training models with small datasets, it is common to use
transfer learning. This technique accelerates learning for new tasks by utilizing
pre-trained models that were trained on large datasets. It begins with a model that
has already learned from a prior task. Transfer learning has two main methods:
feature extraction and fine-tuning. These methods optimize the machine learning
model creation process.

Feature extraction focuses on using the existing layers of the pre-trained model,
especially the lower layers that identify basic patterns. These layers automatically
extract essential features from the data, which become inputs for the task-specific
model. On the other hand, fine-tuning involves adjusting the pre-trained model’s

34

5.2 dataset creation, preparation and preprocessing

layers to better fit the specific task. This typically includes unfreezing some or all of
the layers and retraining them with the problem specific data. Fine-tuning refines
the model’s understanding of the task, especially when it differs significantly from
the model’s original training.

5.2 dataset creation, preparation and preprocessing

The images for training our CNN were generated from the event logs presented
in Chapter 4. Each event log underwent data preparation to create corresponding
scatter chart image samples for each column, where the X-axis corresponds to the
“Start Date” column values and the Y-axis correspond to the values of the column
we want to classify as case or not case, that is, as being a Case ID column or
not. The images were generated using the Matplotlib pyplot library and rendered
without the axes with an aspect ratio of 2500x2500 pixels. As an example, we have
Figure 11, consisting of two groups of images, case and not case.

After generating the images, they were separated into two categories: “Case ID”
and “Not Case ID”. The “Case ID” category contains images corresponding to the
“Case ID” column, while the “Not Case ID” category includes images corresponding
to the other columns.

The dataset used for training and evaluating the CNN models is unbalanced,
consisting of 19 “Case ID” images and 332 “Not Case ID” images. It is important
to note that these 19 event logs each contain only one column/image corresponding
to the Case ID column, hence the existence of only 19 images for this class. The
remaining 332 images encompass all the columns from the event logs that are not
the Case ID. To address the class imbalance, we employed a 4-fold cross-validation
strategy without the creation of the test set.

For dataset creation, we randomly divided the images into four equal parts for
the 4-fold approach, while maintaining their original case/not case ratio. In each
fold, a balanced distribution of “Case ID” and “Not Case ID” images was ensured.

We decided not to use a separate test set, as cross-validation allows for a com-
prehensive evaluation of the model’s performance while making efficient use of
the available data. By using cross-validation, we can assess the model’s generaliza-
tion across different folds, providing more robust results and mitigating potential
overfitting issues.

35

convolutional neural network model

Figure 14: Example graphics of case and not case in different datasets.

36

5.3 evaluation metrics

To prepare the data for binary classification, the “Case ID” class was automatically
assigned value 1, and the “Not Case ID” class was assigned value 0. This binary
representation allows the model to distinguish between the two categories during
training.

By performing data preprocessing, we ensure that the image data is appropriately
formatted and ready for training the CNN models. The use of cross-validation
strategies and the balanced distribution of “Case ID” and “Not Case ID” images
during dataset creation contribute to a more comprehensive and accurate evaluation
of the CNN models in identifying the Case ID column.

5.3 evaluation metrics

When working with an unbalanced dataset, it is essential to use evaluation metrics
that can effectively assess the performance of the model in such scenarios. Here,
we discuss the evaluation metrics we employed to measure the performance of the
generated CNN models in identifying the Case ID column:

Precision: Precision measures the proportion of true positive predictions among
all positive predictions (i.e., cases identified correctly among all instances classified
as cases). It is especially useful when the cost of false positives is high. Precision
ranges from 0 to 1, where 1 represents perfect precision.

Recall (Sensitivity or True Positive Rate): Recall computes the proportion
of true positive predictions among all actual positive instances (i.e., case ID columns
correctly identified among all actual case ID columns). It is particularly important
when the cost of false negatives is high, as it indicates the model’s ability to find all
relevant instances. Recall ranges from 0 to 1, where 1 represents perfect recall.

F1 Score: The F1 score is the harmonic mean of precision and recall. It provides
a balanced measure of the model’s accuracy in classifying both positive and negative
instances. F1 score ranges from 0 to 1, where 1 represents perfect precision and
recall, and 0 indicates the worst performance.

Matthews Correlation Coefficient (MCC): The MCC takes into account
true positives, true negatives, false positives, and false negatives. It is a correlation
coefficient between the predicted and actual classifications, considering all four
aspects of the confusion matrix [40]. MCC ranges from -1 to +1, where +1 indicates
a perfect prediction, 0 represents random guessing, and -1 signifies a complete
disagreement between predictions and real values.

37

convolutional neural network model

Area Under the Receiver Operating Characteristic Curve (AUC-ROC):
The AUC-ROC metric measures the area under the receiver operating characteristic
curve, which plots the true positive rate (recall) against the false positive rate. It
provides a single value that represents the model’s ability to distinguish between
the two classes. AUC-ROC ranges from 0 to 1, where 1 indicates a perfect model.

These evaluation metrics enable us to comprehensively assess the performance
of our CNN model in identifying the case column within the unbalanced dataset,
considering both true positive and true negative predictions and addressing the
challenges posed by class imbalance.

5.4 overview of the steps taken to build the cnn model

In the creation of our CNN model, we optimize both the model architecture and
training hyperparameters. This approach naturally synchronizes these critical aspects
of model development.

We focus on shaping the CNN’s architecture and configuring essential training
parameters, including the selection of a feature extraction network and hyperparam-
eters like learning rate, batch size, and training epochs. Transfer learning, where a
pre-trained model adapts to our specific task, expedites training. We also use the
Optuna1 to further enhance these hyperparameters.

Optuna plays a role in our CNN model development, enabling us to explore and
determine the combination of both model architecture and training hyperparameters
concurrently. This approach maximizes efficiency, saving time and resources while
improving our model’s performance.

By adopting this standard practice of simultaneous optimization, we ensure a
coherent model development process that efficiently explores hyperparameter spaces.

5.5 definition of the model architecture hyperparameters
and training process hyperparameters

In the construction of the CNN models, the focus is on defining the overall model
architecture and training process hyperparameters. This involves configuring various
components to ensure the model’s effectiveness in capturing features and making
accurate predictions for the target variable.

1 https://optuna.org/

38

5.5 definition of the model architecture hyperparameters and
training process hyperparameters

For the architecture, we begin by explored different pretrained models, and
conducted extensive experiments with multiple hyperparameters to optimize and
improve the model’s performance. Table 6 outlines the options considered:

Table 6: Model Architecture Layers Options.

Layer Values Tried Always
Present

1 | Feature Extraction VGG16 / ResNet50 / InceptionV3 X
2 Flatten / GlobalAveragePool-

ing2D
X

3 | Dense Layer 1 Units: 2X / Activation: ReLU /
X: 1-9

4 | Dropout 1 0.0-0.5
5 | Dense Layer Units: 1 / Activation: Sigmoid X

Within Table 6, it is important to highlight that the Feature Extraction layer
corresponds to the Feature Extraction Section, while the subsequent layers form
the Classification Section in the model’s structure.

The options considered were the following:

• Feature Extraction section: We explored three popular pre-trained models
for feature extraction: VGG16, ResNet50, and InceptionV3. These models are
renowned for their exceptional performance in image recognition tasks, and
we assessed how they adapt to our specific problem.

• Flatten / GlobalAveragePooling2D layers: After feature extraction, we
need to prepare the data for the classification layer. Two common approaches
are to either flatten the final feature map or use Global Average Pooling. We
evaluated both options to determine which one works best for our dataset.

• Hidden Dense Layer: This layer was designed to experiment with varying
numbers of hidden units, specifically employing 2X units, where X ranged from
1 to 9 after flattening or pooling. We applied the ReLU activation function,
known for its effectiveness in promoting faster convergence and mitigating the
risk of vanishing gradients.

• Dropout Layer: To prevent overfitting, we experimented with dropout rates
ranging from 0.0 to 0.5. Dropout is a regularization technique that randomly
drops a fraction of the neurons during training.

• Output Dense Layer: The output dense layer consists of a single unit with
the sigmoid activation function. As this is a binary classification problem, the

39

convolutional neural network model

sigmoid activation function squashes the output to a probability between 0
and 1, indicating the likelihood of the input image belonging to the positive
class (case id).

In the training process hyperparameters optimizers are a crucial component.
It determines how the model’s weights are updated during the training process
to minimize the loss function. We experimented with the following optimization
techniques [41]

RMSprop: Root Mean Square Propagation is an adaptive learning rate opti-
mization algorithm. It adjusts the learning rate for each weight based on the moving
average of the squared gradient. RMSprop is suitable for recurrent neural networks
and deep learning models.

Adam: Adam is another adaptive optimization algorithm that combines the
benefits of RMSprop and stochastic gradient descent with momentum. It adapts
the learning rate for each parameter based on estimates of the first and second
moments of the gradients.

SGD: Stochastic Gradient Descent is a classic optimization algorithm for training
neural networks. It updates the model’s parameters in the direction of the negative
gradient of the loss function.

Adadelta: Adadelta is an extension of Adagrad that addresses the diminishing
learning rate problem. It dynamically adapts the learning rates of each parameter
based on previous updates.

Nadam: Nadam combines Adam with Nesterov accelerated gradient (NAG)
optimization. It incorporates NAG’s momentum term with Adam’s adaptive learning
rates.

The learning rate is a critical hyperparameter that determines the step size at
which the optimizer moves towards the minimum of the loss function. Choosing an
appropriate learning rate is essential, as it influences the speed and stability of the
model’s training process. We experimented with different learning rates between
0.0001 to 0.1, to identify the optimal value for the generated model.

5.6 cnn results

In this section, we present the results obtained with the CNN model for the case
identification task. We begin by showcasing the result obtained in each step.

40

5.6 cnn results

Table 7: Model Architecture Hyperparameters.

Layer Values
1 | Feature Extraction VGG16
2 Flatten
3 | Dense Layer 1 Units: 512 / Activation: ReLU
4 | Dense Layer Units: 1 / Activation: Sigmoid

Table 8: Train Hyperparameters.

Hyperparameter Values
Optimizer Nadam
Learning Rate 0.00019509360022646507

The best combination of Model Architecture Hyperparameters (Table 7) returned
by Optuna was: VGG16 for feature extraction, a flattening layer, a ReLU-activated
dense layer with 512 units, and a Sigmoid-activated final layer.

The best Training Hyperparameters (Table 8) returned by Optuna were: the
Nadam optimizer and a learning rate of about 0.0002.

Table 9 presents a summary of key metrics, including accuracy, precision, recall,
AUC, MCC, and F1 Score. These metrics provide a comprehensive evaluation of
our model’s performance.

After conducting cross-validation with Optuna, we observed significant discrepan-
cies in performance metrics between train and test datasets across multiple folds,
signifying the presence of overfitting. Our initial plan to fine-tune the models after
cross-validation was abandoned due to the clear signs of overfitting.

Our exploration into the application of CNNs for our case identification task
ultimately yielded outcomes that fall short of our desired objectives at this juncture.
To address the challenge of overfitting, we outline a future research direction,

Table 9: Summary Metrics Table.
Metric Value

Accuracy 0.965517241
Precision 0.666666667

Recall 0.6
AUC 0.941158563
MCC 0.63720459

F1 Score 0.633333333

41

convolutional neural network model

involving the application of techniques such as data augmentation and dataset
balancing, designed to enhance the resilience of our models by mitigating overfitting
issues effectively.

42

6
A H E U R I S T I C F O R C A S E I D C O L U M N
I D E N T I F I C AT I O N

In this chapter, we introduce an approach for identifying the Case ID column in the
event log based on a heuristic that emulates the hypothesis introduced in Chapter
4. We will begin by describing the heuristic and follow with the presentation of our
results.

6.1 the heuristic

The proposed heuristic for identifying the “Case ID” column within event logs is
based on the hypothesis, posed in Chapter 4, that the “Case ID” column exhibits
a shorter time span compared to other columns. This means that the proposed
heuristic needs to measure the average time span for the values of each column. Now,
each column has different values and the number of occurrences of the values varies
from value to value. That is, some values occur more often than others. So, instead
of a simple average expression, we propose a heuristic consisting of a weighted
average of values times spans where the time span for each value is weighted by the
number of occurrences of that value.

By utilizing this weighted average, our heuristic effectively captures the temporal
patterns that differentiate the “Case ID” column from others in the event log
dataset.

The heuristic expression is defined as follows:

Average time span =

∑
i

[(TMaxi − TMini)a × NOi]b

NDV c
,

where TMaxi is the maximum time value for a given value in the column, TMini

is the minimum time value for a given value in the column, NOi is the number
of occurrences a value has in the column, NDV is the number of unique values
in the column, a, b, and c are coefficients that can be adjusted to fine-tune the

43

a heuristic for case id column identification

Figure 15: Heuristic expression variables example.

heuristic performance with the idea of changing the importance of each element in
the expression.

In Figure 15, we show an example of the expression applied to assess a column’s
potential as the Case ID. This example concerns a table of a column, including
attributes “value” and “start date”.

Within the “value” attribute, two values, 1 and 2, are observed, each with
respective counts (3 and 2). We also note the minimum and maximum dates linked
to these values.

The final step is applying the expression:

Value =[(TMax1 − TMin1) × NO1]+[(TMax2 − TMin2) × NO2]
NDV

.

This involves replacing observed values for calculation. This yields a numeric
score, serving as a practical indicator for selecting the Case ID column based on
temporal patterns and value occurrences.

By applying this formula to each column in the event log, we can obtain a numeric
score representing its potential as the “Case ID” column. The lower the score, the
more likely it is that the column is the appropriate choice for the Case ID.

44

6.2 heuristics results and discussion

6.2 heuristics results and discussion

To explore the effectiveness of the heuristic, we conducted experiments using different
combinations of values for coefficients a, b, and c. We created a table that includes
eight distinct sets of coefficient values, each representing a different configuration of
the expression. This table serves as a reference for evaluating the impact of each
element’s impact on the results.

Table 10: Heuristics Configurations.

Heuristic a b c
A 1 1 1
B 1 1 2
C 2 1 1
D 1 2 1
E 1/2 1 2
F 1 1/2 2
G 1/2 1 1
H 1 1/2 1

Table 10 presents the eight tested configurations of the heuristic. Each configu-
ration is characterized by a specific combination of values of coefficients a, b, and
c.

Configuration A, with a=1, b=1, and c=1, provides a balanced approach in
evaluating the Case ID column. Configuration B, with a=1, b=1, and c=2, places
slightly more emphasis on the number of unique values in the column. Configuration
C, with a=2, b=1, and c=1, gives greater weight to the range of time values. In
configuration D, with a=1, b=2, and c=1, the emphasis shifts towards the frequency
of occurrence joined with the range of the time values. Configuration E, with a=1/2,
b=1, and c=2, introduces a lower weight for the range of time values and a higher
weight for the number of unique values. Configuration F, with a=1, b=1/2, and c=2,
prioritizes the range of time values and the frequency of occurrence. Configuration
G, with a=1/2, b=1, and c=1, gives equal weight to the range of time values and
the frequency of occurrence. Finally, configuration H, with a=1, b=1/2, and c=1,
balances the range of time values and the number of unique values.

We applied the heuristic with the above configurations to assess its effectiveness
in identifying the Case ID column.

45

a heuristic for case id column identification

Table 11 presents the event log alongside the corresponding position rank assigned
to the Case ID column for each method. The ranking system enables the identification
of the most suitable Case ID column, aiding users in making informed decisions
tailored to their specific event log and requirements.

Table 11: Comparison of expression configurations on different event logs.

Event Heuristics
log A B C D E F G H Columns
[20] 2 2 2 2 1 1 2 2 54
[8] 1 1 1 1 1 1 1 1 4
[21] 1 1 1 1 1 1 1 1 11
[22] 1 1 1 1 1 1 1 1 11
[23] 1 1 1 1 1 1 1 1 10
[24] 1 1 2 2 1 1 1 1 17
[25] 2 1 3 3 1 1 2 2 16
[26] 1 1 1 1 1 1 1 2 16
[27] 1 1 1 1 1 1 1 2 17
[28] 1 1 1 1 1 2 1 2 18
[29] 1 1 1 1 1 2 1 2 15
[30] 3(2) 3(2) 3(2) 3(2) 3(2) 3(2) 3(2) 3(2) 27
[31] 1 1 1 1 1 1 1 1 14
[32] 1 1 1 1 1 1 1 1 5
[33] 1 1 1 1 1 1 1 1 17
[34] 1 1 1 1 1 1 1 1 17
[35] 1 1 1 1 1 1 1 1 9
[36] 1 1 1 1 1 1 1 3 58
Mould 2 4 2 2 4 4 4 4 15
Total 15/19 16/19 14/19 14/19 17/19 15/19 15/19 10/19
Success 79% 84% 74% 74% 89% 79% 79% 53%
Rate

The table displays the event logs along with the corresponding rank obtained by
the Case ID column for each method. For example, in the [20] event log, Configuration
A resulted in a rank of 2, while Method E obtained a rank of 1, and so on. Similarly,
for the [8] event log, all heuristics achieved a rank of 1. In some ranks we have a
number between parenthesis, which corresponds to the number of columns that are
on that rank, including the “Case ID” column.

The “Columns” column represents the number of columns in each event log that
were considered for Case ID identification. This count includes all the potential

46

6.2 heuristics results and discussion

candidate columns evaluated by the different heuristics. The number in this column
provides an understanding of the event log’s complexity and the variety of columns
that were assessed during the Case ID identification process.

Furthermore, the “Total” row in the table summarizes the overall performance of
each method across all event logs. The fractions indicate the number of event logs
for which each method achieved the top rank out of the total number of event logs
used in the experiments.

The analysis of the results from the various configurations of the expression
provides insights into the effectiveness of different criteria in identifying the Case
ID column.

In Table 11, it becomes evident that configuration E consistently outperformed
other configurations by achieving the highest rank in the majority of event logs.
This performance across different event logs suggests that configuration E is suitable
for Case ID identification tasks.

On the other hand, Configuration H displayed relatively lower success rates.
This variance in performance indicates that certain configurations may be more
specialized and effective in specific scenarios, while others demonstrate broader
adaptability.

An observation from these results is the significance of considering both the
number of unique values (NDV) and the time span (TMaxi-TMini) when formulating
the expression. Configuration E, which gives added weight to these factors, appears
to excel in capturing the unique characteristics of the Case ID column.

In the project context, configurations A, C, and D were the top performers for
identifying the Case ID in the mould event log. Importantly, these configurations
do not give extra weight to the number of unique values (NDV). This stands in
contrast to Configuration E, which was previously discussed but performed less
effectively.

In order to provide a global perspective, it is worth noting that Configuration
E achieved the top rank in approximately 89% of the event logs, making it the
most consistently successful method. Additionally, it is remarkable that the Case
ID column never ranked beyond the 4th position, and this only occurred for the
mould event log, under various configurations, emphasizing the challenge posed by
this specific event log.

The choice of configurations for the expression can be virtually infinite, and
their performance may heavily depend on the specific characteristics of the event

47

a heuristic for case id column identification

log. Different areas or domains within the event log may benefit from unique
configurations tailored to their particular attributes. Additionally, the maturity or
complexity of the event log can play a crucial role in determining which configurations
of the expression yield the best results. Therefore, the adaptability of the expression
to various event log scenarios underscores its versatility and potential for effective
Case ID identification.

In percentage terms, the success rates across configurations vary as follows:
Configuration H exhibited the lowest rate at 53%, followed by configurations C and
D, jointly demonstrating a 74% success rate. Configurations A, G and F achieved a
combined rate of 79%, while configurations B achieved 84%. Configuration E stood
out with 89% success rate. These percentages provide a comprehensive overview of
each configuration’s performance across the event logs.

In [30], we consistently observed an identical ranking across all configurations. The
first position was shared by the “docid” and “docid_uuid” columns, while the Case
ID column and “identity:id” column jointly held the third position. This ranking
might seem unusual, given the aggregation of columns with similar correlation
values. However, both of them presented a correlation of around 0.99 that prevented
their aggregation.

Comparing our approach to existing literature, specifically [13], [9] and [17], we
emphasize the importance of assessing comparable scenarios. [13], utilizing the BPI
2013 event log, involved data manipulation, including selective case ID selection and
the removal of cycling events. In contrast, our approach primarily centres on column
elimination without data manipulation, making a direct comparison unfeasible.

The study in [9] covered multiple datasets, including [8], [22], and [29]. Interestingly,
our method closely aligns with theirs in BPI 2012 and 2013, accurately selecting the
case ID column. However, a notable deviation becomes apparent in the BPI 2017
dataset, where our approach exhibits performance discrepancies across all heuristic
configurations. While we share similarities in two out of the three datasets, the
discrepancies in the third dataset underscore the intricacies of case ID identification
across diverse event logs.

The work in [17], on the other hand, focused on the [8] and [22] datasets but
employed a different evaluation approach. Instead of direct case ID identification,
they concentrated on precision and recall calculations for the generated event log.
This variance in evaluation metrics makes direct comparisons unfeasible.

48

7
S O F T WA R E L I B R A RY D E V E L O P M E N T

In this chapter, we discuss the creation of a software library to identify the “Case
ID” column in unlabelled event logs. Its main goal is to streamline column selection,
making the process more efficient for users in data analysis, process mining, and
related fields.

The library’s audience includes individuals and professionals in data analysis,
process mining, and related fields. Its final purpose is to assist users in identifying
the “Case ID” column in an event log-based business process dataset.

The software library primarily focuses on deducing relevant columns like “Start
Date” and “End Date”, with a key emphasis on identifying the “Case ID” column. It
also allows users to select the event column and generate XES files, a standard format
for process mining. Additionally, it offers functionality to calculate performance
metrics related to event data, providing insights into process efficiency.

The subsequent sections of this chapter dive into crucial aspects of the software
library development. First, we explore its architecture and design, outlining the
modular structure presented as a Python class. Next, we cover the implementation,
detailing the coding approach and algorithms used to achieve the library’s function-
alities. Following that, we delve into the testing section, describing comprehensive
testing methods ensuring the accuracy and reliability of the library’s outputs. These
sections aim to provide a comprehensive view of the library’s development process,
offering users a strong foundation for leveraging its capabilities.

7.1 development environment

The development setup centres on Docker, using the Python 3.10.6-alpine base
image. Docker offers an efficient and consistent environment for software library
development, ensuring easy replication across various systems.

To enable the library’s functionality along with necessary dependencies, the
Docker environment includes add-ons supporting the cuDF and pandas libraries.

49

software library development

This setup harnesses the processing speed of cuDF and pandas for data manipulation
within the container.

Using Docker with the Python 3.10.6-alpine base image provides flexibility in
testing the library with different Python versions. Modifying the specified Python
version in the Docker configuration allows straightforward validation of the library’s
compatibility with other Python releases.

Additionally, Docker containerization isolates the development environment, con-
taining the library’s dependencies within the container and preventing interference
with the host system. This isolation mitigates version conflicts and dependency
issues, leading to a smoother development process.

Overall, Docker adoption simplifies the library’s development, testing, and deploy-
ment workflows, enhancing maintainability and scalability across various Python
environments.

7.2 architecture and design

In this section, we explore the architecture and design of our software library.
The key principle guiding the design of this library is modularity. A modular
architecture brings several advantages. By breaking down the functionality into
self-contained and independent modules, we achieve enhanced flexibility, reusability,
and maintainability.

Each module in the library serves a specific purpose, such as deducing start and
end dates, identifying the “Case ID” column, selecting the event column, generating
XES files, and calculating performance metrics (see Figure 16). The modular design
enables users to interact with specific functionalities independently, making it easy
to use only the modules relevant to their specific needs.

Furthermore, the library provides an object-oriented interface, where users create
an instance of the library, which serves as a variable to access various functions
while retaining the state across function calls. This design paradigm allows users to
maintain and manage the context of their operations efficiently. For instance, they
can initiate an object with a specific event log, and then use the same object to
deduce dates, identify Case IDs, and perform other process mining tasks without
losing track of the underlying data and configurations.

The modular architecture improves readability and comprehensibility. Each mod-
ule encapsulates a specific functionality, making the codebase more organized and

50

7.3 development

Library

Data Load

Metrics

Convert XES

Case

Time

Identifier

Figure 16: Architecture of the Software Library.

understandable. It promotes code reuse, as the same module can be used across
different projects or scenarios, thereby streamlining the development process.

The design of this software library also facilitates extensibility. Users can easily
integrate new functionalities or enhancements without affecting the existing codebase.
They can develop separate modules for distinct tasks and seamlessly integrate them
into the library.

In addition to its modular design and object-oriented interface, it is essential to
emphasize that the library mandates the use of NVIDIA graphics cards with CUDA
technology for GPU processing.

7.3 development

The library’s core purpose is to identify crucial components within unlabelled
event logs, specifically the case identifier and time-related information. We provide
automated solutions to streamline data handling, extraction, and transformation
processes, catering to data analysts and process mining enthusiasts. The library also
offers performance metrics for evaluation and facilitates the conversion of processed
data into standardized formats for compatibility with process mining tools, making
data analysis more accessible and efficient for users across diverse domains. For
documentation of the library, refer to Appendix A.

51

software library development

7.3.1 Data Load

The implementation phase of the software library development involves creating
specific modules to achieve the library’s objectives. One of the initial modules
developed during this phase was the Data Load module, which serves the crucial
role of efficiently loading data from the file provided by the user.

The objective of the Data Load module is to provide a mechanism for ingesting
data into the library. It handles CSV files and uses the pandas library, known for
its data manipulation and analysis capabilities, making it adaptable to different
dataset structures.

The Data Load module is designed to simplify the user experience while ensuring
adaptability. When users provide the file location as input, the data loader automat-
ically detects the separator character for CSV files, eliminating the need for manual
specification. This automated detection enables smooth data ingestion, reducing
the burden on users and minimizing input errors.

In addition to its automatic separator detection, the Data Load module imple-
ments error handling mechanisms. In cases where users encounter file-related issues
or provide unsupported formats, the module provides feedback and error messages.
By communicating the specific nature of the error, users can identify and resolve
problems, enhancing the usability of the library.

7.3.2 Identifier

In this section, we delve into the intricacies of the Identifier module, which plays a
pivotal role in automatically identifying and extracting essential information from
the event log.

This module comprises two distinct components: the Time module and the Case
module. Each of these modules focuses on extracting specific columns from the event
log that are crucial for time-related analysis and case identification, respectively.

The Time module uses the same systematic approach employed in Chapter 4
to examine the event log’s columns and identify those containing date-related
information. Once the Time module has successfully detected the date columns,
it proceeds to ascertain the temporal boundaries. It determines the oldest date in
the event log as the starting point (Start Date) for the process mining analysis.
Simultaneously, the module identifies the newest date as the end point (End Date).

52

7.3 development

These boundaries define the time window within which the event log data operates,
encapsulating the temporal scope of the process instances.

By automatically identifying the temporal boundaries through a systematic
exploration of the event log, the Time module lays the groundwork for further
temporal analysis and process mining tasks. The precise and efficient identification
of the time window empowers users to conduct in-depth investigations into the
duration, frequency, and patterns of process activities, providing valuable insights
for process improvement and optimization.

Continuing with the Identifier module, we explore the Case module, which includes
the proposed heuristic in Chapter 6, which can be configured using parameters:
a, b, and c. The main goal of the Case module is to pinpoint the event log’s case
identifier column, a critical step for future process mining and analysis.

Subsequently, the module applies the method with different configurations selected
by the user and creates a ranking for each one based on their individual performance.
If the user opts to select only one configuration, the module automatically designates
the column associated with the top-ranked configuration as the case identifier. This
ranking mechanism provides valuable insights into the efficacy of each configuration,
helping users to determine the most suitable approach for their event log. By
considering the rankings, users can confidently identify the optimal configuration
for case identification or, if desired, combine multiple methods to create a robust
and versatile case identification process.

Furthermore, the Time and Case modules offer users the flexibility to make manual
selections based on their preferences and domain knowledge, with the possibility of
selecting between CPU or GPU processing. If the user prefers to control the process
more explicitly, they can choose specific columns for the time and case identification
purposes. This manual selection option allows users to tailor the analysis to their
specific event log characteristics, enabling a more customized and informed approach
to the identification of temporal information and case identifiers.

7.3.3 Metrics

In the Metrics module, the library offers functionality to calculate the execution
time taken by each of the individual modules. This includes measuring the execution
time for the Data Load module, Time module, Case module, and any other future
modules that may be added to the library. By providing detailed time measurements

53

software library development

for each module, users gain insights into the performance and efficiency of their
data processing pipeline.

Moreover, the Metrics module also computes the processing time for each column
in the event log. This feature allows users to identify potential bottlenecks and
assess the impact of individual columns on the overall data processing time. By
understanding the time distribution across columns, users can make informed
decisions about data preprocessing, optimize column selection, and improve the
efficiency of their data analysis workflow.

7.3.4 Convert XES

This module is a critical part of the library, converting processed event logs into
the XES file format, commonly used in process mining. It enables users to integrate
their data with process mining tools.

During execution, the module takes the processed event log, including the identified
case identifier column and time information, and generates an XES file. This file
captures temporal event patterns, suitable for various process mining tasks like
discovering models and measuring metrics.

The module offers customization options, allowing users to adapt the output
XES file to their needs. Users can choose columns as attributes, define classifiers,
and specify extension attributes, aligning the file with their specific process mining
workflow.

7.4 testing

In the development of our software library, a crucial aspect was the testing performed
to ensure its reliability and functionality. This involved manual testing, which played
a pivotal role in identifying potential issues and refining the library’s performance.

During the manual testing phase, all functions within the library were subjected
to comprehensive examination, encompassing a wide range of input scenarios. This
encompassed both anticipated and unanticipated inputs, allowing us to assess how
the library responded to diverse conditions.

54

7.4 testing

Additionally, we thoroughly evaluated the library’s handling of valid and invalid
inputs, which was a vital aspect of the testing process. This step helped us identify
vulnerabilities and areas where the library might be prone to errors.

When issues or discrepancies within the library surfaced during manual testing, we
addressed them. This included making necessary modifications and enhancements
to enhance the library’s stability and reliability.

The objective of manual testing was to ensure that the software library could
perform effectively in real-world scenarios, delivering robust functionality and
dependable performance.

55

8
C O N C L U S I O N A N D F U T U R E W O R K

This study encompassed data collection, data understanding, data preparation, the
development of a Convolutional Neural Network model and a heuristic for Case ID
column identification, and the creation of a software library.

In the data collection phase, we obtained 19 event logs that correspond to
our dataset, which underwent data understanding and preparation. In the data
understanding, two hypotheses were made: first, the diagonal pattern within event
logs and, second, the expectation that the Case ID column should exhibit a smaller
average time span compared to other columns.

The data preparation was done in two steps. First, we employed various techniques
to reduce the number of columns that were not important. These techniques were:
remove data format columns, remove empty columns, remove columns with two
unique values and correlation-based column aggregation. Second for making it
ready for the heuristic and the CNN model we have done: data filtering, null value
exclusion, data sorting and categorical transformation.

For Case ID column identification, we employed two approaches: a Convolutional
Neural Network model and a heuristic method.

For CNN model creation, we started with the creation of the image dataset
that was generated from each column after the data preparation phase. However,
this approach resulted in an unbalanced dataset, with only 19 Case ID images
compared to 332 images for not Case ID columns. During the model architecture
hyperparameters training process using cross-validation, we observed that the models
were exhibiting symptoms of overfitting. This led us to pause the model development
and reconsider the planned fine-tuning process.

A heuristic was created based on the mean average but tailored to address our
specific hypotheses. This heuristic expression can be adjusted using the exponents to
assign varying importance to each of them. We conducted tests with eight different
configurations, and the best configuration successfully identified the Case ID column
in 17 out of 19 event logs, corresponding to 89% success rate. Furthermore, 5 of the
8 tested configurations yielded a success rate of 79% or more.

57

conclusion and future work

This work focused on creating a library for Case ID column identification. The
library, with a modular architecture, includes the previous heuristic method and
a time column detection as its main features, enhancing its practicality for this
purpose. Additionally, this library finds application in decision support systems,
where user verification is essential to ensure its effectiveness.

For researchers and business professionals engaged in process mining, the devel-
oped library presents an opportunity to delve into uncharted territories of exploration
and analysis. It intends to provide an accessible and efficient solution, simplifying
the comprehension of intricate event log data, thus facilitating deeper insights and
informed decision-making.

8.1 future work

One avenue for future work involves expanding data preparation capabilities. Specif-
ically, we can explore the addition of a mechanism to exclude more columns from
the event log. This enhancement would refine input data, potentially improving
performance of the expression-based approach and address overfitting in the CNN
model. By allowing users to selectively exclude irrelevant columns, we can fine-tune
data input for more accurate Case ID detection.

One avenue for future work is to improve the CNN model by addressing overfitting
issues. To achieve this, we plan to re-implement the CNN model with a focus on data
augmentation and dataset balancing. By augmenting the dataset with variations
of existing samples and ensuring a balanced representation of classes, we aim to
create a more robust model capable of handling diverse input data effectively.

An intriguing path for future research is exploring alternative deep learning
architectures for Case ID column detection. Investigate the use of Siamese networks,
instead of the CNN, for syntactic analysis. A Siamese network could be employed to
leverage syntactic analysis for improved performance. A comparative study between
the CNN and a Siamese network could provide insights into the advantages and
disadvantages of each approach.

For future library development, we aim to investigate activity column detection,
closely linked to Case ID column detection in process mining. Our goal is to create a
dedicated module for activity column detection, expanding the toolkit for event log
preprocessing. This addition will enhance the library’s usefulness for process mining

58

8.1 future work

and data analysis. Additionally, we plan to integrate the library into Python-based
process mining tools like PM4Py to assess its usability through user testing.

These four key areas — enhanced data preparation, data augmentation and
dataset balancing, exploring Siamese networks, and investigating activity column
detection — present opportunities to advance Case ID column detection in unlabelled
event logs and test the library’s usability for related tasks in process mining.

59

B I B L I O G R A P H Y

[1] W. M. P. van der Aalst, “Process mining: A 360 degree overview,” in Process
Mining Handbook, W. M. P. van der Aalst and J. Carmona, Eds. Cham:
Springer International Publishing, 2022, pp. 3–34, isbn: 978-3-031-08848-3.
doi: 10.1007/978-3-031-08848-3_1. [Online]. Available: https://doi.
org/10.1007/978-3-031-08848-3_1.

[2] M. Gupta and P. Chandra, “A comprehensive survey of data mining,” In-
ternational Journal of Information Technology, pp. 1–15, Feb. 2020. doi:
10.1007/s41870-020-00427-7.

[3] D. Amyot, O. Akhigbe, M. Baslyman, et al., “Combining goal modelling with
business process modelling: Two decades of experience with the user require-
ments notation standard,” Enterprise Modelling and Information Systems
Architectures (EMISAJ), vol. 17, pp. 2–1, 2022.

[4] Wu, He, Wang, Wen, and Yu, “A business process analysis methodology based
on process mining for complaint handling service processes,” Applied Sciences,
vol. 9, no. 16, p. 3313, Aug. 2019, issn: 2076-3417. doi: 10.3390/app9163313.
[Online]. Available: http://dx.doi.org/10.3390/app9163313.

[5] F. S. Angelo Corallo Mariangela Lazoi, Process mining and industrial applica-
tions: A systematic literature review. John Wiley and Sons Ltd, 2020.

[6] Á. Rebuge, “Business process analysis in healthcare environments,” Ph.D.
dissertation, May 2012.

[7] W. Van Der Aalst, Process mining: data science in action. Springer, 2016,
vol. 2.

[8] B. van Dongen, Bpi challenge 2012, 2012. doi: 10.4121/UUID:3926DB30-
F712-4394-AEBC-75976070E91F. [Online]. Available: https://data.4tu.
nl/articles/_/12689204/1.

[9] A. A. Andaloussi, A. Burattin, and B. Weber, “Toward an automated labeling
of event log attributes,” vol. 318, Springer Verlag, 2018, pp. 82–96, isbn:
9783319917030. doi: 10.1007/978-3-319-91704-7_6.

[10] N. Martin, Data Quality in Process Mining. 2021, pp. 53–79. doi: 10.1007/
978-3-030-53993-1_5.

61

https://doi.org/10.1007/978-3-031-08848-3_1
https://doi.org/10.1007/978-3-031-08848-3_1
https://doi.org/10.1007/978-3-031-08848-3_1
https://doi.org/10.1007/s41870-020-00427-7
https://doi.org/10.3390/app9163313
http://dx.doi.org/10.3390/app9163313
https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
https://doi.org/10.4121/UUID:3926DB30-F712-4394-AEBC-75976070E91F
https://data.4tu.nl/articles/_/12689204/1
https://data.4tu.nl/articles/_/12689204/1
https://doi.org/10.1007/978-3-319-91704-7_6
https://doi.org/10.1007/978-3-030-53993-1_5
https://doi.org/10.1007/978-3-030-53993-1_5

bibliography

[11] M. T. Wynn and S. Sadiq, Responsible Process Mining - A Data Qual-
ity Perspective. Springer Verlag, 2019, vol. 11675 LNCS, pp. 10–15, isbn:
9783030266189. doi: 10.1007/978-3-030-26619-6_2.

[12] F. Folino, G. Folino, M. Guarascio, and L. Pontieri, “Learning effective neural
nets for outcome prediction from partially labelled log data,” in 2019 IEEE
31st International Conference on Tools with Artificial Intelligence (ICTAI),
2019, pp. 1396–1400. doi: 10.1109/ICTAI.2019.00196.

[13] M. Sahu, G. K. Nayak, and R. K. Nayak, “Process model discovery from
unlabeled event logs by using non-overlapping sequential distinct event pat-
terns,” International Journal of Engineering Research and Technology, vol. 13,
pp. 3055–3066, 10 2020, issn: 09743154. doi: 10.37624/IJERT/13.10.2020.
3055-3066.

[14] M. Walicki and D. R. Ferreira, “Sequence partitioning for process mining with
unlabeled event logs,” Data and Knowledge Engineering, vol. 70, pp. 821–841,
10 Oct. 2011, issn: 0169023X. doi: 10.1016/j.datak.2011.05.003.

[15] T. Lichtenstein, D. Bano, and M. Weske, “Attribute-driven case notion dis-
covery for unlabeled event logs,” in Aug. 2022, pp. 111–122, isbn: 978-3-030-
94342-4. doi: 10.1007/978-3-030-94343-1_9.

[16] D. Bayomie, I. M. Helal, A. Awad, E. Ezat, and A. ElBastawissi, “Deducing
case ids for unlabeled event logs,” vol. 256, Springer Verlag, 2016, pp. 242–254,
isbn: 9783319428864. doi: 10.1007/978-3-319-42887-1_20.

[17] D. Bayomie, A. Awad, and E. Ezat, “Correlating unlabeled events from cyclic
business processes execution,” Aug. 2016, pp. 274–289, isbn: 978-3-319-39695-8.
doi: 10.1007/978-3-319-39696-5_17.

[18] I. M. A. Helal, A. Awad, and A. E. Bastawissi, “Runtime deduction of
case id for unlabeled business process execution events,” 2015, pp. 1–8. doi:
10.1109/AICCSA.2015.7507132.

[19] S. Sim, R. A. Sutrisnowati, S. Won, S. Lee, and H. Bae, “Automatic conversion
of event data to event logs using cnn and event density embedding,” IEEE
Access, vol. 10, pp. 15 994–16 009, 2022. doi: 10.1109/ACCESS.2022.3143609.

[20] B. van Dongen, Real-life event logs - hospital log, 2011. doi: 10.4121/UUID:
D9769F3D - 0AB0 - 4FB8 - 803B - 0D1120FFCF54. [Online]. Available: https :
//data.4tu.nl/articles/_/12716513/1.

[21] W. Steeman, Bpi challenge 2013, closed problems, 2013. doi: 10.4121/UUID:
C2C3B154 - AB26 - 4B31 - A0E8 - 8F2350DDAC11. [Online]. Available: https :
//data.4tu.nl/articles/_/12714476/1.

62

https://doi.org/10.1007/978-3-030-26619-6_2
https://doi.org/10.1109/ICTAI.2019.00196
https://doi.org/10.37624/IJERT/13.10.2020.3055-3066
https://doi.org/10.37624/IJERT/13.10.2020.3055-3066
https://doi.org/10.1016/j.datak.2011.05.003
https://doi.org/10.1007/978-3-030-94343-1_9
https://doi.org/10.1007/978-3-319-42887-1_20
https://doi.org/10.1007/978-3-319-39696-5_17
https://doi.org/10.1109/AICCSA.2015.7507132
https://doi.org/10.1109/ACCESS.2022.3143609
https://doi.org/10.4121/UUID:D9769F3D-0AB0-4FB8-803B-0D1120FFCF54
https://doi.org/10.4121/UUID:D9769F3D-0AB0-4FB8-803B-0D1120FFCF54
https://data.4tu.nl/articles/_/12716513/1
https://data.4tu.nl/articles/_/12716513/1
https://doi.org/10.4121/UUID:C2C3B154-AB26-4B31-A0E8-8F2350DDAC11
https://doi.org/10.4121/UUID:C2C3B154-AB26-4B31-A0E8-8F2350DDAC11
https://data.4tu.nl/articles/_/12714476/1
https://data.4tu.nl/articles/_/12714476/1

bibliography

[22] W. Steeman, Bpi challenge 2013, incidents, 2013. doi: 10 . 4121 / UUID :
500573E6 - ACCC - 4B0C - 9576 - AA5468B10CEE. [Online]. Available: https :
//data.4tu.nl/articles/_/12693914/1.

[23] W. Steeman, Bpi challenge 2013, open problems, 2013. doi: 10.4121/UUID:
3537C19D - 6C64 - 4B1D - 815D - 915AB0E479DA. [Online]. Available: https :
//data.4tu.nl/articles/_/12688556/1.

[24] B. van Dongen, Bpi challenge 2015 municipality 1, 2015. doi: 10.4121/UUID:
A0ADDFDA - 2044 - 4541 - A450 - FDCC9FE16D17. [Online]. Available: https :
//data.4tu.nl/articles/_/12709154/1.

[25] B. van Dongen, Bpi challenge 2015 municipality 2, 2015. doi: 10.4121/UUID:
63A8435A - 077D - 4ECE - 97CD - 2C76D394D99C. [Online]. Available: https :
//data.4tu.nl/articles/_/12697349/1.

[26] B. van Dongen, Bpi challenge 2015 municipality 3, 2015. doi: 10.4121/UUID:
ED445CDD - 27D5 - 4D77 - A1F7 - 59FE7360CFBE. [Online]. Available: https :
//data.4tu.nl/articles/_/12718370/1.

[27] B. van Dongen, Bpi challenge 2015 municipality 4, 2015. doi: 10.4121/UUID:
679B11CF - 47CD - 459E - A6DE - 9CA614E25985. [Online]. Available: https :
//data.4tu.nl/articles/_/12697898/1.

[28] B. van Dongen, Bpi challenge 2015 municipality 5, 2015. doi: 10.4121/UUID:
B32C6FE5 - F212 - 4286 - 9774 - 58DD53511CF8. [Online]. Available: https :
//data.4tu.nl/articles/_/12713285/1.

[29] B. van Dongen, Bpi challenge 2017, 2017. doi: 10.4121/UUID:5F3067DF-
F10B-45DA-B98B-86AE4C7A310B. [Online]. Available: https://data.4tu.
nl/articles/_/12696884/1.

[30] B. van Dongen and F. (Borchert, Bpi challenge 2018, 2018. doi: 10.4121/
UUID:3301445F-95E8-4FF0-98A4-901F1F204972. [Online]. Available: https:
//data.4tu.nl/articles/_/12688355/1.

[31] B. van Dongen, Bpi challenge 2019, 2019. doi: 10.4121/UUID:D06AFF4B-
79F0-45E6-8EC8-E19730C248F1. [Online]. Available: https://data.4tu.
nl/articles/_/12715853/1.

[32] B. van Dongen, Bpi challenge 2020: Domestic declarations, 2020. doi: 10.
4121/UUID:3F422315-ED9D-4882-891F-E180B5B4FEB5. [Online]. Available:
https://data.4tu.nl/articles/_/12692543/1.

63

https://doi.org/10.4121/UUID:500573E6-ACCC-4B0C-9576-AA5468B10CEE
https://doi.org/10.4121/UUID:500573E6-ACCC-4B0C-9576-AA5468B10CEE
https://data.4tu.nl/articles/_/12693914/1
https://data.4tu.nl/articles/_/12693914/1
https://doi.org/10.4121/UUID:3537C19D-6C64-4B1D-815D-915AB0E479DA
https://doi.org/10.4121/UUID:3537C19D-6C64-4B1D-815D-915AB0E479DA
https://data.4tu.nl/articles/_/12688556/1
https://data.4tu.nl/articles/_/12688556/1
https://doi.org/10.4121/UUID:A0ADDFDA-2044-4541-A450-FDCC9FE16D17
https://doi.org/10.4121/UUID:A0ADDFDA-2044-4541-A450-FDCC9FE16D17
https://data.4tu.nl/articles/_/12709154/1
https://data.4tu.nl/articles/_/12709154/1
https://doi.org/10.4121/UUID:63A8435A-077D-4ECE-97CD-2C76D394D99C
https://doi.org/10.4121/UUID:63A8435A-077D-4ECE-97CD-2C76D394D99C
https://data.4tu.nl/articles/_/12697349/1
https://data.4tu.nl/articles/_/12697349/1
https://doi.org/10.4121/UUID:ED445CDD-27D5-4D77-A1F7-59FE7360CFBE
https://doi.org/10.4121/UUID:ED445CDD-27D5-4D77-A1F7-59FE7360CFBE
https://data.4tu.nl/articles/_/12718370/1
https://data.4tu.nl/articles/_/12718370/1
https://doi.org/10.4121/UUID:679B11CF-47CD-459E-A6DE-9CA614E25985
https://doi.org/10.4121/UUID:679B11CF-47CD-459E-A6DE-9CA614E25985
https://data.4tu.nl/articles/_/12697898/1
https://data.4tu.nl/articles/_/12697898/1
https://doi.org/10.4121/UUID:B32C6FE5-F212-4286-9774-58DD53511CF8
https://doi.org/10.4121/UUID:B32C6FE5-F212-4286-9774-58DD53511CF8
https://data.4tu.nl/articles/_/12713285/1
https://data.4tu.nl/articles/_/12713285/1
https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B
https://doi.org/10.4121/UUID:5F3067DF-F10B-45DA-B98B-86AE4C7A310B
https://data.4tu.nl/articles/_/12696884/1
https://data.4tu.nl/articles/_/12696884/1
https://doi.org/10.4121/UUID:3301445F-95E8-4FF0-98A4-901F1F204972
https://doi.org/10.4121/UUID:3301445F-95E8-4FF0-98A4-901F1F204972
https://data.4tu.nl/articles/_/12688355/1
https://data.4tu.nl/articles/_/12688355/1
https://doi.org/10.4121/UUID:D06AFF4B-79F0-45E6-8EC8-E19730C248F1
https://doi.org/10.4121/UUID:D06AFF4B-79F0-45E6-8EC8-E19730C248F1
https://data.4tu.nl/articles/_/12715853/1
https://data.4tu.nl/articles/_/12715853/1
https://doi.org/10.4121/UUID:3F422315-ED9D-4882-891F-E180B5B4FEB5
https://doi.org/10.4121/UUID:3F422315-ED9D-4882-891F-E180B5B4FEB5
https://data.4tu.nl/articles/_/12692543/1

bibliography

[33] B. van Dongen, Bpi challenge 2020: International declarations, 2020. doi: 10.
4121/UUID:2BBF8F6A-FC50-48EB-AA9E-C4EA5EF7E8C5. [Online]. Available:
https://data.4tu.nl/articles/_/12687374/1.

[34] B. van Dongen, Bpi challenge 2020: Prepaid travel costs, 2020. doi: 10 .
4121/UUID:5D2FE5E1-F91F-4A3B-AD9B-9E4126870165. [Online]. Available:
https://data.4tu.nl/articles/_/12696722/1.

[35] B. van Dongen, Bpi challenge 2020: Request for payment, 2020. doi: 10.
4121/UUID:895B26FB-6F25-46EB-9E48-0DCA26FCD030. [Online]. Available:
https://data.4tu.nl/articles/_/12706886/1.

[36] B. van Dongen, Bpi challenge 2020: Travel permit data, 2020. doi: 10.4121/
UUID:EA03D361-A7CD-4F5E-83D8-5FBDF0362550. [Online]. Available: https:
//data.4tu.nl/articles/_/12718178/1.

[37] [Online]. Available: https://www.ibm.com/topics/neural-networks.

[38] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wang, “Image and video
compression with neural networks: A review,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 30, no. 6, pp. 1683–1698, 2020. doi:
10.1109/TCSVT.2019.2910119.

[39] D. Bhatt, C. Patel, H. Talsania, et al., “Cnn variants for computer vision:
History, architecture, application, challenges and future scope,” Electronics,
vol. 10, no. 20, 2021, issn: 2079-9292. doi: 10.3390/electronics10202470.
[Online]. Available: https://www.mdpi.com/2079-9292/10/20/2470.

[40] M. Heydarian, T. E. Doyle, and R. Samavi, “Mlcm: Multi-label confusion
matrix,” IEEE Access, vol. 10, pp. 19 083–19 095, 2022. doi: 10.1109/ACCESS.
2022.3151048.

[41] E. M. Dogo, O. J. Afolabi, and B. Twala, “On the relative impact of optimizers
on convolutional neural networks with varying depth and width for image
classification,” Applied Sciences, vol. 12, no. 23, p. 11 976, Nov. 2022, issn:
2076-3417. doi: 10.3390/app122311976. [Online]. Available: http://dx.doi.
org/10.3390/app122311976.

64

https://doi.org/10.4121/UUID:2BBF8F6A-FC50-48EB-AA9E-C4EA5EF7E8C5
https://doi.org/10.4121/UUID:2BBF8F6A-FC50-48EB-AA9E-C4EA5EF7E8C5
https://data.4tu.nl/articles/_/12687374/1
https://doi.org/10.4121/UUID:5D2FE5E1-F91F-4A3B-AD9B-9E4126870165
https://doi.org/10.4121/UUID:5D2FE5E1-F91F-4A3B-AD9B-9E4126870165
https://data.4tu.nl/articles/_/12696722/1
https://doi.org/10.4121/UUID:895B26FB-6F25-46EB-9E48-0DCA26FCD030
https://doi.org/10.4121/UUID:895B26FB-6F25-46EB-9E48-0DCA26FCD030
https://data.4tu.nl/articles/_/12706886/1
https://doi.org/10.4121/UUID:EA03D361-A7CD-4F5E-83D8-5FBDF0362550
https://doi.org/10.4121/UUID:EA03D361-A7CD-4F5E-83D8-5FBDF0362550
https://data.4tu.nl/articles/_/12718178/1
https://data.4tu.nl/articles/_/12718178/1
https://www.ibm.com/topics/neural-networks
https://doi.org/10.1109/TCSVT.2019.2910119
https://doi.org/10.3390/electronics10202470
https://www.mdpi.com/2079-9292/10/20/2470
https://doi.org/10.1109/ACCESS.2022.3151048
https://doi.org/10.1109/ACCESS.2022.3151048
https://doi.org/10.3390/app122311976
http://dx.doi.org/10.3390/app122311976
http://dx.doi.org/10.3390/app122311976

A P P E N D I C E S

65

A
A P P E N D I X A : L I B R A RY D O C U M E N TAT I O N

a.1 module name

ProcessMiningForDummies

a.2 description

This module provides a class that enables the identification of Case ID columns and
their corresponding date columns in a CSV file containing event log data. It offers
a range of functions and utilities for efficient preprocessing and analysis of event log
data, essential for process mining and data-driven decision-making.

a.3 functions

• __init_(file_path: str) -> None

– Constructor for the ProcessMiningForDummies class.

– Parameters:

∗ file_path (str): The file path to the CSV dataset containing event
log data.

– Returns:

∗ None

– Example:

import CaseIdIdentification
variable = CaseIdIdentification.ProcessMiningForDummies('bpi_2011.csv')

• get_predicted_dates_columns() -> Tuple[List[str], str, str]

– Predicts and retrieves date columns and their temporal range from the
event log data.

67

appendix

– Returns a tuple containing:

∗ dates_columns (List[str]): A list of identified date columns.

∗ start_date (str): The start date column.

∗ end_date (str): The end date column, if applicable.

– Example:

variable.get_predicted_date_columns()

• set_date_columns(start_date: str, end_date: str = None) -> None

– Manually sets the start and end date columns for temporal analysis.

– Parameters:

∗ start_date (str): The start date column.

∗ end_date (str, optional): The end date column, if applicable.

– Returns:

∗ None

– Example:

variable.set_date_columns('startDate','endDate')

• get_predicted_case_id_configurations() -> List[str]

– Retrieves a list of available configurations for predicting the Case ID
column in the event log data.

– Returns:

∗ methods (List[str]): A list of available configurations for Case ID
prediction of this work.

– Example:

methods = variable.get_predicted_case_id_methods()

• get_Option_List() -> List[str]

– Retrieves a list of options available for configuring the Case ID prediction
process.

– Returns:

∗ options (List[str]): A list of available options for Case ID predic-
tion.

– Example:

68

appendix

options = variable.get_Option_List()

• getOptionExponent(option: str) -> float

– Retrieves the exponent associated with a specific option for Case ID
prediction. The exponent is used to configure the prediction process.

– Parameters:

∗ option (str): The option for which to retrieve the exponent.

– Returns:

∗ exponent (float): The exponent value associated with the specified
option.

– Example:

exponent = variable.getOptionExponent('option_name')

• get_predicted_case_id_column(configurations: List[str] = [], tmp:
bool = True, gpu: bool = False, folder: str = None, performance: bool
= False) -> List[Dict[str, Union[str, Dict[str, float]]]]

– Predicts the Case ID column in the event log data using specified methods
and configurations.

– Parameters:

∗ method (List[str], optional): A list of methods to use for predic-
tion.

∗ tmp (bool, optional): Indicates whether to use temporary files for
prediction.

∗ gpu (bool, optional): Indicates whether to use GPU for prediction.

∗ folder (str, optional): The folder path for storing prediction results.

∗ performance (bool, optional): Indicates whether to collect perfor-
mance metrics during prediction.

– Returns:

∗ ranking (List[Dict[str, Union[str, Dict[str, float]]]]): A
list of dictionaries containing ranking results for Case ID prediction
methods.

– Example:

ranking = variable.get_predicted_case_id_column(method=[

69

appendix

{'a':1,'b':1,'c':1}], cnn=True, performance=True)

• set_case_id_column(case_id_column: str) -> None

– Sets the Case ID column for further analysis.

– Parameters:

∗ case_id_column (str): The name of the Case ID column.

– Returns:

∗ None

– Example:

variable.set_case_id_column('CaseID')

• set_activity_column(activity_column: str) -> None

– Sets the Activity column for further analysis.

– Parameters:

∗ activity_column (str): The name of the Activity column.

– Returns:

∗ None

– Example:

variable.set_activity_column('Activity')

• convert_xes(file_path: str = None, file_name: str = ’log.xes’) ->
str

– Converts the event log data to the XES format and saves it to a specified
file.

– Parameters:

∗ file_path (str, optional): The folder path where the XES file will
be saved.

∗ file_name (str, optional): The name of the XES file.

– Returns:

∗ xes_file_path (str): The path to the saved XES file.

– Example:

variable.convert_xes(file_path='/output', file_name='event_log.xes')

70

appendix

• get_metrics() -> Dict[str, Any]

– Retrieves performance metrics collected during the Case ID prediction
process.

– Returns:

∗ metrics (Dict[str, Any]): A dictionary containing performance
metrics.

– Example:

metrics = variable.get_metrics()

71

D E C L A R A Ç Ã O

Declaro, sob compromisso de honra, que o trabalho apresentado neste projeto, com
o título “Case ID Detection in Unlabelled Event Logs for Process Mining”, é original
e foi realizado por André Alexandre dos Santos Vicente (2210791) sob orientação
de: Rui Pedro Charters Lopes Rijo, Ricardo Filipe Gonçalves Martinho e Carlos
Fernando de Almeida Grilo.

Leiria, setembro de 2023

André Alexandre dos Santos Vicente

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	2 Background and Related Work
	2.1 Concepts and fundamentals
	2.1.1 Process mining
	2.1.2 Event Log
	2.1.3 Process Mining tools

	2.2 Problem statement
	2.3 Related work
	2.3.1 Data Quality
	2.3.2 Attribute identification

	2.4 Conclusion

	3 Methodology
	3.1 Project Phases
	3.2 Development Methodology
	3.3 Development Environments

	4 Data Collection, Understanding and Preparation
	4.1 Selected Event Logs Dataset
	4.2 Data Understanding
	4.3 Refined Exploratory Data Analysis: Start Date Analysis
	4.4 Data Preparation

	5 Convolutional Neural Network Model
	5.1 Understanding Neural Networks and CNNs
	5.2 Dataset Creation, Preparation and Preprocessing
	5.3 Evaluation Metrics
	5.4 Overview of the steps taken to build the CNN model
	5.5 Definition of the model architecture hyperparameters and training process hyperparameters
	5.6 CNN Results

	6 A Heuristic for Case ID Column Identification
	6.1 The heuristic
	6.2 Heuristics Results and Discussion

	7 Software library development
	7.1 Development Environment
	7.2 Architecture and Design
	7.3 Development
	7.3.1 Data Load
	7.3.2 Identifier
	7.3.3 Metrics
	7.3.4 Convert XES

	7.4 Testing

	8 Conclusion and Future Work
	8.1 Future Work

	 Bibliography
	Appendices
	A Appendix A: Library documentation
	A.1 Module Name
	A.2 Description
	A.3 Functions

	 Declaração

		2023-12-08T22:11:12+0000

