
Polytechnic Institute of Leiria
Higher School of Technology and Management

Department of Computer Engineering
Master in Cibersecurity and Digital Forensics

F O R E N S I C A N A LY S I S O F T H E G A R M I N C O N N E C T
A N D R O I D A P P L I C AT I O N

fabian pereira nunes

Leiria, July of 2023

Polytechnic Institute of Leiria
Higher School of Technology and Management

Department of Computer Engineering
Master in Cibersecurity and Digital Forensics

F O R E N S I C A N A LY S I S O F T H E G A R M I N C O N N E C T
A N D R O I D A P P L I C AT I O N

fabian pereira nunes
Number: 2210511

Carried out as part of Project under the guidance Professor Miguel Monteiro de
Sousa Frade, Ph.D. and Professor Patrício Rodrigues Domingues, Ph.D..

Leiria, July of 2023

A C K N O W L E D G M E N T S

I could not present this work without thanking everyone at my side since its
beginning. Without them, it would have been impossible.

First, I want to thank my parents, the two most important people in my life.
Without them, I would not even be here today. I want to thank them for all the
love and support they gave me during this project and all my life. I also want to
thank my sister and niece for their compassion and support.

I would have never completed this work without the mentoring and support
from my advisors, Profesor Miguel Monteiro de Sousa Frade, Ph.D., and Professor
Patrício Rodrigues Domingues, Ph.D., for all the knowledge they gave me not only
here but also during their lectures.

Lastly, I wanted to thank the research center Center for Innovative Care
and Health Technology, where I worked in the research Safetrack as a research
fellow. In this project, we used Garmin Smartbands to monitor patients and send
data to our software. I want to thank them because I would not have had the
experience of working with Garmin without them, and I probably would not have
had this idea for this work if not for them. I want to especially thank my research
advisors, Professor Catarina Isabel Ferreira Viveiros Tavares dos Reis, Ph.D., and
Professor Elga Patrícia Maximiano Ferreira, Ph.D. for their support and teachings,
and lastly, the coordinator of the center and the research Professor Maria Pedro
Sucena Guarino, Ph.D. for all the support and kindness given to me during my
time as a research fellow.

i

A B S T R A C T

Wearable smart devices are becoming more prevalent in our lives. These tiny devices
read various health signals such as heart rate and pulse and also serve as companion
devices that store sports activities and even their coordinates. This data is typically
sent to the smartphone via a companion application installed. These applications
hold a high forensic value because of the users’ private information they store. They
can be crucial in a criminal investigation to understand what happened or where
that person was during a given period. They also need to guarantee that the data
is secure and that the application is not vulnerable to any attack that can lead to
data leaks.

The present work aims to do a complete forensic analysis of the companion
application Garmin Connect for Android devices. We used a Garmin Smartband to
generate data and test the application with a rooted Android device. This analysis is
split into two parts. The first part will be a traditional Post Mortem analysis where
we will present the application, data generation process, acquisition process, tools,
and methodologies. Lastly, we analyzed the data extracted and studied what can
be considered a forensic artifact. In the second part of this analysis, we performed
a dynamic analysis. We used various offensive security techniques and methods to
find vulnerabilities in the application code and network protocol to obtain data in
transit.

Besides completing the Garmin Connect application analysis, we contributed
various modules and new features for the tool Android Logs Events And Protobuf
Parser (ALEAPP) to help forensic practitioners analyze the application and to
improve the open-source digital forensics landscape. We also used this analysis as a
blueprint to explore six other fitness applications that can receive data from Garmin
Connect.

With this work, we could conclude that Garmin Connect stores a large quantity
of private data in its device, making it of great importance in case of a forensic
investigation. We also studied its robustness and could conclude that the application
is not vulnerable to the tested scenarios. Nevertheless, we found a weakness in their
communication methods that lets us obtain any data from the user even if it was
not stored in the device. This fact increased its forensic importance even more.

iii

I N D E X

Acknowledgments i
Abstract iii
Index v
List of Figures ix
List of Tables xi
Acronyms List xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 5
1.3 Contributions . 5
1.4 Structure . 6

2 Related Work 7
2.1 Data acquisition from the device and desktop application 7
2.2 Data acquisition from the mobile application using static methods . 10
2.3 Data acquisition from the mobile application using dynamic methods 12
2.4 Use and development of ALEAPP in investigations 15
2.5 Privacy Fitness Wearable . 16

3 Post Mortem Analysis of Garmin Connect 17
3.1 Garmin Connect . 17
3.2 Static Analysis . 20

3.2.1 Concept and technologies . 21
3.2.2 Tools . 22
3.2.3 Methodologies . 23

3.3 Artifact Analysis . 32
3.3.1 Public Directory . 32
3.3.2 Private Directory . 33
3.3.3 Database Analysis . 42

3.4 MobSF Analysis . 54
3.4.1 Background study . 54

v

index

3.4.2 Analysis . 55
3.5 Summary . 62

4 Dynamic Analysis 65
4.1 Tools . 65
4.2 Network Analysis . 66

4.2.1 Authentication . 68
4.2.2 Remote Extraction . 74

4.3 Code Analysis . 78
4.4 Summary . 79

5 Garmin Connect for Android Analyzer 83
5.1 Aleapp . 83

5.1.1 Installation . 84
5.1.2 Plugin Creation . 86

5.2 Tools . 86
5.3 Post-mortem Modules . 87

5.3.1 Activities modules . 87
5.3.2 User Daily Module . 90
5.3.3 Health Data Modules . 91
5.3.4 Response Module . 92
5.3.5 GCM Modules . 92
5.3.6 Notifications and Synchronization Modules 93
5.3.7 Files Modules . 93
5.3.8 SharedPreferences Modules 93

5.4 API Modules . 95
5.4.1 Heart Rate Module . 95
5.4.2 Sleep Module . 95
5.4.3 Steps Module . 96
5.4.4 Stress Module . 96

5.5 Features Added . 96
5.5.1 HeatMap Visualization . 97
5.5.2 Date Filtering . 97
5.5.3 GPS Maps . 98
5.5.4 Data Charts . 98
5.5.5 Code Syntax Highlights . 99

5.6 Autopsy . 99
5.7 The LEAPP Ecosystem . 99

vi

index

5.8 Summary . 101

6 Additional Fitness Applications 103
6.1 Main Findings . 103

6.1.1 Strava . 107
6.1.2 Aleapp modules . 109
6.1.3 Summary . 109

7 Conclusion 113
7.1 Main Contributions . 114
7.2 Future Work . 115

Bibliography 117

Apendixes

a MobSF Setup 125

Declaration 127

vii

L I S T O F F I G U R E S

Figure 1 Garmin Venus 2 . 2
Figure 2 Garmin Vivosmart 4 . 3
Figure 3 Method proposed by NIST for Digital Forensics (Kent et al.,

2006) . 21
Figure 4 Output file fields . 30
Figure 5 Graphical Interface of ADB Extractor 31
Figure 6 Acquisition Method used for this analysis 31
Figure 7 Directories inside public folder 33
Figure 8 Directories inside private folder 34
Figure 9 Simplified diagram of the cache-database 47
Figure 10 GPS Route of a walking activity 48
Figure 11 Excert of the Excel generated by Polyline2GPS 49
Figure 12 Simplified diagram of the GCM_Cache 52
Figure 13 Mobsf Security Score (Left) and Risk Rating(Right) 56
Figure 14 Mobile Security Framework (MobSF) Findings 57
Figure 15 Login communication process 69
Figure 16 Example of API Script Execution 76
Figure 17 Android compilation process 79
Figure 18 Obfuscated Directories . 80
Figure 19 Obfuscated code . 80
Figure 20 ALEAPP GUI . 84
Figure 21 ALEAPP Heart Rate Chart 90
Figure 22 Extract of GPS Report Module 91
Figure 23 ALEAPP JSON Block . 92
Figure 24 ALEAPP JSON Block . 94
Figure 25 ALEAPP Sleep Phase Chart 96
Figure 26 ALEAPP Heatmap . 97
Figure 27 ALEAPP Date Filter . 98
Figure 28 LEAPP Ecosystem . 100
Figure 29 Main screen of Nike Run Club 106
Figure 30 Nike Run Club Activity Summary 106
Figure 31 Strava hidden Route . 108

ix

list of figures

Figure 32 Directories inside the public folder of Strava 108
Figure 33 Acquisition Process . 110

x

L I S T O F TA B L E S

Table 1 Artifacts by Almogbil et al. (2020) 8
Table 2 Artifacts by MacDermott et al. (2019) 9
Table 3 Artifacts by Kim et al. (2022) 9
Table 4 Artifacts by Yoon and Karabiyik (2020) 10
Table 5 Artifacts by Hutchinson et al. (2022) 13
Table 6 Studied application details 18
Table 7 Garmin Connect Permissions 19
Table 8 Data Shared by Garmin Connect 20
Table 9 Static Analysis tool . 23
Table 10 Samsung A40 Specification 24
Table 11 Most relevant functionalities of the Vivosmart 4. 27
Table 12 Brief description of Garmin Connect databases 44
Table 13 AppNotifications Table . 45
Table 14 Non-empty tables of the cache-database database 46
Table 15 Non-empty tables of the gcm_cache.db database 51
Table 16 The application’s permissions classified as dangerous 58
Table 17 Garmin Connect Secrets . 62
Table 18 Static Analysis Findings . 63
Table 19 Dynamic Analysis tool . 66
Table 20 Garmin Connect Hosts . 68
Table 21 Data Endpoints . 75
Table 22 POST Requests . 77
Table 23 Dynamic analysis findings 81
Table 24 Post-mortem Modules . 85
Table 25 API Modules . 85
Table 26 Libraries Used . 88
Table 27 Parsed artifacts . 88
Table 28 Analyzed Applications . 104
Table 29 Applications Analyzed . 105
Table 30 Applications Analyzed . 109
Table 31 Code Repositories . 115
Table 32 MobSF dependencies . 126

xi

list of tables

xii

A C R O N Y M S L I S T

ADB Android Debug Bridge.

AES Advanced Encryption Standard.

AJAX Asynchronous JavaScript and XML.

ALEAPP Android Logs Events And Protobuf Parser.

API Application Programming Interface.

APK Android Application Package.

ART Android Runtime.

AWS Amazon Web Service.

BAT Batch File.

BLE Bluetooth Low Energy.

BLOB Binary Large Object.

CBC Cipher-Block Chaining.

CIA Confidentiality Integrity Availability.

CORS Cross Origin Resource Sharing.

CPU Central Processing Unit.

CS C Sharp.

CSRF Cross Site Request Forgery.

cURL Client URL.

CWE Common Weakness Enumeration.

xiii

Acronyms List

DFIR Digital Forensics and Incident Response.

DLEAPP Drones Logs Events And Protobuf Parser.

FIT Flexible and Interoperable Data Transfer.

GC4AA Garmin Connect for Android Analyzer.

GDPR General Data Protection Regulation.

GMS Google Mobile Services.

GPS Global Positioning System.

GUI Graphical User Interface.

HIPAA Health Insurance Portability and Accountability Act.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IDE Integrated Development Enviorment.

ILEAPP Iphone Logs Events And Protobuf Parser.

IP Internet Protocol.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

JWT JSON Web Token.

xiv

Acronyms List

KML Keyhole Markup Language.

MITM Man-in-the-Middle Attack.

MobSF Mobile Security Framework.

NIST National Institute of Standards and Technology.

OAuth Open Authentication.

OS Operating System.

OWASP Open Web Application Security Project.

POSIX Portable Operating System Interface.

RAM Random Accessed Memory.

REST Representational State Transfer.

ROM Read Only Memory.

SDK Software Development Kit.

SMF Share Memory File.

SMS Short Message Service.

SpO2 Peripheral Capillary Oxygen Saturation.

SSL Secure Socket Layer.

SSO Single Sign On.

xv

Acronyms List

TSK The Sleuth Kit.

UI User Interface.

URL Uniform Resource Locator.

USB Universal Serial Bus.

UTC Coordinated Universal Time.

VLEAPP Vehicles Logs Events And Protobuf Parser.

VM Virtual Machine.

vO2 Maximal Oxygen Consumption.

VPN Virtual Private Network.

WAL Write-Ahead-Log.

WLEAPP Windows Logs Events And Protobuf Parser.

XML Extensible Markup Language.

XSS Cross-site scripting.

xvi

1
I N T R O D U C T I O N

We live in the golden age of technology, and everyday researchers and engineers
are developing new ways to integrate technologies into our lives and make them
available to more people. In the last two decades, our computers have gradually
transformed from big machines to portable devices that we carry in our pockets or,
in this case, our wrists. This project will focus on one of the popular devices called
smart wearables in specific smartbands and smartwatches.

These tiny wrist devices can already function as smartphones by executing
advanced functions like running apps, placing phone calls, having Global Positioning
System (GPS), and storing information. However, smartbands and smartwatches
are two very different kinds of devices.

A smartwatch mimics a traditional watch. However, it does much more than
show us the current time. A smartwatch runs a custom-made Portable Operating
System Interface (POSIX) Operating System that requires fewer resources and
functionalities (WearOS based on Android and WatchOS based on IOS). This
Operating System (OS) gives the watch many capabilities of a typical smartphone,
like running apps and making phone calls (if it has cellular capabilities). However,
one of the most important aspects of a smartwatch is the various sensors that can
read values such as Hearth Rate Variation and Blood Pressure. These sensors turn
the watch into a fitness and health tracker. One of the biggest markets for this kind
of device are people doing workouts or wanting to monitor their health constantly.
The Apple Watch, for example, has already been proven to help diagnose heart
problems and cancer using its monitoring system. The University of Cincinnati
joined research to help prevent strokes with the Apple Watch (Bangert, 2022).
Image 1 shows an example of a typical smartwatch, in this case, Garmin Venus 2.

A smartband is a more specific device focusing on the fitness aspect of the
smartwatch, and they usually run a very basic OS with minimal resources to have
an interactive interface. These devices have minimal capabilities. Their goal is
to work as a fitness tracker since they also have various health-related sensors.
Unlike a smartwatch, a smartband does not receive calls or send messages and
cannot run applications. The goal is to monitor daily physical activities and fitness-

1

introduction

Figure 1: Garmin Venus 2

related metrics such as steps, running distance, heart rate, sleep patterns, swimming
laps, calories burned, and more. Usually, these devices possess minimal storage
capacity, retaining captured data for a restricted duration until the user syncs
it with the companion application. Instead, it communicates (usually using the
protocol Bluetooth Low Energy (BLE)) with a companion app on the user’s device.
This application stores the users’ metrics and workout sessions. Figure 2 shows an
example of the smartband used in this project, the Garmin Vivosmart 4. These
applications work with smartwatches and smartbands. The difference between these
devices is that the smartwatch manages to store information on the device so it can
work independently from the application. Bands do not give the user access to the
files stored inside and are usually stored in specific file formats. The smartband is
more dependant on the companion application than a smartwatch.

1.1 motivation

Because of the sensors inside these devices, they gained much attention in the last
years in digital health and fitness. They are a core element in creating applications
and projects to read users’ health metrics and current location. In 2019, more than
350 000 healthcare applications were already published in the major app stores,
responsible for 3.7 billion downloads per year (Byambasuren et al., 2019). In 2022
there have been sold more than 68 million devices the key brands are:

1. Apple

2

1.1 motivation

Figure 2: Garmin Vivosmart 4

2. Samsung

3. Garmin

4. Fitbit

5. Fossil

With the increasing popularity of these devices also come security-related ques-
tions. It is nothing new that every year there has been an increase in attacks and
security breaches. One of the most affected areas is the mobile application market.
A study made by Technologies (2019) found out that in 17 applications studied by
the organization, almost 50% had high-risk vulnerabilities. The author explains in
a few topics some of the reasons caused during development that make applications
vulnerable and create exploits:

• Poor or no data protection and encryption

• Use of outdated components and third-party libraries

• Third-party information sharing

• Lack of secure code by design

Mobile Healthcare and fitness apps are one of the dominant applications in the
current market. Various studies have been made in this area, analyzing the current
threat landscape and security challenges these applications face. The most notorious
was the research Analyzing security issues of android mobile health and
medical applications that used a platform to test 20 000 mHealth applications
discovering several important factors (Tangari et al., 2021):

3

introduction

• mHealth apps generally adopt more reliable signing mechanisms and request
fewer dangerous permissions than other applications.

• 1.8% of mHealth apps package suspicious codes, and 45% rely on unencrypted
communication. As much as 23% of personal data (location information and
passwords) transmits on unsecured traffic.

That is why applications like companion apps must have enough protection to
prevent attackers from obtaining their stored data since they hold a wealth of
private information from the user, like phone numbers, health records, and location.

This project will focus on elaborating a complete mobile digital forensics analysis
of one of the most used companion applications in the world, Garmin Connect
(similarweb, 2023), to discover what data it stores and how secure it is. Mobile
Forensics comprises a subdivision of digital forensic analysis that gathers traces and
extracts relevant information from a mobile device. Typically the researchers follow
good practices and international standards to preserve the integrity and authenticity
of the information so that it is admissible in court and the chain of custody is kept.
Since these applications store health-related values (for example, heart rate and
stress level) and share the user’s location at a given time, they can be instrumental
in digital forensics and have already helped solve many cases. An example of using
a smartwatch to solve a crime was a murder victim’s Fitbit data used to prove
that her husband had committed the crime. The Fitbit timeline proved movement
within the house and distance traveled, placing him at the crime scene contrary
to his testimony (Watts, 2017). Another example is how the GPS coordinates of a
Garmin Smartwatch and its companion application helped police convict a man of
two murders (Shweta, 2019).

To conclude, this project aims to use various forensic and security tools and
mechanisms to make a complete forensic analysis of the companion application
Garmin Connect for Android that tracks the user activities and records captured
with Garmin wearables. This report will show the complete setup and process
executed, the data found, and the analysis results. These data will benefit digital
forensic practitioners, that will know what data are expected to be gathered when
analyzing a device with the Garmin application installed.

4

1.2 objectives

1.2 objectives

This analysis aims to acquire all potential forensic artifacts produced and stored by
the Garmin Connect application while interacting with the Garmin Vivosmart 4
band. We aim to determine whether these artifacts raise privacy concerns for the
end user and assess whether the application developers have implemented adequate
security measures to safeguard the data against potential attackers.

Another goal is that by using open-source tools for forensic analysis, other analysts
can use this project as a blueprint for future research and bring a more prominent
focus to studying applications associated with wearables.

Lastly, we aim to develop modules related to Garmin Connect for the forensic
tool Android Logs Events And Protobuf Parser (ALEAPP). This tool is a file parser
that extracts forensic artifacts from files and presents them in a generated report,
ALEAPP is integrated into the forensic tool Autopsy.

1.3 contributions

The main contribution is to the digital forensics community by providing a thorough
analysis of a fitness application since, as discussed in the next chapter, forensic
analysis of fitness applications involving wearables is still basic, as these analyses
focus only on one or two artifacts and only search thoroughly for some pieces of
data. Our goal is for this analysis to be used as a reference for future analysis of
this application. We also hope that the data found here can be used by police forces
when investigating the Garmin Connect application when connected to a possible
crime scene, such as the Fitbit example given before.

By analyzing Garmin Connect, we used the application as a case study that could
be adapted to other applications of the same genre. To prove this, we used the
methods implemented there to analyze six other fitness applications.

Another significant contribution of this project is the development of 36 open-
source plugins for the well-known forensic tool ALEAPP (for Garmin Connect and
other applications), six new features for it, and five open-source scripts that will
help analysts in their line of work.

In our dynamic analysis of the application, we thoroughly examined the applica-
tion’s Application Programming Interface (API) and successfully accessed user data
using the obtained token during the communication process. Our methodology can

5

introduction

be a foundation for other analysts aiming to conduct real-time forensic analyses of
similar applications.

In short, this project will bring as contribute:

• Full documentation of a forensic analysis of Garmin Connect for Android.

• Share the knowledge gained with users, analysts, and the company.

• Creation of various open-source tools for Android forensic analysis (repositories
shown in Table 31).

• Creation of various features and plugins for the open-source tool ALEAPP
(repository shown in Table 31).

Lastly, the work conducted during this research project has led to the development
of a paper titled "Post-mortem digital forensic analysis of the Garmin
Connect application for Android" which is currently submitted to the journal
Forensic Science International: Digital Investigation.

1.4 structure

The remainder of this project is organized as follows. Chapter 2 reviews related
work, while Chapter 3 analyzes the Garmin Connect application, highlighting its
primary forensic artifacts. Chapter 4 explores the Garmin Connect application using
various dynamic tools to find vulnerabilities and get data. Chapter 5 presents our
open-source modules, Garmin Connect for Android Analyzer. Chapter 6 analyzes
five fitness application in a post-mortem scenario using the methods applied to
Garmin Connect. Finally, Chapter 7 concludes this study.

6

2
R E L AT E D W O R K

Forensic investigations for wearables and their companion applications are nothing
new. Before beginning this project, the authors did extensive research to try and
find various kinds of research that focus on obtaining data from these devices and
applications. By studying these various research, the authors wanted to understand
better how other researchers studied companion applications and what tools and
methods they used. This project aims to innovate and solve potential problems
that the other researchers had and, most importantly, if there had already been
studies about the Garmin Connect application. In the case of existing studies about
Garmin, we will explain their shortcomings and where we could innovate. Luckily
for us, compared to other applications described here, there have been few types of
research done on the Garmin Connect application, and there is still more to explore,
as will be shown during this project.

During this research, we found various types of investigations into wearables that
focused on different things and used different methods. That is why we decided to
split this into four types of research:

1. Data acquisition from the device and desktop application

2. Data acquisition from the mobile application using static methods

3. Data acquisition from the mobile application using dynamic methods

4. Use and development of ALEAPP in investigations

This project will not focus on data acquisition directly from the smartband.
However, it is vital to discuss this type of investigation when discussing wearables.

2.1 data acquisition from the device and desktop application

Acquiring data from a smartwatch is similar to a smartphone since they share a
similar file structure. Researchers often use open-source or paid tools to make an
image from the device’s persistent memory and then analyze it in a forensic platform
to search for artifacts like personal information and delete data.

7

related work

Table 1: Artifacts by Almogbil et al. (2020)

brand findings

Fitbit

User information
Device Information
Group Information
Pictures
Friends
Activities
Messages
Community Feed
Payment Information

The first research found was from Almogbil et al. (2020), where they used two
different models of the Fitbit bands during a specific period. After that, they
imported the data to the Fitbit Windows 10 desktop application and analyzed
it with the digital forensic Autopsy software from the application finding several
private information shown in Table 1.

MacDermott et al. (2019) analyzed the data stored on three different devices: a
Garmin Forerunner 110, a Fitbit Charge HR, and a HETP tracker (generic
brand). The authors used Autopsy and FTK Imager tools to obtain and study the
files and the software FitSDK and GoldenCheetah (software for analyzing Fitbit
metrics) to open the Fitbit proprietary files. The research only identified a limited
number of data. The researchers made a copy of the device’s data for the Garmin
watch and analyzed it with Autopsy, finding artifacts related to past activities. For
the Fitbit band, the authors analyzed the desktop application for Fitbit using the
forensic tool Autopsy just like the researchers Almogbil et al. (2020), finding several
forensic artifacts such as personal information and user-related workouts. However,
comparing both studies, MacDermott et al. (2019) found fewer data in the Fitbit
application. The authors found the artifacts listed in Table 2.

Lastly, a study by Kim et al. (2022) tried to use different methods to obtain the
data stored in a smartwatch. They chose three devices – Galaxy Watch 3, Apple
Watch 5, and Garmin Vivosport. They used methods from the least invasive –
connecting directly to the computer – to the most invasive – performing chip-off.
Using these techniques, they found a wealth of information stored in the memory of
these devices. They obtained the artifacts listed in Table 3.

8

2.1 data acquisition from the device and desktop application

Table 2: Artifacts by MacDermott et al. (2019)

brand findings

Garmin Forerunner 110 User workouts

Fitbit Charge HR
User information
User workouts
GPS location

HETP No information was extracted

Table 3: Artifacts by Kim et al. (2022)

brand findings

Samsung Galaxy Watch 3

Device Information
Connected Smartphone Information
Text/Voice Messages
Contacts
Calendar
Location
App logs
Health Records
User Credential

Apple Watch 5

Bluetooth Information
MAC Information
Installed App list
Contacts
Mail Address
Media File List

Garmin Vivosmart

Exercise Log
Hearth Rate Log
Connection Log
Settings Log

9

related work

Table 4: Artifacts by Yoon and Karabiyik (2020)

brand findings

Fitbit Versa 2

GPS Location
Health Values
App ID
Web cookies
Credit Card Info and Image
Alexa Serial Number

2.2 data acquisition from the mobile application using static
methods

Most studies found digital forensic artifacts in wearables, almost exclusively focusing
on static methods to analyze the device and the companion application. Our work
considers both static and dynamic analysis. Static methods focus on analyzing files
and data after a given application usage. Almost all the research in this section
will analyze artifacts in the application’s database and configuration files, often
Extensible Markup Language (XML) or JavaScript Object Notation (JSON) files.

Hassenfeldt et al. (2019) studied nine different fitness applications for Android:
MapMyFitness, RunKeeper, Strava, MyFitnessPal, Runtastic, Health Infinity, Fit-
ness Tracker, Nike Training, and JEFIT. The authors created their testing envi-
ronment by collecting and extracting data with the tool, Android Debug Bridge
(ADB). Their main findings were Personal Data, GPS location, and Passwords

related to the applications. The authors also developed a tool for extracting forensic
artifacts, although not as complete as resorting to the ALEAPP framework.

Yoon and Karabiyik (2020) published a forensic study of the Fitbit Versa 2 for
Android. The research explains the triage process one must follow in investigating
wearable devices. How the device should be apprehended, and how the data needs
to be acquired. The researchers used static methods and commercial tools such as
AXIOM and XRY to acquire data from the device and study it afterward. The
authors found many relevant forensic artifacts inside the SQLite3 databases shown
in Table 4.

Kang et al. (2020) studied the Fitbit Alta HR and the Xiaomi Mi Band 2
and their respective Android application, focusing on the forensic artifacts found

10

2.2 data acquisition from the mobile application using static
methods

in the SQLite databases from the applications. The authors reported user-related
information that the applications store, like sleep, steps, activities, account, and
device information.

Williams et al. (2021) reported the methods used to acquire data from the Fitbit
application on Android and IOS. The authors studied whether the retrieved data
differed between the two operating systems. To test this, the authors created two
scenarios, one using a Google Pixel 2XL and the other with iPhone 7 Plus. They
used two commercial forensic tools – Cellebrite and XRY – to extract and study
the data on the computer. Since the Android device was not rooted, the tools could
not extract the private information of the application, so the authors used a virtual
device created with the Genymotion emulator. The data found was the same as
the other research made for the Fitbit application, such as Private Messages,
Feed Posts, GPS Data, Profile Information, Sleep Data, Heart Rate Data.
This research highlights the difference in the acquisition methods of both operating
systems.

In 2021 Dawson and Akinbi (2021) analyzed the contents of the Tom Tom
companion application focusing on the data stored in the TomTom Spark 3 watch.
The author’s goal was to compare the forensic artifacts found in the TomTom watch
using forensic and non-forensics tools and demonstrate the possible limitations of
these tools and how they can affect the analyst’s decision-making. To that end, the
authors compared the data obtained with the Cellebrite forensic tool with those
studied using ttwatch 1 – an open-source command-line tool used to interact with
the physical TomTom GPS smartwatch and extract forensic artifacts stored on
flash memory – and Runanlyze 2 – a tool to analyze proprietary files from TomTom
watches. The authors found forensic data related to Activities, User Account,
and Bluetooth Logs.

Domingues et al. (2023) did a post-mortem analysis of the companion application
ZeppLife (formerly called MiFit) for Xiaomi devices when coupled to a MiBand
6 in a rooted smartphone. The authors focused solely on a static analysis of the
application, reporting on the following data:

• Health data

• Device Data

• Daily summaries (steps, sleep hours, etc.)

• User information

1 https://github.com/ryanbinns/ttwatch
2 https://runalyze.com/

11

https://github.com/ryanbinns/ttwatch
https://runalyze.com/

related work

• Workouts

They also developed a software module – MiFit Analyzer – for the Autopsy
forensic browser. The module generates a dynamic HTML-based report with the
artifacts found in the extracted private directory of the application. Although we
also resorted to a rooted smartphone, our analysis of the Garmin Connect provides
both a static analysis of the data generated by the application and a dynamic study
of the data generated during the application’s execution, while Domingues et al.
(2023) focused solely on post-mortem data.

Hutchinson et al. (2022) studied three companion applications using three different
smartwatches and smartbands, the Amazon Halo Band, the Garmin Vivosmart
4, and the Mobvoi TicWatchS2. This research is different from the rest. One of the
applications is Garmin Connect for Android, using the same smartband as we are,
the Garmin Vivosmart 4. The authors created a test environment using the various
smartbands to populate the application’s database. They used a rooted Samsung
A50 with Android 10 to facilitate the post-acquisition of the data. After that, they
analyzed the contents of the application using three different tools, Cellebrite and
Magnet Axiom, both commercial tools and the popular open-source tool Autopsy.
The authors aimed to find the differences using commercial and open-source tools
in post-mortem examinations. They also explored various other types of research
made before them in specific research about Fitbit. The authors found the data in
Table 5.

Regarding digital forensic data, the authors focused mostly on the application
XML files, devoting less attention to the application’s database. Our work provides
a deeper analysis of the post-mortem data left by the application regarding the
databases. In addition, we also investigate the dynamic behavior of the application
and provide for software modules to report on the digital forensic artifacts left by
the application usage.

2.3 data acquisition from the mobile application using dy-
namic methods

Our work includes the analysis of the dynamics of the application, that is, the code
structure and the communication with the cloud. Thus, we review work focusing on
dynamic analysis from a digital forensics perspective.

12

2.3 data acquisition from the mobile application using dynamic
methods

Table 5: Artifacts by Hutchinson et al. (2022)

brand findings

Amazon Halo

Profile Information
Heart Rate Data
Steps Data
Exercise Data
Sleep Data
Voice Data

Garmin Vivosmart 4

Profile Information
Steps Data
Exercise Data
Sleep Data
Stress Data
App Notifications

Mobvoi

Profile Information
Heart Rate Data
Steps Data
Exercise Data
Sleep Data

13

related work

The institute AVTest released an article evaluating the security of nine different
fitness trackers performed by Schiefer (2015). The brands studied were Acer, Fitbit,
Garmin, Huawei, Jawbone, LG, Polar, Sony, and Withings. The research focused on
analyzing the communication between the smartband and companion application and
between the application and the cloud. The authors also analyzed the application’s
code to find possible flaws. One of the critical points of this research was intercepting
the Bluetooth communication between the device and phone and modifying the
data before it reached the application. They found out that:

• User needs to authenticate to transmit data

• The code is not obfuscated

• There are no log entries

• Sensitive information is stored in the private directory

• Communication is encrypted

Another research in the field was from Fereidooni et al. (2017). The authors used
various offensive techniques to try and test the overall security of the communication
between 17 different fitness trackers and their respective companion applications,
including wearable from Garmin and the Garmin Connect application. For this
purpose, the authors created a testing environment using the fitness tracker and the
application. They put a computer running a man-in-the-middle proxy to receive
the communication packets before the application sends them to the remote server.
The process used in this research is complex and faces various challenges, such as:

• Data Encryption

• Proprietary Encoding

• Data Integrity Check

• Secure Socket Layer (SSL) certificate pinning

The authors found that the communication uses the Hypertext Transfer Protocol
Secure (HTTPS) protocol. However, the data is encoded in a proprietary protocol,
not encrypted. The authors created a script in Perl that receives the data file in
transit, modifies it, and sends it instead of the original to the server. The authors
successfully uploaded 80 million steps to the Garmin server, which should be
impossible. The authors used the same process for the other devices, with changes
depending on the data protocol and encryption.

14

2.4 use and development of aleapp in investigations

Since we could not find more research about wearables and dynamic analysis, we
searched for other researchers that did a forensic analysis of the mobile application
with dynamic methods to test the application. The goal was to learn about possible
tools to use on this project and to see how they did it and what data they could
acquire. It was possible to find more research here, but we decided to specify one
research.

Barros et al. (2022) published a forensic analysis of the Bumble dating application.
The application is unrelated to our project, but the methodology is relevant in
static and dynamic space. Specifically, the authors used various methods and
tools that fit our project, such as Man-in-the-Middle Attack (MITM), certificate
pinning, and a Virtual Private Network (VPN) to obtain data in transit between
the Android application and the cloud. They also developed a script in Python to
generate a document with the chat messages sent and received by the user. Even
if the application is not essential for this project, the static and dynamic analysis
techniques will prove helpful here.

2.4 use and development of aleapp in investigations

As our modules target this framework, we also analyzed works related to ALEAPP.
ALEAPP is a popular open-source Python-based framework able to extract forensic
artifacts from an application’s data folder and create reports (Brignoni, 2023)
through specific software modules. The modular framework allows developers to
add new modules supported by existing features of ALEAPP and develop new
functionalities to enhance the tool’s report capabilities. In this short review, we
focus on:

• Works that have developed modules for the framework

• Analysts that have used it in their studies

The work by Vasilaras et al. (2022) resorted to ALEAPP to analyze the SQLite

database files of the Android Telegram application. Analysts Delija et al. (2022)
relied on ALEAPP, Autopsy, and the commercial tool Belkasoft 3 to process forensic
artifacts found in the system files of Android version 11 to compare the results
provided by the three tools. Lastly, Mirza et al. (2022) performed a digital forensic
analysis of various Web3 wallet applications for Android and iOS. In their research,
they used both ALEAPP and its similar platform for iOS called Iphone Logs Events

3 https://www.google.com/search?client=firefox-b-d&q=belkasoft

15

https://www.google.com/search?client=firefox-b-d&q=belkasoft

related work

And Protobuf Parser (ILEAPP). Our work also relies on ALEAPP, as we provide
modules to process the forensic data of the Garmin Connect application. We have
also extended the framework, adding new features and capabilities such as Heatmaps,
Date Filtering, GPS Maps, and Data Charts, as we shall see later in chapter 5.

Other tools derived from ALEAPP currently serve the same purpose but for
different systems. In chapter 5 section 5.7, we explain in detail the difference between
this tool and what we call the LEAPP Ecosystem.

2.5 privacy fitness wearable

Lastly, we found another research about privacy and the consequences of a possible
attack on a fitness tracker application, even if it is not about forensic research. The
research done by Saha et al. (2017) focused on the privacy challenges companion
applications suffer and how to mitigate them. The research identified various current
problems, such as:

• User Identification

• Leaking of Medical Condition and other confidential data

• User tracking based on the GPS data

It also identified the most prominent type of attack, MITM, and the method to
solve this problem is by applying the Confidentiality Integrity Availability (CIA)
triad. The author even used as an example the Garmin connect application that,
while writing the research, still used Open Authentication (OAuth) 1.0 for their
authentication, a legacy protocol already replaced by its 2.0 version (okta, 2023),
that addressed various security flaws. This paper does not add much forensic value.
Still, it shows the other side of the coin, where security is essential and the damage
that security failure can cause to the end user.

Since this project will use a fitness tracker, we will only focus on the data stored
by the companion application. We will use various tools and methods implemented
by the other researchers in the static analysis. We also hope to innovate by using
different tools and even creating tools to help further researchers in their works. The
same will happen for the dynamic analysis, which is more uncommon in the research
about the companion application and the tools used. The result will depend on the
security mechanism implemented by Garmin Connect.

16

3
P O S T M O RT E M A N A LY S I S O F G A R M I N C O N N E C T

In this chapter, the authors will detail all the necessary steps to do a complete
Post Mortem analysis of the Garmin Connect application, first by studying the
application and using it, gathering information, and then extracting and analyzing
the data generated by the application by using various tools and methodologies.

3.1 garmin connect

Garmin is an American Company that primarily develops hardware and software
related to GPS technology (Garmin Portugal 2023). Garmin is also one of the
most well-known brands in the wearables market, having various smartbands and
smartwatches in different price ranges focusing on fitness and well-being.

The mobile companion app used by Garmin Wearables is called Garmin Connect.
Its primary focus is to serve as a fitness tracking application storing all the data
related to the users’ exercise and helping monitor their health and performance
parameters when this application receives data from Garmin devices.

The main features offered by Garmin Connect are the following:

• View daily health data and statistics in detail in the application’s dashboard.

• Analyze activities and their related statistics.

• Create customized workouts.

• Synchronize with other fitness applications such as MyFitnessPal and Strava

• Review personal records for steps, distance, and pace.

• Earn and share with friends accomplishments for challenges.

• Measure up to other Connect users with Insights.

• Get support for Garmin devices and their features.

Our motivation to study the Garmin Connect application stems from providing a
thorough analysis of the application from a digital forensic point of view, both at

17

post mortem analysis of garmin connect

Table 6: Studied application details

App name Garmin Connect

Downloads +10 million

Average user score 4.6 / 5

Number of reviews +800 000

Market Global

Studied version 4.61 (released on 2022-11-15)

Play store URL https://play.google.com/store/apps/details?

id=com.garmin.android.apps.connectmobile

the static and dynamic levels. Garmin is gaining popularity in the wearable market,
ranking fifth among the most sold brands and dominating the premium watch
market (Lovejoy, 2022). On Google Play, the Android Garmin Connect application
has surpassed 10 million downloads and has a 4.6 score out of 5 from more than
800 000 reviews (more details are shown in Table 6).

The Garmin Connect application requires a set of Android permissions that
must be enabled when the application executes for the first time. Table 7 lists the
permissions asked by the application. All permissions made sense based on the
features provided by Garmin Connect and compared to other applications in the
same field. Installing the application for the first time will ask permission to access
the calendar, the user’s location, calls, and messages.

The developers also have a section related to data privacy in the store. This
section is divided into three parts: Data Sharing, Data Collection, and Security
Practices. Next, we briefly review each of these parts.

data sharing The developers affirm that they do not share data with any
third-party user or application without prior consent from the user.

data collection In Table 8, we show the data shared by the application
according to Garmin 1.

1 https://play.google.com/store/apps/datasafety?id=com.garmin.android.apps.connectmo
bile

18

https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/details?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/datasafety?id=com.garmin.android.apps.connectmobile
https://play.google.com/store/apps/datasafety?id=com.garmin.android.apps.connectmobile

3.1 garmin connect

Table 7: Garmin Connect Permissions

permission function

Calendar Read calendar details and events

Camera Take pictures and videos

Contacts Read Contacts
Search for accounts on the device

Location Only access the approximate location in the foreground
Only access the exact location in the foreground

Call Logs Read Call Log

Cell Phone
Dial phone numbers directly
Read the status and identity of the mobile phone SMS
Send and view SMS messages

Storage Change/delete the contents of the shared storage

Other

Transfer files without notification
Prevent phone sleep mode
View Wi-Fi connections
Receive data from the internet
Use background data
Access background location
Send fixed broadcast
Have full access to the network
Run in background
Advertising ID authorization
Run service in foreground
Access Bluetooth settings
This app may appear on top of other apps
Run on startup
See network connections
Read Google services configuration
Query all packages
Control vibration
Answer phone calls
Installer Referrer API Google Play
Sync with Bluetooth device

19

post mortem analysis of garmin connect

Table 8: Data Shared by Garmin Connect

type information

Personal Information

Name
Email
User ID
Other Information

Health and Fitness Health Information
Fitness Information

Contacts Contacts

App performance and information App performance and information

security practices The developers detail some of the security features they
have implemented for the application to be compatible with the current privacy
and security laws worldwide.

• Encrypting all the data that is in transit

• Users can ask for their data to be deleted

3.2 static analysis

In this section, we will detail the process of analyzing the application, the tools
used, and what we found.

To realize this analysis, we will use as a guide the various research studied in
Chapter 2, but also three excellent books for mobile forensics. The first, called
Practical Mobile Forensics (Tamma, 2020), explains in detail how to realize
a forensic investigation on Android, IOS, and Windows devices. The second book
– Learning Android Forensics (Skulkin et al., 2018) – focuses exclusively on
Android, and it’s a hands-on book demonstrating various tools and techniques
to extract data from Android devices. Lastly, Learning Python for Forensics
(Miller and Bryce, 2016) teaches various methods and tools in Python for developing
scripts that can prove helpful in a forensic investigation. Furthermore, we will
reference other publications during this chapter when we use a tool discovered in
one of them.

20

3.2 static analysis

Collection

Preservation

Analysis

Presentation

Identification

Figure 3: Method proposed by NIST for Digital Forensics (Kent et al., 2006)

3.2.1 Concept and technologies

First, it is essential to understand the meaning of static analysis or post-mortem
analysis. In the field of digital forensics, static analysis refers to the copy of the
data of a device or application and posterior analysis.

Here the author will install the application on an Android phone and use it
to generate data. Then we will extract the data from the mobile phone to their
workstation and analyze the individual files. This method is the standard approach
in mobile application forensics since it is a relatively simple and consistent method
of analyzing data. Developers even use these techniques to know what data their
application stores on the device and if it is secure. However, more applications
store the bare minimum on the device, resorting instead to the cloud. Thus analysis
cannot focus only on analyzing the local files stored in the machine and need to use
different tools and techniques to obtain data during the application’s runtime (also
called dynamic analysis).

There are various documented ways of realizing digital forensic investigations.
The most commonly used in mobile forensics are the methods proposed by NIST in
their publication 800-86 (Kent et al., 2006) that integrated forensic techniques in
incident response plans as shown in Figure 3.

21

post mortem analysis of garmin connect

This process was designed for static analysis since it follows all the steps shown
in Figure 3, which is why books like Practical Mobile Forensics use this diagram to
realize mobile forensics. Here the analyst follows these steps:

1. Identify all relevant features of the application and use them to generate data

2. Collect the data using forensic tools or manual methods from a rooted phone
or emulator

3. Preserve the data in a secure location and make sure the data is not altered
or tampered

4. Examine the data using forensic or non-forensic tools and methods

5. Analyse the respective findings

6. Report and present the results of the investigation

To analyze the Garmin Connect application, we will use the method proposed by
NIST.

3.2.2 Tools

In this subsection, we will detail all tools needed for static analysis of the Garmin
Connect application. This project focuses on using free and open-source tools and
developing software whenever needed.

The static analysis is split into two parts. The first was obtaining the data from
the device and manually analyzing it. After that, we analyze the application using
an automated mobile security assessment framework.

As stated before, we used ADB and our script ADB-Extractor for extracting
the user data from the device.

For analyzing databases, we resorted to the open-source tool DB Browser for
SQLite 2, which is one of the most popular tools for working with SQLite databases.
SQLite is currently the defacto database choice for mobile developers. We will
explain it in greater detail in subsection 3.3.3. Other database-related tools include
schemacrawler 3 to generate database diagrams to understand relationships
between tables, and DBDiagram.io 4 to improve the diagrams generated by
schemacrawler. To attempt to recover deleted records from SQLite databases, we

2 https://sqlitebrowser.org/
3 https://www.schemacrawler.com/weak-associations.html
4 https://dbdiagram.io/home

22

https://sqlitebrowser.org/
https://www.schemacrawler.com/weak-associations.html
https://dbdiagram.io/home

3.2 static analysis

Table 9: Static Analysis Tool

tool version use

ADB 33.0.1 Data access

bring2lite 1.0 Recover deleted records

DB Diagram online tool Create database diagrams

DB Browser for SQLite 3.12.2 Database analysis and queries

schemacrawler 16.19.5 Generate database diagrams

MobSF 3.6.2 Automated, mobile security assessment framework

used the open-source script bring2lite 5. We also needed to analyze the text files
inside the folders.

In the second part of the analysis, we used the automated tool Mobile Security
Framework (MobSF) 6. MobSF is one of the most advanced open-source tools com-
monly used by vulnerability analysts. MobSF is constantly updated and compatible
with security frameworks such as Open Web Application Security Project (OWASP).
Not only that, but it is one of the few maintained tools dedicated to mobile security.
We present all the tools, versions, and use cases in Table 9.

3.2.3 Methodologies

In this subsection, the authors explain the methods used for testing and generating
data in the application and extracting the data.

identification The first step is, of course, to install the application on an
Android device. For that, one must use a rooted phone or emulator because that is
the only way of extracting all the data from it. A rooted phone is usually preferred,
as the Android emulator cannot run certain applications. This is the case with
Garmin Connect, as we need a real device to connect to the smartband.

The Android operating system is POSIX based, and such as desktop operating
systems, it is permission based. However, in Android, the user does not have access
to the administrator privileges like in a typical POSIX system using the command

5 https://github.com/bring2lite/bring2lite
6 https://github.com/MobSF/Mobile-Security-Framework-MobSF

23

https://github.com/bring2lite/bring2lite
https://github.com/MobSF/Mobile-Security-Framework-MobSF

post mortem analysis of garmin connect

Table 10: Samsung A40 Specification

specification information

Brand Samsung

Model A40

Android Version 11

Storage 64GB

RAM 4GB

Chip Exynos 7904

Launch Date 19/03/2019

sudo, meaning that one does not have access to specific directories or commands to
execute via a command line. That is why rooting the device is so popular among
Android devices. Rooting allows users to attain higher administrative privileged
controls. Rooting an Android device gives users the necessary privileges to install
unapproved apps, update the operating system, delete unwanted system applications,
under-clock or overclock the processor, replace the firmware, and access private
directories of apps.

The rooting process is becoming more difficult as brands create ways of preventing
this process altogether, making this process hard and dangerous as the devices
can be bricked (Unuchek, 2017). Currently, the brands that make this process less
difficult are: Google and Oneplus (Hildenbrand, 2023). The user must follow a
detailed list of steps to ensure the root is successful. If not, he/she can completely
brick the device, making it unusable. Rooting also voids the device of any guarantee.
In order to conduct a comprehensive analysis, it is essential to obtain access to
the private data stored by the application, which necessitates rooting the phone.
However, in a real scenario, this approach may not be feasible as it would result in
formatting the phone and subsequently losing valuable evidence. Many developers
are creating ways of detecting emulators and rooted devices and preventing the
application from executing making the analyst’s job more difficult since they need
to find ways to bypass these restrictions.

For this analysis, we used an Samsung A40. Table 10 shows the phone’s main
specifications.

24

3.2 static analysis

The rooting process is split into various steps. The two main ones are the
installation and configuration of Magisk 7 and Odin 8.

Magisk is a root and universal system-less interface developed by XDA, free and
open source for Android devices running on version 4.2 and later. Magisk roots the
device using a boot image patching method that essentially allows full root access
to the Android OS without altering or modifying the /system partition (systemless
root). Magisk also includes a feature known as Magisk Hide, which hides root from
apps that search for root. Various applications claim to root a phone by simply
installing it from the play store, such as SuperSU and KingRoot. Over the years,
they have proven unreliable and do not offer an authentic root experience. Magisk
is one of the only tested and maintained methods of securely rooting an Android
device.

Another necessary tool for rooting a Samsung device is Odin, which is a custom
ROM flashing tool for Samsung smartphones and tablets.

We followed a guide to install both magisk 9 and flash the Read Only Memory
(ROM) with ODIN 10, completing the boot process successfully. This process depends
on the brand, model, and phone version, and many things can go wrong, so the user
should know how this process works.

After setting up the phone, we installed the Garmin Connect application from
the play store. After installing it, the application’s first screen is the landing page,
where the user must sign up or log in with an existing Garmin account. The signup
process was as follows:

1. Create a Garmin account with the user’s name, email, and password, choose
their country, and accept that they have at least 16 years (this conflicts
with the age rating in the store page) and optionally, if they want to receive
publicity from Garmin.

2. After creating the account, the application will show a list of different Garmin
devices and asks the user the device he/she will use (in this case, the Vivosmart
4).

3. For this step, the smartband needs to be turned on. After selecting the
respective device, the smartphone will try to connect via Bluetooth with the

7 https://github.com/topjohnwu/Magisk
8 https://odindownload.com/
9 https://topjohnwu.github.io/Magisk/install.html

10 https://www.droidwin.com/root-samsung-magisk-odin/

25

https://github.com/topjohnwu/Magisk
https://odindownload.com/
https://topjohnwu.github.io/Magisk/install.html
https://www.droidwin.com/root-samsung-magisk-odin/

post mortem analysis of garmin connect

device. The process is done by typing a six-digit code shown on the screen of
the smartband in a pop-up that will appear on the smartphone.

4. After successfully connecting both devices, the application will prompt the
user to choose his/her profile image and to configure the privacy features,
namely whether the user wants to share specific data with others or keep it
private.

5. The application will ask for various data regarding the user: gender, height,
weight, and birthday. The application will also prompt the user to define their
sleeping time and in what arm they will use the device.

6. Lastly, the application will prompt the user to choose what interface the
smartwatch should have and to accept the collection of the user data by
Garmin.

In this work, the application was used with the Garmin Vivosmart 4. As we
shall see later on, this smartband contains a variety of sensors, such as an optical
heart rate monitor, a barometric altimeter, accelerometers, an ambient light sensor,
and a Peripheral Capillary Oxygen Saturation (SpO2) sensor. It connects to the
smartphone via BLE and is compatible with Garmin proprietary interoperability
ANT+ equipment protocol (Bang et al., 2022).

After everything is set up, the user is presented with the main dashboard of the
Garmin Connect application. This dashboard is the central area of the application.
Here the user sees the data collected by the Vivosmart 4 and the performed workouts.
To update the dashboard, the user needs to synchronize with the smartband. Usually,
this process is automatic, but the user can also do it by selecting the synchronize
button. It is important to note that the application only works with Internet
connection. If the user is offline, the application does not update.

For testing purposes and to collect as much data as possible, the Garmin Vivosmart
4 was used during various months. We used the following features of the application
and smartband:

• Realizing workouts (both indoors and outdoors)

• Monitored Sleeping

• Changing body weight (defined by the user in the application)

• Adding Hydration Level (defined by the user in the application)

• Creating Running Routes (defined by the user in the application)

• Creating Exercises (defined by the user in the application)

26

3.2 static analysis

Table 11: Most relevant functionalities of the Vivosmart 4.

feature description

Heart rate Measure heart rate.

Max. Oxygen
Consumption

Measure the Maximal Oxygen Consumption
also known as VO2 using the heartbeat data.

Oximeter Measure the oxygen saturation level in the
blood, also known as SpO2.

Steps Count the number of steps.

Body Battery Measure Body Battery (energy levels based
on sleep and calories consumed).

Floors Count number of floors ascended and descended.

Stress Detect and measure stress levels.

Calories Count calories burned.

Sleep Analyze sleep along four main components: deep sleep,
light sleep, awake time, and rapid eye movement (REM).

Workout
Allow selecting one of the four default workouts (walking,
running, strength, yoga). Using Garmin Connect, it is
possible to change or add new workouts.

Notification Vivosmart 4 vibrates and displays a message for the
smartphone notifications (e.g., calls, SMS, WhatsApp, etc).

Time Time-related functions such as chronometer, countdown
and timer.

27

post mortem analysis of garmin connect

• Adding Equipment (defined by the user in the application)

collection After data generation, the second phase of the static analysis is
retrieving the information from the device.

The main areas in the Android Storage System are internalstorage and
externalstorage 11 commonly called the private and public directories.

By default, the application-generated data is saved to the internal storage, which
is private to the application. Other apps cannot access them or users unless they
have root access. As the name implies, internal storage is a good place for application
data that the user does not need to access directly, such as database files, application
logs, and related data.

When a user uninstalls an application, saved files in the internal storage are re-
moved. Because of this, internal storage should not be used to keep data persistently.
For instance, when it comes to captured photos, storing these files on an external
storage device is recommended.

Every Android device supports a shared "external storage" space for developers to
save files. Files saved to the external storage are world-readable and can be modified
by the user when they enable Universal Serial Bus (USB) mass storage to transfer
files on a computer.

For a forensic practitioner, the goal is to extract the data stored on the internal
and, if it exists, and on the external storage system. This process can be done
using forensic tools like Cellebrite. However, here, we resorted to ADB. ADB is a
command-line tool for communicating with an Android device connected to the
computer via USB or wireless (since Android 11). ADB facilitates various device
actions, such as installing and debugging apps. It provides access to a Unix shell
that the user can use to run multiple commands on a device 12.

The process of extracting the data using ADB is the same for any application:

1. Access the device via ADB

2. Enter the Public or Private Directory (requires sudo privileges)

3. Find the applications folder

4. Archive and compress it and store it in external storage

5. Pull it from the device to the analyst’s workstation

11 https://developer.android.com/training/data-storage
12 https://developer.android.com/studio/command-line/adb

28

https://developer.android.com/training/data-storage
https://developer.android.com/studio/command-line/adb

3.2 static analysis

To proceed, the following action involves utilizingADB to extract all data stored
within the application and its associated file. We started by extracting the public
folder. This data is stored in the location:

1 /storage/emulated/0/Android/data/

This folder holds subfolders, one per installed application on the device. Android
follows the Java standard naming convention for its packages. This process is done
by writing the package name in hierarchical order in the following way:

1. com (commercial application)

2. Name of the organization

3. Subdivision of the package (optional)

4. Name of the application

The package name for the Garmin Connect application is com.Garmin.android

.apps.connectmobile. As stated earlier, data in a public folder requires no root
privileges and is extracted through ADB.

After that, the next and most important part is extracting the application’s
private folder. This folder is stored in the path:

1 /data/data/

However, unlike the public directory, the user needs root access. Assuming we
are dealing with a rooted device, we only need to execute the command su to enter
privileged mode and access the private directory. After that, the process is the same,
extracting the application package.

We also extracted the Android Application Package (APK) since some tools
required this file to perform the analysis. The APK files are stored in the folder:

1 /data/app/

Since Android 8, the name of the app folders is named using a random string
in base64. The goal of this feature is to enhance privacy and security. Using a
random base64 naming scheme makes it more challenging for unauthorized users or
malicious applications to identify and access sensitive app data (Developers, 2023).
We needed to execute the following command to help find the folder connected to
the app package to get the correct path.

29

post mortem analysis of garmin connect

com.garmin.android.apps.connectmobile-v4.61--private--usb11-u0--20221122-150114.tar

Application package
name

Application version

Type of data extracted

device type and
android version

device user

Date of extraction
(yyyymmdd-HMS)

Figure 4: Output file fields

1 ADB shell pm path com.Garmin.android.apps.connectmobile

The commands output the path to the location of the APK file of the application.
After that, the user only needs to extract the file using ADB and the respective
path.

As we needed to extract all this data several times, this task could become quite
time-consuming, so we created a script to automate this process. The script took
inspiration from the past bash script created by Professor Miguel Frade 13, that
extracted the private directory from a phone or emulator. The original script only
worked on Linux systems failing to operate on macOSX systems. Thus, we decided
to rewrite the script resorting to Python and be system agnostic to support the
main OS, ie. Linux, Windows, and macOS. The script called ADB-Extractor,
lets the user choose what he/she wants to extract the public directory, the private
directory, or the application file from the device or an emulator.

To run the script, the user needs to type the command:

1 python3 acquisition.py -a <package name> -d [emulator | physical] -t [public |

private | apk]↪→

In the command, the user specifies the application’s package name, if the acquisi-
tion comes from a physical device or an emulator, and what data he/she wants to
pull. After running the command, the script will provide into the current directory,
a compressed tar archive, e.g., com.garmin.android.apps.connectmobile-v4.61

--private--usb11-u0--20221122-150114.tar. Figure 4 illustrates the meaning
of each field in the outputs name.

13 https://github.com/labcif/AndroidAcquisitionScript

30

https://github.com/labcif/AndroidAcquisitionScript

3.2 static analysis

Figure 5: Graphical Interface of ADB Extractor

BLE USB

Figure 6: Acquisition Method used for this analysis

For example, to retrieve the private directory of the Garmin Connect application
from a rooted phone, the user needs to run the command:

1 python3 acquisition.py com.garmin.android.apps.connectmobile -d -private

We also developed a graphical interface version that is similar to the PySim-
pleGUI library. In the graphical interface, the user can select the type of device,
what to extract, and where it should be saved. Additionally, the user can select
from a list what package he/she wants to extract based on the applications installed
on the device connected via ADB. Figure 5 shows the created interface.

All script locations are detailed in Table 31 in Chapter 7. The acquisition process
is exemplified in Figure 6.

In the end, we managed to extract the three main data sources from the Android
device that are required for the static analysis, that is:

31

post mortem analysis of garmin connect

• Private Data

• Public Data

• Application Package

3.3 artifact analysis

After obtaining the data in the section 3.2, we analyzed data extracted from the
device. As stated earlier, the analyzed data is split into three main components:

• The public directory

• The private directory

• The application file

These components have different purposes and will be used as input for the tools
explained in the subsection 3.2.2 and analyzed manually.

3.3.1 Public Directory

The public directory, as explained in paragraph 3.2.3, is a directory where developers
can store application data. This folder usually stores files that can persist even if
the user uninstalls the application from the device.

After extracting the data to a safe location and unzipping it (it is advisable
to perform this process within a POSIX environment due to the possibility of
encountering file names incompatible with Windows. Failure to do so may result
in potential data corruption.) the first step is to understand the file structure of
the folder. The command tree will print all the subdirectories and files inside the
directory where the command was executed. The public folder holds four directories
and two files. In the Figure 7 is the output of the command tree with the following
parameters:

1 tree -d -L 2

The content of the public folder is reduced. We only found two files: map_cache.db

and temp_file. Using DB Browser to analyze map_cache.db, we found four tables,
mainly with BLOB values and timestamps for expiration dates. The information
stored did not have any forensic relevance. By searching for the name of the database

32

3.3 artifact analysis

/sdcard/Android/data/com.garmin.android.apps.connectmobile/
├── cache/
│ └── diskcache/
├── files/
└── testdata/

Figure 7: Directories inside public folder

online, we discovered that this database stores cache tiles for the map functionality
of the application to speed up its process during use. The temp_file was not
human-readable and is likely used by Garmin Connect to save temporary data
during the app’s runtime. This file can be used for various purposes, such as caching,
storing temporary data, or facilitating data exchange between components within
the app.

The application did not store any relevant data in its public folder. There is no
need to analyze this directory further or use other tools here.

3.3.2 Private Directory

The private directory is where the applications stores sensitive data like shared
preferences, user credentials, and data stored in databases. Generally, the forensic
analyst aims to search for artifacts in this directory since it is here that he/she
can find potentially relevant information. Typically, data inside the private folder
is secure since applications cannot access other applications’ data, and the user
cannot access this folder. However, since the used smartphone was rooted, we could
access the data via ADB. That is one of the reasons some applications, as a security
measure, detect root status and prevent the application from being used.

After extracting and saving the data securely, we made the same reconnaissance
process we did for the public directory. That is executing the tree command to get
an initial view of the data stored here. From this simple command, it was possible
to understand that the private directory holds much more information than the
public folder. The private folder has 51 subdirectories and contains 674 files. These
numbers are based on our tests with this device. Other tests with other wearables
can lead to a different number of files. However, many files do not hold forensic value,
thus easing the analysis process. Figure 8 shows the private directory structure up
to two levels.

33

post mortem analysis of garmin connect

/data/data/com.garmin.android.apps.connectmobile/
├── app_/
│ └── testdata/
├── app_OMT_ANALYTICS_DIR/
├── app_textures/
├── app_webview/
│ └── Default/
├── cache/
│ ├── WebView/
│ ├── com.google.android.gms.maps.volley/
│ ├── image_manager_disk_cache/
│ └── logs/
├── code_cache/
├── databases/
├── files/
│ ├── downloads/
│ ├── gcsync/
│ ├── logs/
│ ├── phenotype/
│ ├── upload/
│ └── uploads/
├── no_backup/
└── shared_prefs/

Figure 8: Directories inside private folder

app folders We started by analyzing the folders in hierarchical order. We
first noted that several folders had the app_ prefix in their name. These folders
are related to processes and actions done by Android when executing applications
(Skulkin et al., 2018). Generally, these folders do not hold relevant data that can be
considered a relevant artifact. Still, we analyzed the files inside of them.

The first folder shown is called app_. This folder only holds one file called
map_cache.key. The file is not human-readable. Based on its name, it could be
cached key values for the applications’ Google Maps functionality. The second folder
is called app_OMT_ANALYTICS_DIR and probably refers to the Google Analytics
service. However, the folder is empty, like the folder called app_textures. In
Android, applications can use this folder to store textures.

The last folder is called app_webview. This folder is used by Android applications
that implement the WebView component. WebView is a system component for the
Android operating system that enables Android apps to display web content directly
inside an application. WebView lets applications display browser windows in an app
instead of transporting the user to another browser 14. The browser rendered by
WebView is based on Chromium, so the data stored in this folder is very similar to
one found in a Chromium browser installed on our computers. This folder has fewer

14 https://developer.android.com/reference/android/webkit/WebView

34

https://developer.android.com/reference/android/webkit/WebView

3.3 artifact analysis

files than those found in browsers. The cause can be that the application does not
use the WebView component for any functionality tested except for the signup, and
to show the terms and conditions.

cache folder The primary goal of the cache folder in Android is to provide
a temporary storage location for data that can be recreated or retrieved easily.
Caching improves performance and reduces network usage (Skulkin et al., 2018).
Since the data that can be stored in the cache is so small, most of the files found are
not human-readable and are only temporary files created very recently that hold
not more than single digits of kilobytes of storage. Within this directory existed an
image file. This file contained the cropped version of the profile picture of the user
account.

logs is the only subfolder of the cache folder that held data. Specifically, the
logs folder hosted the application’s most recent logcat log. Logcat is a tool used in
Android app development for logging information during the application’s runtime.
Developers use it to test their applications, debug features, and solve problems
(Android Developers, 2023). Developers should not log sensitive data from the
production version since log files are one way attackers steal data and find ways to
attack the application. We found research from Cheng et al. (2021) that developed
a proof of concept called LogExtractor. The tool automatically identifies and
extracts digital evidence from log messages on an Android device. Given a log
message, LogExtractor first determines whether it contains forensic artifact data
(for example, GPS coordinates) and then further extracts the value of the data.
Sadly Cheng et al. (2021) did not publish the tool.

We manually analyzed the log file inside the folder and searched for keywords
that could indicate sensitive data used in the authentication process. The searched
keywords were:

• auth
• expiration
• id

• key
• name
• password

• user
• token
• uid

No relevant data matching the provided keywords were found. The discovered
data primarily pertained to the structure of the Android activities that the user
accessed. Due to the limited timeframe of the analysis, covering only the last two
days prior to the data acquisition, it is not possible to determine if the logcat logs
contain any sensitive information. It should be noted that as the user did not engage

35

post mortem analysis of garmin connect

in any login activities during that period, the likelihood of sensitive information
being present is low.

The folder com.google.android.gms.maps.volley, contains cache data related
to Google Maps since the applications use their API for the GPS functionality,
while folder WebView stores cache from the WebView component, and lastly imag

e_manage_disk_cache stores encoded bitmaps and images used by the application.
The goal of this process is to load the pictures instantly without delay 15. We tried
to decode images but did not have success.

database folder The database folder is where the SQLite databases of the
application are stored. This folder contains various databases requiring extensive
analysis, so we created a subsection 3.3.3 dedicated to this process.

In summary, the data retrieved is held in the databases where:

• Activity data

• Daily Data

• Device Values

• GPS Location

• Health Values

• Phone Notification

• Synchronization Logs

• User Profile Data

files folder Typically, the directory files is linked to files generated by the
application, whether through user interaction or not. This folder has various sub-
folders and files, most of which were fragments of synchronization processes. Upon
inspection, we observed that the files were not in a human-readable format. The
Linux file16 command identified the files as being in the Flexible and Interoperable
Data Transfer (FIT) format.

FIT is a binary file format that stores health and fitness data such as workouts,
heart rate, and GPS. It was developed by Garmin and is used by various fitness
trackers and apps, including Garmin devices, Strava, and many others (Garmin Ltd.,
2023). These files can contain data recorded by the device, meaning they might

15 https://developer.android.com/topic/performance/graphics/cache-bitmap
16 https://www.man7.org/linux/man-pages/man1/file.1.html

36

https://developer.android.com/topic/performance/graphics/cache-bitmap
https://www.man7.org/linux/man-pages/man1/file.1.html

3.3 artifact analysis

have forensic value. However, the only official way to decode a FIT file is using
Garmins proprietary Software Development Kit (SDK) for developers. Luckily, the
community developed open-source scripts to decode these files. One of these tools is
a Python library called fitdecode17, which converts a FIT file to JSON. However,
the tool did not manage to decode these files since they are only fragments of a
complete FIT file and are likely the result of caching processes.

We only found two human-readable files. The first one is a JSON file called
PersistedInstallation that contains the access_token and refresh_token,
as shown in listing 1. This file is related to Firebase, a real-time noSQL database
developed and maintained by Google. The file contained the end user credentials such
as the databases ID (Fid), the current Authentication token needed to make requests,
the refresh token for when the authentication token expires, and two timestamps in
seconds when the token was issued and its validity time. The authentication token
is valid for seven days. The refresh token never expires (based on the firebase code
public on Github 18). This finding is not valuable from a forensic perspective. Still,
it could be considered a security risk since an attacker could access this file and
access the user’s data accessible in the applications’ Firebase database.

Listing 1: Content of PersistedInstallation file
1 {
2 "Fid": "dOrIAtkqT66jHW4uNghIvs",
3 "Status": 3,
4 "AuthToken": "eyJ...(a total of 305 characters)",
5 "RefreshToken": "3_A...(a total of 112 characters)",
6 "TokenCreationEpochInSecs": 1677750057,
7 "ExpiresInSecs": 604800
8 }

The second file, named app.log and stored in the subfolder logs, contains all
the execution logs during the last day it was used. This file occupies a total of 3.43
Megabytes over 22 582 lines. Therefore, we decided to search for specific keywords
related to the authentication process, such as: auth, token, secret, password, and
id. Using these keywords, we found interesting information about the application
execution, even before analyzing it dynamically. The application logs the HTTP
communications with Garmin’s servers, as shown in the Listing 2.

In Listing 2, we can see a GET request to the URL https://connectapi.garmi

n.com/mobile-gateway/snapshot/usageIndicators/v3, using an authorization
bearer token. Executing this request in Postman (this tool will be presented and

17 https://github.com/polyvertex/fitdecode
18 https://github.com/firebase/firebase-android-sdk/blob/master/firebase-installatio

ns/src/main/java/com/google/firebase/installations/local/PersistedInstallation.java

37

https://github.com/polyvertex/fitdecode
https://github.com/firebase/firebase-android-sdk/blob/master/firebase-installations/src/main/java/com/google/firebase/installations/local/PersistedInstallation.java
https://github.com/firebase/firebase-android-sdk/blob/master/firebase-installations/src/main/java/com/google/firebase/installations/local/PersistedInstallation.java

post mortem analysis of garmin connect

Listing 2: Content of app.log file
1 Mar-01;8:37:04.774PM [OkHttp https://connectapi.garmin.com/...] D/NetworkDI -

--> GET
https://connectapi.garmin.com/mobile-gateway/snapshot/usageIndicators/v3
http/1.1

↪→
↪→
↪→

2 X-Garmin-Paired-App-Version: 7302
3 X-Garmin-Client-Platform: Android
4 User-Agent: GCM-Android-4.61
5 X-Garmin-User-Agent: com.garmin.android.apps.connectmobile/4.61; ;

samsung/SM-A405FN/samsung; Android/30; Dalvik/2.1.0 (Linux; U; Android 11;
SM-A405FN Build/RP1A.200720.012)

↪→
↪→

6 X-app-ver: 7302
7 X-lang: pt
8 Authorization: Bearer eyJ...(a total of 946 characters)
9 --> END GET

10 ...

explained in Chapter 4 in the Table 19) returned a JSON response containing the
features available on the device used in the Garmin Vivosmart 4. The Authorization
token is a JSON Web Token or JWT used to authenticate the requests to the API and
protect it against unauthorized access. Our testing found that this token remains
valid for 24 hours before it expires. The token consists of 946 characters, less than
the standard size for JWT tokens of 1 Kilobyte. This discovery will be precious in
the dynamic analysis since the last logged Bearer token in this file could still be
valid, meaning we can interact with the API without knowing the user’s credentials.
This fact is essential for this project because it means there is a chance of having
access to all the user’s data logged to Garmin Connect cloud servers. In the request,
there is also information related to the client device that initiated the requests, such
as the device model, the applications versions, and the current installed Android
version. This information also holds forensic value since it could tell if this request
came from the phone we are analyzing or from another that the user might be
logged in.

shared_prefs folder The last folder to be analyzed is the shared_prefs

folder. Shared Preferences stores XML files that hold small key-value data 19. This
method often stores small amounts of data the application needs. This removes the
need to store data in a database, making the process simpler and quicker. Shared
Preferences often store files holding data like usernames, email, and other unique
data. This is why the files stored here can be an excellent place to find forensic
artifacts.

The folder held 48 XML files in our experiments. Filtering all these contents can
be time-consuming, so we first needed to make a superficial analysis to exclude files

19 https://developer.android.com/reference/android/content/SharedPreferences

38

https://developer.android.com/reference/android/content/SharedPreferences

3.3 artifact analysis

that we did not consider to have forensic value, such as empty files and Files with
no user data.

After this first filtering, we could exclude 32 (11 empty files and 21 files with no
forensic value). The reaming 16 files that seemed to hold relevant content were:

• com.facebook.AccessTokenManager.SharedPreferences

• com.facebook.sdk.appEventPreferences

• com.facebook.sdk.USER_SETTINGS

• com.google.android.gms.appid

• com.google.android.gms.measurement.prefs

• com.google.android.gms.signin

• com.google.firebase.crashlytics

• com.google.maps.api.android.lib6.drd.PREFERENCES_FILE

• FirebaseAppHeartBeat

• gcm_user_preferences

• mobile.auth.sec

• samd_sec

• settings_preference

• ue3Preference

The first files to be analyzed were related to the Facebook API. To use Facebook
features in Garmin Connect, users must authenticate into his/her account and
approve the connection. There was a token called access-code stored in the file
com.facebook.AccessTokenManager.SharedPreferences file. Searching in the
Facebook API documentation, we discovered that the application uses this access
token when making requests to the API. Furthermore, several methods exist to
explore the token to access Facebook user data 20. As proof of concept, we resorted
to the well-known Client URL (cURL) HTTPS client to interact with the API.
Almost all resources required a user id for proper access. A user id is trivial to
discover as shown in the following Listing:

1 curl --location --request GET

'https://graph.facebook.com/me?access_token=EA...(a total of 250 characters)'↪→

20 https://developers.facebook.com/docs/graph-api/overview

39

https://developers.facebook.com/docs/graph-api/overview

post mortem analysis of garmin connect

The cURL execution command returns a JSON response with the user name and
the user id from Facebook. With the user id and the access code, we could access
all data Facebook shares with Garmin Connect. The API offers a Uniform Resource
Locator (URL) that shows all the information we can access, which is shown in the
cURL below:

1 curl --location --request GET

'https://graph.facebook.com/2350304655138824?metadata=1&access_token=EA...(a

total of 250 characters)'

↪→

↪→

Through this method, one can list the following user data:

• User ID

• User Name

• Profile Picture

• Number of Friends

• Garmin App ID

• App permissions

We also tried to obtain data related to the application resorting to the appid,
yet we were unsuccessful.

The com.google.gms files, Google Mobile Services (GMS) is a collection of
applications and APIs developed by Google for manufacturers of Android devices 21.
Those files provide information to the user, such as the Garmin Connects account
id. However, without access to the Google Cloud Platform account from Garmin
Connect, it is challenging to know what APIs it uses or test the APIs. In the file
com.google.android.gms.signin it was possible to discover:

• User ID

• User Name

• Profile Picture

The shared preferences folder also holds files related to the Firebase services.
These files contained data related to the Firebase services used by Garmin Connect,
such as the database ID. However, the data found in these files had no forensic use.

21 https://www.android.com/gms/

40

https://www.android.com/gms/

3.3 artifact analysis

The file that contained the most user-related data was the file gcm_user_prefe

reces. It stores a large amount of data related to the user account logged in to the
application, manualy:

• Birth Date
• Country
• Email
• Gender
• Google Access Token
• Height
• Language

• Location
• Profile Picture
• Sleep hours
• Timezone
• User Hand
• User Id
• User Level

• User Points
• User wrist
• Weight
• Whether the user is

currently pregnant

The file contains a considerable number of user artifacts. However, we found all
these artifacts during the database analysis. It can be useful if we do not have access
to it.

The file mobile.auth.sec, as the name suggests, could be used to store
authentication-related information of the mobile application. However, as shown
in Listing 3, all data in this file is encrypted. The application most likely uses the
AndroidX Security library (Jetpack Security). This library encrypts the shared
preferences files using the algorithm Advanced Encryption Standard (AES) in case
it is confidential data. Without the encryption key, we cannot decrypt the values
stored here. This also means they are securely protected against unauthorized access.
Another file with similar results was samd_sec, where we found five base64 encoded
strings with encrypted content.

Listing 3: mobile.auth.sec
1 <?xml version='1.0' encoding='utf-8' standalone='yes' ?>
2 <map>
3 <string name="ASmhk4/+XysQyJClRN0SDXvVB6sSDlpWhx4CkfsL1tyuWmsxpeA0xkakSr ⌋

Jp">ATg1CHNWTHy/kOFH5yYAC8hA/srD3wSfRst5B6PnLRgXGln1puc=</string>↪→
4 <string name="__androidx_security_crypto_encrypted_prefs_key_keyset__">1 ⌋

2...(a total of 3078
characters)</string>

↪→
↪→

5 <string name="__androidx_security_crypto_encrypted_prefs_value_keyset__" ⌋
>12...(a total of 912
characters)</string>

↪→
↪→

6 <string name="ASmhk48sl4yLajgCPBypflbnF/mn3WDLMEyNb0gs7ba9Vq0Z">AT...(a
total of 52 characters)</string>↪→

7 <string
name="ASmhk4+/QMF5JAkiwhMyAgZwwgzAjy7re49e6ELfR8Jt5DBBZg==">AT...(a
total of 60 characters)>/string>

↪→
↪→

8 </map>

To conclude this analysis, we identified two more files that contained data but
did not have forensic value, the settings_preference, which includes data similar

41

post mortem analysis of garmin connect

to the maps file, and the ue3Preference, which contains various IDs. Yet, we could
not establish its connection and use case for the Garmin Connect application.

3.3.3 Database Analysis

The primary and time-intensive phase of static analysis in an application involves
examining its databases, typically located in the databases folder within the
application’s private directory. This step is crucial for analysts as it often uncovers
most artifacts. In our case, the folder contains 17 SQLite3 databases.

The large number of databases could mean that some are legacy while others are
specific to the features used by the application.

The process to analyze the database was the following:

1. Open the database with DB Browser and identify valuable tables

2. Describe the database by analyzing the tables

3. Identify potential artifacts

4. Try to recover deleted data with the Python script bring2lite

5. Draw database diagram with schemacrawler and dbdiagram if forensicaly
relevant

sqlite file types Before analyzing each database file, it is essential to
note that SQLite stores the complete database in a single disk file and uses many
temporary files while processing a database. We found three different types of
temporary files in the database folder: Rollback journals, Write-Ahead-Log
(WAL) files, and Share Memory File (SMF).

A rollback journal is a temporary file that implements SQLite’s atomic commit
and rollback capabilities. The suffix -journal identifies the rollback journal. The
goal of the rollback journal is to prevent partial or total corruption of the database
in case of an unfinished transaction or power loss. The rollback journal is usually
created and destroyed at the start and end of a transaction, respectively.

A WAL file is used in place of a rollback journal when SQLite is operating in
WAL mode. The goal of the WAL file is the same as the rollback journal. The file
has the suffix -wal appended to the name of the database (Gaffney et al., 2022).
Both rollback journal WAL files are mechanisms used in database systems to ensure

42

3.3 artifact analysis

data consistency and durability. However, they serve different purposes and have
different characteristics. The rollback journal focuses on undoing changes made
during a transaction, while the WAL file ensures durability and recovery of the
database in case of failures.

The SMF, when it exists, is identified by the suffix -shm. SMF only exists while
running in WAL mode and contains no persistent content. The only purpose of the
file is to provide a block of shared memory for use by multiple processes, all accessing
the same database in WAL mode. It is essential to talk about the temporary files
created by SQLite because, as we said before, these files are atomically executed
when the user opens the database in DB Browser. This can lead to data being
deleted from the database and potential artifact loss.

Three methods exist to open the database file without executing the journal
or WAL files. We rank them from the most viable to the least to prevent data
alteration:

1. Use a forensic tool built for dealing with databases such as Autopsy

2. Copy the database file to a different folder and open it with DB Browser

3. Change the database file name and open it with DB Browser

The first method is the best yet. The forensic tools that have these capabilities
are typically commercial solutions. The second method is the one that will be used
here, first opening the database in a different location of the WAL file and then
with the WAL file to see the differences. The last method is commonly used and
works, yet, analysts have shown that this method can lead to confusion and loss of
artifacts (Angie, 2016).

database structure To better understand what each database does, we
compiled a list of all databases in a large table. Table 12 presents the databases and
briefly describes them. We also provide, for each database, the number of tables
that hold records, as we observed that many tables were empty.

applications-database The first database analyzed was applications-d

atabase. The tables do not hold any forensic value, as the database stores Android
metadata 22.

22 https://developer.android.com/reference/android/arch/persistence/room/Room

43

https://developer.android.com/reference/android/arch/persistence/room/Room

post mortem analysis of garmin connect

Table 12: Brief description of Garmin Connect databases. The column Tables displays the
total of tables and, within parenthesis, the number of tables with data.

database # tables description

applications-database 3 (3) Related to the version of the application

AppNotification 3 (3) Internal Notification of the application

cache-database 27 (14) Data cached from the app’s features

Campaign_Database 3 (2) Possible storage for Garmin Campaigns

com.google.android.

datatransport.events
7 (2) Android internal communication

process (Google Play Services library)

connect 4 (3) mac address of the smartband

garminpaycore 4 (2) Data regarding the Garmin Pay feature
(not available for Vivosmart 4)

gcm_cache.db 12 (6) Cache Data originated from the data
received from the API

gcm_onboarding_item 5 (4) Devices associated with account
and features activated

gcm_swings 3 (2) Database related to Golf features present in
some devices (not available for Vivosmart 4)

gcm_user_presistence 7 (3) Cached information for certain features of the
application (onboarding and badges)

google_app_measure

↪→ment_local.db
2 (1) Database related to Firebase Analytics

livetrack-database 6 (2) Data regarding livetrack feature
(not available for Vivosmart 4).

news_feed_database 3 (2) Database related to the user feed.

notification-database 3 (3) Database with the recent phone notifications
sent to the smartband

sync_cache.db 3 (3) Database with the synchronization process
between smartband and application

ue3.db 3 (1) Database possibly related to internal events

44

3.3 artifact analysis

Table 13: AppNotifications Table

table # columns

android_metadata 1

notifications 5

sqlite_sequence 2

appnotifications The database had three tables. Table 13 shows the database’s
tables. This database does not have forensic value. One of the tables is called
notifications, but from analyzing the table, it is unrelated to sending notifi-
cations. One of the columns of this table is called date and stores the data in a
UNIX Timestamp referring to the Coordinated Universal Time (UTC) time. After
converting it to the current time, it indicates when the application was first launched
on the phone. When launching, the application probably uses the database to start
and store specific services.

cache-database We considered the "cache-database" database one of the
most crucial in the whole application. Compared to the other databases, it is vast
and holds 27 tables, with the table activity-details having as many as 120

columns.

This database holds the most meaningful digital forensic data. However, from
the 27 tables, only 14 of those had data based on our setup.

We suspect that the absence of data in some tables is due to the lack of features
from the Vivosmart 4 smartband that are present on other Garmin products (e. g.,
blood pressure readings). These tables are listed in Table 14 and classified regarding
their digital forensics value.

In the database, the four activity tables are related to the workout activities
stored by Garmin Connect. They are connected by a foreign key which is the
activity ID. To facilitate the analysis of this database, we used schemacrawler and
DBDiagram.io to create a database diagram overview, shown in Figure 9.

First, we generated the database diagram with schemacrawler and the SQLite

database. can detect the connections among the tables in a database and produce a
corresponding diagram. The user can customize the level of precision in the diagram.
This is done with the following four commands:

45

post mortem analysis of garmin connect

Table 14: Non-empty tables of the cache-database database

table
forensic

descriptionvalue

acclimation_pulse_ox_details fair Recored SpO2 data

activity_chart_data high Values for activities’ charts

activity_details high Details of activities

activity_polyline high GPS coordinates from activities

activity_summaries high Activity Details in JSON format

heartrate_zones low Users Heart Rate Zone Values

intensity_minutes low Total Minutes of intense exercise

response_cache low Response Cache from server

sleep_detail high Stores Sleep Information

user_daily_summary high Daily user summaries

weight fair Weight Data

1 schemacrawler --shell

2 connect --server=sqlite --database=cache-database

3 load --info-level=maximum --weak-associations=true --infer-extension-tables

4 execute --command=schema --output-file=./db.png

After that, we improved the initial diagram using DBDiagram.io. Since the
complete diagram is too big to present in the paper, we created a repository with
the complete diagram and code to generate it in our repository presented in Table 31.

Each record in these tables represents a workout activity performed by the user.
The two tables that hold more information are activity_details and activity_s

ummaries, which contain the various details of an activity done by the user (calories
burned, steps, heart rate, distance, etc). These two tables hold the same data. The
only difference is that activity_details saves the data in separate columns (the
table has a total of 120 columns), and activity_summaries saves all data related
to the activity in a JSON object stored in a single column. We hypothesize the table
activity_summaries stores the activity in the format sent to the server when the
user uploads an activity. The table activity_chart_data is related to the charts
generated for the activity. To create the chart, contains two columns that store an
array of X and Y values. During our data gathering, we only managed to generate
records related to heart rate charts. The table activity_polyline is associated
with outdoor activities with GPS tracking. The table stores the starting and ending

46

3.3 artifact analysis

1 *

*

1

*

1

1

* *

1

*

1* 1

1

* *

1

1

*

*

1

*

1

*

1

*

1

1

* *

1

1

* *

1

acclimation_pulse_ox_details

userProfilePk text

... text

activity_chart_data

activityId integer

chart_type text

... text

activity_details

activityId integer

... text

activity_polyline

activityId integer

... text

activity_summaries

activityId integer

... text

atp_activity_grades

activityId integer

... text

blood_pressure

version integer

... text

blood_pressure_stats

timestampGMT integer

... text

device_work_input

inputTimestamp integer

... text

heartrate_zones

sport text

... text

hrv_status

calendarDate text

... text

insights

featureId integer

createdDateUTC integer

... text

intensity_minutes

startOfWeekDate text

... text

jet_lag_status

dailyStatusId integer

... text

menstrual_cycle_summary

dataDate text

startDate text

... text

response_cache

requestUrl text

... text

sleep_detail

calendarDate text

... text

stats

samplePk integer

... text

trainig_readiness

calendarDate text

... text

training_status

userId integer

... text

user_daily_summary

calendarDate text

... text

weight

samplePk integer

... text

wellness_activities

userProfilePk integer

activityUuid text

calendarDate text

... text

workouts

workoutId integer

... text

Figure 9: Simplified diagram of the cache-database

47

post mortem analysis of garmin connect

Figure 10: GPS Route of a walking activity

coordinates and a large string of characters called polyline. A polyline is a string
of characters that encodes a series of coordinates. The polyline is encoded using the
Google Maps API and is usually used to draw a route in Google Maps 23 as shown
in the Figure 10.

The coordinates hold significant forensic value because they can pinpoint the user’s
location at a given time. According to Google’s documentation, decoding a polyline
back to group coordinates is possible. Using the Python library polyline24, we
created a Python script called Polyline2GPS that decodes Google’s polylines back

23 https://developers.google.com/maps/documentation/javascript/examples/polyline-simpl
e

24 https://pypi.org/project/polyline/

48

https://developers.google.com/maps/documentation/javascript/examples/polyline-simple
https://developers.google.com/maps/documentation/javascript/examples/polyline-simple
https://pypi.org/project/polyline/

3.3 artifact analysis

Figure 11: Excert of the Excel generated by Polyline2GPS

to coordinates and saves them in a XLSX file. This file will contain the coordinates
of the activity. Additionally, with the use of the library geopy25, our script will also
add information to the coordinates such as the respective road, city, postcode
and country. Figure 11 shows an extract of the Excel generated by the script
containing the data obtained from geopy.

This file aims to aid the analysis of GPS coordinates and filter possible locations
of interest. After that, we use these coordinates to create a file with the route done
by the user. The user can choose to export this file in HTML or Google Earth format
(KML). This script was part of the modules developed for ALEAPP. However, since
we could not find any script that did those features, we decided it could prove helpful
for other use cases, so we created a standalone version called Polyline2GPS.

The table sleep_detail contains users’ sleep data. It stores a timestamp when
it starts the sleep mode. When it stops, the table also stores the duration in seconds
of the recorded sleep phases (light sleep, deep sleep, REM sleep, and awake time).
In addition, the Vivosmart 4 actively reads the user’s SpO2 during sleep and stores
the lowest, highest, and average SpO2 readings. The values of the table have forensic
value since it can tell the analyst the timespan the person was asleep and correlate
it with other events.

The table user_daily_summary stores general data such as calories burned, steps,
stress, heart rate, SpO2 etc. The table has 70 columns and stores the user’s daily
data (one record per day). This table is valuable from a forensic standpoint since it

25 https://pypi.org/project/geopy/

49

https://pypi.org/project/geopy/

post mortem analysis of garmin connect

is possible to understand the user’s day, such as the maximum heart rate and the
number of steps.

The general problem with the cache-database is that the database only stores
data temporarily. We used the smartband for various months, and only the most
recent data was saved in the database. After synchronizing with the device, the
application sends the data to Garminin’s cloud servers, where the data is then
stored. This process is part of the Garmin Connect API developed to share data
with partner apps. That means that the application only uses the data in this
database for caching and to reduce load times. The primary way to access the
application’s data is by retrieving it from the cloud, which is why it requires a
continuous internet connection. While this slightly diminishes its forensic value, the
fact that the application stores recent data in its cache still makes its information
valuable.

By default, SQLite does not delete records. Instead, it marks them as unused
until other data overwrites them. To retrieve any possible deleted records from
the database, we utilized the open-source script bring2lite 26. However, we could
not retrieve any data. We later verified in the database properties that it has the
flag PRAGMA schema.auto_vacuum set to FULL. With this option, SQLite moves the
free list pages to the end of the database file. Then the file is truncated to remove
them at every transaction commit, eliminating the possibility of retrieving deleted
data (SQLite Community, 2023).

campaign_database This database was empty. Based on the keyword "Cam-
paign" it can mean the publicity campaigns or events that occurred in the applica-
tion.

com.google.android.datatransport.events This database is empty,
yet by the file’s name, it is possible to see that it is related to an internal Android
service the application uses. By searching for the database name, we found a maven
repository that points to the Android Transport API 27. The Google documentation
makes it possible to say that this database is related to data stored temporarily
between network communications28. Yet, since it is empty, it does not hold value
for this analysis.

26 https://github.com/bring2lite/bring2lite
27 https://mvnrepository.com/artifact/com.google.android.datatransport
28 https://developers.google.com/android/reference/com/google/android/gms/fido/common

/Transport

50

https://github.com/bring2lite/bring2lite
https://mvnrepository.com/artifact/com.google.android.datatransport
https://developers.google.com/android/reference/com/google/android/gms/fido/common/Transport
https://developers.google.com/android/reference/com/google/android/gms/fido/common/Transport

3.3 artifact analysis

Table 15: Non-empty tables of the gcm_cache.db database

table
forensic

descriptionvalue

device_permission low Permissions of the device

devices fair Information related to the
connected device

json high Device captured Data (JSON)

json_activities high Stored activities (JSON)

connect The Connect database looked promising at first glance since it has the
same name as the application, meaning it could store data related to the Garmin
Connect application. That is true, yet it holds minimal information. The database
holds four tables. However, only one held data: device-capabilties. This table
stores the userid and macaddress from the paired smartband, which can prove
valuable in identifying paired devices.

garminpaycore Garminpaycore is a database that could prove interesting for
future analysis, but currently, it does not hold artifacts. The database is related to
the Garmin Pay function presented in some of the Garmin Watches 29. Garmin Pay
is a service that lets users associate credit cards or bank accounts with Garmin Pay
to use their smartwatch to perform contactless payments. The service is similar to
Apple Pay and Google Pay.

gcm_cache The database gcm_cache.db, just like the cache-database, holds
temporary data. It has various tables related to user data (activity information and
daily statistics) and the associated devices. From the 12 tables inside the database,
only 4 had any data after our tests, as presented in Table 15.

The table device_permission stores the permissions the user gives on the
application. From what we gathered, different permissions on the application are
identified by an id. The table stores whether the user gave permission (0 or 1). The
table devices stores vast information from the Vivosmart 4 band (name, MAC
address, id, capabilities). The devices contains valuable data, however with little
forensic value.

29 https://www.garmin.com/pt-PT/garmin-pay/

51

https://www.garmin.com/pt-PT/garmin-pay/

post mortem analysis of garmin connect

1 ** 1

android_metadata

locale text

device_permission

_id Integer

unit_id text

... text

devices

_id Integer

unit_id integer

... text

golf_course_image_data

_id integer

device_id integer

... text
golf_downloaded_course

_id integer

... text json

_id integer

cached_val text

... text

json_activities

_id integer

cached_val text

... text

json_courses

_id integer

cached_val text

... text
json_myfitnesspal_calories

_id integer

cached_val text

... text json_steps

_id integer

cached_val text

... text

orphan_devices

_id integer

... text

Figure 12: Simplified diagram of the GCM_Cache

The gcm_cache.db holds various tables with the prefix json. Only two of them
had data, a table called json and another called json_activities. The tables
store cached values in JSON format. The data present here is the same as in
the cache-database. We suspect this database holds a cache from the data the
application retrieves from the cloud via requests to the API. The gcm_cache.db and
the gcm_cache.db hold the same data in different formats. The cache-database

generally holds more information and is easier to read. Yet, we found records in the
gcm_cache.db that were not present in the cache-database, meaning that both
have forensic value and should be equally studied.

Just as before, we generated the database diagram in schemacrawler and refined
it with DBDiagram.io. Figure 12 shows a cropped part from the resulting diagram.

gcm_onboarding_item This database stores information related to the first
time the user opened the application and when he/she synchronized the device for
the first time. It stores the available features and if they are enabled or not. If they
are not, the application will remind the user about them the next time he opens
them. This database does not hold forensic value for this analysis except for the
possibility of knowing the date/time of the first usage.

gcm_swings This database is related to the Garmin Golf application. It has
only one table, which stores data related to golf equipment. Since the golf application
was not tested, this database remained empty.

52

3.3 artifact analysis

google_app_measurment_local This database is similar to the com.goog

le.android.datatransport database, as it is not related to Garmin Connect but
to a third-party technology used in the application. In this case, this database is
related to Firebase Analytics. This tool provides essential performance and user
experience metrics, such as 30:

• User demographics

• Engagement and retention

• Crash rate

• Conversion events

• Deep-link performance

livetrack-database This database does not contain data. It stores data
related to a feature in some of the Garmin smartwatches called Livetrack. This
feature lets users share their current path in real time with other users. Nevertheless,
the absence of this feature in the Garmin Vivosmart 4 indicates that it is not
available within the Garmin Connect application. 31.

news_feed_database We believe this database is related to the social feature
of the Garmin Connect application, where the activities are similar to social media
posts shared in the user feed. Friends can like and comment on it. We tried to use
these features in our activities, yet the table remained empty, so it is difficult to tell
if it would hold any forensic value.

notification-database The database notifications-database, as the
name implies, is used to store the phone’s notifications transmitted to the smart-
band. Since the notification appears in cleartext, it can be a good artifact, for
example, possible incriminating text messages or call logs. Unfortunately, this
database only stores recent notifications and frequently deletes old notifications. We
have verified that this database, similar to cache-database, has the flag PRAGMA

schema.auto_vacuum set to FULL, thereby rendering the recovery of deleted records
impossible.

30 https://firebase.google.com/docs/analytics
31 https://www.garmin.com/en-US/blog/fitness/use-garmin-livetrack-track-activities-r

eal-time/

53

https://firebase.google.com/docs/analytics
https://www.garmin.com/en-US/blog/fitness/use-garmin-livetrack-track-activities-real-time/
https://www.garmin.com/en-US/blog/fitness/use-garmin-livetrack-track-activities-real-time/

post mortem analysis of garmin connect

sync_cache The database sync_cache stores the synchronization process of
the smartband and the smartphone. This database contains forensic value since
it gives us some information, such as what smartband is synchronized with the
smartphone (the database stores the unit ID of the device in each record). It also
tells us that the smartphone connected the device via BLE at that moment – each
record contains a UTC timestamp.

ue3 This database only has one empty table. By the name of the database, it is
impossible to know what the goal of this database is or was (most probably). We
omitted it from the document, as it looks like a legacy database with zero value.
Thus, we do not provide an analysis of the table.

3.4 mobsf analysis

After analyzing the data stored by Garmin Connect in the private and public
directories, the only step left is to analyze the APK file. This file does not contain data
related to the user. Discovering the privacy and security aspects of the application
can be crucial before starting the dynamic analysis. This process is done in forensic
research and by developers to confirm that they follow the necessary regulations, such
as General Data Protection Regulation (GDPR) and Health Insurance Portability
and Accountability Act (HIPAA), to name just a few. We will use the all-in-one
scanning tool MobSF.

The process of installing and configuring MobSF can be lengthy for that reason
we created the appendix A where we explain this process in detail.

3.4.1 Background study

MobSF is an automated, all-in-one mobile application pen-testing, malware analysis,
and security assessment framework capable of performing static and dynamic
analysis32.

Other tools work as alternatives or competitors to MobSF, such as Metasploit
or Veracode. The reason for choosing MobSF was:

• Easy-to-use scanner for static analysis

32 https://github.com/MobSF/Mobile-Security-Framework-MobSF

54

https://github.com/MobSF/Mobile-Security-Framework-MobSF

3.4 mobsf analysis

• Creation of a web report and an associated interface to navigate the data

• Free tool with constant community support and improvements

• Customizable if needed

MobSF is generally used in security assessments and research. The authors
analyzed various papers that used MobSF. Sachdeva et al. (2018) used MobSF with
machine learning techniques to classify mobile applications based on their files. One
of the core features of MobSF is its malware analysis module, which will not be
used in this research. Research by Shahriar et al. (2019) evaluated four security
tools: Flowdroid, CuckoDroid, MobSF, and Droidbox. However, the study did not
go into much detail and was focused primarily on malware analysis.

Another research used MobSF to analyze 204 health-related Android applications
and, using the OWASP Top 10, evaluated the number of security flaws presented in
the applications. The study found that 43.62% of the applications had at least one
security flaw and 26.47% had at least two security flaws (Lamalva and Schmeelk,
2020). Their study also revealed that the flaws are mainly centered in the following
categories:

• Improper Platform Usage

• Insecure Data Storage

• Insecure Cryptography

• Client Code Quality

• Reverse Engineering

Lastly, Barros et al. (2022) used MobSF during their analysis of the Bumble
application to discover various privacy functionalities.

3.4.2 Analysis

After the process is terminated, MobSF generates a PDF report with all the
information collected. The user can browse all the data through the web interface
or resort to the PDF report.

The generated report is quite large, with 106 pages. Since the web dashboard
offers a better user experience, it was our primary analysis method.

MobSF generates two different areas related to static analysis. It creates a view
called AppSec Scoreboard that contains an overview of the static analysis showing

55

post mortem analysis of garmin connect

a list of the findings and a view called Static Analysis where the user can interact
with everything done during this analysis.

In the report MobSF divides the content through different topics, we will present
the topics that contained the most significant findings, they were:

• Network Security

• Certificate Analysis

• Maniefest Analysis

• Code Analysis

• Reconnaissance

appsec scoreboard We started by analyzing the scoreboard. Here we are
presented with various statistics. Based on the vulnerabilities found in total, MobSF
gives a security score ranging from 0 to 100 and a risk rating from A to F (Best to
Worst). In our case, Garmin Connect acquired a security score below the average of
45 and a B risk rating that is considered a medium risk, as shown in Figure 13. These
values are concerning considering the large user base that Garmin Connect has. Yet,
it is unfair to judge the application solely on the score given by an open-source tool
that solely performs static analysis. Therefore, we need to continue the analysis to
reach a particular conclusion.

Figure 13: Mobsf Security Score (Left) and Risk Rating(Right)

The scoreboard also shows the findings discovered by MobSF. The scanner found
31 results in our case and split them into five categories High, Medium, Info,
Secure, and Hotspot. The focus is generally on High and Medium findings
since these represent vulnerabilities, while the info category only contains possible
warnings. Secure is related to correct security implementations detected and hotspot
to files of interest. Figure 14 shows all findings collected by MobSF.

56

3.4 mobsf analysis
 FINDINGS SEVERITY FINDINGS SEVERITY

 HIGH HIGH MEDIUM MEDIUM INFO INFO SECURE SECURE HOTSPOT HOTSPOT

55 1818 44 22 22

 FILE INFORMATION FILE INFORMATION
File Name:File Name: base.apk
Size: Size: 39.82MB
MD5:MD5: b974c6607c3c1daa4287adaf3a835253
SHA1:SHA1: b547ef817922cc327d855e1bf1200a0060c564cf
SHA256:SHA256: d9127a48560ce389e172b536464ed418ef69369fffa2113c33e03952bbbe2af9

 APP INFORMATION APP INFORMATION
App Name:App Name: Connect
Package Name:Package Name: com.garmin.android.apps.connectmobile
Main Activity:Main Activity: com.garmin.android.apps.connectmobile.GCMActivityStartup
Target SDK:Target SDK: 31
Min SDK:Min SDK: 24
Max SDK:Max SDK:
Android Version Name:Android Version Name: 4.61

Figure 14: MobSF Findings

The scoreboard also shows the number of trackers the application has. A tracker
refers to a component or functionality within a mobile application that collects and
transmits user data to third-party entities without the user’s explicit consent or
knowledge. Trackers are often used for various purposes such as analytics, advertising,
profiling, and user behavior tracking (Razaghpanah et al., 2018). In this case, MobSF
detected four trackers. In the following paragraphs, we will use the static analysis
dashboard and analyze the findings to see if there is valuable data to extract.

permissions MobSF identifies all permissions required by the application in
its AndroidManifest file. The tool identified 49 permissions and classified 17 as
critical or dangerous, as they can be exploited by a malicious application. Table 16
displays the permissions classified as dangerous.

Cross-referencing these permissions with the ones told by Garmin on the Play
Store page, we can confirm that the application did not ask for permission not
presented to the user before installation.

network security This topic is related to the network settings of the
application. Here, the scanner identified a finding with high severity described as
Domain config is insecurely configured to permit clear text traffic to these domains in
scope. This description means that the developers defined in the XML configuration
file the data to be transmitted in plain Hypertext Transfer Protocol (HTTP) for
the domains shown in Listing 4.

Sending data through HTTP on the local host is a common practice for develop-
ment purposes. However, it should never be used in production since it can send
sensitive data through clear text that an attacker can collect during the communi-
cation. It is also interesting to note how Garmin Connect sends the data in clear
text to the application Strava since this could potentially be considered a security
and privacy flaw when dealing with personal data.

57

post mortem analysis of garmin connect

Table 16: The application’s permissions classified as dangerous

permission description

android.permission.WRITE_EXTERNAL_STORAGE Allows the application to,
write to external storage.

android.permission.READ_EXTERNAL_STORAGE Allows the application to,
read from external storage.

android.permission.ACCESS_FINE_LOCATION Allows access to a precise location.

android.permission.ACCESS_COARSE_LOCATION Allows access to an approximate location.

android.permission.ACCESS_BACKGROUND_LOCATION Allows a to access the location
when running in the background.

android.permission.READ_PHONE_STATE

Allows read-only access to phone state,
including current network information,
the status of all ongoing calls, and a list
of other mobile phone accounts.

android.permission.ANSWER_PHONE_CALLS Allows to answer incoming phone calls.

android.permission.READ_CONTACTS Allows reading the phone’s contacts.

android.permission.SYSTEM_ALERT_WINDOW Allows displaying windows on top
of other apps or the system.

android.permission.CAMERA Allows access to mobile phone camera.

android.permission.READ_CALENDAR Allows reading the user’s calendar events
and details from the device’s calendar.

android.permission.SEND_SMS Allows sending Short Message Service (SMS)
messages from the device.

android.permission.CALL_PHONE Allows initiating phone calls from the device
without requiring confirmation.

android.permission.READ_CALL_LOG Allows reading the call log from the device.

android.permission.GET_ACCOUNT

Allows access to the list of accounts in,
the Accounts Service, which contains the list
of accounts that are associated with the user.

android.permission.AUTHENTICATE_ACCOUNTS Allows to act as an authenticator for
the accounts on the device.

android.permission.AUTHENTICATE_ACCOUNTS Allows to perform operations such as adding
and removing accounts.

58

3.4 mobsf analysis

Listing 4: Network configuration
1 <domain-config cleartextTrafficPermitted="true">
2 <domain includeSubdomains="true">garmin.com
3 </domain>
4 <domain includeSubdomains="true">garmin.cn
5 </domain>
6 <domain includeSubdomains="true">garmincdn.com
7 </domain>
8 <domain includeSubdomains="true">strava.com
9 </domain>

10 <domain includeSubdomains="true">127.0.0.1
11 </domain>
12 <domain includeSubdomains="true">localhost
13 </domain>
14 </domain-config>

certificate analysis focuses on the application’s security Certificates and
signatures. Here, it found a high-severity problem. MobSF describes the finding as:

Application is signed with MD5. MD5 hash algorithm is known to have collision
issues. Android requires that all applications be digitally signed with a certificate
before being installed or updated. Garmin Connect uses MD5 to sign the certificate.
This can be a major or minor problem depending on whether MD5 is the only method
of hashing used (sometimes MD5 is used as a backup in case of country restrictions
with other ways). It can become dangerous if that’s the case since an attacker could
brute-force the signature. When the malicious user discovers it, he/she could create
a customized application with malicious code, sign the certificate with the same
signature, and publish the application to exploit unaware users that install it. This
practice is becoming increasingly typical.

manifest analysis is related to the analysis of the Android Manifest. Every
Android project must have an XML file called AndroidManifest.xml at the root
of the project source set. The manifest file describes essential information about the
application to the Android build tools, the Android operating system, and Google
Play.

The Android Manifest is a good entry point for dynamic analysis since it can
discover permissions or other configuration flaws in a specific component (Li et al.,
2016). MobSF found no issues classified as high. It only found six medium results
related to components shared with other applications (Android:exported=true).
However, the developers defined permissions to secure these components, so it is
not an issue.

59

post mortem analysis of garmin connect

code analysis MobSF analyzes the application’s code in search of coding
flaws and relates them to Common Weakness Enumeration (CWE) and the OWASP
Top 10. The scanner highlights the files related to the finding and the specific code
line. MobSF identified 17 issues. However, after analyzing the code files where these
issues were generated, we could narrow this down to 6 noteworthy issues to explore.
The others are not considered helpful for the dynamic analysis or are related to
external dependencies such as libraries.

This App uses SSL certificate pinning to detect or prevent MITM attacks in secure
communication channels. The first issue found is not an issue but an application
security implementation, so it was classified as secure. SSL pinning prevents
dangerous and complex security attacks. This security measure pins the identity of
trustworthy certificates on mobile apps and blocks unknown files from suspicious
servers. In the dynamic analysis, we will further analyze and explore this feature.

The App logs information. Sensitive information should never be logged. Although
it is not a vulnerability, the second issue can become problematic, so MobSF
classified the severity as info. Developers usually log information to the console
during development for various purposes, such as debugging. However, when the
application enters the production stage, all log functions should be deactivated since
attackers can exploit them to identify possible messages with private data or find
ways to use features. We already saw in the file analysis that the application logs
personal information related to the HTTP communication, such as the OAuth 1
and 2 data.

The App uses the encryption mode CBC with PKCS5/PKCS7 padding. This
configuration is vulnerable to padding Oracle attacks. The scanner classifies the third
issue as high severity. Padding is a common practice in cryptography, consisting
of adding data to a message before it is encrypted. Oracle Padding is an attack
in which a function decrypts messages and leaks the padding, allowing attackers
to read sensitive data or escalate their privileges without knowing the key used in
cryptographic operations. The attack is commonly associated with the Cipher-Block
Chaining (CBC) encryption mode, which encrypts data only in blocks of specific
sizes, so it is necessary to use padding for the correct functioning of its algorithm.
The padding schemes commonly used in these operations are PKCS5 and PKCS7
(Bardou et al., 2012). Listing 5 shows a Java function from the application that is
vulnerable to this type of attack.

Insecure WebView Implementation. Execution of user-controlled code in WebView
is a critical Security Hole. The next issue is classified as warning by the scanner and

60

3.4 mobsf analysis

Listing 5: Java file flagged as having a vulnerability
1 public static byte[] g(String str, String str2, byte[] Barr) {
2 try {
3 SecretKeySpec secretKeySpec = new SecretKeySpec(str.getBytes(),

"DESede");↪→
4 Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding");
5 cipher.init(2, secretKeySpec, new IvParameterSpec(m.d(cipher, str2)));
6 return cipher.doFinal(Barr);
7 } catch (Exception unused) {
8 return null;
9 }

10 }

is related to WebView. We already identified in the file analysis that the application
uses WebViews. Since they are browsers run inside the application, they can be
used as a vector of attack by injecting malicious javascript code that will be run by
the browser, possibly infecting the application.

App uses SQLite Database and executes raw SQL query. Untrusted user input
in raw SQL queries can cause SQL Injection. Also, sensitive information should
be encrypted and written to the database. The fifth issue detected by MobSF is of
medium severity. It detected that the application executes raw SQL queries inside
the code functions. One of the most common types of attacks is SQL injections,
where an attacker sends in a text input raw SQL commands to obtain data or
response from the database. These attacks typically bypass authentication or retrieve
user information 33.

This App may have root detection capabilities. The last issue we will discuss is
another security feature that the scanner detected. However, it is a false positive,
or the feature is poorly programmed since we could use the application on a rooted
phone. However, MobSF also identified that the application detects virtual machines
and, indeed, the application does not run on virtual machines.

reconaiscance .MobSF also collects hard-coded information such as Internet
Protocol (IP) addresses, URLs, database addresses, secrets, and more. From the
information recovered by MobSF we highlight the following: the applications fire-
base database 34. The privacy trackers, found in the code, MobSF found trackers
related to Facebook and Google Analytics. And a list of all possible secrets that
are hard-coded in the application such as passwords, API keys and tokens. Table 17
highlights the secrets found by the scanner, they were all API keys related to third

33 https://developer.android.com/topic/security/risks/sql-injection
34 https://garmin-connect-mobile.firebaseio.com

61

https://developer.android.com/topic/security/risks/sql-injection
 https://garmin-connect-mobile.firebaseio.com

post mortem analysis of garmin connect

Table 17: Garmin Connect Secrets

secret value

baidu_map_apikey zHV...(a total of 24 characters)

com.google.firebase.crashlytics.mapping_file_id 437...(a total of 33 characters)

google_api_key Alz...(a total of 39 characters)

google_client_secret r_e2...(a total of 22 characters)

mapv2_apikey Alz...(a total of 39 characters)

party services used by the application and contain little value. The other data from
the list are useless strings or paths for the secure location of the data.

3.5 summary

We conclude the first part of this project and this analysis, focusing on the static
analysis of the Garmin Connect application. This process allowed us to discover
various facts about the application and things that can be used in the following
steps: developing the ALEAPP plugins and the dynamic analysis. The Garmin
Connect application stores data exclusively in the private directory. We also saw
that the application has various extensive SQLite3 databases. Nevertheless, only a
few databases had forensic value. Lastly, MobSF helped us better understand how
the code works under the hood and possible flaws and security implementations
that can be used in our favor. In table 18, we present a summary of the main static
analysis findings.

62

3.5 summary

Table 18: Static Analysis Findings

type findings

XML and Text files

User Profile Information
Application Logs
Facebook API Data
Device Information
Authentication Information
API Information
Firebase Information
Encrypted Data

Databases

User Profile Data
Health Values
Activities Data
Device Information
Phone Notification
GPS Location
Daily Data
Synchronization Logs

MobSF

Security Score
Network Flaws
Coding Flaws
Trackers
Hard coded Secrets
Security Implementations

63

4
D Y N A M I C A N A LY S I S

In this chapter, we continue analyzing the Garmin Connect application. We use all
the knowledge acquired during the background study and the post-mortem analysis
to execute a dynamic application analysis. For that, we follow the steps listed in
the book Learning Android Forensics (Skulkin et al., 2018):

1. Running the application and observing its behavior

2. Monitoring network traffic

3. Inspecting the application’s user interface

4. Identifying and analyzing any potential vulnerabilities

5. Attempting to bypass any security features present in the application

6. Inspecting the application’s code and resources using tools such as decompilers
and debuggers

7. Identifying any sensitive data stored in the application or transmitted over
the network

8. Attempting to crash the application to identify any stability issues

Some steps were already done or touched upon in the static analysis, such as
observing the application behavior and vulnerabilities with the help of MobSF.

4.1 tools

We needed a set of different tools for this analysis. We use ADB to interact with the
phone like before. For analyzing the source code of the application, we resorted to
jadx 1, a tool for decompiling applications and transforming dex code in readable
Java code. Since Garmin Connect requires an internet connection to work, this
analysis focuses on the network communication and the applications API and how
it exchanges data with the server. One of the most popular tools for analyzing

1 https://github.com/skylot/jadx

65

https://github.com/skylot/jadx

dynamic analysis

Table 19: Dynamic Analysis Tool

tool version use

ADB 33.0.1 Interacting with Phone via Command Line

Frida 15.2.2 Dynamic instrumentation toolkit

jadx 1.4.5 Application decompiler

HTTP Toolkit 1.12.2 Intercepting and viewing HTTP Requests

mitmproxy 9.0 Intercepting and modifying HTTP Requests

Postman 10 Tool for testing and building API

HTTP communications is HTTP Toolkit 2, an open-source tool for intercepting
and analyzing HTTP requests. The HTTP Toolkit application also has a feature for
modifying HTTP requests and responses. Unfortunately, this is a paid feature, so we
combined this tool with another tool called mitmproxy 3. Mitmproxy is a command
line tool for intercepting HTTP requests. The difference is that with mitmproxy, we
can load Python scripts to interact with the data flow, such as dumping information
or changing the requests or responses on the fly before reaching their destination.
Another tool used to analyze the API was Postman 4. Postman is a prevalent tool
in software development to aid developers in creating and testing their API. The
last tool used is called Frida 5. Frida is a widely used tool in penetration testing
for injecting and altering the application flow in real-time. Various Frida scripts are
publicly available to test different kinds of features in an application. We will use
Frida as the need arises. In the Table 19, we list all tools and their versions used
during this analysis.

4.2 network analysis

Since we already had analyzed the behavior of the application, we decided to test
run and complete various tasks such as:

• Authenticating in the application

• Synchronizing the application with the Vivosmart 4

2 https://httptoolkit.com/
3 https://mitmproxy.org/
4 https://www.postman.com/
5 https://frida.re/

66

https://httptoolkit.com/
https://mitmproxy.org/
https://www.postman.com/
https://frida.re/

4.2 network analysis

• Uploading and updating data on the application

• Viewing different activities

We need the proxy to intercept the network traffic of an Android device. The
proxy acts as man-in-the-middle between the Android device and the servers that
it connects. There are several ways to accomplish network traffic interception:

• Using a proxy on a computer (mitmproxy)

• Using a fake VPN on Android to act like a proxy (HTTP Toolkit)

Using HTTP Toolkit is the more straightforward method of intercepting the
network traffic. The downside is that various features are exclusive to the paid
version of the application. Mitmproxy is more complex to set up but offers more
packet analysis flexibility. Also, we can create Python scripts and add them to
mitmproxy to inject or download data from specific requests and much more. The
downside is that all Android traffic is routed through the proxy by default, and
finding the packets related to a single Application is more challenging. We will start
using HTTP Toolkit, and when the need arises, we will also use mitmproxy.

We needed to install the application on the phone and our computer to use
HTTP Toolkit. HTTP Toolkit automatically adds his digital certificate to the
Android phone, which means we can automatically intercept HTTPS requests of the
application (except in some cases where we need an extra step that we will talk about
further in this section). After starting the interception on HTTP Toolkit, we began
navigating through the application to get a vast quantity of packet interception.

After using all Garmin Connect available features during the interception, we
discovered that the application communicates with several hosts shown in the
Table 20. Nevertheless, there could be more since we could not test all the application
functionalities with Vivosmart 4.

Using the online tool Netcraft6, we managed to discover the corresponding IP

addresses. From the report generated by Netcraft, we could identify that the URLs

are hosted on Cloudflare.

Cloudflare is a major content delivery network (CDN) service provider and is an
intermediary between the website’s server and the end user. When a website uses
Cloudflare services, client requests are routed through Cloudflare’s global network,
allowing for faster content delivery and increased security. This means we cannot
get the physical location from the Garmin Connect servers.

6 https://sitereport.netcraft.com

67

https://sitereport.netcraft.com

dynamic analysis

Table 20: Garmin Connect Hosts

host use

api.gcs.garmin.com To get weather data for current location

connect.garmin.com To store cache data of the application

connectapi.garmin.com For the applications’ API access

diauth.garmin.com For the OAuth process

omt.garmin.com For the synchronization process

services.garmin.com To acquire the session token

sso.garmin.com For user’s authentication

Out of all identified hosts, the two most relevant are sso.garmin.com and
connectapi.garmin.com. The first handles the authentication process for the user
login. Single Sign On (SSO) refers to an authentication mechanism that enables
users to access multiple applications or systems using a single set of login credentials.
With SSO, users only need to authenticate themselves once and can then gain access
to multiple applications without the need to provide their credentials again for each
individual application.

The second host, connectapi.garmin.com, serves as the Garmin API host. It is
responsible for retrieving all the data displayed in the application and facilitating
the transmission of data to the server.

4.2.1 Authentication

The application login process is lengthy, so we created a diagram exemplifying
the approach between the Android application and the remote server, as shown in
Figure 15. The process starts when the user clicks the sign-in button, and the login
screen appears.

first request: After clicking the login button the request 1 will happen.
Specifically, the application sends a GET request to the server and receives a response
in HTML code to create the login dashboard. With this request, we discovered that
the authentication page is not a regular activity created with XML. Instead, it is a
WebView created based on the code received from the server.

68

4.2 network analysis

Client Server

0

Access Login Page

1

sso.garmin.com/sso/signin

2

sso.garmin.com/sso/signin

3

sso.garmin.com/sso/embed

4

diauth.garmin.com
di-oauth2-service/oauth/token

5

connectapi.garmin.com/
oauth-service/oauth/exchange/user/1.0

6

connectapi.garmin.com/userprofile-service/
socialProfile

Figure 15: Login communication process

The presence of a WebView in the application can be considered a potential
security vulnerability. It allows the execution of JavaScript code, which can
potentially be exploited to manipulate or bypass existing security measures in the
application. To assess the resilience of the WebView, we conducted several analyses
utilizing tools such as mitmproxy and Frida. Initially, we employed Frida to enable
WebView debugging, enabling us to mirror it on our computer using Google Chrome.
This process is possible because Google Chrome utilizes ADB to mirror WebViews
for debugging purposes. We used the Frida script Enable WebView Debugging
7 to enable this mode.

Frida is a dynamic code instrumentation toolkit that permits the user to inject
snippets of JavaScript into native applications on Android and more. Frida hooks
into the running process of the application and modifies the code on the fly without
any requirement for re-launching or re-packaging.

We used Frida version 15.2.2, we also needed to install the corresponding version
of Frida-tools which is 11.0.0. Frida-tools can be installed with Python PIP as
follows:

7 https://codeshare.frida.re/@gameFace22/cordova---enable-WebView-debugging/

69

https://codeshare.frida.re/@gameFace22/cordova---enable-WebView-debugging/

dynamic analysis

1 pip install frida==15.2.2

2 pip install Frida-tools==11.0.0

To run Frida, we must install it on the end device, in this case, the smartphone.
For that, one needs to download the Frida Server from Frida’s Github 8 and upload
it to the device using ADB with the command:

1 adb push ./frida-server-15.2.2 /sdcard/Download/

After that, we need need to activate it as root using the following commands:

1 adb shell

2 su

3 cd /data/local/tmp

4 cp /sdcard/Download/frida-server-15.2.2 .

5 chmod 755 frida-server-15.2.2

6 ./frida-server-15.2.2 &

The user needs to reactivate the Frida server if the phone reboots. Now we can
use Frida to inject scripts into Android applications. Below we show how to execute
the script on a computer connected by USB to the smartphone, to enable WebView
debugging:

1 frida -U --no-pause --codeshare

gameFace22/cordova---enable-WebView-debugging -f

com.garmin.android.apps.connectmobile

↪→

↪→

After, we could open the WebView on our computer and use the Google Chrome
developer tools to explore the HTML code. Listing 6 shows the Javascript code that
is responsible for the login validation. Using that, we discovered that it uses the
JQuery library for validating users’ input.

second request: After the user fills out the authentication form, the data
will be sent to the server in a POST request. If the response is positive with a status
code of 200, the application continues the process with the server. The client receives
HTML code again as a response to the request, and this code presents the loading
view before continuing. This code also contains a token for use in the next step. We
tried modifying the JQuery code of the first request to disable the form validation.

8 https://github.com/frida/frida/releases

70

https://github.com/frida/frida/releases

4.2 network analysis

Listing 6: Partial Javascript code for the login page
1 consoleInfo("signin.html result: [" + result + "]");
2 consoleInfo("signin.html embedWidget: [" + embedWidget + "],

createAccountConfigURL: [" + createAccountConfigURL + "], socialEnabled: ["
+ socialEnabled + "], gigyaSupported: [" + socialEnabled + "],
socialConfigURL(): [" + socialConfigURL + "]");

↪→
↪→
↪→

3 jQuery(document).ready(function() {
4 jQuery("#username").rules("add",{
5 required: true,
6 messages: {
7 required: "Email is required."
8 }});
9

10 jQuery("#password").rules("add", {
11 required: true,
12 messages: {
13 required: "Password is required."
14 }
15 });
16 jQuery("#password").on('input', function () {
17 if (jQuery("#passwordToggle").html() == "Hide") {
18 jQuery(this).attr("type", "text");
19 jQuery("#passwordToggle").html(jQuery("#passwordToggleHide").val ⌋

());↪→
20 } else if (jQuery("#passwordToggle").html() == "Show"){
21 jQuery(this).attr("type", "password");
22 jQuery("#passwordToggle").html(jQuery("#passwordToggleShow").val ⌋

());↪→
23 }
24 });
25 });

Nevertheless, it did not make a difference since the view sends a POST request to
the API when it responds.

We decided to try other types of analyses, such as a MITM. To view and interact
with the HTTP traffic, we used mitmproxy since we could create Python Scripts
to interact with the data flow. To use mitmproxy, we needed to install it on our
computer and the digital certificate on the phone. Then, the only step left is to
define our computer as a proxy in the phone’s network settings. Using this tool, we
found out that Garmin Connect uses SSL pinning.

SSL pinning is a security measure where an application trusts only specific digital
certificates or public keys rather than relying on trusted authorities. It helps prevent
attacks involving fraudulent certificates and MITM (Ramírez-López et al., 2019). To
bypass this feature, we used Frida with a script created by akabe1 in Codeshare
that lets users bypass multiple types of SSL pinning methods 9. To execute this
script, we used the command:

9 https://codeshare.frida.re/@akabe1/frida-multiple-unpinning/

71

https://codeshare.frida.re/@akabe1/frida-multiple-unpinning/

dynamic analysis

1 frida -U --no-pause --codeshare akabe1/frida-multiple-unpinning -f

com.garmin.android.apps.connectmobile↪→

After that, we could see the traffic in mitmproxy like in HTTP Toolkit. To test
against SQL Injections, we altered the password sent by the user before it hit the
server using mitmproxy and the script shown listing 7:

Listing 7: Script to inject SQL
1 def request(flow: http.HTTPFlow) -> None:
2 if flow.request.method == "POST":
3 if "https://sso.garmin.com/sso/signin" in

flow.request.pretty_url:↪→
4 if "password" in flow.request.text:
5 flow.request.urlencoded_form["password"] = "' or '1'='1"

Based on the mitmproxy output, it was evident that the server effectively detected
the invalid request and responded with an error. This outcome signifies that the
API is secure and resilient against such attacks.

third request: After the user logs in with the correct credentials, the
application will send a GET request for the URL shown in step 3, the request also
contains as parameter a Service Ticket that the application received in the previous
request. Opening the URL in the browser, we had access to the documentation for
that endpoint.

Upon examination, we discovered that accessing the login form through a web
browser was feasible. This led us to authenticate using the appropriate credentials,
which subsequently redirected the browser to a blank page containing the service
ticket token. This token holds significance as it will be utilized in the subsequent
request illustrated in Figure 15.

fourth request: The application initiates another POST request, which
is directed towards the OAuth server in order to generate the user access token
for the API. Within this request, the application includes the previously received
Service Token in the response. In return, the server provides the corresponding
Bearer Token and Refresh Token, which the application can utilize for making
subsequent requests. It has also been discovered that a new bearer token can be
obtained by using the refresh token as a parameter instead of the service ticket.
However, it is essential to note that the refresh token must still be valid for this
approach to work. This process implies that only access to the Service Ticket is

72

4.2 network analysis

required to obtain the current token for the user. This particular characteristic
could potentially result in a security vulnerability.

For instance, an attack scenario involves the creation of an iframe from the sign-in
page, which is then added to a malicious webpage to mimic a legitimate login page.
In this case, an attacker designs a fraudulent login page equipped with a keystroke
logger to capture victims’ credentials. Another prevalent form of attack is called
clickjacking, wherein an attacker overlays an HTML form onto the iframe, making
it invisible or applying the same styling as the iframe page. The user is deceived
into entering their credentials into the form, unknowingly transmitting the data to
a malicious server for potential storage. It is worth noting that iframe attacks have
become uncommon due to the implementation of the CORS (Cross-Origin Resource
Sharing) policy by modern browsers, which restricts JavaScript execution within
elements sourced from different domains (Zhu, 2021). Nonetheless, developers can
still take preventive measures to mitigate such risks, such as allowing the login page
to be exclusively rendered within an iframe located on the same domain as the
hosting page.

We also tested this endpoint against possible XSS (Cross-site scripting) by injecting
in the URL Javascript. The server detected and blocked the request.

fifth request: Next, the application will utilize the received bearer token
to initiate another POST request, targeting the application. This time, the request
is directed towards the URL illustrated in Figure 15 at step 5. This request aims
to communicate with a different OAuth service employed by Garmin, specifically
the OAuth 1 service utilized by their API and partner application. It should be
noted that this service is considered legacy and possesses lower security measures
in comparison to OAuth 2. Unlike OAuth 2, where the bearer token has a limited
lifespan of a few hours, the credentials in OAuth 1 remain fixed. In response to the
request, the server returns the user’s token and secret. As the traffic is encrypted,
we couldn’t identify any vulnerabilities.

sixth request: Finally, the application issues a GET request to the API to
retrieve the required user information for accessing the main dashboard.

Ultimately, through various analyses, we have validated the security of the
authentication process. Upon successful authentication using the correct credentials
and a unique token, the host diauth.garmin.com provides the generated OAuth
token, which is used to request the session token for subsequent requests within

73

dynamic analysis

the ongoing session. The only vulnerability identified pertains to the URL of the
authentication page, as it can be rendered on any domain.

Finally, by utilizing the generated access token, we gained access to a critical
artifact. Employing this token as a Bearer Token within the authorization header,
alongside the OAuth 1 consumer key in the request body, we successfully executed
a POST request to the URL /connectapi.garmin.com/oauth-service/oauth/e

xchange/user/1.0. As a result, we obtained the OAuth token and secret. It is
crucial to highlight that this discovery presents a potential security risk since, with
this information, we possess three of the four required parameters for requesting
access on behalf of that user (consumer token, access token, and token secret). An
attacker could use brute-force tactics to deduce the consumer’s secret. Since OAuth
1 tokens do not expire, it would only be a matter of time until unauthorized access
is obtained, enabling the attacker to extract data using the OAuth 1 credentials.

4.2.2 Remote Extraction

After successful authentication, we used the various resources available within
the application to comprehensively understand its functionality by examining the
captured requests within the HTTP Toolkit.

get requests The first thing we noted was that application only uses the
local databases for caching information. All the data shown in the different views
come from GET requests to the API. Even when returning to other opened views,
the application always refreshes the User Interface (UI) with data from the server.
For example, we used mitmproxy to intercept a GET request and change the data
before it reaches the application, effectively changing the data displayed to what we
wanted.

During this analysis, we discovered that the access token generated after the
Authentication process was sufficient to retrieve any user-specific data stored by the
application. Consequently, it became apparent that having a valid user access token
enabled access to all data associated with a particular user within Garmin Connect,
even without user credentials or direct access to the application. This encompassed
a wide range of data, including activity data (such as calories, time, coordinates,
steps, etc.) as well as health data (such as heart rate, oxygen levels, stress, and
sleep information). This token is valid for 24 hours.

74

4.2 network analysis

Table 21: Data Endpoints

url use

wellness-service/wellness/dailySleepDataCharts Sleep Data

mobile-gateway/snapshot/timeline/v2/forDate/ Daily User Data

activitylist-service/activities/search/activities Activities Overview Data

activity-service/activity/ Specific activity data

usersummary-service/stats/stress/daily/ Stress Data

The endpoints required for retrieving specific data may differ. However, the
host connectapi.garmin.com remains constant throughout. Table 21 provides an
overview of the endpoints identified during our analysis.

Extracting data from the API using Postman is a straightforward process. However,
we aimed to develop an automated method for retrieving data from a device. This
would benefit researchers and forensic practitioners seeking to obtain data from a
specific phone without relying on tools like Postman or HTTP Toolkit. We created
a Python script called GCA-Extractor (Garmin Connect API Extractor) to
fulfil this objective. With this script, users can specify the desired data type and
timeframe for extraction. It is important to note that users still require an access
token to make API requests. Combining the findings from our post-mortem analysis
with the network analysis, we devised a process that acquires a usable access token
before making the request. Figure 16 illustrates an example of the script’s workflow
for extracting sleep data within a specified period.

First, the smartphone needs to be connected to a computer via USB. After that,
it uses ADB to read the app.log file in Garmin’s private directory, obtain the access
token’s last instance as shown in Listing 2, and save it in a text file. Then based on
the data type chosen and timeframe, it will use Python’s http.client to make a GET

request to the API and obtain the data. Lastly, it will save the output in a JSON
file for further analysis. The user can also add the token manually, skipping the
ADB extraction process. To execute the script, the user needs to type the following:

1 python3 apiExtractor.py -a <API-key> -s <START_DATE> -e <END_DATE>

75

dynamic analysis

python3 gcaExtractor.py -a sleep -s 2022-11-13 -e 2022-11-19

Does
the token.txt

exist?

Yes

Use the
token to get

the data from
the API.

Extract sleep data from
2022-11-13 to 2022-11-19 in a

JSON file

No
Use ADB to get the last bearer

token stored in app.log

Figure 16: Example of API Script Execution

76

4.2 network analysis

Table 22: POST Requests

url use

activity-service/activity Upload Activities

conversation-service/conversation/comment Write Comments

upload-service/upload/wellness Upload Device Data

usersummary-service/usersummary/hydration Upload Hydration Data

weight-service/user-weight Upload Weight Data

wellness-service/wellness/dailySleep Upload Sleep Data

As mentioned earlier, the access token operates as a JSON Web Token (JWT) with
a limited validity period of 24 hours. Consequently, there is only a brief timeframe
within which the access token remains valid and can be effectively utilized.

The development of the ALEAPP modules was greatly facilitated by the inclusion
of this script, as it enabled the creation of modules for retrieving API data. As
long as the access token remains valid, retrieving all data associated with a user’s
Garmin Connect account becomes possible. The script is openly available on our
GitHub repository as listed in Table 31.

Currently, it supports the extraction of the following data types:

• Activities Data

• GPS Routes

• Heart Rate Data

• Sleep Data

• Stress Data

• Steps Data

• User Daily Data

post requests Table 22 documents a collection of POST requests identified
during our study.

Except for the POST request responsible for uploading device data, the majority
of the POST requests primarily involve user-generated content and thus possess
limited forensic significance. Using HTTP Toolkit, we studied the possibility of

77

dynamic analysis

modifying requests to send forged data to the server. The application sends data
to the server in the binary protocol FIT seen in subsection 3.3.2. We intercepted
data with mitmproxy and tried to decode it with the script fitdecode to modify it
before sending it to the server. However, this request’s body differs from a standard
user-generated FIT file so we couldn’t decode this data to continue this test.

4.3 code analysis

A vital step during a dynamic study is to analyze the application source code to
find potential vulnerabilities and flaws that attackers may exploit to bypass security
features.

Android applications are often written in Java and compiled into Dalvik bytecode.
Dalvik bytecode is created by first compiling the Java code to .class files, then
converting the Java Virtual Machine (JVM) bytecode to the Dalvik .dex format as
shown in Figure 17. The Java bytecode is compiled into Dalvik bytecode that is
executed by the Android environment, which in modern devices is called Android
Runtime (ART) (Mueller et al., 2022).

The .dex format is very memory efficient. However, it is almost impossible to
reverse engineer and find flaws in binary code, so various tools such as JADX
convert DEX code back to Java source code.

To install jadx, we need to download the binaries from GitHub and run them in
the command line with the following code:

1 jadx -gui

After decompiling the application, we observed that it uses obsfucation to harden
its analysis. Code obfuscation is producing an executable that has its identifiers
replaced by random names, severely hardening the task of understanding the
code. While the process may modify actual method instructions or metadata, it
does not alter the program’s output (Xu et al., 2020). By making an application
much more difficult to reverse-engineer, developers can protect the application
against unauthorized access, bypassing licensing or other controls and vulnerability
discovery.

Garmin Connect implements two obfuscation techniques: Rename Obfuscation
which is renaming the packages and classes to random letters as shown in Figure 18,

78

4.4 summary

Figure 17: Android compilation process

and String codification which makes the code harder to decipher by anonymizing
the name of the functions and variables as shown in Figure 19.

JADX manages to deobfuscate some code making it more readable. Nonetheless,
the analysis can still be challenging, especially when the application splits its code
across multiple different classes, making interactions with Frida even more difficult.
Since the application performs very few functionalities locally, there is little to
analyze here. We focused on searching for potential hardcoded secrets the developers
may have left, but we did not find anything.

4.4 summary

We conclude this dynamic analysis without having discovered meaningful findings.
This can be seen as a positive outcome, as it proves that the Garmin Connect
application is secure against different kinds of attacks, as shown in the network and
code analysis. We also managed to understand how the application authentication
process works and how it internally fetches data. Analyzing the API helped us

79

dynamic analysis

Figure 18: Obfuscated Directories

Figure 19: Obfuscated code

80

4.4 summary

Table 23: Dynamic analysis findings

brand main findings

Network Analysis

Authentication is done in a WebView.
The application stores almost no Data locally and uses the API to get data
application uses OAuth 1 and 2.
With the Bearer Token, wone can get all the user’s from the API.
It is possible to load the login page in an Iframe.
The application uses HTTPS and SSL certificate pinning.
The application is secure against SQL and Javascript Injections.

Code Analysis
The code is obfuscated.
There are no sensitive secrets hard-coded.
The application is protected against reverse engineering.

to create a script to automate extracting data from a user using only ADB. This
script is crucial for the next chapter, where we will discuss creating the ALEAPP
modules for Garmin Connect. Table 23 shows what we managed to discover with
this analysis.

81

5
G A R M I N C O N N E C T F O R A N D R O I D A N A LY Z E R

We developed modules for the forensic framework ALEAPP to automate the Android
Garmin Connect data analysis. We called this set of modules Garmin Connect
for Android Analyzer or GC4AA. We also developed various new functionalities
for the ALEAPP framework to augment the reports generated, present the data
more interactively, or ease the report’s analysis by adding improvements to existing
features. In subsection 5.5, we will detail all the new features added to ALEAPP.

5.1 aleapp

ALEAPP or Android Logs Events And Protobuf Parser is a Python framework
created by Alexis Brignoni Brignoni (2023) to generate a forensic report based on
artifacts found in the directories extracted of Android applications. The artifacts
depend on the modules selected, as shown in Figure 20. ALEAPP is a valuable
triage resource within forensic laboratories, offering a crucial auxiliary solution
for forensic investigators. Moreover, ALEAPP is a versatile framework enabling
independent testing and evaluation of various forensic tools, further enhancing their
utility and value. It is becoming a popular tool among open-source practitioners for
analyzing Android applications.

Since ALEAPP is an open-source project, the creator incentivizes contributions
such as creating modules for applications that are yet not supported or new features
for existing ones. ALEAPP is modular and is organized so that new developers can
create modules or new features for ALEAPP and seemingly integrate them. When
we started developing our modules for Garmin Connect, there were no modules for
Garmin Connect. We are motivated to develop these modules for ALEAPP and
not create a standalone tool such as was done by Domingues et al. (2023) due to
the current popularity and growth in ALEAPP from users and developers creating
modules for it. Improving ALEAPP by adding a popular application such as Garmin
Connect and making it available to more analysts instead of publishing a standalone
tool makes sense.

83

garmin connect for android analyzer

Figure 20: ALEAPP GUI

We created 23 different modules to extract the information from the data source.
From the 23 modules, 16 parse and extract the information stored in the private
directory. We called these modules post-mortem, Table 24 presents a brief description
of each module created.

The remaining seven modules parse and extract data recovered from the API
through our GCA-Extractor script. We called them API modules and presented
a brief explanation of each in Table 25. Furthermore, we also developed five new
features for the reports generated by ALEAPP. Our contributions were added
officially in version 3.1.8 of ALEAPP 1.

5.1.1 Installation

To install ALEAPP one clones the repository with the following command:

1 git clone https://github.com/abrignoni/aleapp.git

Since we wanted to develop code for this repository, we forked it so that we could
work in our repository with source control. On the GitHub page, the developer
advises using Python 3.9 or above to work with ALEAPP.

1 https://github.com/abrignoni/ALEAPP/tree/main/scripts

84

https://github.com/abrignoni/ALEAPP/tree/main/scripts

5.1 aleapp

Table 24: Post-mortem Modules

module description

GarminActivities.py Parses activities stored in the cache-database

GarminChart.py Parse and display Heart Rate data from the cache-database

GarminDailies.py Parse user daily summary from the cache-database

GarminFacebook.py Get Information from the Facebook API

GarminGcmJsonActivities.py Parse JSON activities stored in gcm_cache.db

GarminJson.py Parse JSON data stored in gcm_cache.db

GarminLog.py Parses data from the app.log file

GarminNotification.py Parses data from the notification-database

GarminPersistent.py Parse the content of the PersistedInstallation.xml file

GarminPolyline.py Parses and converts the polyline records from the cache-database

GarminResponse.py Parse the response cache data from the cache-database

GarminSPo2.py Parse the SpO2 data recorded in the cache-database

GarminSleep.py Parses sleep data recorded in the cache-database

GarminSync.py Parse the synchronization records stored in the in the sync_cache

GarminUser.py Parses data from the gcm_user_preferences.xml file

GarminWeight.py Parses weight data from the cache-database

Table 25: API Modules

module description

GarminActAPI.py Parses activity data obtained from the API

GarminDailiesAPI.py Parses user daily summary data obtained from the API

GarminHRAPI.py Parses heart rate data obtained from the API

GarminPolyAPI.py Parses polyline data obtained from the API

GarminSleepAPI.py Parses sleep data obtained from the API

GarminStepsAPI.py Parses step data obtained from the API

GarminStressAPI.py Parses stress data obtained from the API

85

garmin connect for android analyzer

To run ALEAPP, one must install the required dependencies listed in the file
requirments.txt. This can be done using the command:

1 pip3 install -r requirements.txt

It is recommended to create a virtual environment in case the user has conflicting
global packages installed. In Linux, one will also needs to install tkinter (python
Graphical User Interface (GUI) package) with the command:

1 sudo apt-get install python3-tk

5.1.2 Plugin Creation

ALEAPP was built around the idea of being scalable and modular, developers
only need to produce a single Python file to add it to the framework. Inside this
file, we will parse the data as he sees fit and output the data in the Hypertext
Markup Language (HTML) report generated by ALEAPP using the functions
already developed. The plugins are stored in the folder artifacts inside of the
scripts folder, Listing 8 shows the basic structure for an ALEAPP module. Simply
put, an ALEAPP module does is to read the target file, extract the data and present
it to the user. Since this is very basic and we added more features to ALEAPP.
For that, we needed to add code to the base Python files that contain the code to
generate HTML reports.

5.2 tools

For this part of the project, we used the standard tools needed for software devel-
opment. The modules were developed in Python 3.10, resorting to the Integrated
Development Enviorment (IDE) PyCharm.

We had to implement new features in ALEAPP to create our modules. For that,
he had to add various Python and Javascript libraries. Table 26 shows all the
dependencies used, the version used, and the language associated with it.

86

5.3 post-mortem modules

Listing 8: Template Structure of ALEAPP modules
1 import datetime
2 from scripts.artifact_report import ArtifactHtmlReport
3 import scripts.ilapfuncs
4

5 def get_cool_data1(files_found, report_folder, seeker, wrap_text):
6 # let's pretend we actually got this data from somewhere:
7 rows = [
8 (datetime.datetime.now(), "Cool data col 1, value 1", "Cool data

col 1, value 2", "Cool data col 1, value 3"),↪→
9 (datetime.datetime.now(), "Cool data col 2, value 1", "Cool data

col 2, value 2", "Cool data col 2, value 3"),↪→
10]
11

12 headers = ["Timestamp", "Data 1", "Data 2", "Data 3"]
13

14 # HTML output:
15 report = ArtifactHtmlReport("Cool stuff")
16 report_name = "Cool DFIR Data"
17 report.start_artifact_report(report_folder, report_name)
18 report.add_script()
19 report.write_artifact_data_table(headers, rows, files_found[0]) #

assuming only the first file was processed↪→
20 report.end_artifact_report()
21

22 # TSV output:
23 scripts.ilapfuncs.tsv(report_folder, headers, rows, report_name,

files_found[0]) # assuming first file only↪→
24

25 # Timeline:
26 scripts.ilapfuncs.timeline(report_folder, report_name, rows, headers)
27

28

29 __artifacts__ = {
30 "cool_artifact_1": (
31 "Really cool artifacts",
32 ('*/com.android.cooldata/databases/database*.db'),
33 get_cool_data1)
34 }

5.3 post-mortem modules

The post-mortem modules were developed by leveraging the inherent functionality
of ALEAPP, which involves parsing data within Android application directories
to locate artifacts and generate comprehensive reports. Using the data collected
from the post-mortem analysis, our modules will parse the files listed in Table 27 to
retrieve the corresponding artifacts.

5.3.1 Activities modules

There are three modules related to the activities stored in the cache-database:
GarminActivities.py, GarminChart.py, and GarminPolyline.py. Next, we
describe each of them.

87

garmin connect for android analyzer

Table 26: Libraries Used

library version language

Cal Heatmap 4.0 Javascript

Chart JS 4.2 Javascript

D3 7 Javascript

Folium 0.14.0 Python

Geopy 2.3.0. Python

Highlights JS 11.7.0 Javascript

Moment JS 2.29.4 Javascript

Polyline 2.0 Python

Popper 2.11.6 Javascript

Table 27: Parsed artifacts

artifact file

Activities
cache-database

gcm_cache.db

Activity Charts cache-database

Daily Summaries cache-database

GPS Data cache-database

Response Cache cache-database

Sleep Data cache-database

Weight Data cache-database

UserData
gcm_user_preferences.xml

gcm_cache.db

Log Data app.log

Facebook com.Facebook.internal.preferences

Firebase PersistedIntallation.xml

Notification notification-database

Synchronization Cache sync_cache.db

88

5.3 post-mortem modules

garminactivities.py This module extracts all data related to a workout
activity performed by the user and uploaded to the application. The data is then
stored in the tables activity_details and activity_summaries. The module
presents all activities recorded and the following data related to each activity:

• ID
• Start and End time
• Name and type
• Distance, Duration, and time moving
• Elevation
• Speed
• Start latitude and longitude
• Profile Picture
• Calories Burned
• Heart Rate
• Running Cadence
• Steps
• Maximal Oxygen Consumption (vO2)

garminchart.py This module extracts data stored in the activity_chart

_data table. As explained earlier, in the database analysis, this table stores the
coordinates to draw specific data charts in the application, such as the Heart Rate
measurement collected during a workout. The goal of this module is to present the
activities and associated records in the activity_chart_data and list them. Since
the application uses these values to plot charts, we did the same in our report. We
developed this feature since ALEAPP by default did not have a feature to create
and present data charts. Every activity record has a button associated with it, so
when clicked shows the respective chart based on the data, as shown in Figure 21.

garminpolyline.py This module shows the activities which are recorded in
the activity_polyline table. The goal is to show the workout routes taken by
the user. As the application only stores a polyline string and not the coordinates,
we created a method for converting polylines to GPS coordinates. The process has
already been explained during the database analysis (see subsection 3.3.3). Data is
displayed in a table, as shown in Figure 22. Here, the user changes the route shown
in the map by clicking the button Show Map on the desired record. The module
also allows to download a KML file with coordinates to open the data on Google
Earth. And just as in ADB Extractor, the user can also download the XLSX file with

89

garmin connect for android analyzer

Figure 21: ALEAPP Heart Rate Chart

the coordinates and additional information obtained from geopy. The module can
also be executed without internet connectivity, losing the ability to create the XLSX

file, Figure 11 shows an excerpt of the Excel file generated.

5.3.2 User Daily Module

The module GarminDailies.py extracts and presents the daily summary data
stored by the application in the user_daily_summary table. Each record represents
a different day. The module presents the following data:

• Calorie Data
• Steps
• Distance
• Floors
• Heart Rate
• Stress
• Body energy level (also called body battery)
• Hydration
• SpO2

90

5.3 post-mortem modules

Figure 22: Extract of GPS Report Module

5.3.3 Health Data Modules

Related to the health data stored in the cache-database, we could extract the
data related to SpO2 readings using the module GarminSPo2.py, the sleep data
using GarminSleep.py and the weight recorded in the application using the module
GarminWeight.py.

garminspo2.py parses the information of the table acclimation_pulse_ox

_details, where the application stores recent SpO2 readings. The module extracts
and presents the readings date/time, the average SpO2 value, and a data chart with
the SpO2 variation based on the values stored in the table.

garminsleep.py extracts the data from the sleep_detail table. This table
stores the sleep records. The module extracts and displays the following information:

• Time Slept (Begin, End, and total)
• Seconds in Deep, Light, and Rem Sleep
• Awake Seconds
• Average SpO2

• Average Heart Rate

91

garmin connect for android analyzer

Figure 23: ALEAPP JSON Block

garminweight.py presents all records related to the user weight that is stored
in the table weight. It also presents a chart with the fluctuation of weight during
the records.

5.3.4 Response Module

As analyzed before, the table response_cache stores a cache of request data to the
API, saving both the request and its corresponding JSON response. The module
GarminResponse.py presents this data. Since the table stores different JSON
requests and responses, we decided to present the complete response in the report.
To ease the understanding of the data, we created a functionality to display the
JSON code with indentation and different colors, as shown in Figure 23. Each record
represents a different response, and each has a button to show the respective JSON
response.

5.3.5 GCM Modules

As studied earlier (see subsection 3.3.3), the gcm_cache.db stores, in JSON format,
a cache of user data and activity-related data similar to the cache-databas

e. There still can be data that is worth analyzing, so we created two modules:
GarminGcmJsonActivities.py that will extract the JSON blocks from the table
json_activities, and the module GarminJson.py and GarminResponse.py. The
former extracts JSON blocks from the json_activities table, while the latter

92

5.3 post-mortem modules

parses and extracts data from the json table. Both modules present the data in a
similar way as the GarminResponse.py module.

5.3.6 Notifications and Synchronization Modules

Both the database nofications-database and sync_cache.db store interest-
ing data. The first stores the phone notifications sent to the smartband, while
the second holds the synchronization process of the smartband with the applica-
tion. To exploit these databases, we created the modules GarminSynch.py and
GarminNotifications.py.

5.3.7 Files Modules

We also detected meaningful data stored in the files folder of the private di-
rectory, namely the file app.log, which stores a cache of HTTP requests and
PersistedInstalation.xml that contained the access token of the Firebase database.
The modules are, respectively, GarminLogs.py and GarminPersisted.py. They can
extract the tokens from both files.

5.3.8 SharedPreferences Modules

Lastly, through the post mortem analysis, we found some relevant data related to
the user in the SharedPreferences folder. Of all the files inside this directory, the
most important ones are gcm_user_preferences.xml which has data related to
the user and com,facebook.internal.preferences.APP_SETTINGS.xml which
holds data related to the user’s Facebook account in case the user connected their
Garmin account to a Facebook account.

For gcm_user_preferences.xml, we created the module GarminUser.py, and
for the second, the module GarminFacebook.py. The first is a standard module
that extracts the information from the XML file and presents it in the report.
The Facebook module can retrieve information from Facebook’s Graph API using
Python’s http.client and the token stored in com.facebook.sdk.USER_SETTINGS

.xml. Since the ALEAPP user may not want to connect to the internet, we added
a warning in front of the module in the ALEAPP GUI to alert the user that the
modules attempt to connect to the internet, Figure 24 shows the warning persented.

93

garmin connect for android analyzer

Figure 24: ALEAPP JSON Block

94

5.4 api modules

5.4 api modules

The typical post-mortem analysis performed by ALEAPP focuses on analyzing
data directories extracted from the device. However, after uncovering significant
insights during dynamic analysis and utilizing the GCA-Extractor script, we created
an additional set of modules specifically designed to parse data obtained through
this script. These modules are responsible for parsing the JSON files generated
by the script and generating reports containing the discovered artifacts, mirroring
the functionality of the existing modules. These modules cover the following data
categories:

• Activities
• GPS Data
• Heart Rate Data
• Sleep Data
• Step Data
• Stress Data
• Daily Summary Data

Although these modules share similarities with the ones developed for the post-
mortem analyses, they offer enhanced capabilities due to the extraction of data
through an API. This enables us to present more detailed information, including
using data charts as exemplified in Figure 21. We also extracted data not present
in the post-mortem analysis shown in the subsections below.

5.4.1 Heart Rate Module

GarminHRAPI.py, parses the data extracted from the API related to the user’s heart
rate. This module shows a record for each day with the lowest, highest, and average
heart rate values and a data chart with heart rate variation registered during the
day.

5.4.2 Sleep Module

GarminHRAPI.py may look similar to its counterpart in the post-mortem modules.
However, it is possible to obtain more data related to each sleeping session from
the API compared to the database. It was possible to show a chart with the sleep

95

garmin connect for android analyzer

Figure 25: ALEAPP Sleep Phase Chart

phase during the different hours can be seen in Figure 25. Also, it was possible to
extract the SpO2 records during the acquisition and show it in a chart.

5.4.3 Steps Module

GarminSteps.py parses the step data from the API, where each record represents
a day. It shows the number of steps taken, calories burned, and the floors ascended
and descended, and the user can open a data chart showing when the users were
more active during the day.

5.4.4 Stress Module

GarminStress.py, parses the stress information extracted from the API. The
module reports, for each day, the stress level (from 0 to 100), and duration. The
module plots a chart with the stress levels from the different days to highlight the
changes.

5.5 features added

ALEAPP, a powerful forensic tool, has been further enhanced during our devel-
opment process to incorporate specific ideas for report presentation. We strongly

96

5.5 features added

Figure 26: ALEAPP Heatmap

believe that augmenting the tool with various visual functionalities would signifi-
cantly improve its overall capabilities. Leveraging the modular nature of ALEAPP
facilitated the rapid implementation of these features. The following functionalities
have been integrated into ALEAPP:

• Heatmap Visualization
• Date Filtering
• GPS Maps
• Data Charts
• Code Syntax Highlights

Next, we describe each of them.

5.5.1 HeatMap Visualization

Heatmaps provide a valuable visual representation of data over an extended period.
To enhance this capability, we developed a new feature that presents a calendar-style
heatmap, enabling users to observe the frequency of records on specific days. In
particular, we implemented this feature within the activities module, generating a
heatmap displaying the number of activities conducted each day. Please refer to
Figure 26 for an illustration of this heatmap. We developed this feature using the
Javascript library Cal-Heatmap 2.

5.5.2 Date Filtering

The inclusion of a date filtering feature proves to be uncomplicated yet highly
advantageous. Given the potential magnitude of elements within tables and the
objectives of our modules, analysts can effectively filter results by specifying a date

2 https://cal-heatmap.com

97

https://cal-heatmap.com

garmin connect for android analyzer

Figure 27: ALEAPP Date Filter

range. This functionality, depicted in Figure 27, extends to date fields in tables,
providing the user with the ability to apply filters. It is worth noting that this
feature can be implemented in any module by simply specifying the desired date
field of the table.

5.5.3 GPS Maps

One of our goals was to display GPS routes instead of just showing the coordinates,
as maps proved a much better situational awareness. For this purpose, we resorted
to Python folium library 3. This library allows to process and visualize data within
a leaflet map. This is done as follows:

1. The polyline is decoded to coordinates through the polyline library;

2. Next, through folium, an HTML map is rendered.

The ALEAPP user can also access each Polyline map in the report folder, where
it can be opened and analyzed. Figure 22 shows the map generated by ALEAPP.

5.5.4 Data Charts

We have already shown various figures from the charts created for our modules
(see Figure 21). We created these charts using the Charts.js Javascript library 4.
Charts ease the data analysis of specific data, such as arrays of values of a specific
timespan.

3 https://python-visualization.github.io/folium/
4 https://www.chartjs.org

98

https://python-visualization.github.io/folium/
https://www.chartjs.org

5.6 autopsy

5.5.5 Code Syntax Highlights

The last feature we added to ALEAPP was custom code blocks to render the
information extracted from databases. By default, HTML already has a tag called
code for computer code. However, this tag only formats the font family of the
text. We aimed to add custom blocks where the code is rendered with the correct
spacing and color highlights, just like code editors. This was archived through the
highlights.js library 5, as it color renders JSON data, the result can be seen in
Figure 23.

5.6 autopsy

The decision to develop our modules for ALEAPP was not arbitrary. Our primary
objective was to create a tool that could be utilized independently or seamlessly into
the Autopsy forensic platform (Barr-Smith et al., 2021). Autopsy, being Java-based,
requires its extension modules to be written either in Java or in Jython, a Python
interpreter that runs within the Java Virtual Machine (Autopsy Community, 2023).

ALEAPP fulfills both of these requirements. It is already integrated into Autopsy,
ensuring that new versions of Autopsy are equipped with the latest version of
ALEAPP. Therefore, modules part of ALEAPP are automatically integrated into
new Autopsy releases without requiring additional developer intervention. Since our
modules have been accepted and merged into ALEAPP 3.1.8, they will be readily
available as soon as Autopsy is updated with ALEAPP’s latest version.

5.7 the leapp ecosystem

ALEAPP is not the only tool developed by Alexis Brigoni. He is developing and
managing several other tools with a similar goal to ALEAPP. For example, an-
other popular tool is ILEAPP 6 which is very similar to ALEAPP but focused on
extracting data from iOS applications and Windows Logs Events And Protobuf
Parser (WLEAPP) 7 that aims for forensic artifacts found in the Windows OS.
Another tool is Vehicles Logs Events And Protobuf Parser (VLEAPP) 8, which

5 https://highlightjs.org
6 https://github.com/abrignoni/iLEAPP
7 https://github.com/abrignoni/WLEAPP
8 https://github.com/abrignoni/WLEAPP

99

https://highlightjs.org
https://github.com/abrignoni/iLEAPP
https://github.com/abrignoni/WLEAPP
https://github.com/abrignoni/WLEAPP

garmin connect for android analyzer

Extract data from
the device

Start Forensic
Analysis

Where
does the

data came
from?

ALEAPP

ILEAPP

VLEAPP DLEAPP

WLEAPP

Android

IOS Windows

Vehicles Drones

Figure 28: LEAPP Ecosystem

targets data extracted from a vehicle OS and Drones Logs Events And Protobuf
Parser (DLEAPP) 9 focusing on data extracted from drones.

All applications are similar. This means that the method of adding modules and
creating features is the same across all. So a developer can create a feature for
ALEAPP and easily import it to ILEAPP, for example. The goal is to create an
ecosystem where analysts can use the appropriate LEAPP application to analyze it
and generate a report.

Figure 28 shows a diagram that shows a possible way to look at the LEAPP
ecosystem.

9 https://github.com/abrignoni/DLEAPP

100

https://github.com/abrignoni/DLEAPP

5.8 summary

5.8 summary

To summarize, we successfully created 23 ALEAPP based modules related to the
Garmin Connect application, extracting essential data from the private directory
and the API. Using these modules, an ALEAPP user can generate a case report
that he/she can then use to interpret the application’s data. In this report, he/she
will find various artifacts for a given timespan, such as Heart Rate, sleep time,
activities realized, and GPS coordinates for a given workout, to list just a few.

In addition, we also created a set of five features to improve the report generation
of ALEAPP. These features can be adapted to other modules and tools. Furthermore,
since our changes were already committed to ALEAPP, they will also be present in
future versions of Autopsy (ALEAPP for autopsy is currently only supported for
Windows).

101

6
A D D I T I O N A L F I T N E S S A P P L I C AT I O N S

There are various types of fitness applications for mobile devices and wearables, as
explained earlier in the introduction of this project. This project focused on creating
a complete forensic analysis of the Garmin Connect application, discovering the
forensic artifacts stored and transmitted in the communication. However, another
popular type of fitness application is called Running Applications. The focus of
these applications is to record runs made by the user and share them with other
users, creating a type of Social Network with gamification features such as we had
seen in the Garmin Connect application. These applications are generally agnostic
to wearables and can communicate with companion applications and devices (for
example, Garmin Connect and Fitbit). Most of these applications are related to
fitness brands such as Nike and Adidas and are also a way of promoting their fitness
wear. A run can be started from the application or a smartwatch if compatible.
Some applications import the workouts from companion applications if the user
connects them.

We used the research by Hassenfeldt et al. (2019) detailed in Chapter 2 as an
initial base since we studied a group of applications already analyzed before in that
research. However, we aimed to use the process done previously for Garmin Connect
as a base for the analysis of these applications.

6.1 main findings

After our extensive study of the Garmin Connect application, we decided to enrich
this project by using the knowledge gained to analyze a group of the most popular
Social Running applications. In total, we analyzed six applications then being:

• Adidas Running
• Map My Walk
• Nike Run Club
• Pumatrac
• Runkeeper

103

additional fitness applications

Table 28: Analyzed Applications

application developer version downloads version release date

Adidas Running 1 Adidas Runtastic 13.6 50M+ 14/03/2023

Map My Walk 2 MapMyFitness, Inc. 23.5.2 10M+ 21/03/2023

Nike Run Club 3 Nike, Inc. 4.21.0 10M+ 02/03/2023

Pumatrac 4 PUMA SE 4.19.9 1M+ 18/09/2022

Runkeeper 5 ASICS Digital, Inc. 14.3 10M+ 17/03/2023

Strava 6 Strava Inc. 299.19 50M+ 22/03/2023

• Strava

Table 28 shows some public information related to the application studied using
data from the Play Store. All applications have a user base in the millions and have
been around for quite some time.

The analysis done is shorter compared to the one done to Garmin Connect and
focuses mainly on the study of the post-mortem data extracted via ADB from a
rooted smartphone. We started by doing the same process as in Chapter 3. Therefore,
to fill the application with data, we:

1. Downloaded each application

2. Generated data with the application (creating an account, connecting with
wearable, and doing activities)

3. Extract the public and private directory using ADB

4. Analyze the data in search of forensic artifacts

Table 29 briefly presents the data we managed to acquire from these applications.
The methods used to analyze the applications follow the ones explained earlier in
Chapter 3.

All the studied applications are relatively similar and provide roughly the same
functionalities, and thus is no wonder that they hold identical data, Figures 29

1 https://play.google.com/store/apps/details?id=com.runtastic.android
2 https://play.google.com/store/apps/details?id=com.mapmywalk.android2
3 https://play.google.com/store/apps/details?id=com.nike.plusgps
4 https://play.google.com/store/apps/details?id=com.pumapumatrac
5 https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
6 https://play.google.com/store/apps/details?id=com.strava

104

https://play.google.com/store/apps/details?id=com.runtastic.android
https://play.google.com/store/apps/details?id=com.mapmywalk.android2
https://play.google.com/store/apps/details?id=com.nike.plusgps
https://play.google.com/store/apps/details?id=com.pumapumatrac
https://play.google.com/store/apps/details?id=com.fitnesskeeper.runkeeper.pro
https://play.google.com/store/apps/details?id=com.strava

6.1 main findings

Table 29: Applications Analyzed

application artifacts directory files

Adidas Running Activity Data Private Directory db
User Data user.db

Map My Walk Activity Data Private Directory workout.db
User Data mmdk_user

Nike Run Club Activity Data Private Directory com.nike.nrc.room

Pumatrac Activity Data Private Directory pumatrac-db
User Data

Runkeeper Activity Data Private Directory RunKeeper.sqlite
User Data com.fitnesskeeper.runkeeper.pro_preferences.xml

Strava Activity Data Public Directory FIT Files

and 30 show the main dashboard of the Nike Run Club application, the rest of the
applications follow a very similar UI.

Furthermore, except for Strava, all applications stored data in their private
directories, mainly in the SQLite database and Shared Preferences. They primarily
store data related of the activities recorded by the application. There are slight
variations depending on the application, but they all store data such as:

• Calories
• Distance
• Duration
• GPS Coordinates

The applications stored GPS coordinates in different ways. For example, Nike
Run Club and Adidas Running store the coordinates in a polyline format, such as
Garmin Connect. However, the other applications store each set of latitude and
longitude as an individual record in the respective database table.

Data related to the user common to all application are as follows:

• Name
• Email
• Height/weight
• Birth date
• Profile Picture
• Country

105

additional fitness applications

Figure 29: Main screen of Nike Run Club Figure 30: Nike Run Club Activity Summary

106

6.1 main findings

The Runkeeper application did not store user’sdata in the database. However, it
was possible to obtain this data from the Shared Preferences XML files since they
contain the data related to the user account information.

6.1.1 Strava

One application that stands out from the rest is Strava. Indeed, we did not find any
data stored in the databases from Strava nor in any folder of the private directory.
Like Garmin Connect, Strava purges the databases the moment it connects to the
internet and uses its API to fetch data from the cloud. This fact is unsurprising
since, in 2018, Strava contained a vulnerability that exposed various military bases
in Israel (Gritten, 2022). Another widely known case was from Adam Jones where
a burglar stole all his bicycles, the burglar analyzed Adams’s Strava publication
to identify where we lived and so rob is garage (Trembley, 2018). Since then, the
application has been more privacy and secure-focused adding various new features
such as hiding the taken route as shown in Figure 31.

However, by analyzing its public directory, we discovered that it contained FIT
Files. These files were stored in a subfolder called files as shown in Figure 32.

In Chapter 4, we discussed what a FIT file was and how we tried to parse it.
We tried the same process again and this time, we could successfully parse the
data. Each FIT file contained the data related to the recorded activity, such as the
timespan, distance, and GPS coordinates. This finding is of great relevance since
valuable data are stored in the public directory. This means that in an investigation,
the analyst can obtain this data without root privileges compared to the data from
the other applications saved to the private directory. However, since the data is
public, any application can access it, and an attacker can steal it. From a forensic
point of view, this discovery was precious.

To ease the analysis of the FIT files we created a script very similar to our first
script Polyline2GPS, this one is called FIT2GPS 7. It decodes the given Strava
FIT files to the corresponding GPS coordinates, and generates an output with the
route taken by the user. The application can also generate an Excel file with the
coordinates data obtained from the geopy library.

7 https://github.com/labcif/FIT2GPS

107

https://github.com/labcif/FIT2GPS

additional fitness applications

Figure 31: Strava hidden Route

com.strava
└── files/

Figure 32: Directories inside the public folder of Strava

108

6.1 main findings

Table 30: Applications Analyzed

module use

AdidasActivities.py Extracts the activity data from Adidas Running

AdidasUsers.py Extracts the user data from Adidas Running

MMWActivities.py Extracts the activity data from Map My Walk

MMWUsers.py Extracts the user data from Map My Walk

NikeActivities.py Extracts the activity data from Nike Run Club

NikeAMoments.py
Extracts the moment-to-moment information
of the activity from Nike Run Club

NikeNotifications.py Extracts the application notification from Nike Run Club

NikePolyline.py Extracts the GPS data of the activity from Nike Run Club

PumaActivities.py Extracts the activity data from Pumatrac

PumaUsers.py Extracts the user data from Pumatrac

RunkeeperActivities.py Extracts the activity data from Runkeeper

RunkeeperUsers.py Extracts the user data from Runkeeper

Strava.py Extracts the GPS data of the activity from Strava

6.1.2 Aleapp modules

Since all the applications were similar, the acquisition process was mostly the same,
as shown in Figure 33.

Just like for the Garmin Connect application, we decided to create a series of
modules for ALEAPP for each of these applications to enhance the framework
further. We created in total 13 modules presented in Table 30:

6.1.3 Summary

Patterns could be discerned within the directories of the applications. Typically, the
"public directory" mainly stored cache data for GPS tiles, which was not readable and
lacked any forensic evidence. Conversely, within the "private directory," the majority
of forensic artifacts were discovered in the database and sharedpreferences

folders. The database typically held information regarding user activities and
associated data, while shared preferences contained data linked to user accounts, as

109

additional fitness applications

Download application

Configure account and
generate data

Data Generation

Extract the data via ADB
Script

Data Extraction

Analyze Public Directory

Analyze Public and
Private Directory

Did it contain
any artifacts?

No

End analysis

Are there any
ALEAPP modules for

the application?

Root Access? Yes

No

Yes

Yes

Create ALEAPP modules No

ALEAPP Module

Figure 33: Acquisition Process

110

6.1 main findings

well as a means to retrieve this data through a form in case it was not stored in the
database.

In the end, gathering valuable information about these six running applications
was possible. Their most prominent artifact is the GPS coordinates related to
activities that can be used to locate with datetime the application’s user.

111

7
C O N C L U S I O N

There is no denying that wearables will continue to evolve with the amount of
information stored by their respective companion applications and other fitness
applications. With this fact comes the rising concern of potential privacy flaws and
attacks that can occur to these kinds of applications. Furthermore, the importance
it can hold in a criminal investigation as the data collected by these applications
and devices can be the key to finding the culprit.

This work aimed to execute a complete forensic analysis of a specific fitness
application called Garmin Connect, developed by Garmin and using the smartband
Garmin Vivosmart 4 to collect data. This analysis was done on the Android version
of the application using a rooted Samsung A40.

As starting point, we made a literature review in Chapter 2 of studies and
forensic investigations done on wearables and companion applications. We also
reviewed studies that involved the execution of dynamic analysis to other Android
applications, since there is scarce documentation of this process. Lastly, studies
that focused on ALEAPP its use in forensic investigations and the development of
modules for it.

We started analyzing the Garmin Connect application in Chapter 3. This chapter
was large and focused on performing the application’s static or post-mortem analysis.
We started by:

1. Gathering Information of the application

2. Prepare our acquisition environment

3. Downloading and using the application (generate data)

4. Extract and analyze the data

5. Use MobSF to find vulnerabilities

We continued our analysis in chapter 4. Here, we did a dynamic analysis of the
Garmin Connect application using various offensive and reconnaissance tools to
gather all the information related to the network communication and applications
code to find vulnerabilities.

113

conclusion

After completing our analysis, we created various plugins and features for the
open-source ALEAPP framework, which is used in forensic analysis of Android
applications to find artifacts and generate a report with the data found. In chapter
5, we detailed the plugins created and their development process.

Lastly, we combined all the work done for Garmin Connect and applied it to
analyze a group of fitness applications related to running that can receive data from
Garmin Connect. In Chapter 6, we analyzed the data stored (static analysis) by
these applications and created, in addition, various new modules for ALEAPP.

In summary, the goals we had for this project were:

• Doing a full forensic analysis of the Garmin Connect application for Android

• Finding potential vulnerabilities in Garmin Connect

• Developing Open Source modules for ALEAPP

• Analyze other fitness applications with the knowledge gained

The forensic analysis of the Garmin Connect application helped discover a large
volume of forensic artifacts and methods to obtain them. It was instrumental in
creating its respective modules and, lastly, served as a pathway for analyzing other
applications of similar nature.

7.1 main contributions

Ultimately, this work contributed to several aspects of the Digital Forensics landscape.
By doing a complete analysis of the Garmin Connect application, we improved
the existing static analysis knowledge of the application made by Hutchinson et al.
(2022) by analyzing more files, using different methods, finding more artifacts, and
even creating some Python Scripts to improve the analysis. In addition, we made
a dynamic analysis of the application. This process is rarer to find, especially for
companion applications. We believe that our work is the first to perform a dynamic
analysis of the application Garmin Connect. Our work can be used as a blueprint
for the analysis of other similar applications by using methods and processes similar
to ours. We also managed to create a script that lets the analyst potentially recover
multiple types of records for any given period from the application just by having
the phone connected to the machine. This analysis made it possible to use the
knowledge gained and to study six other fitness applications and find all the artifacts
stored by them, expanding the forensic knowledge of this type of application.

114

7.2 future work

Table 31: Code Repositories

name use

ADB-Extractor1 Repository with the script to extract data via ADB

Polyline2GPS2 Repository with the script for decoding polylines
to HTML or Keyhole Markup Language (KML)

FindPackage3 Repository with the script to find the applications
package name

FIT2GPS4 Repository with the script for decoding FIT Files
to HTML or KML

Garmin-Connect-API-Extractor5 Repository with the script for extracting
Garmin Connect API data

Garmin-Connect-Database6 Repository with database diagrams and scripts related
to Garmin Connect created in DBDiagram.io

GC4AA7 Fork from the ALEAPP repository for the modules

Our most significant contribution was developing various features and modules
for the ALEAPP framework. With the analysis of the Garmin Connect application
and the other six applications, we created many modules and features to enrich this
framework and, in the future, to be integrated into the Autopsy framework.

All developed scripts during are open source licensed under the GPL-3 license
and hosted in our organization LabCIF on Github. Table 31 shows all the code
repositories created for this project.

7.2 future work

Even though we managed to complete all our goals, there is still room for improve-
ment. This project could be enhanced and perfected in various ways.

In the future, we would like to improve our dynamic analysis and use the tool Frida
more in-depth to alter the application and see if we can find any new vulnerabilities.

1 https://github.com/labcif/ADB-Extractor
2 https://github.com/labcif/Polyline2GPS
3 https://github.com/labcif/FindPackage
4 https://github.com/labcif/FIT2GPS
5 https://github.com/labcif/Garmin-Connect-API-Extractor
6 https://github.com/labcif/Garmin-Connect-Database
7 https://github.com/labcif/GC4AA

115

https://github.com/labcif/ADB-Extractor
https://github.com/labcif/Polyline2GPS
https://github.com/labcif/FindPackage
https://github.com/labcif/FIT2GPS
https://github.com/labcif/Garmin-Connect-API-Extractor
https://github.com/labcif/Garmin-Connect-Database
https://github.com/labcif/GC4AA

conclusion

We would also like to perform a dynamic analysis of the other the other fitness
applications tested and see if we could find any findings or vulnerabilities.

Lastly, it would also be interesting to analyze Garmin Connect for iOS and see
whether it saves the same data and whether the application behaves similarly to the
Android version. The end goal would be to compare the applications in different
operating systems, the techniques and tools used and the artifacts and vulnerabilities
found. This analysis would allow us to adapt our ALEAPP modules to ILEAPP,
that is, the framework version for IOS applications.

116

B I B L I O G R A P H Y

Almogbil, Atheer et al. (Aug. 2020). “Digital Forensic Analysis of Fitbit Wear-
able Technology: An Investigator’s Guide”. In: Proceedings - 2020 7th IEEE
International Conference on Cyber Security and Cloud Computing and 2020
6th IEEE International Conference on Edge Computing and Scalable Cloud,
CSCloud-EdgeCom 2020, pp. 44–49. doi: 10.1109/CSCLOUD-EDGECOM49738.2

020.00017.
Android Developers (2023). Logcat command-line tool Android Studio Android

Developers. url: https://developer.android.com/tools/logcat (visited
on 07/06/2023).

Angie (Nov. 2016). How NOT to examine SQLite WAL files | Sanderson Forensics.
url: https://sqliteforensictoolkit.com/how-not-to-examine-sqlite-

wal-files/ (visited on 06/09/2023).
Autopsy Community (2023). Autopsy - Digital Forensics. 2023-05-29. url: https:

//www.autopsy.com/.
Bang, Ankur O, Udai Pratap Rao, and Amit A Bhusari (2022). “A Comprehensive

Study of Security Issues and Research Challenges in Different Layers of Service-
Oriented IoT Architecture”. In: Cyber Security and Digital Forensics, pp. 1–
43.

Bangert, Bill (2022). University of Cincinnati joins national study on stroke preven-
tion using wearables | University Of Cincinnati. url: https://www.uc.edu/ne

ws/articles/2022/11/university-of-cincinnati-joins-national-stud

y-on-stroke-prevention-using-wearables.html (visited on 11/15/2022).
Bardou, Romain et al. (2012). “Efficient padding oracle attacks on cryptographic

hardware”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7417 LNCS,
pp. 608–625. issn: 03029743. doi: 10.1007/978-3-642-32009-5_36/COVER.
url: https://link.springer.com/chapter/10.1007/978-3-642-32009-5

_36.
Barr-Smith, Frederick et al. (2021). “Dead Man’s Switch: Forensic Autopsy of the

Nintendo Switch”. In: Forensic Science International: Digital Investigation 36,
p. 301110.

117

https://doi.org/10.1109/CSCLOUD-EDGECOM49738.2020.00017
https://doi.org/10.1109/CSCLOUD-EDGECOM49738.2020.00017
https://developer.android.com/tools/logcat
https://sqliteforensictoolkit.com/how-not-to-examine-sqlite-wal-files/
https://sqliteforensictoolkit.com/how-not-to-examine-sqlite-wal-files/
https://www.autopsy.com/
https://www.autopsy.com/
https://www.uc.edu/news/articles/2022/11/university-of-cincinnati-joins-national-study-on-stroke-prevention-using-wearables.html
https://www.uc.edu/news/articles/2022/11/university-of-cincinnati-joins-national-study-on-stroke-prevention-using-wearables.html
https://www.uc.edu/news/articles/2022/11/university-of-cincinnati-joins-national-study-on-stroke-prevention-using-wearables.html
https://doi.org/10.1007/978-3-642-32009-5_36/COVER
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_36
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_36

bibliography

Barros, António et al. (2022). “Forensic Analysis of the Bumble Dating App for
Android”. In: doi: 10.3390/forensicsci2010016. url: https://doi.org/1

0.3390/forensicsci2010016.
Brignoni, Alexis (2023). abrignoni/ALEAPP: Android Logs Events And Protobuf

Parser. 2023-05-29. url: https://github.com/abrignoni/ALEAPP.
Byambasuren, Oyungerel, Elaine Beller, and Paul Glasziou (June 2019). “Current

Knowledge and Adoption of Mobile Health Apps Among Australian General
Practitioners: Survey Study”. In: JMIR Mhealth Uhealth 7 (6). issn: 22915222.
doi: 10.2196/13199. url: https://mhealth.jmir.org/2019/6/e13199.

Cheng, Chris Chao Chun et al. (July 2021). “LogExtractor: Extracting digital
evidence from android log messages via string and taint analysis”. In: Forensic
Science International: Digital Investigation 37. issn: 26662817. doi: 10.1016

/J.FSIDI.2021.301193.
Dawson, Liam and Alex Akinbi (July 2021). “Challenges and opportunities for

wearable IoT forensics: TomTom Spark 3 as a case study”. In: Forensic Science
International: Reports 3. issn: 26659107. doi: 10.1016/J.FSIR.2021.100198.

Delija, D. et al. (2022). “How to do a forensic analysis of Android 11 artifacts”. In:
2022 45th Jubilee International Convention on Information, Communication
and Electronic Technology, MIPRO 2022 - Proceedings, pp. 1042–1047. doi:
10.23919/MIPRO55190.2022.9803540.

Developers, Android (2023). Android 8.0 Behavior Changes - Android Developers.
url: https://developer.android.com/about/versions/oreo/android-8

.0-changes#security-all (visited on 07/06/2023).
Domingues, Patrício, José Francisco, and Miguel Frade (June 2023). “Post-mortem

digital forensics analysis of the Zepp Life android application”. In: Forensic
Science International: Digital Investigation 45, p. 301555. issn: 2666-2817. doi:
10.1016/J.FSIDI.2023.301555.

Fereidooni, Hossein et al. (Aug. 2017). “Fitness Trackers: Fit for Health but Unfit for
Security and Privacy”. In: Proceedings - 2017 IEEE 2nd International Confer-
ence on Connected Health: Applications, Systems and Engineering Technologies,
CHASE 2017, pp. 19–24. doi: 10.1109/CHASE.2017.54.

Gaffney, Kevin P. et al. (2022). “SQLite: Past, Present, and Future”. In: Proceedings
of the VLDB Endowment 15 (12), pp. 3535–3547. issn: 21508097. doi: 10.147

78/3554821.3554842.
Garmin Ltd. (2023). FIT Protocol | FIT SDK | Garmin Developers. 2023-05-27.

url: https://developer.garmin.com/fit/protocol/.
Garmin Portugal (2023). url: https://www.garmin.com/pt- PT/ (visited on

07/06/2023).

118

https://doi.org/10.3390/forensicsci2010016
https://doi.org/10.3390/forensicsci2010016
https://doi.org/10.3390/forensicsci2010016
https://github.com/abrignoni/ALEAPP
https://doi.org/10.2196/13199
https://mhealth.jmir.org/2019/6/e13199
https://doi.org/10.1016/J.FSIDI.2021.301193
https://doi.org/10.1016/J.FSIDI.2021.301193
https://doi.org/10.1016/J.FSIR.2021.100198
https://doi.org/10.23919/MIPRO55190.2022.9803540
https://developer.android.com/about/versions/oreo/android-8.0-changes#security-all
https://developer.android.com/about/versions/oreo/android-8.0-changes#security-all
https://doi.org/10.1016/J.FSIDI.2023.301555
https://doi.org/10.1109/CHASE.2017.54
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.14778/3554821.3554842
https://developer.garmin.com/fit/protocol/
https://www.garmin.com/pt-PT/

bibliography

Gritten, David (June 2022). Strava app flaw revealed runs of Israeli officials at
secret bases - BBC News. url: https://www.bbc.com/news/world-middle-e

ast-61879383 (visited on 04/02/2023).
Hassenfeldt, Courtney et al. (Aug. 2019). “Map My Murder! A digital forensic study

of mobile health and fitness applications”. In: ACM International Conference
Proceeding Series. doi: 10.1145/3339252.3340515.

Hildenbrand, Jerry (2023). Best Android phones for rooting and modding 2023 |
Android Central. url: https://www.androidcentral.com/best-phone-root

ing-and-modding (visited on 07/06/2023).
Hutchinson, Shinelle et al. (Sept. 2022). “Investigating Wearable Fitness Applica-

tions: Data Privacy and Digital Forensics Analysis on Android”. In: Applied
Sciences 2022, Vol. 12, Page 9747 12 (19), p. 9747. issn: 2076-3417. doi:
10.3390/APP12199747. url: https://www.mdpi.com/2076-3417/12/19/974

7/htm%20https://www.mdpi.com/2076-3417/12/19/9747.
Kang, Serim, Soram Kim, and Jongsung Kim (Mar. 2020). “Forensic analysis for

IoT fitness trackers and its application”. In: Peer-to-Peer Networking and
Applications 13 (2), pp. 564–573. issn: 19366450. doi: 10.1007/S12083-018-0

708-3/TABLES/6. url: https://link.springer.com/article/10.1007/s12

083-018-0708-3.
Kent, Karen et al. (2006). “Special Publication 800-86 Guide to Integrating Forensic

Techniques into Incident Response Recommendations of the National Institute
of Standards and Technology”. In.

Kim, Minju et al. (July 2022). “Digital forensic analysis of intelligent and smart
IoT devices”. In: Journal of Supercomputing, pp. 1–25. issn: 15730484. doi:
10.1007/S11227-022-04639-5/TABLES/7. url: https://link.springer.co

m/article/10.1007/s11227-022-04639-5.
Lamalva, Grace and Suzanna Schmeelk (2020). “MobSF: Mobile Health Care

Android Applications Through the Lens of Open Source Static Analysis”. In:
2020 IEEE MIT Undergraduate Research Technology Conference, URTC 2020.
doi: 10.1109/URTC51696.2020.9668870.

Li, Xiang et al. (Dec. 2016). “An Android malware detection method based on An-
droidManifest file”. In: Proceedings of 2016 4th IEEE International Conference
on Cloud Computing and Intelligence Systems, CCIS 2016, pp. 239–243. doi:
10.1109/CCIS.2016.7790261.

Lovejoy, Ben (2022). Smartwatch Market Size, Share| 2022 - 27 | Industry Report.
2023-02-26. url: https://www.mordorintelligence.com/industry-report

s/smartwatch-market.

119

https://www.bbc.com/news/world-middle-east-61879383
https://www.bbc.com/news/world-middle-east-61879383
https://doi.org/10.1145/3339252.3340515
https://www.androidcentral.com/best-phone-rooting-and-modding
https://www.androidcentral.com/best-phone-rooting-and-modding
https://doi.org/10.3390/APP12199747
https://www.mdpi.com/2076-3417/12/19/9747/htm%20https://www.mdpi.com/2076-3417/12/19/9747
https://www.mdpi.com/2076-3417/12/19/9747/htm%20https://www.mdpi.com/2076-3417/12/19/9747
https://doi.org/10.1007/S12083-018-0708-3/TABLES/6
https://doi.org/10.1007/S12083-018-0708-3/TABLES/6
https://link.springer.com/article/10.1007/s12083-018-0708-3
https://link.springer.com/article/10.1007/s12083-018-0708-3
https://doi.org/10.1007/S11227-022-04639-5/TABLES/7
https://link.springer.com/article/10.1007/s11227-022-04639-5
https://link.springer.com/article/10.1007/s11227-022-04639-5
https://doi.org/10.1109/URTC51696.2020.9668870
https://doi.org/10.1109/CCIS.2016.7790261
https://www.mordorintelligence.com/industry-reports/smartwatch-market
https://www.mordorintelligence.com/industry-reports/smartwatch-market

bibliography

MacDermott, Aine et al. (June 2019). “Forensic analysis of wearable devices: Fitbit,
Garmin and HETP Watches”. In: 2019 10th IFIP International Conference
on New Technologies, Mobility and Security, NTMS 2019 - Proceedings and
Workshop. doi: 10.1109/NTMS.2019.8763834.

Miller, Preston and Chapin Bryce (2016). Learning Python for forensics : leverage
the power of Python in forensic investigations. isbn: 9781789341690. url:
https://www.packtpub.com/product/learning-python-for-forensics-s

econd-edition/9781789341690.
Mirza, Mohammad Meraj, Akif Ozer, and Umit Karabiyik (Nov. 2022). “Mobile

Cyber Forensic Investigations of Web3 Wallets on Android and iOS”. In: Applied
Sciences 2022, Vol. 12, Page 11180 12 (21), p. 11180. issn: 2076-3417. doi:
10.3390/APP122111180. url: https://www.mdpi.com/2076-3417/12/21/11

180/htm%20https://www.mdpi.com/2076-3417/12/21/11180.
Mueller, Bernhard et al. (2022). OWASP MASTG - OWASP Mobile Application

Security. url: https://mas.owasp.org/MASTG/.
okta (2023). Differences Between OAuth 1 and 2 - OAuth 2.0 Simplified. url: htt

ps://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/

(visited on 07/06/2023).
Ramírez-López, Francisco José et al. (Nov. 2019). “A Framework to Secure the

Development and Auditing of SSL Pinning in Mobile Applications: The Case of
Android Devices”. In: Entropy 2019, Vol. 21, Page 1136 21 (12), p. 1136. issn:
1099-4300. doi: 10.3390/E21121136. url: https://www.mdpi.com/1099-430

0/21/12/1136/htm%20https://www.mdpi.com/1099-4300/21/12/1136.
Razaghpanah, Abbas et al. (Feb. 2018). “Apps, Trackers, Privacy, and Regulators:

A Global Study of the Mobile Tracking Ecosystem”. In: doi: 10.14722/NDSS.2

018.23353.
Sachdeva, Shefali, R. Jolivot, and Worawat Choensawat (2018). “Android Malware

Classification based on Mobile Security Framework”. In.
Saha, Renata, Sayan Sarkar, and Soumya Kanti Datta (Oct. 2017). “Balancing secu-

rity & sharing of fitness trackers’ data”. In: 2017 1st International Conference
on Electronics, Materials Engineering and Nano-Technology, IEMENTech 2017.
doi: 10.1109/IEMENTECH.2017.8076942.

Schiefer, Michael (2015). “Internet of Things Security Evaluation of nine Fitness
Trackers”. In: url: www.av-test.org.

Shahriar, Hossain et al. (2019). An Exploratory Analysis of Mobile Security Tools
COMPSAC Message View project A Signature-Based Intrusion Detection System
for Web Applications based on Genetic Algorithm View project. url: https:

//digitalcommons.kennesaw.edu/ccerp/2019/research/4.

120

https://doi.org/10.1109/NTMS.2019.8763834
https://www.packtpub.com/product/learning-python-for-forensics-second-edition/9781789341690
https://www.packtpub.com/product/learning-python-for-forensics-second-edition/9781789341690
https://doi.org/10.3390/APP122111180
https://www.mdpi.com/2076-3417/12/21/11180/htm%20https://www.mdpi.com/2076-3417/12/21/11180
https://www.mdpi.com/2076-3417/12/21/11180/htm%20https://www.mdpi.com/2076-3417/12/21/11180
https://mas.owasp.org/MASTG/
https://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/
https://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/
https://doi.org/10.3390/E21121136
https://www.mdpi.com/1099-4300/21/12/1136/htm%20https://www.mdpi.com/1099-4300/21/12/1136
https://www.mdpi.com/1099-4300/21/12/1136/htm%20https://www.mdpi.com/1099-4300/21/12/1136
https://doi.org/10.14722/NDSS.2018.23353
https://doi.org/10.14722/NDSS.2018.23353
https://doi.org/10.1109/IEMENTECH.2017.8076942
www.av-test.org
https://digitalcommons.kennesaw.edu/ccerp/2019/research/4
https://digitalcommons.kennesaw.edu/ccerp/2019/research/4

bibliography

Shweta, Ganjoo (2019). GPS data from Garmin smartwatch helps police catch a
man convicted of two murders. url: https://www.indiatoday.in/technolog

y/news/story/how-a-garmin-smartwatch-helped-police-catch-a-man-c

onvicted-of-two-murders-1435570-2019-01-21.
similarweb (2023). Garmin Connect™ App Stats: Downloads, Users and Ranking in

Google Play | Similarweb. url: https://www.similarweb.com/app/google

-play/com.garmin.android.apps.connectmobile/statistics/ (visited on
07/15/2023).

Skulkin, Oleg., Donnie. Tindall, and Rohit. Tamma (2018). Learning Android Foren-
sics : Analyze Android Devices with the Latest Forensic Tools and Techniques,
2nd Edition. Packt Publishing Ltd, p. 324. isbn: 9781789131017.

SQLite Community (Feb. 2023). Pragma statements supported by SQLite. 2023-06-16.
url: https://www.sqlite.org/pragma.html#pragma_auto_vacuum.

Tamma, Tamma|Oleg Skulkin Rohit (2020). Practical Mobile Forensics Forensically
investigate and analyze iOS, Android, and Windows 10 devices, 4th Edition.
Packt Publishing. isbn: 9781838647520.

Tangari, Gioacchino et al. (Sept. 2021). “Analyzing security issues of android
mobile health and medical applications”. In: Journal of the American Medical
Informatics Association 28 (10), pp. 2074–2084. issn: 1527974X. doi: 10.109

3/JAMIA/OCAB131. url: https://academic.oup.com/jamia/article/28/10

/2074/6335525.
Technologies, Positive (2019). Mobile Application Security Threats and Vulnerabili-

ties 2019: Mobile Device Security - Attacks Research. url: https://www.ptse

curity.com/ww-en/analytics/mobile-application-security-threats-a

nd-vulnerabilities-2019/ (visited on 11/15/2022).
Trembley, Philippe (Sept. 2018). Thieves allegedly use Strava to identify and steal

cyclist’s $21,000 bike collection - Canadian Cycling Magazine. url: https://c

yclingmagazine.ca/sections/news/thieves-allegedly-use-strava-to-

help-steal-cyclists-21000-bike-collection/ (visited on 07/14/2023).
Unuchek, Roman (June 2017). Android: To root or not to root | Kaspersky official

blog. url: https://www.kaspersky.com/blog/android-root-faq/17135/

(visited on 07/06/2023).
Vasilaras, Alexandros et al. (Sept. 2022). “Retrieving deleted records from Telegram”.

In: Forensic Science International: Digital Investigation 43, p. 301447. issn:
2666-2817. doi: 10.1016/J.FSIDI.2022.301447.

Watts, Amanda (2017). Police use murdered woman’s Fitbit movements to charge
her husband - CNN. url: https://edition.cnn.com/2017/04/25/us/fitbi

t-womans-death-investigation-trnd/index.html (visited on 11/04/2022).

121

https://www.indiatoday.in/technology/news/story/how-a-garmin-smartwatch-helped-police-catch-a-man-convicted-of-two-murders-1435570-2019-01-21
https://www.indiatoday.in/technology/news/story/how-a-garmin-smartwatch-helped-police-catch-a-man-convicted-of-two-murders-1435570-2019-01-21
https://www.indiatoday.in/technology/news/story/how-a-garmin-smartwatch-helped-police-catch-a-man-convicted-of-two-murders-1435570-2019-01-21
https://www.similarweb.com/app/google-play/com.garmin.android.apps.connectmobile/statistics/
https://www.similarweb.com/app/google-play/com.garmin.android.apps.connectmobile/statistics/
https://www.sqlite.org/pragma.html#pragma_auto_vacuum
https://doi.org/10.1093/JAMIA/OCAB131
https://doi.org/10.1093/JAMIA/OCAB131
https://academic.oup.com/jamia/article/28/10/2074/6335525
https://academic.oup.com/jamia/article/28/10/2074/6335525
https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://www.ptsecurity.com/ww-en/analytics/mobile-application-security-threats-and-vulnerabilities-2019/
https://cyclingmagazine.ca/sections/news/thieves-allegedly-use-strava-to-help-steal-cyclists-21000-bike-collection/
https://cyclingmagazine.ca/sections/news/thieves-allegedly-use-strava-to-help-steal-cyclists-21000-bike-collection/
https://cyclingmagazine.ca/sections/news/thieves-allegedly-use-strava-to-help-steal-cyclists-21000-bike-collection/
https://www.kaspersky.com/blog/android-root-faq/17135/
https://doi.org/10.1016/J.FSIDI.2022.301447
https://edition.cnn.com/2017/04/25/us/fitbit-womans-death-investigation-trnd/index.html
https://edition.cnn.com/2017/04/25/us/fitbit-womans-death-investigation-trnd/index.html

bibliography

Williams, Joseph et al. (May 2021). “Forensic Analysis of Fitbit Versa: Android
vs iOS”. In: Proceedings - 2021 IEEE Symposium on Security and Privacy
Workshops, SPW 2021, pp. 318–326. doi: 10.1109/SPW53761.2021.00052.

Xu, Hui et al. (Dec. 2020). “Layered obfuscation: a taxonomy of software obfuscation
techniques for layered security”. In: Cybersecurity 3 (1), pp. 1–18. issn: 25233246.
doi: 10.1186/S42400-020-00049-3/FIGURES/10. url: https://cybersecur

ity.springeropen.com/articles/10.1186/s42400-020-00049-3.
Yoon, Yung Han and Umit Karabiyik (Sept. 2020). “Forensic Analysis of Fitbit

Versa 2 Data on Android”. In: Electronics 2020, Vol. 9, Page 1431 9 (9), p. 1431.
issn: 2079-9292. doi: 10.3390/ELECTRONICS9091431. url: https://www.md

pi.com/2079-9292/9/9/1431/htm%20https://www.mdpi.com/2079-9292/9

/9/1431.
Zhu, Ningxian (Apr. 2021). “Security of CORS on LocalStorage”. In: Proceed-

ings - 2021 International Conference on Internet, Education and Information
Technology, IEIT 2021, pp. 141–146. doi: 10.1109/IEIT53597.2021.00038.

122

https://doi.org/10.1109/SPW53761.2021.00052
https://doi.org/10.1186/S42400-020-00049-3/FIGURES/10
https://cybersecurity.springeropen.com/articles/10.1186/s42400-020-00049-3
https://cybersecurity.springeropen.com/articles/10.1186/s42400-020-00049-3
https://doi.org/10.3390/ELECTRONICS9091431
https://www.mdpi.com/2079-9292/9/9/1431/htm%20https://www.mdpi.com/2079-9292/9/9/1431
https://www.mdpi.com/2079-9292/9/9/1431/htm%20https://www.mdpi.com/2079-9292/9/9/1431
https://www.mdpi.com/2079-9292/9/9/1431/htm%20https://www.mdpi.com/2079-9292/9/9/1431
https://doi.org/10.1109/IEIT53597.2021.00038

A P E N D I X E S

123

A
M O B S F S E T U P

MobSF is a Python application which relies on the Django Framework. For this
analysis, we used version 3.6.2. Being a Python application, running it in different
operating systems without issue is possible, but the configuration can be different.
To run MobSF, the user needs to install the dependencies shown in Table 32 based
on their OS.

In case the user is using macOS, he/she also needs to execute the following
commands inside the Python folder:

1 Update Shell Profile. command

2 Install Certificates. command

After having all the prior dependencies installed, we can clone the project from
GitHub:

1 git clone https://github.com/MobSF/Mobile-Security-Framework-MobSF.git

2 cd Mobile-Security-Framework-MobSF

Next one needs to, run the installation script. We run the setup shell script in
the POSIX systems. In Windows, we run the Batch File (BAT) script.

1 ./setup.sh

2 or

3 setup.bat

Since MobSF is made in Django, the interaction with the tool is done via a
web interface whose webserver runs on localhost. For POSIX systems, we execute
the run.sh script and specify the IP and port where we want to run MobSF. For
Windows, the process is the same through the BAT file. However, we use the bat
file.

1 ./run.sh 127.0.0.1:8000

2 or

3 run.bat 127.0.0.1:8000

125

anexos

Table 32: MobSF dependencies

tool operating system

Git All

JDK 8 or above All

Microsoft Visual C++ Build tools Windows

OpenSSL non-light Windows

Python 3.8 or above All

wkhtmltopdf All

XCode Command line Tools macOS

After that, we can access MobSF in our browser on the specified IP and port.
To start the static analysis, we need to provide the APK file from the application.
We used the script made in the acquisition phase to extract the application file
from the smartphone. An alternative could be downloading the application from
an APK store like Aptoid or APKPure. After uploading the file, MobSF starts the
analysis process. The time this process takes depends on the size and complexity of
the application. In our case, this process took nearly four hours to complete.

126

D E C L A R AT I O N

I declare, under oath, that the work presented in this Project, with the title “Forensic
Analysis of the Garmin Connect Android Application ”, is original and is made by
Fabian Pereira Nunes (2210511) under the guidance of Professor Miguel Monteiro
de Sousa Frade, Ph.D. and Professor Patrício Rodrigues Domingues, Ph.D..

Leiria, July of 2023

Fabian Pereira Nunes

	Acknowledgments
	Abstract
	Index
	List of Figures
	List of Tables
	Acronyms List
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Structure

	2 Related Work
	2.1 Data acquisition from the device and desktop application
	2.2 Data acquisition from the mobile application using static methods
	2.3 Data acquisition from the mobile application using dynamic methods
	2.4 Use and development of ALEAPP in investigations
	2.5 Privacy Fitness Wearable

	3 Post Mortem Analysis of Garmin Connect
	3.1 Garmin Connect
	3.2 Static Analysis
	3.2.1 Concept and technologies
	3.2.2 Tools
	3.2.3 Methodologies

	3.3 Artifact Analysis
	3.3.1 Public Directory
	3.3.2 Private Directory
	3.3.3 Database Analysis

	3.4 MobSF Analysis
	3.4.1 Background study
	3.4.2 Analysis

	3.5 Summary

	4 Dynamic Analysis
	4.1 Tools
	4.2 Network Analysis
	4.2.1 Authentication
	4.2.2 Remote Extraction

	4.3 Code Analysis
	4.4 Summary

	5 Garmin Connect for Android Analyzer
	5.1 Aleapp
	5.1.1 Installation
	5.1.2 Plugin Creation

	5.2 Tools
	5.3 Post-mortem Modules
	5.3.1 Activities modules
	5.3.2 User Daily Module
	5.3.3 Health Data Modules
	5.3.4 Response Module
	5.3.5 GCM Modules
	5.3.6 Notifications and Synchronization Modules
	5.3.7 Files Modules
	5.3.8 SharedPreferences Modules

	5.4 API Modules
	5.4.1 Heart Rate Module
	5.4.2 Sleep Module
	5.4.3 Steps Module
	5.4.4 Stress Module

	5.5 Features Added
	5.5.1 HeatMap Visualization
	5.5.2 Date Filtering
	5.5.3 GPS Maps
	5.5.4 Data Charts
	5.5.5 Code Syntax Highlights

	5.6 Autopsy
	5.7 The LEAPP Ecosystem
	5.8 Summary

	6 Additional Fitness Applications
	6.1 Main Findings
	6.1.1 Strava
	6.1.2 Aleapp modules
	6.1.3 Summary

	7 Conclusion
	7.1 Main Contributions
	7.2 Future Work

	 Bibliography
	Apendixes
	A MobSF Setup
	 Declaration

		2023-07-22T12:39:09+0100

