
Politécnico de Leiria
Escola Superior de Tecnologia e Gestão

Departamento de Engenharia Eletrotécnica
Mestrado em Eng.ª Eletrotécnica

L E A R N I N G - B A S E D I M A G E C O M P R E S S I O N U S I N G
M U LT I P L E A U T O E N C O D E R S

rúben duarte antónio

Leiria, February 2023

Politécnico de Leiria
Escola Superior de Tecnologia e Gestão

Departamento de Engenharia Eletrotécnica
Mestrado em Eng.ª Eletrotécnica

L E A R N I N G - B A S E D I M A G E C O M P R E S S I O N U S I N G
M U LT I P L E A U T O E N C O D E R S

rúben duarte antónio

Dissertation performed under the supervision of Professor Pedro Antonio Amado
de Assunção, Professor Sérgio Manuel Maciel de Faria, and Professor Luís Miguel
de Oliveira Pegado de Noronha e Távora

Leiria, February 2023

3

A C K N O W L E D G M E N T S

First and foremost, I would like to thank God for guiding my entire journey as a
student because I recognise that nothing would be possible without Him.

I would like to thank my advisers Dr. Pedro António Amado Assunção, Dr. Luís
Miguel de Oliveira Pegado de Noronha e Távora, and Dr. Sérgio Manuel Maciel de
Faria for their guidance and support which were crucial for this research.

A special thanks to my parents, Virgilio Rosa Antonio and Carla Sofia da Cunha
Duarte, my brother Rodrigo Duarte António and my girlfriend Ane Caroline de
Matos, for their unconditional support.

Finally, I would like to thank Instituto de Telecomunicações for hosting this work,
and for providing the fundamental research environment and all my colleagues
at the Multimedia Signal Processing group from Leiria Delegation of Instituto de
Telecomunicações, for all the knowledge shared and support given.

i

R E S U M O

Aplicações de vídeo em ambientes avançados (por exemplo, cidades inteligentes)
fazem emergir novos desafios associados a sistemas cada vez mais complexos com
requisitos exigentes em várias áreas, tais como vigilância, visão computacional na
indústria, medicina, entre outras. Como consequência, uma enorme quantidade de
dados é adquirida para ser analisada por máquinas orientadas para tarefas. Devido
ao enorme volume de dados gerados é necessária a implementação de métodos de
compressão eficientes para reduzir o seu armazenamento. Para este objetivo têm
vindo a ser investigadas novas técnicas para compressão de imagens que não seguem
a arquitetura dos codificadores clássicos.

Neste âmbito, esta dissertação apresenta um trabalho de pesquisa sobre métodos
de compressão de imagens utilizando algoritmos de aprendizagem automática.
Realizando uma analise das as características dos diferentes algoritmos existentes
na literatura, descrevendo um estudo de simulação e resultados comparativos de
desempenho na compressão de imagens. Em particular, é dado maior ênfase a
implementações com redes convolucionais, nomeadamente aos autoencoders.

Foram estudadas, implementadas e avaliadas duas abordagens de compressão
imagens utilizando autoencoders. Uma compressão orientada a elementos da imagem
e outra orientada a imagens de alta resolução (UHD e imagens 360º). Como referido,
numa primeira abordagem, foi considerado um cenário de vídeo vigilância que inclui
diversos elementos da imagem, como pessoas carros, rostos, bicicletas e motas, e
foi desenvolvido um método de compressão utilizando autoencoders orientada a
aplicações de visão computacional, isto é as imagens descodificadas serem processadas
por uma máquina. Nesta primeira abordagem foram analisados o desempenho em
termos da qualidade da imagem descodificada e do desempenho algoritmico no
seu processamento ou extração de informação. A segunda abordagem focou-se na
utilização de imagens de alta resolução evoluindo o método utilizado na abordagem
anterior para a utilização de características da imagem, como a variância, os
gradientes ou a PCA de features, ao invés do conteúdo que a imagem representa.

Considerando a primeira abordagem em comparação com a norma de VVC
(Versatile Video Coding), o método proposto atinge uma eficiência de codificação
significativamente melhor do que a do VVC, por exemplo, até 46,7% de redução

iii

do BD-rate. A precisão das tarefas de visão computacional é também significativa-
mente maior quando realizadas sobre objetos visuais comprimidos com o método
proposto, em comparação com as mesmas tarefas realizadas sobre os mesmos objetos
comprimidos com o VVC. Estes resultados demonstram que a abordagem utilizada
com base em autoencoders é uma solução mais eficiente para a compressão de
objetos visuais do que a codificação com a norma VVC. Considerando a segunda
abordagem, embora sejam obtidos melhores resultados que o VVC nos subconjuntos
de imagem de teste, a abordagem apresentada apenas apresenta ganhos significativos
considerando imagens 360º.

Palavras-chave: Compressão baseada na aprendizagem, autoencoders, objetos, vídeo
vigilância, imagens UHD, imagens 360º, redes convolucionais

iv

A B S T R A C T

Advanced video applications in smart environments (e.g., smart cities) bring dif-
ferent challenges associated with increasingly intelligent systems and demanding
requirements in emerging fields such as urban surveillance, computer vision in
industry, medicine and others. As a consequence, a huge amount of visual data
is captured to be analyzed by task-algorithm driven machines. Due to the large
amount of data generated, problems may occur at the data management level, and
to overcome this problem it is necessary to implement efficient compression methods
to reduce the amount of stored resources.

This thesis presents the research work on image compression methods using
deep learning algorithms analyzing the properties of different algorithms, because
recently these have shown good results in image compression. It is also explained
the convolutional neural networks and presented a state-of-the-art of autoencoders.

Two compression approaches using autoencoders were studied, implemented and
tested, namely an object-oriented compression scheme, and algorithms oriented
to high resolution images (UHD and 360º images). In the first approach, a video
surveillance scenario considering objects such as people, cars, faces, bicycles and
motorbikes was regarded, and a compression method using autoencoders was devel-
oped with the purpose of the decoded images being delivered for machine vision
processing. In this approach the performance was measured analysing the traditional
image quality metrics and the accuracy of task driven by machine using decoded
images. In the second approach, several high resolution images were considered
adapting the method used in the previous approach considering properties of the
image, like variance, gradients or PCA of the features, instead of the content that
the image represents.

Regarding the first approach, in comparison with the Versatile Video Coding
(VVC) standard, the proposed approach achieves significantly better coding efficiency,
e.g., up to 46.7% BD-rate reduction. The accuracy of the machine vision tasks is
also significantly higher when performed over visual objects compressed with the
proposed scheme in comparison with the same tasks performed over the same visual
objects compressed with the VVC. These results demonstrate that the learning-
based approach proposed is a more efficient solution for compression of visual objects

v

than standard encoding. Considering the second approach although it is possible to
obtain better results than VVC on the test subsets, the presented approach only
presents significant gains considering 360º images.

Keywords: Learning-based compression, autoencoders, visual objects, video surveillance,
UHD images, 360º images, convolutional neural networks

vi

C O N T E N T S

Acknowledgments i
Resumo iii
Abstract v
Contents vii
List of Figures ix
List of Tables xiii
List of Abbreviations xv

1 Introduction 1
1.1 Context and motivation . 1
1.2 Objectives . 2
1.3 Dissertation structure . 2

2 Background on Convolutional Neural Networks for image coding 3
2.1 Overview . 3
2.2 Deep learning algorithms . 4

2.2.1 Convolutional Neural Network 4
2.2.2 Autoencoder . 9
2.2.3 Learning-based image encoder used in JPEG AI 11
2.2.4 Transformers . 12

2.3 Image compression with autoencoders 12
2.3.1 Quantization . 15
2.3.2 Entropy Encoder . 16

2.4 Summary . 16

3 Learning-based compression of visual objects 17
3.1 Proposed approach . 17
3.2 Datasets . 19
3.3 Experimental Results . 20

3.3.1 Rate-distortion performance 21
3.3.2 Task-driven algorithm performance 30

3.4 Summary . 33

vii

contents

4 Learning-based compression using classification for 360◦ and UHD images 35
4.1 Proposed Approach . 35
4.2 Datasets . 36

4.2.1 Variance . 36
4.2.2 Gradients . 38
4.2.3 Principal component analysis (PCA) of features 39

4.3 Experimental Results . 40
4.3.1 Dataset Separated by Variance 42
4.3.2 Dataset Separated by Gradients 44
4.3.3 Dataset clustering with PCA 47
4.3.4 UHD Images . 49
4.3.5 360◦ Images . 52

4.4 Summary . 56

5 Conclusions and Future Work 57
5.1 Conclusions . 57
5.2 Future work . 58
5.3 Contributions . 59

Bibliography 61

a Appendix A 67

b Appendix B 71

c Appendix C 75

Declaration 77

viii

L I S T O F F I G U R E S

Figure 1 Organisation of an image, showing the (R,G,B) values of 3
pixels[7]. 4

Figure 2 Convolution layer [8]. 5
Figure 3 Sigmoid function [10]. 6
Figure 4 Tanh function [11]. 6
Figure 5 ReLU function [12]. 7
Figure 6 Leaky ReLU function [12]. 7
Figure 7 Example of Average Pooling. 8
Figure 8 Example of Max Pooling. 8
Figure 9 Example of fully connected layer [14]. 9
Figure 10 Generic autoencoder [15]. 10
Figure 11 JPEG AI learning-based image coding framework [6]. 11
Figure 12 The Transformer - model architecture [23]. 13
Figure 13 Operational diagram of learned compression [4]. 14
Figure 14 Proposed object-based compression scheme for smart surveil-

lance. 18
Figure 15 Learning-based network architecture for image compression.

EC : Entropy coding, ED: Entropy decoding, Q: Quantisation,
Cm: Context model, CL: convolutional layers. 18

Figure 16 PSNR - faces dataset with blurred background using different
transfer learning approaches. 22

Figure 17 PSNR - people dataset with different approaches to the
background. 23

Figure 19 PSNR - motorbikes dataset with different approaches to the
background. 23

Figure 18 PSNR - cars dataset with different approaches to the back-
ground. 24

Figure 20 PSNR - bikes dataset with different approaches to the back-
ground. 24

Figure 21 PSNR - people dataset with different architecture approaches. 26
Figure 22 PSNR - cars dataset with different architecture approaches. 26
Figure 23 PSNR - faces dataset with different architecture approaches. 27

ix

list of figures

Figure 24 PSNR - people dataset. 28
Figure 25 PSNR - cars dataset. 29
Figure 26 PSNR - faces dataset. 29
Figure 27 Classification accuracy - people dataset 31
Figure 28 Classification accuracy - cars dataset 31
Figure 29 Classification accuracy - faces dataset 32
Figure 30 Accuracy in face recognition 33
Figure 31 Division of 360◦ and UHD images in square regions. 36
Figure 32 Histogram of variances for all crops. 37
Figure 33 Distributions of the crops by gradients. 38
Figure 34 Proposed method to split crops using PCA. 39
Figure 35 PSNR - Subset split variance very low. 42
Figure 36 PSNR - Subset split variance low. 43
Figure 37 PSNR - Subset split variance high. 43
Figure 38 PSNR - Subset split variance very high. 44
Figure 39 PSNR - Subset low horizontal and vertical Gradient. 45
Figure 40 PSNR - Subset low horizontal and high vertical Gradient. . 45
Figure 41 PSNR - Subset high horizontal and low vertical Gradient. . 46
Figure 42 PSNR - Subset high horizontal and vertical Gradient. 46
Figure 43 PSNR - Subset clustering with PCA group_0. 47
Figure 44 PSNR - Subset clustering with PCA group_1. 48
Figure 45 PSNR - Subset clustering with PCA group_2. 48
Figure 46 PSNR - Subset clustering with PCA group_3. 49
Figure 47 Example of some crops from UHD image. 50
Figure 48 PSNR - UHD images tests set compression with autoencoders

using different subsets. 51
Figure 49 PSNR - UHD images tests set. 51
Figure 50 PSNR - 360◦ images tests set compression with autoencoders

using different metrics. 53
Figure 51 PSNR - 360◦ images tests set. 53
Figure 52 Example of 360◦ images divided by zones. 54
Figure 53 PSNR - 360◦ images tests set zone “North”. 55
Figure 54 PSNR - 360◦ images tests set zone “Equator”. 55
Figure 55 PSNR - 360◦ images tests set zone “South”. 56
Figure 56 Example of original images datasets. A:people, B:cars, C:motorbikes,

D:bikes. 67
Figure 57 Example of blurred background images datasets. A:people,

B:cars, C:motorbikes, D:bikes. 67

x

list of figures

Figure 58 Example of images datasets without background. A:people,
B:cars, C:motorbikes, D:bikes. 68

Figure 59 Example of images datasets one object in each image cen-
ter of the image without background. A:people, B:cars,
C:motorbikes, D:bikes. 68

Figure 60 Example of faces images datasets. A:Original images, B:Images
without background center. 69

Figure 61 Example of subsets divided using variance. A:Very low vari-
ance, B:Low variance, C:High variance, D:Very high variance. 69

Figure 62 Example of subsets divided using horizontal and vertical
gradient. A:Low horizontal and vertical gradient, B:Low
horizontal and high vertical gradient, C:High horizontal and
low vertical gradient, D:High horizontal and vertical gradient. 70

Figure 63 Example of subsets divided clustering the images using PCA.
A:Group 0, B:Group 1, C:Group 2, D:Group 3. 70

Figure 64 PSNR - faces dataset with original background using different
transfer learning approaches. 71

Figure 65 PSNR - faces dataset without background using different
transfer learning approaches. 71

Figure 66 MS-SSIM[dB] - people dataset. 72
Figure 67 MS-SSIM[dB] - cars dataset. 72
Figure 68 MS-SSIM[dB] - faces dataset. 73
Figure 69 VMAF - people dataset. 73
Figure 70 VMAF - cars dataset. 74
Figure 71 VMAF - faces dataset. 74
Figure 72 Subset test of UHD images. 75
Figure 73 Subset test of 360◦ images. 75

xi

L I S T O F TA B L E S

Table 1 Learning-based image compression models used in the visual
objects . 21

Table 2 BD-Rate and BD-PSNR using VVC as reference. 28
Table 3 Number of crops per subsets, for the different methods used

to split the data . 41
Table 4 Learning-based image compression models used in the UHD

and 360◦ images . 42

xiii

list of tables

xiv

L I S T O F A B B R E V I AT I O N S

AE Autoencoder.

BPP Bits Per Pixel.

CABAC Context-Adaptive Binary Arithmetic Coding.

CL Convolutional Layers.

CNN Convolutional Neural Network.

DCT Discrete Cosine Transform.

HEVC High Efficiency Video Codding.

JPEG Joint Photographic Experts Group.

KLT Karhunen-Loève Theorem.

MSE Mean Squared Error.

MS-SSIM Multi-Scale Structural Similarity.

PCA Principal Component Analysis.

PSNR Peak Signal-to-Noise Ratio.

ROI Region Of Interest.

UHD Ultra High Definition.

xv

List of Abbreviations

VAE Variational Autoencoder.

VMAF Video Multimethod Assessment Fusion.

VVC Versatile Video Coding.

xvi

1
I N T R O D U C T I O N

1.1 context and motivation

In recent years, the utilisation of video applications in smart environments has grown
and brought different challenges associated with increasingly intelligent systems
with specific requirements in emerging fields such as urban surveillance, computer
vision in industry, medicine, among others. As a consequence, a huge amount of
visual information is captured, requiring to develop efficient storage and delivery
systems capable of supporting the corresponding huge amount of digital data. Such
requirements increased the importance of the study and the development of efficient
compression algorithms for this kind of environments.

Considering the application environment of smart surveillance, the use of 360º
video is an interesting approach because with only one camera it is possible to view
all angles of a scene. A 360º camera is equipped with, at least, two cameras, allowing
to simultaneously capture single images or videos. Then, the images captured by
each lens are stitched together to generate 360-degree videos and photos.

Recently deep learning algorithms have shown good results in image compression
compared to the traditional encoders [1] [2] [3] [4]. This fact, explains the gradual
growth of their applications in image compression envolving different algorithms
such as convolutional neural network (CNN), autoencoders (AE) and variational
autoencoders (VAE). In this context, two different approaches have been under
research: either adding learning-based models and coding tools and/or substituting
existing ones in conventional hybrid block-based encoders, or developing end-to-end
learning-based compression architectures using deep neural networks to find a whole
compact representation of the visual content.

1

introduction

1.2 objectives

The main objective of this research consisted on the development and implementation
of a pipeline to code images more efficiently using autoencoders. In the course of
this work, the following tasks were carried out to accomplish such objective:

• Study and implementation of an autoencoder and networks to detect objects.

• Study and implementation of a framework to detect and coding objects with
autoencoders.

• Study of the different functional blocks in an autoencoder, in order to improve
the coding performance such as quantization, architecture and entropy coding.

• Study and implementation of a coding framework using different autoencoders
simultaneously.

• Performance evaluation of the proposed methods.

1.3 dissertation structure

This document is organized as follows: Chapter 2 gives an overview of on machine
learning algorithms, with a particular focus on CNNs, as well as the state-of-art of
autoencoders. Chapter 3 describes the proposed framework for compression of visual
objects, presents the used datasets and the obtained results. Chapter 4 presents
the proposed framework for compression of 360º and ultra high definition (UHD)
images, describes the dataset and the graphical image properties used to create
the different subsets, and presents the obtained results. Chapter 5 presents the
conclusions of the developed work and several suggestions of improvement for future
work.

2

2
B A C K G R O U N D O N C O N V O L U T I O N A L N E U R A L
N E T W O R K S F O R I M A G E C O D I N G

In this chapter, the basics of convolutional neural networks (CNN) are presented
as these are structural elements in deep learning architectures used in image com-
pression. The chapter starts with an overview of deep learning algorithms related
to image compression. Then, JPEG AI is presented and finally state-of-the-art
autoencoders are described.

2.1 overview

Many machine learning algorithms are inspired by the human brain using a structure
known as artificial neural networks. In this way, computers can perform assignments
similarly to humans, such as learning by example. This allows the possibility of
using computers to learn complex functions such as image identification, speech
recognition, prediction making and others. Deep learning was first theorized in
the 1980s [5], but only recently deep learning has achieved high levels of accuracy
because it is necessary a large amount of labelled data and substantial computing
resources.

Deep learning has changed the way of representing some problems because the
algorithms are trained by using large sets of labelled data and neural network
architecture that learn complex features from data without human interaction. The
main difference between deep learning and machine learning is the type of input data
and the methods used in the computational learning process. Machine learning in
general might require that features are previously extracted from images, while deep
learning eliminates some of this data pre-processing because the relevant features are
automatically identified. Furthermore, deep learning algorithms estimate the model
parameters by means of different types of learning, such as supervised learning
which uses labelled datasets to make predictions, or unsupervised learning which
does not require labelled datasets because the patterns in the data are detected, or
clustering by any distinguishing features.

3

background on convolutional neural networks for image coding

2.2 deep learning algorithms

To use deep learning to solve a problem it is possible to choose different algorithms,
such as CNNs, autoencoders, transformers, generative adversarial networks and
others. Each of these algorithms has different characteristics and depending on the
problem under consideration some kind of analysis is needed to determine which
one is the best. In this section an overview of some of these algorithms is presented,
starting by CNNs and then autoencoders and transformers. A specific example of a
standard compression algorithm based on autoencoders is also presented, the JPEG
AI [6].

2.2.1 Convolutional Neural Network

A CNN is a specific processing structure used by deep learning algorithms mostly for
image recognition, classification and processing. For instance, the identification of a
certain visual object using CNNs goes through the analysis of specific characteristics
(features) along the image. The features are determined by performing several
convolutions on the image with multiple filters (kernels), where each one tries
to identify a different feature, also considering geometric variations (e.g rotation,
translation) that increase the robustness of the results provided by the network. To
understand the operations performed in a CNN it is important to take into account
that a colour image is represented by a 3D matrix where the combinations of red,
green and blue pixels [R,G,B] are stored, as represented in Figure 1.

Figure 1: Organisation of an image, showing the (R,G,B) values of 3 pixels[7].

Typically, a CNN architecture is composed of multiple layers such as convolutional
layers, activation, pooling and fully connected layers. CNNs are mainly composed of

4

2.2 deep learning algorithms

convolutional layers because the features of the input images are captured by this
type of layers. The convolution is a linear process that involves the multiplication
and addition of the image samples by a set of weights with dimensions KS ×KS ,
i.e. the kernel. Figure 2 shows the process previously described using a 3× 3 kernel.
The result of convoluted features after the convolution process is then delivered as
input to an activation layer.

Figure 2: Convolution layer [8].

Some parameters directly characterise a convolutional layer and consequently the
shape of the convoluted features:

• Stride is the size of the step that the kernel is shifted in each iteration. If the
stride is two then the kernel is shifted two pixels at a time;

• Padding is the process where some pixels are added around the image before
the convolution operation, the value of the added pixels is usually 0;

• Dilation is the space between kernel elements, the default value is 1. If the
dilation is greater than 1, dilation− 1 number of “0” is added between all
values of the considered kernel;

• Depth is the number of filters used in a convolution layer;

The size of the output of the convoluted feature is formulated in [9], as

Hout =
Hin + 2× P [0]−D[0]× (KS − 1)− 1

S[0] + 1 (1)

Wout =
Win + 2× P [1]−D[1]× (KS − 1)− 1

S[1] + 1 (2)

5

background on convolutional neural networks for image coding

where P is the number of the padding, D is the value of dilation, KS denotes the
size of the kernel, S is the value of the stride and Hin Win, Hout Wout represents
the height and the width of the input data and convoluted features, respectively. A
large number of specific filters can be learned in parallel on a given training dataset
and very specific features will be obtained that can be detected anywhere on the
input images.

Activation layers are placed directly after the convolutional layer to introduce
non-linearity because the convolution is a linear operation. It is possible to introduce
non-linearity using different types of activation functions such as sigmoid, tanh,
ReLU, Leaky ReLU, Maxout and ELU. The sigmoid function curve is similar to an
S shape, as shown in Figure 3, it restricts the output value between 0 and 1.

Figure 3: Sigmoid function [10].

The tanh function curve is similar to the sigmoid function but the input values
are limited between -1 and 1, as shown in Figure 4.

Figure 4: Tanh function [11].

6

2.2 deep learning algorithms

The ReLU function is one of the most popular functions and its greatest advantages
is that it does not activate all neurons at the same time, because the negative input
values are passed to zero and consequently the neuron does not get activated, as
shown in Figure 5. The disadvantage of ReLU is in the negative region where the
gradient is zero, which does not allow updating the weights in the backpropagation
process. To overcome this problem an alternative was created, named Leaky ReLU,
as shown in Figure 6. In this case, the gradient of the curve on the negative side is
not zero, which favours the convergence of the training process.

Figure 5: ReLU function [12].

Figure 6: Leaky ReLU function [12].

The pooling layer can be placed after the activation layer to reduce the spatial
size of the representation, and the number of parameters to learn and consequently
reduce the amount of computation performed in the network. So the main goal of
the pooling layers is to summarise the features in a feature map generated by a
convolution layer. There are two types of pooling layers known as Average Polling
and Max Pooling. The Average Pooling computes the average of the elements present
in the region of the feature map covered by the filter. The output of the average

7

background on convolutional neural networks for image coding

pooling layer would be a feature map containing the average of features present in
a filter. Figure 7 shows an example of average pooling using a filter 2 by 2 and a
stride of 2.

Figure 7: Example of Average Pooling.

The Max Polling selects the maximum element from the region of the feature map
covered by a filter. While average pooling gives the average of features present in a
patch, max pooling returns a feature map containing the most prominent features.
Figure 8 shows an example of average pooling using a filter 2 by 2 and a stride of 2.

Figure 8: Example of Max Pooling.

Unlike the convolution layer, the pooling layer does not change the depth of the
feature map, and the dimensions of its output using the default values of dilation
and padding, are given in [13] by,

Hout =
Hin −KS

S[0] + 1 (3)

Wout =
Win −KS

S[1] + 1 (4)

where KS denotes the size of the kernel and S the value of the stride.

The fully connected layer is usually the last layer in the convolutional neural
network, comprising the so called classification block. This layer receives the output

8

2.2 deep learning algorithms

of the flatten layer, which is an one-dimensional layer, applies a linear transformation
to this vector through a weighting matrix and then introduces a non-linear operation.
Multiple fully connected layers can be added together, based on the depth of the
classification model. Finally the output of the fully connected layer is linked to a
Softmax or a Sigmoid function for probability distribution over the total number of
classes considered. Figure 9 shows an example of a fully connected layer to classify
three different objects.

Figure 9: Example of fully connected layer [14].

2.2.2 Autoencoder

An autoencoder (AE) is a deep learning architecture that compresses the input data
into a latent-space representation and reconstructs an estimated output from this
latent representation. Since the latent representation uses less data than the original,
autoencoders have been investigated for image compression as an alternative to
classical standard schemes. Figure 10 represents a generic autoencoder, which is
comprised of three main components: the encoder, the latent space and the decoder.

9

background on convolutional neural networks for image coding

Figure 10: Generic autoencoder [15].

The encoder is the network component responsible for learning how to compress
efficiently the original image into the smaller latent representation. This latent space
is therefore a compact representation of the original image, and the decoder part is
responsible for learning how to reconstruct the original image from the latent space
information. In most cases the decoded image presents some loss compared to the
original image because the latent space itself is not a lossless representation and
also the reconstruction is not perfect. The main characteristic of autoencoders is
their capability of finding a compact representation that provides compression but
they can be used for a variety of functions, such as removal of image noise [16] and
anomaly detection [17] among others.

There are different types of autoencoders depending on their architecture and
also intended applications, where the main types are denoising autoencoder, sparse
autoencoder, convolutional autoencoder and variational autoencoder. The architec-
ture of these autoencoders are slight variations of Figure 10. The goal of denoising
autoencoder is to remove noise of the input image. In this case, the autoencoders are
optimised to remove noise from similar data (images of the same class for example),
and for this purpose is added a block before the encoder introduces random noise in
the input data [18]. A sparse autoencoder is an autoencoder whose training criterion
involves a sparsity penalty [19]. The loss function penalizes activations of hidden
layers and with this a smaller number of neurons are activated. The main goal of
this method is to eliminate redundant information guaranteeing the autoencoder
learns latent representation with reduced size. Convolutional Autoencoders use
convolution layers in the encoder and deconvolution layers in the decoder. They are
state-of-the-art for unsupervised learning of convolutional filters [20]. The variational
autoencoders use a variational approach to generate the latent representation, which

10

2.2 deep learning algorithms

results in an additional loss component and an estimator for the training network
named the stochastic gradient variational bayes estimator [21]. For applications in
image compression, the most popular autoencoder is the convolutional autoencoder.

2.2.3 Learning-based image encoder used in JPEG AI

The JPEG AI is a framework developed by the JPEG standardisation group
and its main purpose is create a learning-based image coding standard. JPEG
AI targets a wide range of applications like visual surveillance, image collection
storage and management, autonomous vehicles and devices, media distributions
and others [6]. Figure 11 shows high-level JPEG AI framework, comprising three
main pipelines, each one compressing images for a different task. In fact, besides
the expected standard image decoding scheme, it includes image processing and
computer vision tasks where the latent representation of the original image is
optimised to be a feature-rich representation that allows good performance in
these tasks. Examples of computer vision tasks are image classification, object
identification, region segmentation whilst image processing tasks, might involve
noise removal, upscaling, quality enhancement or other types of processing that have
classical image processing analytical counterparts, i.e., non-learning approaches.

Figure 11: JPEG AI learning-based image coding framework [6].

A JPEG AI dataset was established in order to assess the performance of state-
of-the-art learning-based image coding algorithms. It comprises specific subsets for
training, validation and test, containing a wide diversity of images, namely in terms
of their characteristics, such as content type and spatial resolution. In terms of data,

11

background on convolutional neural networks for image coding

it has PNG images (RGB color components, non-interlaced), with spatial resolution
from 256x256 to 8K (8 bits); the training set has 5264 images, while the validation
and test have 350 images [22].

2.2.4 Transformers

The transformer neural network is a novel architecture created to solve sequence-to-
sequence tasks while handling long range dependencies [23]. The development of the
transformer model was motivated to respond to some limitations presented by CNNs
such as the convolution filter only being able to characterize short-range spatial
correlation within the receptive field. Then, if the input images have different type
of content than those used in the training process, worse performance is obtained
despite the intensive computation [24]. Figure 12 represents the architecture of a
transformer, consisting of a stacked self-attention, point-wise and fully connected
layers for both the encoder and decoder in left and right sides of figure, respectively.

Recently transformer neural networks have achieved promising results compared to
the architectures that only use CNNs. This has been investigated for different vision
tasks, as demonstrated in [25] and [26]. This is justified by the fact the transformers
can well capture the long-range correlation for better information embedding, by
dividing the input images into patches and treating them as sequential words as
in natural language processing for computation [23]. In [24] and [27] a hybrid
architecture is used, based on CNNs with transformers with the main focus in image
compression. It was shown that the performance obtained by these architectures is
similar to CNNs.

2.3 image compression with autoencoders

Recently autoencoders have achieved promising results in image compression. The
first learning-based image compression scheme that achieved better performance
than JPEG2000 in terms of peak signal -to-noise ratio (PSNR) and multi-scale
structural similarity (MS-SSIM) was presented in [1]. In [28] it is described the
baseline learning-based model shown in Figure 13(a). The image compression process
is formulated by

12

2.3 image compression with autoencoders

Figure 12: The Transformer - model architecture [23].

y = ga(x; ϕ)

ŷ = Q(y)

x̂ = gs(ŷ; θ)

(5)

where x, x̂, y and ŷ are the original images, reconstructed images, the latent
representation before quantization, and latent representation after quantization, re-
spectively. ϕ and θ are optimisation parameters of analysis and synthesis transforms.
U |Q are the quantization and entropy coding steps, which will be later addressed
in 2.3.1 and 2.3.2, respectively.

13

background on convolutional neural networks for image coding

Figure 13: Operational diagram of learned compression [4].

In [2] a hyperprior model was presented as shown in Figure 13(b), by introducing
a side information z to capture spatial dependencies among the latent space (y),
formulated by

z = ha(y; ϕh)

ẑ = Q(y)

p ŷ|ẑ(ŷ| ẑ)← hs(ẑ; θh)

(6)

where ha and hs denote the analysis and synthesis transform in the auxiliary
autoencoder, ϕh and θh are optimisation parameters and p ŷ|ẑ(ŷ| ẑ) are estimated
distributions conditioned on ẑ. A zero-mean Gaussian distribution with scale pa-
rameters (σ2 = hs(ẑ; θh)) is used to estimate the p ŷ|ẑ(ŷ| ẑ). In [29] a jointly model
was presented as shown in Figure 13(c), by introducing a more accurate entropy
model using an autoregressive context model (denoted as Cm), a mean and scale
hyperprior. In [4] a Discretized Gaussian Mixture model was presented, as shown
in Figure 13(d), by introducing a more accurate entropy model using a Gaussian
distribution model to estimate the p ŷ|ẑ(ŷ| ẑ), where K is the number of the mixture
gaussian used and w(k) is the weights of the gaussian.

For the construction of an autoencoder it is necessary to take into account the
number of convolutional layers in both the encoder and the decoder (usually the
architecture of the decoder is symmetrical to that of the encoder), the number of
filters per layer, the size of the latent space and the loss function (measures the
image information that is lost when comparing the original with the output).

The loss function that is used to optimise the autoencoders during the training
phase is formulated by,

L = R+ λ ∗ D(x,x̂) (7)

14

2.3 image compression with autoencoders

where R and D(x,x̂) are the bit rate and the distortion terms respectively, and λ

controls the rate-distortion trade-off. In the baseline diagram, the R only depends
on the ŷ because the hyperprior does not exist in the architecture, otherwise the R
would depend on ŷ and ẑ.

In recent research studies to improve the compression performance of autoencoders,
two main components have been investigated such as the network architectures and
the entropy models used to encode the latent representation.

In terms of the architecture of the autoencoders, some blocks have been introduced
in order to improve their performance. In [30] was introduced the residual block
which was shown to have comparable performance with JPEG2000. An attention
module was proposed in [4] to force learning-based models pay more attention to
complex regions (different parts of the image be adapted to local content), and also
achieved improved performance for image restoration [30] and compression [30]. In
[31] a concatenated residual module was proposed to further remove the spatial
correlation in the latent space, facilitating the information flow, and improving the
training of the network.

2.3.1 Quantization

Quantization is a necessary component in image compression to reduce the amount
of data required to represent the latent space. However, since this is an irreversible
operation, it introduces unavoidable distortion. This step produces similar effects as
in the discrete cosine transform (DCT) coefficients in standard JPEG compression.
In autoencoder, the quantization during the training phase must be differentiable
to allow the back-propagation over the gradients, but due to the inherent non-
differentiability of round-based quantization, a conventional quantizer cannot be
directly incorporated into an autoencoder. In this case it is possible approximate
the quantisations of the latent space by using different methods such as a uniform
noise approximation [1], soft histogram [32], a stochastic form of binarization [33],
and in some studies [30],[32], the derivation was replaced in the backpropagation,
but it was guaranteed that the quantized value was correct in forward propagation.

15

background on convolutional neural networks for image coding

2.3.2 Entropy Encoder

In this step the quantized values and the prediction side-information are lossless
compressed into a bit-stream using entropy coding methods, like arithmetic encoder
(CABAC [34]), context-adaptive entropy models [2, 29, 35], relative entropy coding
[36]. The entropy encoder is a crucial module to reduce statistical redundancy within
the latent space and is possible to implement in autoencoders because discrete values
are considered. The main idea is to exploit the statistics of latent representation
with a conditional probability model. As mentioned above, the performance of
the autoencoder increases when side information was introduced to capture the
spatial dependencies among the latent space, so it is very important to fit the
parameterized distribution model to the marginal distribution of the quantized
latent space. This was investigated in the recent past and some articles are published
trying to model the conditional probability distribution p ŷ|ẑ(ŷ| ẑ) after decoding
ẑ. For instance, in [4] a discretized Gaussian Mixture likelihood was proposed for
entropy coding which is characterised by 3 parameters, weight, mean and variance.
Afterwards, an improved work was presented in [31] by using a discretized Gaussian-
Laplacian-Logistic model distribution. Overall, the impact on compression efficiency
was demonstrated to be better when such models are used.

2.4 summary

This chapter presented an overview of deep learning algorithms, detailing their
purpose and characteristics, with a particular focus on convolutional neural networks.
The different types of autoencoders are also described in terms of their characteristics
and functions. The JPEG AI framework and transformer models were also discussed,
alongside with an overview of the state of the art autoencoders using convolutional
autoencoders

On the whole, the background for the main objective of this thesis was presented,
which is developing a framework to efficiently compress images using multiple
autoencoders trained to different classes of objects. The overview carried out showed
that deep learning algorithms are a relevant research topic and they can be used
for different applications. Therefore this is also a promising approach for new
contributions in emerging fields of image compression.

16

3
L E A R N I N G - B A S E D C O M P R E S S I O N O F V I S U A L
O B J E C T S

This chapter describes the proposal of an efficient learning-based approach to
compress relevant visual objects, based on the use of multiple autoencoders, that is
one for each object class. First, a detailed description of the proposed compression
approach and the autoencoder’s model are explained. Then, the datasets used
to training the autoencoders and the different training approaches are presented.
Finally, the experimental results are analysed by measuring different rate-distortion
metrics and the accuracy of some tasks driven by machines.

3.1 proposed approach

To implement this approach a surveillance scenario has been considered because
it presents a limited number of objects in the scene, such as people, vehicles and
some animals (e.g. dogs). The functional scheme of the proposed approach for
compression and delivery of visual objects in smart surveillance applications is
shown in Figure 14. For the sake of simplicity only the compression of visual objects
is represented. The background is treated as stationary, so it can be extracted,
encoded and transmitted using a traditional encoder. The relevant objects, delimited
by bounding boxes, are first classified into one of the i predefined classes of interest,
which depend on the requirements of the surveillance scenario. As the background
in the bounding box itself is not relevant, object segmentation is performed in order
to enhance and extract the region of interest, this is explored in section 3.3.1. Then
for each class, an end-to-end optimised encoder is used to obtain its compressed
representation for transmission to the corresponding decoder and processing through
the corresponding machine vision task.

Each encoder-decoder pair (Cj, j=1, 2, ... i) is optimised for a unique object class
by training the autoencoder (AE) with visual objects of that class. Since objects of
the same class have similar features, this strategy favours the network to learn how
better to model those specific features, thus reducing the latent representation’s

17

learning-based compression of visual objects

Figure 14: Proposed object-based compression scheme for smart surveillance.

entropy. At the end of the pipeline, after decoding, visual objects are processed by
some task whose level of success measures the system’s performance.

Within the scheme proposed any architecture can be considered for the learning-
based compression module. In the case, the choice followed closely a model proposed
by Cheng and collaborators [4], and is presented in Figure 15. The main difference
to Cheng’s original model is that the attention module were not considered, since
their impact on performance was herein limited, as later discussed in section 3.3.1.

Figure 15: Learning-based network architecture for image compression. EC : Entropy coding,
ED: Entropy decoding, Q: Quantisation, Cm: Context model, CL: convolutional
layers.

In the adopted model (Figure 15), x, x̂, y, ŷ are the input visual objects, recon-
structed objects, latent space before quantization and coded stream, respectively.
The expressions y = ga(x; ϕ); ŷ = Q(y); x̂ = gs(ŷ; θ) represent the analysis, quan-
tization and synthesis transform composed by convolutional layers and activation
functions. The set of parameters, ϕ and θ, of the analysis and synthesis transforms
are optimised during the training phase. Quantization is approximated by adding
uniform noise to keep the operation differentiable during the training phase, while
in inference a rounding-based operation is used followed by entropy coding, e.g.,
arithmetic coding. Besides the main encoder-decoder pipeline, the auxiliary network

18

3.2 datasets

(top of the diagram) comprises the analysis synthesis transforms ha and hs, respec-
tively, providing a hyperprior by generating the side information z = ha(y; ϕh),
which captures the spatial correlations of y [2]. The quantized version of z is
ẑ = Q(z) and the synthesis transform produces an estimate of distribution p(ŷ/ẑ),
i.e., hs(ẑ; θh)→ p(ŷ/ẑ). The parameters ϕh, θh are jointly optimised with ϕ and θ

during training.

A discretised Gaussian mixture is used for the entropy model, where each Gaussian
distribution is characterised by 3 parameters: weight, mean and variance. Accordingly,
this Gaussian mixture model requires 3×N×K channels for the output of the
auxiliary autoencoder, where N represents the number of filters and K is the number
of Gaussian distributions considered.

The study conducted in [4] showed that varying the number of mixtures used
in the model resulted in minimal gains, with only a 0.2dB difference observed
between using one or three Gaussian mixtures. Given these results, and the fact
that more complex approaches did not significantly improve performance, a simpler
entropy model using only one Gaussian mixture was implemented to keep the
model as straightforward as possible. To improve the entropy coding efficiency, an
autoregressive model, Cm, is used to predict each latent representation from its
causal context [37]. By concatenating the output of the autoregressive model (Cm)
and the output of the synthesis transform (hs) the estimated probability distribution
of ŷ is obtained after convolutional layers (CL) and given to the entropy encoder and
decoder. The bitrate of compressed images is given by R = R(ŷ) +R(ẑ), where the
last term is side information, obtained by encoding the entropy model parameters
required for arithmetic decoding.

3.2 datasets

Five datasets were adopted to evaluate the proposed compression approach using
five different object classes: faces, people, cars, motorbikes and bikes. The faces
dataset was created by joining the LFW Face Database and Flickr-Faces-HQ Dataset
available respectively in [38] and [39]. The people, cars, motorbikes and bikes datasets
were created using tools made available in Detectron2 library [40], by cropping
and resizing the bounding boxes of people, cars, motorbikes and bikes in different
positions, taken from several videos available online.

The concept under study is that better compression performance can be achieved
if we training our autoencoders using only features that represent a specific object.

19

learning-based compression of visual objects

To this aim, for each class four different datasets were considered representing the
object with a black background, the object with blurred background, the object
with the original background and the object in the centre of the image with a black
background. In the latter case, the number of the specific object in the image was
limited to one, while for the other cases it was allowed images with more than
one object. Figures 58, 57, 56 and 59 (Appendix A) show some examples of image
datasets for each considered class using different background approaches. Then, in
Figure 60 shows some images of the faces dataset with the original and with a black
background.

The datasets with objects of class people, cars, motorbikes and bikes have a total of
94500 images, resized to 128× 128 pixels, while for class faces the dataset has a total
of 78761 images, also resized to 128× 128 pixels. Object detection and segmentation
were performed by using the following models: faster_rcnn_R_101_FPN_3x and
mask_rcnn_R_50_FPN_3x, respectively. Specific details about these models and
their implementation can be found in [40].

3.3 experimental results

The performance evaluation study was carried out through simulation of the proposed
pipeline by measuring the compression efficiency using five relevant visual objects
in surveillance applications: people, cars, motorbikes, bikes and faces, as described
in the previous section. Learning-based compression was implemented using the
autoencoder architecture presented in Section 3.1. The software implementation is
available in the CompressAI framework [41].

The pre-trained implementations available in CompressAI were first validated by
confirming that the results presented in [41] could be accurately reproduced. These
provided pre-trained models were trained for 4-5M steps on 256×256 image patches,
randomly extracted and cropped from the Vimeo-90K dataset [42]. A batch size of
16 was used and the initial learning rate was 1e-4, for approximately 1-2M steps.
The learning rate was then divided by 2 whenever the evaluation loss reached a
plateau (patience of 20 epochs).

For the performance evaluation of the proposed approach, two versions of the
learning network were used: (i) the pre-trained and (ii) the re-trained one, obtained
through transfer learning over the pre-trained models. There are two different types
of transfer learning over a pre-trained model: fine-tuning, where all of the model’s
parameters for a new task are updated, and feature extraction, where only the

20

3.3 experimental results

final layer weights are updated. In this process, the parameters of the pre-trained
models were first loaded and then fine-tuning was carried out by further learning
the specific features of each visual object class.

For transfer learning the people, cars, motorbikes and bikes datasets were divided
into 90000 images for training and 4500 for testing, while the faces dataset was
divided into 74822 images for training and 3939 for testing. The models were trained
for 1M steps with a batch size of 8, and an initial learning rate of 1e-4. The learning
rate is divided by 10 whenever the evaluation loss reaches a plateau (patience of 10).
The training of the models is stopped if the loss does not decrease in the following
24 epochs. The loss function used for training is formulated as

L = λ× 2552 ×DMSE + R (8)

where λ controls the rate-distortion tradeoff, DMSE denotes the distortion term
between the original and decoded images (Mean Squared Error in the case), and
R is the estimated bit-rate. When optimized by mean square error (MSE), λ was
chosen from the set {0.00008,0.0009,0.0018,0.013,0.0483,0.8}. The number of filters
(N) was 128 for the five lower rates and 192 for the higher rate models.

These two learning-based compression networks used in the experiments are
identified in Table 1, including the notation used in the Figures ahead. For com-
parison, the same visual objects were also compressed as intra-coded images with
four standard encoders: joint photographic experts group (JPEG), JPEG2000, high
efficiency video coding (HEVC) (HM) and versatile video coding (VVC) (VTM).

Table 1: Learning-based image compression models used in the visual objects

Model Description
pretrained-<class> pre-trained model: pretrained model using “class” for testing.

transfer-learn-<class> transfer learning: retrained model using “class” for training
and testing

3.3.1 Rate-distortion performance

The rate-distortion performance was evaluated by measuring three different quality
metrics: PSNR, MSSIM and video multimethod assessment fusion (VMAF), against
the corresponding bits per pixel (bpp) achieved after compression.

As mentioned before, it is possible to transfer learning over a pre-trained model
using two different approaches, fine-tuning and feature extraction. Figures 16, 64,

21

learning-based compression of visual objects

and 65 (the last two in B) show the PSNR results for faces dataset with blurred
background, original background and with a black background using different transfer
learning approaches, respectively. The number present in the legend refers to the
fraction of the frozen parameters in the encoder of the considered autoencoder. The
blue line represents the fine-tuning process where the pre-trained model is retrained,
and all weights updated, and the red line represents the case of feature extraction
frozen the first 85% parameters of the pre-trained model (it only updated the
last 15% of the weights of the encoding module). The comparison between various
datasets and percentages of frozen weights shows that models which underwent
fine-tuning achieved better performances than those using feature extraction only.
This improvement can be observed through the higher values of PSNR achieved
for the same value of bpp. Therefore, it was decided to use fine-tuning approach to
transfer learning of the considered pretrained models.

Figure 16: PSNR - faces dataset with blurred background using different transfer learning
approaches.

The PSNR results for people, cars, motorbikes and bikes datasets, considering
different approaches to the background, are shown in Figures 17, 18, 19 and 20,
respectively. The blue line represents the model trained using dataset with the
original background, the orange line represents the model trained using dataset
with a black background, the green line represents the model trained using dataset
with blurred background and the red line represents the model trained using the
dataset with one object in each image center with a black background.

22

3.3 experimental results

Figure 17: PSNR - people dataset with different approaches to the background.

Figure 19: PSNR - motorbikes dataset with different approaches to the background.

23

learning-based compression of visual objects

Figure 18: PSNR - cars dataset with different approaches to the background.

Figure 20: PSNR - bikes dataset with different approaches to the background.

Looking at the blue, green and orange line it is possible to infer that the datasets
with blurred images and images with a black background are those where the best

24

3.3 experimental results

performance is obtained. This can be explained on the grounds that, in their images,
the objects are the in spotlight and so the model can better learn the features that
characterize the considered class. It can also be observed, especially in the cars and
people datasets and basically for the same reasons, the high performances with
images containing only one centered object with a black background.

A different behavior is observed with the motorbikes and bikes datasets. As it
can be seen, the best performances obtained are not with images containing only
one object centered in the image with a black background. This is most likely due
to the very limited segmentation performance of Detectron2, which often led to
incomplete objects, as shown in for example in Figure 59.

Based on the results obtained so far, the next set of experiments involved images
with a black background and one object centered in the image, and the object
classes people, cars and faces.

As mentioned in 3.1, the attention module proposed in [4] was removed of
the autoencoder architecture because the images present in datasets contain a
black background. To validate this option, an experiment was conducted in order
to compare the performance of the autoencoder with and without the attention
module. The PSNR results considering different approaches are shown in Figures
21, 22 and 23 for people, cars and faces datasets, respectively. The blue and green
line represent the results obtained with (transfer-learning) in each class and the
pretrained model respectively, both without the attention model. The orange line
and the red line are the corresponding results obtained now with the attention
module.

On the whole, the results show that there are no significant performance differences
for the configurations with and without the attention module. Therefore, with no
improvements observed and for the sake of simplicity, it was decided to not use
attention modules in the architecture of the autoencoders.

25

learning-based compression of visual objects

Figure 21: PSNR - people dataset with different architecture approaches.

Figure 22: PSNR - cars dataset with different architecture approaches.

26

3.3 experimental results

Figure 23: PSNR - faces dataset with different architecture approaches.

With the datasets and the models’ architecture defined, the next study aimed at
comparing the performace obtained against standard encoders. The PSNR results for
the people, cars and faces datasets are shown in Figures 24, 25 and 26, respectively.
The coding efficiency of the standard encoders is more or less inline with their
expected relative performance: where JPEG (the oldest of them) with the lowest
R-D performance and VVC (the most recent) the highest.

In regard to the proposed learning based approaches, for the people and cars
dataset, the fine-tuned autoencoder (transfer-learning) outperforms the VVC, as
well all other encoders up to 0.6bpp. With the faces dataset the result is even
more impressive as transfer-learning exhibts consistently higher R-D performance in
allover teh considered range. In the case of agnostic learning using the pre-trained
model, (i.e.no fine-tuning), the R-D performance is comparable to that of VVC, but
still slightly above for almost the bit rate range.

The BD-RATE(%) and BD-PSNR(dB) gains, using the VVC as reference, for
the proposed learning-based model (transfer-learning) are present in Table 2. The
BD-RATE quantifies the bitrate savings achieved at an equivalent quality level,
whereas the BD-PSNR measures the quality improvements obtained considering
an equivalent bitrate. As it can be seen, the coding gains are quite significant for
the considered datasets. For the people dataset, the BD-RATE gain is 32.6% for a
BD-PSNR of 2.8%, and for the cars dataset, 28.2% and 2.1%, respectively. This is

27

learning-based compression of visual objects

even higher for the faces dataset, i.e. 46.7% and 3.06% for BD-RATE and BD-PSNR,
respectively.

Table 2: BD-Rate and BD-PSNR using VVC as reference.

Dataset Model BD-RATE(%) BD-PSNR(dB)
People transfer-learn -32,64 2,84
Cars transfer-learn -28,16 2,07
Faces transfer-learn -46,71 3,06

Figure 24: PSNR - people dataset.

28

3.3 experimental results

Figure 25: PSNR - cars dataset.

Figure 26: PSNR - faces dataset.

In addition to the PSNR results, the algorithm performance has also been
evaluated in terms of MS-SSIM and VMAF [43]. The results are presented in
Figures 66, 67 68, 69, 70 and 71, with the original MS-SSIM results are converted

29

learning-based compression of visual objects

to a dB scale (−10 log10(1 − MS − SSIM)) in order to represent the differences
more clearly. These results confirm that the proposed approach achieves better
performance than the VVC, as well as the benefits of fine-tuning the parameters
learnt from generic images. Overall, for the same bit rates, the quality obtained
from the transfer-learn model is consistently higher than the state of the art VVC
encoder.

3.3.2 Task-driven algorithm performance

The task-driven algorithm performance was also evaluated in two types of assign-
ments: object classification and face recognition. The same range of coding rates was
used, i.e., up to 1.0 bpp and the tasks were carried out using algorithms available
in Detectron2 library.

3.3.2.1 Object classification

The classification accuracy of the visual objects was assessed before and after coding
the images with the different schemes. Since the actual object class is known in
advance, the result of this task is a binary output, indicating whether the correct
class was identified or not. This is the class with the highest confidence score,
provided it is at least 70%, positively identified or not. The same data test was used
in all encoders, and the accuracy, measured as the percentage of objects correctly
classified, and the results are presented in Figures 27, 28 and 29.

The data obtained shows that the autoencoder with transfer-learning outperforms
all the others, particularly at lower bit rates. In the case of faces, the accuracy is
quite high for very low bit rates. This is likely to happen because the shape of all
faces are quite similar and the object detection algorithm is capable of identifying a
face object from its shape, regardless the quality of the corresponding features. In
the case of people and cars dataset this is not likely to happen because the diversity
of shapes is much higher.

30

3.3 experimental results

Figure 27: Classification accuracy - people dataset

Figure 28: Classification accuracy - cars dataset

31

learning-based compression of visual objects

Figure 29: Classification accuracy - faces dataset

3.3.2.2 Face recognition

Face recognition was performed by using the Deepface tool created by Facebook [44].
To measure the performance of face recognition after compression with different
encoders, a dataset with 2304 face images was used. Then a test group with 1000
matching faces in the database and 1000 non-matching faces was created. For a face
to be correctly recognised, it was established that at least one, and no more than
five, matching images should be found. The results obtained are presented in Figure
30, showing that the accuracy obtained from images encoded with the proposed
autoencoder (transfer-learning) is again consistently higher than all other encoders
(including the learning-based scheme based on pre-training with generic images).

32

3.4 summary

Figure 30: Accuracy in face recognition

3.4 summary

In this chapter, a novel coding approach based on multiple autoencoders was
described, each one specifically optimised for a particular object class. The proposed
encoding scheme consistently achieves better results than other standard encoders,
including the state of the art VVC.

Initially, the learning-based network architecture and the datasets used to evaluate
the proposed method were presented. The first experiment consisted on evaluat-
ing the impact of the background surrounding each object, considering different
approaches. It led to the conclusion that resulted that removing the background
from the objects in images conducted to better compression performance. The best
results are obtained when the images of the datasets consider only show one object
center with a black background.

It was also shown that the use of the attention module in the autoencoder archi-
tecture does not bring significant improvements when the objects of the datasets
are already segmented. This is justified because the network can easily learn the rel-
evant features of the considered objects when the images contain only the respective
object.

33

learning-based compression of visual objects

Additionally, it was demonstrated that fine-tuning of generic optimised autoen-
coders through transfer learning, yields improved the compression efficiency and
the task-driven algorithm performance (object classification and face recognition).

34

4
L E A R N I N G - B A S E D C O M P R E S S I O N U S I N G
C L A S S I F I C AT I O N F O R 3 6 0 ◦ A N D U H D I M A G E S

Based on the approach of using several autoencoders to compress different parts of
an image, this chapter addresses an efficient method to compress 360◦ and UHD
images using a set of autoencoders in order to take advantage of the characteristics
of different regions of the images. Firstly, the proposed approach is detailed, and
then the datasets used to training the autoencoders, the training parameters and the
methods to classify image regions are described. Finally, the experimental results
are analysed by measuring different rate-distortion metrics used to compress 360◦

and UHD images.

4.1 proposed approach

The main purpose of this approach is to compress 360◦ and UHD images more
efficiently. To this end, several autoencoders are trained to tackle the different kinds
of pixel-based or transform-based features like variance, horizontal/vertical gradient,
DCT, Karhunen-Loève Theorem (KLT) and Fourier transform. Thus, instead of
using a specific autoencoder to compress a particular class of objects, as proposed
in Section 3, herein specific autoencoders are trained to compress regions of UHD
and 360◦ images with particular properties (e.g. variances or gradients). For certain
properties several autoencoders will be trained, considering different ranges (e.g.
one autoencoder compresses regions with high variance and another compresses
regions with low variance).

Each image to compress is divided into square regions of uniform size, as shown
in Figure 31, wherein WR stands for width and HR for height. WR and HR are
predefined sets of parameters, such that an integer number of regions is defined
within the whole image. The visual content of these square regions is agnostic
regarding their semantic meaning.

35

learning-based compression using classification for 360◦ and uhd
images

Figure 31: Division of 360◦ and UHD images in square regions.

4.2 datasets

To implement this approach one general dataset was created, using 438980 crops
with 128x128 pixels from 360◦ and UHD images. First, several video sequences
were joined, such as UVG Dataset [45], SJTU Dataset [46], MCML Dataset [47],
NETFLIX - “Chimera” video sequence [48], Xiph.org test media short film Sintel
[49] and JVET Dataset [50], with frames interval of approximately 1.5 seconds.

As mentioned before, the main purpose of this method is to compress UHD and
360◦ images using different autoencoders based on region-based properties of the
image such as the variance, the gradients and the principal component analysis
(PCA) over features extracted by CNNs. To achieve this, the original dataset are
split considering each metric into four different subsets. In this way, it was created
three copies of the general dataset divided each one in four various subset consider
different ranges of each metric used, as explained in the following subsections.

4.2.1 Variance

In order to create 4 different subsets, each with a different variance range, the
variance of all crops has been calculated after converting the crop to grayscale,
according to

36

4.2 datasets

V ariance =

∑128
n=1

∑128
m=1(Xnm − µ)2

128 ∗ 128 (9)

where µ is the average of the crop in grayscale, and n and m are the coordinates
of the pixel. A histogram of the variances for all crops in the dataset is shown in
Figure 32. Based on this information, 4 subsets were created, each comprising the
same number of crops. The ranges of variances of each group can be inferred with
the aid of the dashed red lines in the figure.

Figure 32: Histogram of variances for all crops.

In detail, the first subset of crops includes crops with low variance, in a range
between 0 and 53.76. The second subset is composed by crops with a variance
between 53.76 and 315.89. In the third subset crops have a variance between 315.89
and 1014.71, and the fourth subset contains crops with variance between 1014.71
and 14281.55. The total number of crops in these subsets is 109745. Some examples
of crops representing different values of variance are shown in Figure 61 (Appendix
A).

37

learning-based compression using classification for 360◦ and uhd
images

4.2.2 Gradients

Another criterion used to group crops was the gradient, namely the average horizontal
and vertical gradient. To perform these operations, the following equations based
on Sobel kernels were used,

Horizontal_Gradient =

∑128
n=1

∑128
m=1(|Gxnm|)

128 ∗ 128 (10)

V ertical_Gradient =

∑128
n=1

∑128
m=1(|Gynm|)

128 ∗ 128 (11)

where n and m are the coordinates of the pixel, Gxnm and Gynm are crop
horizontal and vertical gradient magnitudes, respectively. The crops were converted
to grayscale for the calculation of the gradients. These results, for all crops, are
plotted in Figure 33, distributed by horizontal and vertical gradients. Each point
represents one crop.

Figure 33: Distributions of the crops by gradients.

38

4.2 datasets

As before, 4 subsets with the same number of crops. Firstly, the dataset is halved
into two groups according to their vertical gradient (red line). Then, using each
of these groups is further split in two based on their horizontal gradients (blue
lines). Thus, 4 subsets were created with the same number of crops, for different
ranges of horizontal and vertical gradients. The first subset includes crops with
low gradients, the horizontal gradients between 0.0 and 5.95 and vertical gradients
between 0.0 and 11.65. The second subset have crops with the horizontal gradient
between 0.0 and 13.62 and vertical gradients between 11.65 and 252.39. The third
subset comprise crops with the horizontal gradient between 5.95 and 119.19 and
the vertical gradients between 0.0 and 11.65. The last subset group crops with high
gradients, the horizontal gradients between 13.615 and 206.403 and the vertical
gradients between 11.65 and 252.39. The total number of crops in the four subsets
is 109745. Some examples of crops representing different values of horizontal and
vertical gradients are shown in Figure 62.

4.2.3 Principal component analysis (PCA) of features

A strategy different from the two previous ones, which were based on image metrics,
is to create the 4 image subsets based on the visual context (features) of the crops.
As shown in Figure 34, first a pre-trained model (in this case VVG16 [51]) is used
to extract features from the crop, then a PCA is applied to reduce the number of
variables used to split the subsets. Finally, the K-means algorithm is used to cluster
the crops, grouping them in subsets.

Figure 34: Proposed method to split crops using PCA.

Prior to load the VGG16 model it is necessary to remove the output layer because,
in its standard configuration, the neural network is used to classify objects. In this
case only the crop features are needed, so the output of this block is a vector with
4096 features per crop.

PCA is a statistical technique for reducing the dimensionality of a dataset.
PCA combines the input data into a set of independent components, by a linear
transformation, each representing a combination of the original inputs, in this case,
the output features of VGG16. In this way is computed the principal components

39

learning-based compression using classification for 360◦ and uhd
images

and using them to perform a change of basis on the data. The most important
features are the ones that best relate to the input features, which relationship can be
observed using a covariance matrix. The covariance matrix presents the estimation
of how every “new” feature relates to input features. In this case, the first 100 most
important features are considered. The output of PCA is used to create 4 subsets,
similar to what was done using the variance and gradients of the crops. To group the
crops in subsets the K-means algorithm is used. The number of clusters is defined
as 4 to create 4 subsets. The K-means algorithm identifies 4 centroids, and allocates
every crop to the nearest cluster while keeping them as small as possible. For the
first iteration, it selects the centroids randomly, and for the following iterations, the
centroids’ positions are optimized. When the positions of the centroids are stable
the optimal centroids were found. In this case all subsets have a different number
of crops, that is 116517, 99079, 6886 and 216499 crops. Some examples of crops
representing different clustered crops using the PCA are shown in in Figure 63.

4.3 experimental results

The performance of the proposed approach was tested by using UHD and 360◦

images. The datasets were described in the previous section and, as in Section 3.3,
it was used the autoencoder architecture presented in Section 3.1.

For the performance evaluation of this approach three versions of the learning
network were used: (i) the pre-trained, (ii) the re-trained one, obtained through
transfer learning over the pre-trained models, updated all weights, and (iii) the
model trained from the scratch. As in Section 3.3, the parameters of the pre-trained
models were primarly loaded and then fine-tuned, by further learning the specific
dataset.

The number of crops per subsets for transfer learning and the model trained from
the scratch are presented in Table 3.

All models were trained with a batch size 8 and an initial learning rate of 1e-4.
The learning rate is divided by 10 whenever the evaluation loss reaches a plateau
(patience of 10). The transfer-learn models were trained with 1.3M steps using the
subsets divided by variance, gradients, and using PCA group_0 and group_1. The
subsets using PCA group_3 and group_4 were trained with 0.6M and 1.7M steps,
respectively. The training of transfer-learn models are stopped if the loss do not
decrease in 40 following epochs.

40

4.3 experimental results

Table 3: Number of crops per subsets, for the different methods used to split the data

Method Train/Test Subset Number of crops

Variance

Train

very low

104260low
high
very high

Test

very low

5485low
high
very high

Gradient

Train

low horizontal and vertical

104260low horizontal and high vertical
high horizontal and low vertical
high horizontal and vertical

Test

low horizontal and vertical

5485low horizontal and high vertical
high horizontal and low vertical
high horizontal and vertical

PCA

Train

group_0 110691
group_1 94125
group_2 6542
group_3 205674

Test

group_0 5826
group_1 4954
group_2 344
group_3 10825

The models trained from the scratch were trained only with the subsets created
using the variance and the gradient, as the metric to divide the crops. These models
were trained for 5.6M steps and the training were stopped if the loss do not decrease
in 50 following epochs. The loss function used in the training is formulated as 8.

The values of λ and N are the same as those referred in Section 3.3

The three learning-based compression algorithms used in the experiments are
identified in Table 4, including the notation used in the figures ahead. For comparison,
the same visual objects were also compressed as intra-coded images with four
standard traditional encoders: JPEG, HEVC (HM) and VVC (VTM).

41

learning-based compression using classification for 360◦ and uhd
images

Table 4: Learning-based image compression models used in the UHD and 360◦ images

Model Description
generic_autoencoder_compressAI pretrained model: pretrained model available in compressAI

transfer-learn_<subset>

transfer learning: retrained model using “subset” for train-
ing and testing (CTUs_v1-subsets splited using variance,
CTUs_v2-subsets splited using gradients and CTUs_v3-
subsets splited using cluster PCA)

model_by_zero_<subset>

model by the zero : model trained by the scratch using “sub-
set” for training and testing (CTUs_v1-subsets splited us-
ing variance, CTUs_v2-subsets splited using gradients and
CTUs_v3-subsets splited using cluster PCA)

4.3.1 Dataset Separated by Variance

The PSNR results using the subsets separated using different intervals of variance
are shown in Figures 35, 36, 37 and 38, representing the group with variance very
low, low, high and very high, respectively. The blue line represents the model trained
from the scratch, the orange line the model using transfer-learn over a specific
subset, and the green line the pretrained model available in compressAI.

Figure 35: PSNR - Subset split variance very low.

42

4.3 experimental results

Figure 36: PSNR - Subset split variance low.

Figure 37: PSNR - Subset split variance high.

43

learning-based compression using classification for 360◦ and uhd
images

Figure 38: PSNR - Subset split variance very high.

Analysing the curves in these figures, on whole a better performance is obtained
when using the models retrained rather than the generic autoencoder. This is more
obvious for the subsets with a higher variance. The performance of the model
trained from the scratch and the model using the transfer-learn is quite similar for
all subsets, excluding the graph considering crops with a very high variance where it
is noticeable a worse performance of the autoencoder from scratch possibly caused
by overfitting. In regard to the learning based approaches, for all subsets using the
variance, the fine-tuned autoencoder (transfer-learn) outperforms the VVC and all
other encoders Only for subsets with very high variance the PSNR quality of the
proposed encoder is slightly below than that of the VVC, considering a bpp higher
than 0.9.

4.3.2 Dataset Separated by Gradients

The PSNR results using the subsets grouped for different intervals of horizontal and
vertical gradients are shown in Figures 39, 41, 40 and 42, representing the group
with low horizontal and vertical gradient, low horizontal and high vertical gradient,
high horizontal and low vertical gradient, and high horizontal and vertical gradient,

44

4.3 experimental results

respectively. The graph labels maintain a consistent representation as in the results
presented in the previous section.

Figure 39: PSNR - Subset low horizontal and vertical Gradient.

Figure 40: PSNR - Subset low horizontal and high vertical Gradient.

45

learning-based compression using classification for 360◦ and uhd
images

Figure 41: PSNR - Subset high horizontal and low vertical Gradient.

Figure 42: PSNR - Subset high horizontal and vertical Gradient.

Similar to what was observed in the case of subsets separated by the variance,
it is possible to observe a better performance using the models trained from the

46

4.3 experimental results

scratch, and the model using transfer-learn instead of a generic autoencoder. This
is more relevant for the subsets with higher horizontal and vertical gradients.
The performance of the model trained from the scratch and the model using
the transfer-learn is quite similar for all subsets. Given this behaviour, in the
following experimental studies the model trained from the scratch was not considered.
Regarding the learning based approaches, for all subsets separated by horizontal
and vertical gradients, the fine-tuned autoencoder (transfer-learn) outperforms the
VVC and all other encoders, except for subsets with very high variance, where the
PSNR quality is slightly below than VVC for a bpp higher than 1.3.

4.3.3 Dataset clustering with PCA

The PSNR results achieved by using the subsets of PCA clustering are shown in
Figures 43, 44, 45 and 46, representing groups 0, 1, 2 and 3, respectively. The
graph labels maintain a consistent representation as in the results presented in the
previous section 4.3.1 and 4.3.2.

Figure 43: PSNR - Subset clustering with PCA group_0.

47

learning-based compression using classification for 360◦ and uhd
images

Figure 44: PSNR - Subset clustering with PCA group_1.

Figure 45: PSNR - Subset clustering with PCA group_2.

48

4.3 experimental results

Figure 46: PSNR - Subset clustering with PCA group_3.

For the subset of the group 1, 3 and 4, the performance of transfer-learn model
and the generic autoencoder are similar considering the low values of bpp, although
there is an improvement when using the transfer-learn model, as in the previous
sections. When using the subset of group 2 there is a significant improvement for
the transfer-learn model, when compared to the generic autoencoder. This occurs
because this subset is composed with more specif crops, such as letters as can be
seen in 63(C), and doing fine tuning allows these models to learn the most efficient
way to encode these crops, as has been shown in Chapter 3. In regard to the learning
based approaches, for all subsets separated with cluster over the PCA, the fine-tuned
autoencoder (transfer-learn) outperforms the VVC and all other encoders.

4.3.4 UHD Images

After autoencoders are trained and the performance is measured on the individual
subsets, the next step is to use them to compress the UHD images. As autoencoders
were trained with 128x128 pixel crops, the valid input is to use crops of the same
size. Thus, it is necessary to crop the entire UHD image into 128x128 pixels, as
shown in Figure 47. Then, depending on the chosen metric (variance, gradients
or cluster by PCA), each crop is assigned to a group that is compressed by the

49

learning-based compression using classification for 360◦ and uhd
images

respective autoencoder. This process is done for all crops belonging to the entire
UHD image.

Figure 47: Example of some crops from UHD image.

The UHD test set were created by selecting 9 UHD images from the “HDR-10
calibration and test patterns set” [52] and frames of “videvo” [53]. Figure 72 show
the UHD images used to evaluate the proposed method. The PSNR is measured
by comparing the original UHD image to the reconstructed one, and the bpp is
calculated by averaging all bpp of the crops that compose the UHD image. This is
possible because all crops have the same resolution.

The PSNR results using a group of autoencoders trained using different subsets
are shown in Figure 48. The blue line represents the performance using autoencoders
trained with crops selected by the variance, the orange line shows the performance
using autoencoders trained with crops selected by the gradient, the red line shows
the performance using autoencoders trained with crops clustering by PCA, and the
green line represents the performance of the generic autoencoder. Using different
metrics to separate subsets for training autoencoders leads to different compression
performances. The best results are achieved by the autoencoders trained with subsets
clustered based on PCA, except for low bpp where they are slightly outperformed
by the generic autoencoder.

50

4.3 experimental results

Figure 48: PSNR - UHD images tests set compression with autoencoders using different
subsets.

Figure 49 compares the PSNR of reconstructed UHD images using the autoen-
coders trained by the subsets cluster by PCA and the traditional encoders. Analysing
the curves it is possible to observe that the performance of the VVC is better than
the autoencoders, except for the generic encoder that presents a better quality for
low bpp.

Figure 49: PSNR - UHD images tests set.

51

learning-based compression using classification for 360◦ and uhd
images

4.3.5 360◦ Images

The compression of 360◦ images with autoencoders follows the same procedure
that was presented in the previous subsection for UHD images. The entire image is
divided into crops of 128x128 pixels, which are given by input to the autoencoders,
and the image is reconstructed crop by crop. To create the 360◦ test set 8 360◦

images were selected. Figure 73 show the 360◦ images used to evaluate the proposed
method.

As mentioned before, the PSNR is measured by comparing the original 360◦ image
with the reconstructed one, and the bpp is calculated by averaging all bpp per crops
that compose the 360◦ image, which is possible because the tested images have a
width and height multiples of 128. The PSNR results using a group of autoencoders
trained by different metric is shown in Figure 50. The graph labels maintain a
consistent representation as in the results presented in the previous section. A
difference between compression performances can be noticed using autoencoders
trained with subsets separated using different metrics. The autoencoders trained
with subsets selected by cluster the crops considering PCA have a better performance
compared with the other groups of autoencoders, but at low bpp the PSNR quality
is slightly lower than the generic autoencoder, showing similar performance with
autoencoders trained with subsets selected by gradients.

Figure 51 shows the PSNR of reconstructed 360◦ images using the autoencoders
trained by the subsets cluster by PCA and the traditional encoders. Analysing this
figure it is possible to see the fine-tuned autoencoders (transfer-learn) trained using
the subsets divided by cluster crops using PCA to outperform VVC and all other
encoders. This performance improvement is more significant for bpp bigger than
0.4.

52

4.3 experimental results

Figure 50: PSNR - 360◦ images tests set compression with autoencoders using different
metrics.

Figure 51: PSNR - 360◦ images tests set.

In order to evaluate the performance of the encoder in different regions of the
360◦ images, it was decided test the encoders by zones (coined as “north”, “equator”

53

learning-based compression using classification for 360◦ and uhd
images

and “south”), as shown in Figure 52. The equator zone occupies half the image
while the poles represent a quarter of the image.

Figure 52: Example of 360◦ images divided by zones.

The PSNR of the north, equator and south zones of 360◦ images are shown
in Figures 53, 54, and 55, respectively. The autoencoders trained with subsets
selected by using variance achieved a similar compression performance to VVC.
The autoencoders trained with subsets divided by the gradient and cluster using
PCA have better performance than VVC, which is more significant for higher bpp.
Comparing the difference in performance between zones it is possible to observe that
autoencoders trained with subsets selected define based on gradients and clustering
using PCA achieve higher compression gains than VVC in all zones of images. This
difference between the performance of VVC and these autoencoders on the poles of
the images (north and south) was more significant than of the equator. This fact is
probably justified because the equator presents less distortion and more detail in
comparison to the poles. This fact helps to support the higher performance of VVC
in UHD images in comparison to the autoencoders because the distortion noticed
in 360◦ images does not exist in UHD images.

54

4.3 experimental results

Figure 53: PSNR - 360◦ images tests set zone “North”.

Figure 54: PSNR - 360◦ images tests set zone “Equator”.

55

learning-based compression using classification for 360◦ and uhd
images

Figure 55: PSNR - 360◦ images tests set zone “South”.

4.4 summary

In this chapter, a novel coding approach was described based on multiple au-
toencoders to compress UHD and 360◦ images by regions, considering the image
properties of each region. Different metrics were used to create the subsets such as
the variance, horizontal and vertical gradients and the PCA

The performance of autoencoders and the standard encoders for each subset were
presented, showing that the autoencoders consistently achieve better results than
VVC.

Analysing the performance of the compression for UHD and 360◦ images using
different groups of autoencoders, trained with subsets separated with different
metrics, it is possible to observe that the criteria chosen to create the subsets is
relevant. For both test sets, the autoencoders trained using the subsets created by
the cluster using PCA achieved the best performance.

For the UHD images, VVC achieves a better performance than the proposed
approach.In contrast, the proposed encoding scheme achieves better results than
VVC for the compression of 360◦ images, mainly because the autoencoders achieved
a significantly better performance encoding the poles of 360◦ images.

56

5
C O N C L U S I O N S A N D F U T U R E W O R K

5.1 conclusions

The main objective of this work was to explore and develop an efficient solution for
compression using a machine learning approach. Image compression is an important
research field that aims to achieve more compact representation of data while
keeping the quality of the image. With the increase of computational resources
the end-to-end learned-based methods have grown to achieve an efficient way of
compression. In this dissertation, two approaches were proposed using multiple
autoencoders.

The first learning-based compression proposed method had as main objective the
compression of visual objects, targeting not only better performances in terms of
image quality performance, but also higher accuracy on some machine driven tasks.
To validate this approach a specific case was addressed: a surveillance scenario
with 5 different object classes (people, cars, motorbikes, bikes and faces). It was
created a dataset for each considered class and different autoencoders were trained,
each one specifically optimised for one object class. Using object detection and
classification, the target class of objects present in the image were compressed using
the autoencoder trained to that class. As a result, the proposed encoding scheme
consistently achieves better results than other traditional encoders, including the
state of the art VVC. The accuracy of machine driven tasks is also measured consider
object classification and face recognition, and the proposed encoding scheme achieves
better results compared to VVC. It was demonstrated that fine-tuning of generic
optimised autoencoders through transfer learning, yields improved compression
efficiency and the performance of task-driven by machines. Smart surveillance is
the envisaged application field for this work, which also opens a promising research
direction towards learning-based compression of visual objects.

A second learning-based compression proposed for the efficient compression of
UHD and 360◦ images. It was created a generic dataset consisting of crops taken from
UHD and 360◦ images. Additionally, considering different image properties, various
subsets were created, each one of them used to training a specific autoencoder. For

57

conclusions and future work

each considered metric four different autoencoders were trained, each targeting
a particular range of values of that metric. Which is to say that the different
autoencoders are optimized to particular characteristics of the image.

The proposed encoding scheme achieves better results than VVC for 360◦ images,
which does not occur for UHD images. Also, it was observed that the performance of
autoencoders depends on the metric used to separate the generic dataset, indicating
its importance in the strategy used to create the subsets. In fact, it was shown
that for 360◦ and UHD images different compression performances are obtained,
depending on the image subset used to training the autoencoders: clustering with
PCA based presenting the best performance and variance based on the worst.

Overall, the proposed compression approach using several autoencoders achieves
better performance than the VVC, except for UHD image compression. Such
achievement can be beneficial in the storage and transmission of compressed images,
as well as to improve the accuracy of the systems with tasks driven by machines.

5.2 future work

As future work, it would be interesting to study some additional modules or even a
different architecture of autoencoders, such as local multi-level feature fusion (LMLF)
or concatenated residual modules (CRM), aiming to improve the performance of
the compression performance.

Concerning the visual compression of visual objects firstly addressed, given the
limited performance observed on images with objects like bikes and motorbikes
other segmentation schemes should be considered. Indeed, “better” datasets can
positively impact on the ability of autoencoders to apprehend objects’ features. It
also can be assessed the performance of this approach when compressing the entire
image, and in this can it will be necessary to implement an efficient way to compress
the background.

Also, as the performance of the approach proposed to compress UHD images
is still below VVC, improvements should be considered, for example, by using
the information of the neighbouring crops similar to the algorithm of predictions
between CTUs used in VVC. Given the dependence of autoencoders’ performance
on the scheme used to create the subsets, there is room to study other metrics or to
combine multiple metrics.

58

5.3 contributions

5.3 contributions

Resulted contributions from the research work done during this dissertation.

• R. Antonio, S. Faria, L. M.N.Tavora, A. Navarro and P. Assuncao, "Learning-
based compression of visual objects for smart surveillance", 2022 Eleventh
International Conference on Image Processing Theory, Tools and Applications
(IPTA), Salzburg, Austria, April 2022

• P. Assuncao, S. Faria, R. Antonio, L.M.N. Tavora, A. Navarro, "Image data
compression method and device using segmentation and classification", INPI,
nº20221000001678/0198, patent request submitted on 19 April 2022

59

B I B L I O G R A P H Y

[1] J. Ballé, V. Laparra, and E. P. Simoncelli. “End-to-End Optimized Image
Compression”. In: 5th Int. Conf. on Learning Representations (Mar. 2017).
doi: 10.48550/arXiv.1611.01704.

[2] J. Balle et al. “Variational image compression with a scale hyperprior”. In:
the 6th Int. Conf. on Learning Representations (May 2018). doi: 10.48550/

arXiv.1802.01436.

[3] Zhengxue Cheng et al. “Deep Convolutional AutoEncoder-based Lossy Image
Compression”. In: 2018 Picture Coding Symposium (PCS). 2018, pp. 253–257.
doi: 10.1109/PCS.2018.8456308.

[4] Z. Cheng et al. “Learned Image Compression with Discretized Gaussian
Mixture Likelihoods and Attention Modules”. In: Proc. IEEE/CVF Conference
on Computer Vision Pattern Recognition. Mar. 2020, pp. 7936–7945. doi:
10.1109/CVPR42600.2020.00796.

[5] G. Hinton and F. Cambridge. “Shape RFPRFSFNTATTON in parallel sys-
tems”. In: (1981).

[6] Touradj Ebrahimi. JPEG AI Use Cases and Requirements. https://ds.

jpeg.org/documents/jpegai/wg1n90021-REQ-JPEG_AI_Use_Cases_and_

Requirements.pdf.

[7] A.M. Clappis. Uma introdução as redes neurais convolucionais utilizando o
Keras. https://medium.com/data-hackers/uma-introduÃğÃčo-as-redes-

neurais-convolucionais-utilizando-o-keras-41ee8dcc033e.

[8] L. Yin. A Summary of Neural Network Layers. https : / / medium . com /

machine-learning-for-li/different-convolutional-layers-43dc146f4d0e.

[9] Pytorch. CONV2D. https : / / pytorch . org / docs / stable / generated /

torch.nn.Conv2d.html.

[10] Luis. What is the sigmoid function, and what is its use in machine learning’s
neural networks? https://www.luisotsm.com/single-post/what-is-the-

sigmoid- function- and- what- is- its- use- in- machine- learning- s-

neural-networks.

61

https://doi.org/10.48550/arXiv.1611.01704
https://doi.org/10.48550/arXiv.1802.01436
https://doi.org/10.48550/arXiv.1802.01436
https://doi.org/10.1109/PCS.2018.8456308
https://doi.org/10.1109/CVPR42600.2020.00796
https://ds.jpeg.org/documents/jpegai/wg1n90021-REQ-JPEG_AI_Use_Cases_and_Requirements.pdf
https://ds.jpeg.org/documents/jpegai/wg1n90021-REQ-JPEG_AI_Use_Cases_and_Requirements.pdf
https://ds.jpeg.org/documents/jpegai/wg1n90021-REQ-JPEG_AI_Use_Cases_and_Requirements.pdf
https://medium.com/data-hackers/uma-introdução-as-redes-neurais-convolucionais-utilizando-o-keras-41ee8dcc033e
https://medium.com/data-hackers/uma-introdução-as-redes-neurais-convolucionais-utilizando-o-keras-41ee8dcc033e
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e
https://medium.com/machine-learning-for-li/different-convolutional-layers-43dc146f4d0e
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://www.luisotsm.com/single-post/what-is-the-sigmoid-function-and-what-is-its-use-in-machine-learning-s-neural-networks
https://www.luisotsm.com/single-post/what-is-the-sigmoid-function-and-what-is-its-use-in-machine-learning-s-neural-networks
https://www.luisotsm.com/single-post/what-is-the-sigmoid-function-and-what-is-its-use-in-machine-learning-s-neural-networks

bibliography

[11] admin. Understand tanh(x) Activation Function: Why You Use it in Neu-
ral Networks. https://www.tutorialexample.com/understand- tanhx-

activation-function-why-you-use-it-in-neural-networks/.

[12] dvdbisong. Deep Learning. https://ekababisong.org/ieee-ompi-workshop/

deep_learning/.

[13] Pytorch. MAXPOOL2D. https://pytorch.org/docs/stable/generated/

torch.nn.MaxPool2d.html.

[14] Indian Tech Warrior. Fully Connected Layers in Convolutional Neural Net-
works. https://indiantechwarrior.com/fully-connected-layers-in-

convolutional-neural-networks/.

[15] J. Despois. Autoencoders — Deep Learning bits. https://hackernoon.com/

autoencoders-deep-learning-bits-1-11731e200694.

[16] M. Tripathi. “Facial image denoising using AutoEncoder and UNET”. In:
Heritage and Sustainable Development 2.2 (July 2021), pp. 89–96. doi: 10.

37868/hsd.v2i2.71.

[17] M. Schreyer et al. “Detection of anomalies in large scale accounting data
using deep autoencoder networks”. In: CoRR (Aug. 2017), pp. 1–19. doi:
10.48550/arXiv.1709.05254.

[18] L. Gondara. “Medical image denoising using convolutional denoising au-
toencoders”. In: 2016 IEEE 16th international conference on data mining
workshops (ICDMW). IEEE (2016), pp. 241–246. doi: 10.1109/ICDMW.2016.

0041.

[19] A. Ng. “Sparse autoencoder”. In: CS294A Lecture notes. 2011, pp. 1–19.

[20] J. Masci et al. “Stacked Convolutional Auto-Encoders for Hierarchical Feature
Extraction”. In: Artificial Neural Networks and Machine Learning–ICANN
2011: 21st International Conference on Artificial Neural Networks (2011),
pp. 52–59. doi: 10.1007/978-3-642-21735-7_7.

[21] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: 2013.
doi: 10.48550/arXiv.1312.6114.

[22] Joao Ascenso. JPEG AI Dataset. https://jpeg.org/jpegai/dataset.html.

[23] A. Vaswani et al. “Attention is all you need”. In: Advances in neural informa-
tion processing systems (2017), pp. 5998–6008. doi: 10.48550/arXiv.1706.

03762.

[24] M. Lu et al. “Transformer-based Image Compression”. In: Proc. DCC’22 (Nov.
2021), pp. 469–469. doi: 10.48550/arXiv.2111.06707.

62

https://www.tutorialexample.com/understand-tanhx-activation-function-why-you-use-it-in-neural-networks/
https://www.tutorialexample.com/understand-tanhx-activation-function-why-you-use-it-in-neural-networks/
https://ekababisong.org/ieee-ompi-workshop/deep_learning/
https://ekababisong.org/ieee-ompi-workshop/deep_learning/
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
https://indiantechwarrior.com/fully-connected-layers-in-convolutional-neural-networks/
https://indiantechwarrior.com/fully-connected-layers-in-convolutional-neural-networks/
https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694
https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694
https://doi.org/10.37868/hsd.v2i2.71
https://doi.org/10.37868/hsd.v2i2.71
https://doi.org/10.48550/arXiv.1709.05254
https://doi.org/10.1109/ICDMW.2016.0041
https://doi.org/10.1109/ICDMW.2016.0041
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.48550/arXiv.1312.6114
https://jpeg.org/jpegai/dataset.html
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2111.06707

bibliography

[25] N. Carion et al. “End-to-end object detection with transformers”. In: European
Conference on Computer Vision (2020), pp. 213–229. doi: 10.48550/arXiv.

2005.12872.

[26] D. Zhou et al. “Deepvit: Towards deeper vision transformer”. In: (2021). doi:
10.48550/arXiv.2103.11886.

[27] Y. Bai et al. “Towards End-to-End Image Compression and Analysis with
Transformers”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence 36 (2022), pp. 104–112. doi: 10.48550/arXiv.2112.09300.

[28] V. Goyal. “Theoretical foundations of transform coding”. In: IEEE Signal
Processing Magazine 18.5 (Sept. 2001), pp. 9–21. doi: 10.1109/79.952802.

[29] D. Minnen, J. Ballé, and G. Toderici. “Joint Autoregressive and Hierarchical
Priors for Learned Image Compression”. In: Proc. Adv. Neural Inf. Process.
Syst. (Sept. 2018), pp. 10771–10780. doi: 10.48550/arXiv.1809.02736.

[30] L. Theis et al. “Lossy Image Compression with Compressive Autoencoders”.
In: 5th Int. Conf. on Learning Representations (Mar. 2017). doi: 10.48550/

arXiv.1703.00395.

[31] H. Fu et al. “Learned Image Compression with Discretized Gaussian-Laplacian-
Logistic Mixture Model and Concatenated Residual Modules”. In: IEEE
Transactions on Image Processing (July 2021). doi: 10.48550/arXiv.2107.

06463.

[32] E. Agustsson et al. “Soft-to-hard vector quantization for end-to-end learning
compressible representations”. In: Proc. 31st Int. Conf Neural Inf. Process.
Syst. (June 2017), pp. 1141–1151. doi: 10.48550/arXiv.1704.00648.

[33] G. Toderici et al. “Variable rate image compression with recurrent neural
networks”. In: The International Conference on Learning Representations
(Mar. 2016). doi: 10.48550/arXiv.1511.06085.

[34] D. Marpe, H. Schwarz, and T. Wiegand. “Context-based adaptive binary
arithmetic coding in the h. 264/avc video compression standard”. In: IEEE
Transactions on circuits and systems for video technology (June 2003), pp. 620–
636. doi: 10.1109/TCSVT.2003.815173.

[35] J. Lee, S. Cho, and K. Beack. “Context-Adaptive Entropy Model For End-to-
End Optimized Image Compression”. In: Int. Conf. on Learning Representa-
tions (ICLR) (May 2019). doi: 10.48550/arXiv.1809.10452.

63

https://doi.org/10.48550/arXiv.2005.12872
https://doi.org/10.48550/arXiv.2005.12872
https://doi.org/10.48550/arXiv.2103.11886
https://doi.org/10.48550/arXiv.2112.09300
https://doi.org/10.1109/79.952802
https://doi.org/10.48550/arXiv.1809.02736
https://doi.org/10.48550/arXiv.1703.00395
https://doi.org/10.48550/arXiv.1703.00395
https://doi.org/10.48550/arXiv.2107.06463
https://doi.org/10.48550/arXiv.2107.06463
https://doi.org/10.48550/arXiv.1704.00648
https://doi.org/10.48550/arXiv.1511.06085
https://doi.org/10.1109/TCSVT.2003.815173
https://doi.org/10.48550/arXiv.1809.10452

bibliography

[36] G. Flamich, M. Havasi, and J. M. Hernández-Lobato. “Compressing Images
by Encoding Their Latent Representations with Relative Entropy Coding”. In:
Neural Info. Process. Sys. 34 (Apr. 2020), pp. 16131–16141. doi: 10.48550/

arXiv.2010.01185.

[37] D. Minnen, J. Ballé, and G.D. Toderici. “Joint autoregressive and hierarchical
priors for learned image compression”. In: (2018), pp. 10794–10803. doi:
10.48550/arXiv.1809.02736.

[38] G. B. Huang et al. “Labeled faces in the wild: A database forstudying face
recognition in unconstrained environments”. In: Workshop on faces in’Real-
Life’Images: detection, alignment, and recognition (Oct. 2008).

[39] T. Karras, S. Laine, and T. Aila. “A Style-Based Generator Architecture
for Generative Adversarial Networks”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (Mar. 2019), pp. 4401–
4410. doi: 10.48550/arXiv.1812.04948.

[40] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/

detectron2. 2019.

[41] J. Bégaint et al. “CompressAI: a PyTorch library and evaluation platform for
end-to-end compression research”. In: CompressAI: a PyTorch library and
evaluation platform for end-to-end compression research. 2020. url: https:

//arxiv.org/abs/2011.03029.

[42] T. Xue et al. “Video Enhancement with Task-Oriented Flow”. In: International
Journal of Computer Vision (IJCV) 127.8 (2019), pp. 1106–1125.

[43] Zhi Li et al. Toward A Practical Perceptual Video Quality Metric. https:

/ / netflixtechblog . com / toward - a - practical - perceptual - video -

quality-metric-653f208b9652.

[44] Sefik Ilkin Serengil and Alper Ozpinar. “LightFace: A Hybrid Deep Face
Recognition Framework”. In: 2020 Innovations in Intelligent Systems and
Applications Conference (ASYU). IEEE. 2020, pp. 23–27. doi: 10.1109/

ASYU50717.2020.9259802. url: https://doi.org/10.1109/ASYU50717.

2020.9259802.

[45] A. Mercat, M. Viitanen, and J. Vanne. “UVG Dataset: 50/120fps 4K Sequences
for Video Codec Analysis and Development”. In: Proceedings of the 11th ACM
Multimedia Systems Conference (June 2020), pp. 297–302.

[46] L. Song et al. “The SJTU 4K video sequence dataset”. In: Fifth International
Workshop on Quality of Multimedia Experience (QoMEX) (July 2013), pp. 34–
35. doi: 10.1109/QoMEX.2013.6603201.

64

https://doi.org/10.48550/arXiv.2010.01185
https://doi.org/10.48550/arXiv.2010.01185
https://doi.org/10.48550/arXiv.1809.02736
https://doi.org/10.48550/arXiv.1812.04948
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://arxiv.org/abs/2011.03029
https://arxiv.org/abs/2011.03029
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/QoMEX.2013.6603201

bibliography

[47] M. Cheon and J. S. Lee. “Subjective and objective quality assessment of
compressed 4K UHD videos for immersive experience”. In: IEEE Transactions
on Circuits and Systems for Video Technology 28.7 (July 2018), pp. 1467–1480.
doi: 10.1109/TCSVT.2017.2683504.

[48] L. Katsavounidis. “NETFLIX – “Chimera” video sequence details and scenes”.
In: (Nov. 2015).

[49] Xiph.org Foundation. “Xiph.org Test Media”. In: Xiph.org Test Media. 2016.
url: https://media.xiph.org/.

[50] J. Boyce et al. “JVET common test conditions and software reference config-
urations”. In: 7th Meeting, Torino, IT (July 2017).

[51] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: International Conference on Learning
Representations (2014). doi: 10.48550/arXiv.1409.1556.

[52] AVS FORUM. HDR-10 calibration and test patterns set. https : / / www .

avsforum.com/threads/hdr10-test-patterns-set.2943380/.

[53] Videvo. All Stock Video Footage 4K. https://www.videvo.net/stock-

video-footage/freeclips/yes/resolution/4k/?page=0.

65

https://doi.org/10.1109/TCSVT.2017.2683504
https://media.xiph.org/
https://doi.org/10.48550/arXiv.1409.1556
https://www.avsforum.com/threads/hdr10-test-patterns-set.2943380/
https://www.avsforum.com/threads/hdr10-test-patterns-set.2943380/
https://www.videvo.net/stock-video-footage/freeclips/yes/resolution/4k/?page=0
https://www.videvo.net/stock-video-footage/freeclips/yes/resolution/4k/?page=0

A
A P P E N D I X A

Figure 56: Example of original images datasets. A:people, B:cars, C:motorbikes, D:bikes.

Figure 57: Example of blurred background images datasets. A:people, B:cars, C:motorbikes,
D:bikes.

67

annexes

Figure 58: Example of images datasets without background. A:people, B:cars, C:motorbikes,
D:bikes.

Figure 59: Example of images datasets one object in each image center of the image without
background. A:people, B:cars, C:motorbikes, D:bikes.

68

annexes

Figure 60: Example of faces images datasets. A:Original images, B:Images without back-
ground center.

Figure 61: Example of subsets divided using variance. A:Very low variance, B:Low variance,
C:High variance, D:Very high variance.

69

annexes

Figure 62: Example of subsets divided using horizontal and vertical gradient. A:Low hori-
zontal and vertical gradient, B:Low horizontal and high vertical gradient, C:High
horizontal and low vertical gradient, D:High horizontal and vertical gradient.

Figure 63: Example of subsets divided clustering the images using PCA. A:Group 0, B:Group
1, C:Group 2, D:Group 3.

70

B
A P P E N D I X B

Figure 64: PSNR - faces dataset with original background using different transfer learning
approaches.

Figure 65: PSNR - faces dataset without background using different transfer learning
approaches.

71

annexes

Figure 66: MS-SSIM[dB] - people dataset.

Figure 67: MS-SSIM[dB] - cars dataset.

72

annexes

Figure 68: MS-SSIM[dB] - faces dataset.

Figure 69: VMAF - people dataset.

73

annexes

Figure 70: VMAF - cars dataset.

Figure 71: VMAF - faces dataset.

74

C
A P P E N D I X C

Figure 72: Subset test of UHD images.

Figure 73: Subset test of 360◦ images.

75

D E C L A R A Ç Ã O

Declaro, sob compromisso de honra, que o trabalho apresentado nesta dissertação,
com o título “Learning-based image compression using multiple autoencoders”, é
original e foi realizado por Rúben Duarte António (2202288) sob orientação do
Professor Pedro Antonio Amado de Assunção, Professor Luís Miguel de Oliveira
Pegado de Noronha e Távora, e Professor Sérgio Manuel Maciel de Faria.

Rúben Duarte António

	Acknowledgments
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Context and motivation
	1.2 Objectives
	1.3 Dissertation structure

	2 Background on Convolutional Neural Networks for image coding
	2.1 Overview
	2.2 Deep learning algorithms
	2.2.1 Convolutional Neural Network
	2.2.2 Autoencoder
	2.2.3 Learning-based image encoder used in JPEG AI
	2.2.4 Transformers

	2.3 Image compression with autoencoders
	2.3.1 Quantization
	2.3.2 Entropy Encoder

	2.4 Summary

	3 Learning-based compression of visual objects
	3.1 Proposed approach
	3.2 Datasets
	3.3 Experimental Results
	3.3.1 Rate-distortion performance
	3.3.2 Task-driven algorithm performance

	3.4 Summary

	4 Learning-based compression using classification for 360 and UHD images
	4.1 Proposed Approach
	4.2 Datasets
	4.2.1 Variance
	4.2.2 Gradients
	4.2.3 Principal component analysis (PCA) of features

	4.3 Experimental Results
	4.3.1 Dataset Separated by Variance
	4.3.2 Dataset Separated by Gradients
	4.3.3 Dataset clustering with PCA
	4.3.4 UHD Images
	4.3.5 360 Images

	4.4 Summary

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future work
	5.3 Contributions

	 Bibliography
	A Appendix A
	B Appendix B
	C Appendix C
	 Declaration

