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Background: While Enterobacteriaceae bacteria are commonly found in the healthy human gut, their 
colonization of other body parts can potentially evolve into serious infections and health threats. 
We investigate a graph-based machine learning model to predict risks of inpatient colonization by 
multidrug-resistant (MDR) Enterobacteriaceae. Methods: Colonization prediction was defined as a 
binary task, where the goal is to predict whether a patient is colonized by MDR Enterobacteriaceae 
in an undesirable body part during their hospital stay. To capture topological features, interactions 
among patients and healthcare workers were modeled using a graph structure, where patients are 
described by nodes and their interactions are described by edges. Then, a graph neural network 
(GNN) model was trained to learn colonization patterns from the patient network enriched with 
clinical and spatiotemporal features. Results: The GNN model achieves performance between 0.91 
and 0.96 area under the receiver operating characteristic curve (AUROC) when trained in inductive and 
transductive settings, respectively, up to 8% above a logistic regression baseline (0.88). Comparing 
network topologies, the configuration considering ward-related edges (0.91 inductive, 0.96 transductive) 
outperforms the configurations considering caregiver-related edges (0.88, 0.89) and both types of 
edges (0.90, 0.94). For the top 3 most prevalent MDR Enterobacteriaceae, the AUROC varies from 0.94 
for Citrobacter freundii up to 0.98 for Enterobacter cloacae using the best-performing GNN model. 
Conclusion: Topological features via graph modeling improve the performance of machine learning 
models for Enterobacteriaceae colonization prediction. GNNs could be used to support infection 
prevention and control programs to detect patients at risk of colonization by MDR Enterobacteriaceae 
and other bacteria families.

Introduction

Healthcare-associated infection (HAI) is a severe health problem 
for patients, health professionals, and visitors in a healthcare facil-
ity [1,2]. The World Health Organization estimates that 1 in every 
10 patients develops an HAI [3], and in US hospitals alone, the 
Centers for Disease Control and Prevention estimate that HAIs 
account for 1.7 million infections and 99,000 associated deaths 
each year [4]. Among these infections, more than one-third are 
caused by Enterobacteriaceae [5], a family of bacteria that includes 
the most prevalent human pathogenic species and leading causes 
of nosocomial infections, such as Escherichia coli, Salmonella 
enterica, and Klebsiella pneumoniae. Given that these infections 
are acquired in environments under high antimicrobial pressure, 
they are often caused by antimicrobial-resistant (AMR) and 
multidrug-resistant (MDR) bacteria. MDR Enterobacteriaceae 

infections have augmented drastically over the last 2 decades, 
especially with the rise of carbapenemase-producing Entero
bacteriaceae [6]. These pathogens are able to resist not only the 
action of all available beta-lactams (except aztreonam), but also 
other available antimicrobial classes like fluoroquinolones and 
aminoglycosides, leaving physicians with few treatment options 
[7]. This leads to more expensive treatments, longer hospital 
stays, increased risk of complication, and higher risk of death [8].

The continuous rise of these pathogens in healthcare set-
tings is multifactorial, main contributors being their ability 
to spread and persist in the environment and asymptomati-
cally in patients, as well as healthcare workers and utilities [9]. 
The risk of colonization, subsequent infection, and mortality 
due to Enterobacteriaceae increases exponentially with age, 
health history, and length of hospital stay [10]. Colonization 
can be defined as the asymptomatic presence of a pathogen 
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in the human body. It is the first step toward an overt disease 
of the colonized patient, with more or less severity, and also 
one of the main contributors to infection outbreaks in health-
care settings [11]. Indeed, some studies showed that between 
36% and 39% of patients colonized by AMR Enterobacteriaceae 
develop a subsequent infection [12,13]. Asymptomatic colo-
nizations, especially by MDR bacteria, pose a prominent pub-
lic health problem as the pathogen that the colonized patient 
carries can inadvertently be transmitted to other patients, who 
can become infected, with increased risk of complications, 
and even death [6]. Infection prevention and control (IPC) 
programs provide critical measures for preventing disease 
transmission in healthcare settings, with the potential to lower 
HAI rates by at least 30% [14], which is sometimes the only 
solution to prevent and avoid these MDR colonizations and 
infections.

Leveraging the availability of large-scale healthcare data 
[15–17], routinely collected and stored in electronic health 
records (EHRs), machine learning models have been proposed 
for the early detection of patients at risk of infection and to 
support IPC programs [18–22]. Classic machine learning meth-
ods, such as decision trees and random forest, have demon-
strated good performance to predict patients at risk of HAI 
[23–26]. For methicillin-resistant Staphylococcus aureus [23] 
and Clostridioides difficile [26], these algorithms were shown to 
provide warnings as early as 5 days before diagnosis. Machine 
learning methods for colonization prediction were also explored 
in very recent studies [27–29]. Tree-based machine learning 
methods, such as decision trees, random forest, and extreme 
gradient boosting, achieved sensitivity and specificity above 80% 
for detecting MDR species from different pathogenic families 
[28], while the use of spatiotemporal features to identify patients 
colonized by vancomycin-resistant Enterococcus resulted in area 
under the receiver operating characteristic curve (AUROC) 
performance above 88% [27].

While classic machine learning models and hand-crafted 
features might show effective results in limited use cases, 
they often fail to generalize to large-scale and longitudinal 
EHR data [30,31]. Another limitation of previous approaches 
for Enterobacteriaceae colonization prediction is that key 
interactions between patients and healthcare workers are 
neglected, hindering their application to complex care net-
works. To address these gaps, we propose a deep-learning 
approach based on a graph neural network (GNN) architec-
ture [32]. This approach aims to incorporate interactions 
between patients and healthcare workers, inside and outside 
the wards, as well as other clinical and spatiotemporal fea-
tures, to predict the risk of Enterobacteriaceae colonization 
for inpatients. Our models were trained and evaluated using 
the Medical Information Mart for Intensive Care (MIMIC-
III) dataset [33] and compared with classic machine learning 
baselines. Interestingly, GNN models provide stronger pre-
dictive performance for early detection of antimicrobi-
al-sensitive (AMS), AMR, and MDR Enterobacteriaceae, 
compared to baseline models trained with or without patient 
network information. Our main contributions can be sum-
marized as follows:

• � We propose a graph-based colonization model that 
considers spatiotemporal features in addition to demo-
graphic and clinical condition. To avoid adding biases 
to the model due to information leakage, we do not use 
antimicrobial information.

• � We design GNN models for colonization prediction that 
learn transmission network patterns from spatiotempo-
ral and patient data. Different network configurations 
and transmission paths are proposed and evaluated.

• � We evaluate our model against classic state-of-the-art 
machine learning baselines and show that it achieves 
superior performance, both when baseline models access 
network information via node2vec [34] embeddings, or 
not. We also conduct an explainability study to demon-
strate the capacity of the model to automatically identify 
features associated with colonization risk factors.

• � There have been many studies investigating HAI pre-
diction. To the best of our knowledge, this is the first 
attempt to explore the problem of predicting risks of 
Enterobacteriaceae colonization for undesirable body 
parts using GNNs and provide data-driven hypothesis 
for transmission.

Methods

Study design and data sources
To train and evaluate our colonization risk prediction models, 
we used laboratory, clinical, and administrative data from 
patients who stayed in critical care units of the Beth Israel 
Deaconess Medical Center (Massachusetts, USA). These data 
were recorded between 2001 and 2012 and made publicly avail-
able through the MIMIC-III dataset [33]. MIMIC-III is a freely 
available and deidentified healthcare dataset that consists of 26 
tables and includes static and dynamic patient information, 
such as demographics, medical history and records, clinical 
measures, laboratory tests, and interventions. The database 
contains data from 46,520 unique patients aged 16 years or older 
and associated to 58,976 admissions. Patients can be admitted 
to the hospital more than once and moved between 50 different 
wards and 7 care units during their stays. Additionally, activities 
from 7,567 unique healthcare workers—a nurse or a medical 
doctor—are recorded.

In the MIMIC-III dataset, 10% of inpatients had a positive 
result for Enterobacteriaceae screen. In total, 14 different bac-
terial species of the Enterobacteriaceae family were found from 
a total of 30 unique specimen types collected from inpatients. 
Figure 1 shows their distribution for different sample types (Fig. 
1, left) and different resistant profiles (Fig. 1, right). E. coli was 
the most frequently found species in positive cultures (50%), 
while Citrobacter amalonaticus and Salmonella enterica (not 
shown) were rarely found. A bacterial isolate was considered 
AMR if it showed resistance to at least one agent in only 1 or 2 
antimicrobial categories, and MDR if resistant to at least one 
agent in 3 or more antimicrobial categories [35]. Otherwise, it 
was classified as AMS. As shown in Fig. 1, Citrobacter koseri, 
E. coli, and K. pneumoniae were the species with the highest 
levels of resistance (>50%). Both E. coli and K. pneumoniae 
showed MDR profiles in more than 25% of cases.

The training and evaluation dataset used in this study was 
created using the cohort selection criteria described in Fig. 2. 
The Microbiology Events table from MIMIC-III was used to 
detect positively colonized patients. The table contains bacterial 
identification and antimicrobial testing results and consists 
of 631,726 events related to 46,520 patients. A list of Entero
bacteriaceae species was selected using the National Center for 
Biotechnology Information terminology [36] and used to select 
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the microbiology events of patients colonized by Entero
bacteriaceae. This first step resulted in 109,318 events related 
to 4,868 colonized patients. Then, a list of abnormal specimens 
(or uncommon body parts) where these species were found 
was identified by 2 clinical microbiologist experts and cate-
gorized into 6 specimen categories: blood, gastric-related, 
respiratory, skin, tissue, and urine. This list defined the set of 
positive events that were relevant to our study, i.e., the pres-
ence of Enterobacteriaceae in abnormal body parts, resulting 
in 107,313 microbiology events and 4,838 colonized patients. 
The Admissions table details hospitalizations of every patient 
in the database, and was used to define the remaining non-
colonized patients. Among all admitted patients, the ones 
that were not found in the filtered Microbiology Events table, 
in addition to those with Enterobacteriaceae in regular speci-
mens (i.e., stool samples), were considered non-colonized. 
Lastly, the table Transfers, which contains patient location 
information and their transfers between wards, was used to 
assign patients to wards. The final dataset contained 46,520 
unique patients from 58,976 admissions, and a total of 274,316 
patient–ward instances. If, during a stay in a ward, there was 
no positive abnormal Enterobacteriaceae culture for a patient, 
the patient–ward instance was labeled as non-colonized; oth-
erwise, it was labeled as colonized. This resulted in 7,216 
positive Enterobacteriaceae colonizations (2.6%) and 267,100 
negative specimens (97.4%). The dataset was randomly divided 
into train (60%), dev (20%), and test (20%) splits to train model 
parameters, optimize model hyper parameters, and evaluate 
model performance, respectively. Each split contained 2.5% to 
3% colonized patients.

Feature selection and data pre-processing
The feature selection process was performed iteratively. The 
MIMIC-III dataset was first analyzed to pre-identify the set of 
features we considered relevant to the colonization risk predic-
tion problem. Then, based on model performance computed 
with the dev set, less important features, such as the time of 

death and the discharge status of the patient, were eliminated. 
The selection converged to 2 types of features: (a) spatiotem-
poral features (current and previous ward, current and previous 
care unit, length of stay in each ward and in the hospital) and 
(b) patient features (gender and diagnosis at admission). To 
complement this set, we computed 3 new features from the 
data: the number of colonized patients, the total number of 
patients per ward, and the colonization pressure [37]. The latter 
was calculated as the ratio of colonized and the total number 
of patients in a ward per day. Finally, the features were normal-
ized using the robust scaler method of scikit-learn [38], version 
1.1.2. Table 1 shows the statistics of the resulting dataset.

Colonization network model
We propose a homogeneous graph to model interactions 
between patients and healthcare workers. A graph can be defined 
as G = (V, E), where V = v1, …, v∣V∣ denotes a set of nodes and 
E denotes a set of edges connecting pairs of nodes vi, vj ∈ V. In 
our case, a node represents a patient in a ward and edges repre-
sent potential connections between patients, either via contacts 
with the same healthcare worker or via a common location 
within the hospital. As shown in Fig. 3A, we considered 3 net-
work configurations: (a) in-ward links (left), where 2 patients 
are linked only if they stay in the same ward at the same time; 
(b) out-ward links (middle), where 2 patients are connected only 
if they are visited by the same healthcare worker on the same 
day; and (c) all links (right), where both ward and healthcare 
worker links are considered. Nodes represent a patient in a ward 
and their features are created using the selected set of features 
described in the previous subsection. For each patient transfer, 
a new node is added to the graph and edges are set following 
the network configuration (i.e., in-ward, out-ward, or all links).

GNN architecture
GNN [32,39–41] is an elegant deep learning architecture for 
modeling graph-like data structures and learning topological 
features, i.e., in our case, properties of the transmission network. 

Fig. 1. Frequency of positive culture and resistant profile for each Enterobacteriaceae family member. Species with less than 5 positive cultures are not shown. Bal, bronchoalveolar 
lavage.
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GNNs can learn complex relationships and interdependencies 
in graph-like data via optimizable transformations on attributes 
(nodes, edges, etc.) that preserve graph symmetries (i.e., per-
mutation invariance/equivariance). Hence, in theory, GNNs 
can make more informed predictions about entities in a net-
work and their interactions, as compared to models that con-
sider entities in isolation. One distinct advantage of graph-based 
techniques is their ability to perform inductive and transductive 
learning. In inductive learning, models learn to generalize to 
unseen nodes or graphs, whereas the transductive approach 
includes test nodes (not including true labels) in the graph 
during training. The disadvantage of the transductive setting 
is that the model must be retrained for each new instance.

To solve graph representation learning tasks, different GNN 
network architectures and algorithms have been proposed, such 
as graph convolutional network (GCN) [32], graph attention 

networks (GAT) [42], and GraphSAGE [43]. These approaches 
use various graph feature aggregation and data sampling strat-
egies to learn dense representations of graph components (i.e., 
nodes and edges), often called embeddings, that can be later 
used in downstream prediction tasks, such as node classifica-
tion. Each layer of a GNN aggregates a subset of the nodes of 
the previous layer to generate an updated feature vector, for 
each node. GCN layers average the features of neighboring 
nodes in the previous layer, akin to convolutional neural net-
works. They can efficiently capture local graph structures and 
scale to large graphs. GAT layers extend GCNs by adding an 
attention mechanism. Instead of treating all neighbors equally 
as in GCN layers, GAT dynamically computes the weights of 
the node aggregation process, based on node features. They are 
hence able to capture the local structure of the graph in a more 
nuanced way. GraphSAGE layers generate embeddings by sam-
pling and aggregating features from a node's local neighbor-
hood. The advantage of GraphSAGE is that it can learn from 
very large graphs and generate embeddings for unseen nodes, 
allowing the network to generalize to larger datasets.

In our experiments, we let the type (GCN, GAT, and 
GraphSAGE), number (from 2 to 5), and hidden dimension (16, 
32, 64, 128, and 256) of the GNN layers as hyper-parameters. A 
high-level view of the graph-based prediction pipeline is shown 
in Fig. 3. Using laboratory, clinical, and administrative data, 
patient features at the ward level (since a node represents a 
patient in a ward) were extracted and modeled in different net-
work colonization models (Fig. 3A). The colonization graph 
was fed to the GNN, which performed the node classification 
task. Each GNN layer was followed by a rectified linear unit 
(ReLU) operation and a dropout layer, whose probability was 
used as a hyper-parameter (0.1, 0.2, 0.3, 0.4, and 0.5). Finally, 
each node’s feature vector of the last GNN layer was sent to a 
sigmoid layer for node classification (Fig. 3B). To account for 
data imbalance, we used a weighted focal loss[44]. The weight 
of each sample was set to 1 for non-colonized samples and to 
a hyper-parameter (from 10 to 1,000) for colonized samples. 
Moreover, we tried different data balance scenarios (original 
data, over-sampling of the minority class, and under-sampling 
of the majority class). We trained all models for 500 epochs, 
using the AdamW [45] optimizer with a learning rate that 
was set as a hyper-parameter (from 0.001 to 1.0). We had 
different conditions defined by the type of network we used 
as data (all links, ward links only, and caregiver links only), 
the type of settings in which the network was trained and 
evaluated (transductive or inductive), and the type of data 
balance scenario. For each of these conditions, all hyper-
parameters of the GNN model were optimized using Optuna 
[46], sampling hyper-parameters for 100 trials with the 
TPESampler [47] algorithm to maximize AUROC, computed 
with the dev set. The best set of hyper-parameters identified 
for each condition is available at https://github.com/ds4dh/
hai_project/tree/master/models/gnn.

Statistical analysis
To evaluate the performance of the colonization risk prediction 
models, we computed metrics typically used in medical con-
texts, where it is crucial to understand both the ability to cor-
rectly identify positive and negative cases: sensitivity, specificity, 
and AUROC. The GNN models were compared to classic 
machine learning baselines: k-nearest neighbors (k-NN) [48], 
logistic regression [49], random forest [50], and CatBoost [51]. 

Fig. 2. Cohort selection criteria. Starting from the Microbiology Events table of MIMIC-
III, lab results were filtered for the presence Enterobacteriaceae in unusual body parts 
to define colonized patients. Admissions and Transfers tables were used to identify 
the remaining patients and to label all patients.
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As for GNN simulations, the hyper-parameters of the baseline 
models were optimized using Optuna [46], with 100 trials for 
each model, sampling hyper-parameters with the TPESampler 
[47] algorithm. The best set of hyper-parameters identified for 
each baseline model was made available at https://github.com/
ds4dh/hai_project/tree/master/models/controls. We also pro-
vide simulations that include edge information as node2vec 
[34] feature vectors, concatenated to the original input features 
of the baseline models. For any GNN or baseline model, con-
fidence intervals were computed for AUROC using bootstrap-
ping (number of bootstraps = 100, alpha level = 0.05). Shapley 
values were used to measure the importance of each feature to 
the model’s predictions.

Results

Performance of baseline and GNN models
Table 2 shows results obtained with the different colonization 
risk prediction models. For each model, we report the data bal-
ance scenario (no balance, over-sampling, and under-sampling) 
that led to the best performance. Except for k-NN, over- or 
under-sampling did not improve performance for any model. 
In addition to the individual classic and graph-based models, 
we created an ensemble model, which combines the results of 
classic machine learning models and GNN. We tried different 
model combinations and the one that led to the best perfor-
mance was an ensemble of CatBoost, random forest, and GNN 

Table 1. Statistics of the cohort used for model training and evaluation

Model Data balance Setting Links Accuracy (%) Sensitivity (%) Specificity (%)
AUROC (%) 

(95% CI)

Logistic regr. Non - - 82.37 74.74 82.58 87.92  
(87.17–88.70)

Logistic regr. Non Inductive Out-ward 89.19 63.43 89.89 88.11  
(87.41–88.96)

Logistic regr. Non Transductive In-ward 80.77 78.42 80.84 88.59  
(87.93–89.32)

k-NN Under - - 80.15 82.10 80.10 90.14  
(89.35–90.83)

k-NN Under Inductive In-ward 86.23 67.59 86.73 87.66  
(86.93–88.52)

k-NN Under Transductive In-ward 72.46 81.61 72.22 86.43  
(85.57–87.22)

Random forest Non - - 97.68 14.92 99.91 90.97  
(90.27–91.59)

Random forest Non Inductive Out-ward 84.57 70.51 84.94 86.99  
(86.22–87.79)

Random forest Over Transductive In-ward 97.70 14.43 99.95 89.78  
(89.32–90.44)

CatBoost Non - - 97.68 16.79 99.86 90.55  
(89.94–91.27)

CatBoost Non Inductive Out-ward 74.89 84.52 74.63 88.64  
(88.04–89.46)

CatBoost Over Transductive In-ward 97.83 23.39 99.84 90.94  
(90.24–91.69)

GNN Non - No 82.47 79.94 82.53 88.66  
(87.98–89.43)

GNN Non Inductive In-ward 82.74 83.00 82.73 91.23  
(90.61–91.85)

GNN Non Transductive In-ward 96.18 80.57 96.60 96.13  
(95.63–96.60)
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trained in an inductive setting, using ward links. We did not 
use GNN trained in a transductive setting, since it is not 
evaluated in the same way as other models. The predicted 
class probabilities of each selected model were averaged to 
generate a prediction. We tried different voting strategies 
(unanimity, majority), which were inferior to the averaging 
strategy.

Graph-based models tend to outperform the baseline mod-
els. Particularly, the GNN trained in a transductive setting 
achieves the best performance overall (96.13% AUROC with 
in-ward links). Importantly, the GNN trained in an inductive 
setting using in-ward links also outperforms baseline models 
(91.23% AUROC). Comparing different types of links for the 
GNN models, in-ward links produce the best performance, 
both in a transductive and in an inductive setting. These results 
suggest that network features enhance the predictive power of 
machine learning models for colonization risk prediction, and 
that transmission patterns within the same ward are more 
useful features. Note that, for all GNN conditions reported in 
Table 2, the type of GNN layer that was selected by the hyper- 
optimization process was always GraphSage. Results using dif-
ferent layer types are shown in Table S1. Finally, the ensemble 
model—combining CatBoost, random forest, and GNN trained 
in an inductive setting and using in-ward links—improves per-
formance upon individual models (92.17% AUROC).

For the metrics with a decision threshold, we report that, 
for each model, the performance obtained with a threshold of 
0.5. k-NN achieves the highest accuracy (97.68%) and speci-
ficity (99.91%). The GNN model trained in an inductive setting 
with in-ward links obtains the best sensitivity (83.00%), at the 
cost of lower accuracy (82.74%) and specificity (82.73%). In 
comparison, baseline models either achieve inferior perform
ance (logistic regression and k-NN), or a more unbalanced 
trade-off between sensitivity and specificity (random forest and 
CatBoost). Finally, GNN trained in a transductive setting with 
in-ward links yields not only high specificity (80.57%), but also 
high accuracy (96.18%) and sensitivity (96.60%). Overall, 
GNN models achieve a more balanced predictive performance 
between colonized and non-colonized patients, which, together 
with a high enough accuracy, may foster better practical appli-
cations (at the expense of a reduced assessment set).

Stratified performance analysis for the GNN model
Figure 4 shows AUROC for the best individual model—GNN 
trained in a transductive setting and using in-ward links only—
where the test dataset was stratified by species, specimen type, 
length of stay and resistance profile. The results show that the 
model provides consistent performance across different bac-
teria species, with 96.56% overall AUROC for species that 
have at least 10 examples in the training dataset. The best 

Fig. 3. (A) Colonization models. We constructed 3 different graphs, in which links were created between patients only if they were in the same ward (left), only if they were 
visited by the same healthcare worker (center), or both (right). (B) Graph-based machine learning pipeline for colonization risk prediction.
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performance is observed for E. cloacae (97.64%) (183 examples 
in the testing set) while the worse is for Citrobacter freundii 
(94.33%) (41 examples in the testing set). Similarly, consistent 
performance is observed across specimens, with AUROC var-
ying from 95.52% for urine culture to 97.87% for bronchoal-
veolar lavage. The results of Fig. 4C show a decreasing trend 
in performance as patients stay longer in the hospital, with 
AUROC as high as 96.88% for patients that stay 4 days or less 
and as low as 91.02% for patients that stay more than 100 days. 
Lastly, the model achieves similar predictive performance for 
different resistance profiles with the lowest AUROC at 95.73% 
for AMR Enterobacteriaceae and the highest score at 97.62% 
for MDR Enterobacteriaceae.

Predictive performance for AMS, AMR, and MDR 
resistance profiles
The predictive performance for AMS, AMR, and MDR resist-
ance profiles and for the 3 most frequent MDR Enterobacteriaceae 
species is shown in Fig. 5. Like the general case (see Table 2), 
the GNN model trained in a transductive setting is the best 
model overall (blue curves) and the logistic regression model 
is the worst model overall (orange curves). The ensemble 

model and the GNN model trained in an inductive setting 
come second (gray and red curves). The ensemble model 
slightly outperforms the inductive GNN, especially for AMS 
Enterobacteriaceae.

Baseline models with node2vec embeddings
As the baseline models in Table 2 do not have access to edge 
information, we also controlled that using GNN layers is the 
best way to exploit the topological features of the patient net-
work. For this reason, we included baseline model simulations 
in which edge information is concatenated to the original input 
features. We used the node2vec [34] algorithm to embed net-
work information into feature vectors. The node2vec algorithm 
randomly walks on the network to generate sequences that rep-
resent the neighborhood of each node. A skip-gram [52] model 
is trained with these node sequences and learns to produce fea-
ture vectors that preserve both the local and global structure of 
the network. The parameters of node2vec were the following: 
number of features = 128, skip-gram window size = 5, maximum 
random walk length = 32, number of random walks per root 
node = 10, p = 0.5, and q = 2.0. Table 3 shows the performance 
of baseline models trained with this updated set of features. We 

Table 2. Performance of the different colonization prediction models. Ensemble model includes predictions from inductive-GNN, random 
forest, and CatBoost

Model Data balance Setting Links Accuracy (%) Sensitivity (%) Specificity (%)
AUROC (%) 

(95% CI)

Logistic regr. Non - - 82.37 74.74 82.58 87.92  
(87.17–88.70)

k-NN Under - - 80.15 82.10 80.10 90.14  
(89.35–90.83)

Random forest Non - - 97.68 14.92 99.91 90.97  
(90.27–91.59)

CatBoost Non - - 97.68 16.79 99.86 90.55  
(89.94–91.27)

GNN Non Inductive All 84.23 78.21 84.39 89.67  
(88.87–90.35)

GNN Non Inductive In-ward 82.74 83.00 82.73 91.23  
(90.61–91.85)

GNN Non Inductive Out-ward 84.89 71.55 85.25 87.90  
(87.14–88.67)

GNN Non Transductive All 92.36 80.50 92.68 94.07  
(93.59–94.60)

GNN Non Transductive In-ward 96.18 80.57 96.60 96.13  
(95.63–96.60)

GNN Non Transductive Out-ward 83.55 79.81 83.65 89.36  
(88.62–89.98)

Ensemble Non Inductive In-ward 97.43 31.16 99.22 92.17  
(91.68–92.72)
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report, for each model, the data balance scenario (no balance, 
over-sampling, and under-sampling) and link condition (in-
ward, out-ward, and all) that led to the best performance.

Some baseline models achieve slightly higher AUROC when 
edge information is added to the original features (logistic 
regression and CatBoost). Still, transductive and inductive GNN 

models both outperform any combination of baseline model 
and added edge features, in terms of AUROC. In terms of accu-
racy, sensitivity, and specificity, some combinations improve the 
performance of baseline models. However, as for Table 2, these 
combinations either achieve inferior performance, or a more 
unbalanced trade-off between sensitivity and specificity. The 

Fig. 4. Performance results per (A) species, (B) specimen type, (C) length of stay (expressed in days), and (D) resistance profile. Bal, bronchoalveolar lavage; AMS, antimicrobial 
susceptible; AMR, antimicrobial resistant; MDR, multidrug resistant.

Fig.  5.  Model performance for (A) antimicrobial susceptible (AMS), (B) antimicrobial resistant (AMR), and (C) multidrug-resistant (MDR) Enterobacteriaceae, and for 
representative MDR bacteria: (D) E. coli, (E) K. pneumoniae, and (F) E. cloacae.
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best baseline combination is arguably CatBoost with inductive 
out-ward links, which marginally outperforms inductive GNN 
in terms of sensitivity (84.52%) but whose specificity drops sig-
nificantly (74.63%). Additionally, AUROC for this combination 
(88.64%) is notably lower than that of GNN models. Finally, we 
include a simulation in which GNN have no edges. GNN show 
a more significant AUROC performance boost from added edges 
compared to baseline models, indicating they handle network 
information better than merely adding node2vec [34] features.

Feature impact on model predictions
To explain the importance and impact of the features used in 
our colonization risk prediction models, we calculated Shapley 

values using the SHAP method [53]. For simplicity, we used 
the results of the random forest model, as the baseline model 
with the highest AUROC. Figure 6A shows the importance of 
the top 11 features sorted by their predictive impact. Figure 6B 
shows the mean absolute value of every feature presented in 
Fig. 6A, computed over all data samples. As expected, length 
of stay in the ward and in the hospital has high impact on model 
predictions. Indeed, the longer the stay in a ward or hospital, 
the more likely it is for a patient to be classified by the model 
as colonized. The number of patients in a ward also has a 
large impact on model predictions. The higher the number of 
patients in the ward, the more probable the model output to be 
positive (colonized). Despite its lower impact, female gender 

Table 3. Performance of the baseline models that use edge features as node2vec embeddings, concatenated to the original set of features, 
as compared to the best GNN models

Model Data balance Setting Links Accuracy (%) Sensitivity (%) Specificity (%)
AUROC (%) 

(95% CI)

Logistic regr. Non - - 82.37 74.74 82.58 87.92  
(87.17–88.70)

Logistic regr. Non Inductive Out-ward 89.19 63.43 89.89 88.11  
(87.41–88.96)

Logistic regr. Non Transductive In-ward 80.77 78.42 80.84 88.59  
(87.93–89.32)

k-NN Under - - 80.15 82.10 80.10 90.14  
(89.35–90.83)

k-NN Under Inductive In-ward 86.23 67.59 86.73 87.66  
(86.93–88.52)

k-NN Under Transductive In-ward 72.46 81.61 72.22 86.43  
(85.57–87.22)

Random forest Non - - 97.68 14.92 99.91 90.97  
(90.27–91.59)

Random forest Non Inductive Out-ward 84.57 70.51 84.94 86.99  
(86.22–87.79)

Random forest Over Transductive In-ward 97.70 14.43 99.95 89.78  
(89.32–90.44)

CatBoost Non - - 97.68 16.79 99.86 90.55  
(89.94–91.27)

CatBoost Non Inductive Out-ward 74.89 84.52 74.63 88.64  
(88.04–89.46)

CatBoost Over Transductive In-ward 97.83 23.39 99.84 90.94  
(90.24–91.69)

GNN Non - No 82.47 79.94 82.53 88.66  
(87.98–89.43)

GNN Non Inductive In-ward 82.74 83.00 82.73 91.23  
(90.61–91.85)

GNN Non Transductive In-ward 96.18 80.57 96.60 96.13  
(95.63–96.60)
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influenced the model output in the positive (colonized) direc-
tion compared to male, which has the opposite effect. This 
could be explained by the fact that the most prevalent bacteria 
in the dataset were E. coli and that urinary tract infections are 
more common among women than men [54]. Similarly, the 
neonatal intensive care unit (NICU) was less important to the 
model decisions than the medical intensive care unit (MICU) 
and surgical intensive care unit (SICU). A patient in SICU and 
MICU will more likely drive the model toward a positive output 
(colonized), while a patient in NICU will more likely drive the 
model toward a negative output (non-colonized). These find-
ings are aligned with previous risk factor analysis studies for 
nosocomial infections in adult intensive care units [55]. Lastly, 
it is noteworthy that many of the key features identified by the 
Shapley analysis pertain to ward-related information. This 
aligns with the observation that in-ward links yield the best 
performance in GNNs.

Colonization path analysis
A major advantage of using graph models and GNNs to predict 
colonization risks is that they naturally provide possible trans-
mission paths via graph edges. In Fig. 7, we show 3 examples 
of patients that were classified correctly as colonized by the 
transductive GNN model: nodes 57,627 (top left), 154,208 (top 
right), and 211,904 (bottom). Nodes in green represent non-
colonized patients and nodes in red represent positive cul-
ture for Enterobacteriaceae. Filled colors represent colonized 
patients. In the scenario of Fig. 7, top left, patient 57,627 (focus 
patient hereafter), who was colonized by K. pneumoniae, stayed 
in the hospital for 9 days and was directly linked to 4 patients: 
2 in the same room (1 non-colonized and 1 colonized) and 2 
in different rooms (both non-colonized). Similar to the focus 
patient, patient 119,123 was colonized by K. pneumoniae and 
had the longest hospital stay in this subnetwork (11 days). Thus, 
if both bacterial strains were genetically identical, a possible 
transmission route could have been from patient 119,123 to 
the focus patient or vice versa, or from a common source within 

the ward environment or utility. In Fig. 7, top right, patient 
154,208 (focus patient hereafter) stayed for 24 days in the 
hospital and had an immediate link to patient 23,117 (non-
colonized) from a different ward via a healthcare worker, and 
a second-degree connection to patient 111,558 (colonized) 
from another ward. The latter patient and the focus patient were 
both colonized by K. pneumoniae, like in the previous scenario. 
Hence, path 111,558–23,117–154,208 could be one of the pos-
sible transmission routes within the hospital. For the third 
scenario, Fig. 7, bottom, patient 211,904 (focus patient hereaf-
ter), male, stayed for 10 days and had a direct connection to 
patient 36,255 via the same ward, both colonized, but by differ-
ent bacteria. Moreover, these patients had a second-degree 
connection to patient 158,476, female, via a healthcare worker 
link, who was colonized by E. coli, as the focus patient. Since 
patient 158,476 was hospitalized for 7 days, she may have been 
colonized by the same strain of the focus patient (or vice versa), 
who may have been previously colonized. Thus, the undirected 
path 211,904–36,255–158,476 could be a possible transmission 
route. Nevertheless, exact identification of transmission routes 
for such scenarios would require detailed phylogenetic anal-
ysis of bacterial samples [56], not available in the MIMIC-III 
database.

Discussion
This study describes a machine learning model based on GNNs 
to predict patients at risk of colonization by AMR and MDR 
Enterobacteriaceae. We model the data as a graph to represent 
possible connections and interactions between patients and 
healthcare workers inside the healthcare facility. Different graph 
topologies were proposed based on geographic location and inter-
action with healthcare workers. We considered spatiotemporal 
features, such as length of stay and ward movement, in addition 
to clinical and laboratory information, to encode patients via 
node features in different graph topologies. Performance analyses 
showed that GNN models provide robust predictive performance, 

Fig. 6. Feature contribution to colonization risk prediction. (A) Shapley values for the top 11 features, sorted by their impact on model predictions. (B) Mean absolute value of 
every feature presented in (A).
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often above AUROC of 90%, outperforming the classic machine 
learning baselines used in our experiments. These results demon-
strate the importance of incorporating topological features to 
learn patterns of patient profiles that are more likely to be colo-
nized by MDR Enterobacteriaceae.

Other recent studies investigated the use of machine learn-
ing to predict colonization risk of AMR species from Entero
bacteriaceae [28,29], Enterococcaceae [27], and Staphylococcaceae 
[19] families, achieving robust predictive performance with an 
AUROC between 88% and 89%. Our study is the first to consider 
the colonization risk for AMR and MDR Enterobacteriaceae 
family, responsible for the highest incidence of nosocomial 
infections and HAI-related mortality [57], using a transmission 
network approach and spatiotemporal information. Moreover, 
in contrast to previous studies, which were based on ensemble 
of tree methods such as random forest, our proposed meth-
odology used a deep learning approach and showed superior 
predictive power for the colonization prediction problem of 
Enterobacteriaceae. Another advantage of graph-based mod-
eling, as opposed to tabular data used in previous studies, is 
that possible transmission routes can be inherently extracted 
from the model, opening an avenue for data-driven transmis-
sion route hypothesis generation.

Following IPC guidelines, when an AMR Enterobacteriaceae 
outbreak occurs in a hospital or in a long-term care facility, 
colonized patients are initially isolated. Then, the contact 
group, i.e., patients potentially colonized by the outbreak strain, 
is identified to determine the magnitude of the outbreak and, 
if required, additional IPC measures are applied [58]. Using 
administrative information from the EHR system, contact trac-
ing information can be obtained and used to determine other 

patients potentially at risk, which will ultimately go through a 
screening process to duly confirm colonization. This process 
is reactive and can be uncomfortable for patients, as well as 
very costly and time consuming, thus preventing corrective 
actions from being taken in due time [59]. The predictive 
model proposed in this study could help improve IPC measures 
against Enterobacteriaceae, and other pathogens, in several 
ways. First, it could help to estimate the contact group with 
high accuracy, which, in turn, could lead to more effective 
measures to curb transmission and infection. Second, possible 
transmission paths could be automatically derived from the 
graph model, providing hypotheses for transmission routes. 
Lastly, and more importantly, if deployed in a surveillance 
mode, it could support early identification of potential patients 
at risk of AMR and MDR colonization and enable outbreak 
forewarning, which can deliver an even higher positive impact 
on life-saving and financial costs.

Explainable artificial intelligence methods, such as the 
Shapley values used to analyze our results, can provide an effec-
tive approach to interpret the model decisions and support the 
identification of risk factors associated with colonization risks. 
Among the features having the highest impact on model pre-
dictions, features such as length of stay, previous ward, and 
gender have also been identified as relevant by previous epide-
miological studies that investigated risk factors for HAI colo-
nization and infection. For example, Patel et al. [60] showed 
that carbapenem-resistant K. pneumoniae infection was inde-
pendently associated with longer length of stay before infection. 
McHaney-Lindstrom et al. [61] showed that unit transfer 
increases the odds of contracting an infection by 7%. For the 
case of gender, the model not only identified this feature as a 

Fig. 7. Bacteria transmission scenarios via graph paths. Green nodes: non-colonized patients; red nodes: colonized patients.
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risk factor but also showed that being female is associated with 
higher risk of Enterobacteriaceae colonization. This result was 
found in previous risk analysis studies, which identified higher 
incidence rates of E. coli in women as compared to men [62].

Applying machine learning algorithms to solve the task of 
colonization risk prediction is challenging due to the imbal-
anced nature of the data. Machine learning models are often 
biased toward the majority class (i.e., non-colonized in our 
case), and in the worst-case scenario, they will ignore the 
minority group entirely. Consequently, relying solely on accu-
racy can be misleading when evaluating model performance. 
A model that completely fails to predict the minority class (in 
this case, the colonized group) could still obtain high accuracy. 
Yet, given the consequences of false positives and negatives in 
a real-case scenario, such a model would not be useful. False 
positives may lead to unnecessary isolation of patients and 
exposure to unwanted risks and side effects, whereas false neg-
atives could result in the spread of a pathogen, delayed treat-
ments, and worsened patient outcomes. To provide a more 
comprehensive view of our results, we reported sensitivity and 
specificity, which help understand both the ability of a model 
to correctly identify positive (colonized) and negative (non-
colonized) cases, and AUROC, which offers a more holistic 
view on model outcomes. GNNs outperform all baseline mod-
els in terms of AUROC. Moreover, GNNs trained in an induc-
tive setting tend to yield more balanced outcomes compared 
to classic models by achieving a higher sensitivity at the cost 
of a lower specificity. In contrast, GNN trained in a transductive 
setting enhances sensitivity compared to baseline models while 
maintaining high accuracy and specificity, at the cost of a more 
complicated training process.

Our study has several limitations, in terms of both data and 
modeling. First, the model might not be able to generalize to 
other hospitals as it was only evaluated in a single hospital unit 
dataset. Indeed, it is known that the epidemiology of HAI varies 
within different units and geographies [63]. Investigations of 
generalization performance for this type of models will warrant 
specific future research. Second, while we avoided using pre-
dictors that might overlap with the dependent variable, such as 
antimicrobial consumption (e.g., trimethoprim-sulfamethoxazole 
antimicrobial medication could be a predictor for E. coli[64]), 
other predictors, such as diagnosis at admission, could still 
have caused prediction bias. Nevertheless, given the distribu-
tion of diagnoses in the dataset, we expect that this bias is 
limited, if any. Third, our graph topology does not include 
environmental transmission, while it is known that indirect 
transmission via the environment is an important part of HAI 
routes [65]. Due to the lack of fine-grained contact and sam-
pling data in the MIMIC-III dataset, environment-related 
transmission pathways were ignored in our models as this 
scenario could not be realistically captured. Understanding 
the impact of environmental transmission on model perfor-
mance could be another research direction. Lastly, due to the 
anonymization strategy of MIMIC-III and, more specifically, 
to the randomized time shifts, the data used in our experiments 
could be better regarded as synthetic data (generated from real 
data) rather than as real hospital data [66,67].

To conclude, we show that encoding topological informa-
tion about patient interactions using GNNs can improve the 
predictive performance of AMR and MDR Enterobacteriaceae 
colonization models and support the identification of patients 
potentially at risk of colonization or infection. Hence, these 

models could be used to enhance IPC programs and reduce HAI 
burden. Given the data-driven approach of our method, we 
expect that it could be expanded to other pathogens with similar 
transmission dynamics and to other healthcare settings.
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Background: While Enterobacteriaceae bacteria are commonly found in the healthy human gut, their colonization of
other body parts can potentially evolve into serious infections and health threats. We investigate a graph-based machine
learning model to predict risks of inpatient colonization by multidrug-resistant (MDR) Enterobacteriaceae. Methods:
Colonization prediction was defined as a binary task, where the goal is to predict whether a patient is colonized by MDR
Enterobacteriaceae in an undesirable body part during their hospital stay. To capture topological features, interactions
among patients and healthcare workers were modeled using a graph structure, where patients are described by
nodes and their interactions are described by edges. Then, a graph neural network (GNN) model was trained to learn
colonization patterns from the patient network enriched with clinical and spatiotemporal features. Results: The GNN
model achieves performance between 0.91 and 0.96 area under the receiver operating characteristic curve (AUROC)
when trained in inductive and transductive settings, respectively, up to 8% above a logistic regression baseline (0.88).
Comparing network topologies, the configuration considering ward-related edges (0.91 inductive, 0.96 transductive)
outperforms the configurations considering caregiver-related edges (0.88, 0.89) and both types of edges (0.90, 0.94).
For the top 3 most prevalent MDR Enterobacteriaceae, the AUROC varies from 0.94 for Citrobacter freundii up to
0.98 for Enterobacter cloacae using the best-performing GNN model. Conclusion: Topological features via graph
modeling improve the performance of machine learning models for Enterobacteriaceae colonization prediction. GNNs
could be used to support infection prevention and control programs to detect patients at risk of colonization by MDR
Enterobacteriaceae and other bacteria families.
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