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Abstract:

Background: Locking compression plates (LCPs) have become a widely 
used option for treating femur bone fractures. However, the optimal 
screw configuration with combi-holes remains a subject of debate. The 
study aims to create a time-dependent finite element (FE) model to 
assess the impacts of different screw configurations on LCP fixation 
stiffness and healing efficiency across four healing stages during a 
complete fracture healing process. Methods: To simulate the healing 
process, we integrated a time-dependent callus formation mechanism 
into a FE model of the LCP with combi-holes. Three screw configuration 
parameters, namely working length, screw number, and screw position, 
were investigated. Results: Increasing the working length negatively 
affected axial stiffness and healing efficiency (p < 0.001), while screw 
number or position had no significant impact (p > 0.01). The time-
dependent model displayed a moderate correlation with the conventional 
time-independent model for axial stiffness and healing efficiency (ρ ≥ 
0.733, p ≤ 0.025). The highest healing efficiency (95.2%) was observed 
in screw configuration C125 during the 4-8-week period. Conclusions: 
The results provide insights into managing fractures using LCPs with 
combi-holes over an extended duration. Under axial compressive loading 
conditions, the use of the C125 screw configuration can enhance callus 
formation during the 4-12-week period for transverse fractures. When 
employing the C12345 configuration, it becomes crucial to avoid 
overconstraint during the 4-8-week period.
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22 Abstract 

23 Background: Locking compression plates (LCPs) have become a widely used 

24 option for treating femur bone fractures. However, the optimal screw 

25 configuration with combi-holes remains a subject of debate. The study aims to 

26 create a time-dependent finite element (FE) model to assess the impacts of 

27 different screw configurations on LCP fixation stiffness and healing efficiency 

28 across four healing stages during a complete fracture healing process. Methods: 

29 To simulate the healing process, we integrated a time-dependent callus 

30 formation mechanism into a FE model of the LCP with combi-holes. Three 

31 screw configuration parameters, namely working length, screw number, and 

32 screw position, were investigated. Results: Increasing the working length 

33 negatively affected axial stiffness and healing efficiency (p < 0.001), while 

34 screw number or position had no significant impact (p > 0.01). The time-

35 dependent model displayed a moderate correlation with the conventional time-

36 independent model for axial stiffness and healing efficiency (ρ ≥ 0.733, p ≤ 

37 0.025). The highest healing efficiency (95.2%) was observed in screw 

38 configuration C125 during the 4-8-week period. Conclusions: The results 

39 provide insights into managing fractures using LCPs with combi-holes over an 

40 extended duration. Under axial compressive loading conditions, the use of the 

41 C125 screw configuration can enhance callus formation during the 4-12-week 

42 period for transverse fractures. When employing the C12345 configuration, it 

43 becomes crucial to avoid overconstraint during the 4-8-week period.
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50 1. Introduction 

51 The use of locking compression plates (LCP) in plate osteosynthesis is a 

52 significant advancement. In comparison to conventional plates, such as 

53 dynamic compression plates (DCP), LCPs offer several advantages in reducing 

54 the risk of biological complications, including infection and non-union.1,2 This is 

55 achieved through indirect reduction that avoids direct bone-implant contact, 

56 promoting relative stability rather than absolute stability. The non-contact 

57 features of LCPs contribute to optimal healing and biological callus formation, 

58 with factors such as axial stiffness and inter-fragmentary movement (IFM) being 

59 crucial to the process.3,4  Proper levels of axial stiffness and IFM are beneficial 

60 to healing,5-9 but excessive or insufficient levels can be detrimental and even 

61 cause non-union. Therefore, achieving the optimal trade-off between these 

62 mechanical variables is essential for successful healing.10-13. 

63

64 LCPs with combi-holes, which combine conventional and threaded holes, 

65 provide versatility and flexibility by accommodating both conventional and 

66 locking head screws. However, this introduces uncertainty that requires careful 

67 consideration of the biomechanical implications of different screw 

68 configurations. Although previous biomechanical studies have mainly 

69 investigated the effects of screw configurations, none have analysed the use of 

70 LCPs with combi-holes.9-16 Therefore, it is important to investigate the 

71 mechanical properties of LCPs with combi-holes to determine the most effective 
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72 screw configurations and optimize their clinical use.

73

74 During the fracture healing process, bone and soft tissues undergo continuous 

75 changes in shape and material properties, posing a challenge in determining 

76 the optimal screw configurations. Numerical finite element (FE) modelling has 

77 shown promise in simulating this healing process. For example, Gardner et al. 

78 simulated the formation of callus tissue successfully and calculated the Young’s 

79 modulus of callus at different healing stages17; expanding upon Gardner’s 

80 works, Kim developed a time-dependent callus model to investigate the 

81 influence of the plate materials on tibia DCP fixation stiffness18; building on this 

82 research, Mehboob et al. used a stress-based rejection coefficient algorithm to 

83 calculate callus properties during the healing process.19 However, these studies 

84 focused primarily on healing simulation or were limited to a DCP system, 

85 making them incapable of investigating the effects of different screw 

86 configurations in an LCP system over an extended duration. 

87

88 This study aims to develop a finite element modelling framework for simulating 

89 callus growth during the fracture healing process. To achieve this, a time-

90 dependent callus model was incorporated into an FE model of the bone-implant 

91 construct. Three configuration parameters, namely the working length (WL), 

92 screw number (SN) and screw position (SP) were investigated to assess the 

93 quantitative impact of screw configuration on fracture healing under given 
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94 loading conditions. We hypothesised that the screw configuration affects 

95 mechanical variables, specifically, axial stiffness and interfragmentary strain 

96 (IFS), which were known to influence healing efficiency. This information can 

97 provide insights into managing fractures at different stages based on the 

98 selection of screw configurations for LCP plates with combi-holes. Such 

99 consideration may potentially contribute to improved healing efficiency 

100 throughout the entire healing process.

101
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102 2. Methods and materials

103 2.1 The bone-implant construct 

104 A standardised LCP with ten combi-holes (VP4031, APLUS BIOTEC Ltd) and 

105 locking screws (LS5034, APLUS BIOTEC Ltd) was modelled using Solidworks 

106 2020 (DS Solidworks Copr., USA), as illustrated in Figure 1a. The LCP had 

107 dimensions of 150 mm length, 10 mm width, and 4 mm thickness, with an 11 

108 mm distance between adjacent combi-holes. The locking head screw had a 

109 length of 34 mm, an inner diameter of 7.2 mm, an external diameter of 5 mm 

110 and a shaft diameter of 4.3 mm.

111

112 (Insert Figure 1)

113

114 To construct the bone-implant model, the contour of femoral cortical bone was 

115 derived from magnetic resonance imaging (MRI) scans of a healthy male 

116 subject (age: 44 years, height: 1.84 m, weight: 96 kg) using Mimics (Mimics 

117 19.0, Materialise, Belgium). The average cross-sectional area was 103.9 mm2 

118 and the cortical thickness was 3.5 mm, as shown in Figure 1b. It was then 

119 extruded longitudinally to a length of 140 mm to construct the three-dimensional 

120 shape. To enhance computational efficiency, this work excluded the trabecular 

121 structure.19,21 In addition, to simulate a 32-A3 femoral shaft fracture, a 

122 transverse gap of 2.1 mm was created in the middle of the cortical bone. The 

123 transverse fracture introduces symmetry along the fracture gap, and the size of 
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124 the transverse gap is consistent with previous studies, within the range of 2 mm 

125 to 5 mm.7-9,22 In the context of midshaft transverse fracture, previous studies 

126 also indicated the limited impact of the bone length.18,25,31  

127

128 A time-independent FE model was created using ABAQUS (2020, Dassault 

129 Systèmes, USA). The model incorporated a 2 mm offset between the bone and 

130 plate, and symmetry along the longitudinal axis, effectively reducing 

131 computational cost.23 The screw-bone and screw-plate interfaces were 

132 represented as tied. One end of the bone was fixed, while the other end was 

133 subjected to a compressive load of 1053.6 N, equivalent to 1.12 times the body 

134 weight of the subject.24 The LCP plate and screws were made of homogeneous 

135 and isotropic Titanium alloy (Ti–6Al–4V) and cobalt-based superalloy, 

136 respectively. The cortical bone was anisotropic. Table 1 provides detailed 

137 information on the material properties.

138

139 (Insert Table 1)

140

141 The screws and cortical bone were meshed using an 8-node linear hexahedral 

142 solid element with reduced integration (C3D8R), while the plate was meshed 

143 using a tetrahedron element (C3D4).4 A mesh convergence analysis was 

144 performed iteratively until the maximum stress change was less than 2% with 

145 decreasing mesh size.20 A smaller mesh size of 0.15 mm was required at the 
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146 tied interfaces, reducing the maximum stress from 10.4% to 1.5% (Figure. 1c). 

147 The remaining part had an average size between 0.5 mm to 0.7 mm. The model 

148 consisted of approximately 50,000 and 572,000 hexahedral elements for the 

149 screws and bone, and 725,600 tetrahedron elements for the plate. 

150

151 2.2 A time-dependent model

152 In addition to the time-independent model described in Section 2.1, a time-

153 dependent model was proposed by modelling the callus tissue, which 

154 possesses time-dependent material properties in different healing stages 18,25,28. 

155 Only the central component of the callus was modelled as it provides the 

156 primary load-bearing capacity and is the most sensitive to the IFM.

157

158 According to the interfragmentary strain theory,29 callus growth can be 

159 determined by interfragmentary strain (IFS, ε): an IFS between 2-10% promotes 

160 callus growth, while an IFS below 2% or above 10% inhibits it.18,30 IFS was 

161 calculated as the displacement of the fracture gap divided by its original size 

162 (as illustrated in Figure 2b). The success of callus growth determines healing 

163 efficiency ( ), expressed as the ratio of Ac and At. Ac is the area with an IFS 𝛿

164 between 2-10% and At is the total fracture area (as illustrated in Figure 2b).

165

166 (Insert Figure 2)

167
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168 In our study, we divided a complete healing process into four stages (i.e., 1-4 

169 weeks, 4-8 weeks, 8-12 weeks and 12-16 weeks).17 As a result, the Young’s 

170 modulus of callus ( ) during a particular healing stage ( ) was estimated as 𝐸𝑛 𝑛

171 follows:

172             ( 1 )          𝐸𝑛 =   𝛿𝑛 ― 1 ∙ 𝐸𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑, 𝑛 +(1 ― 𝛿𝑛 ― 1) ∙ 𝐸𝑛 ― 1  

173 where  represents the standard callus modulus and its values at four 𝐸𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑, 𝑛

174 stages are outlined in Table 2. These values are determined under the condition 

175 where the healing efficiency ( ) is equal to 100%;17  is Young’s modulus 𝛿 𝐸𝑛 ― 1 

176 of the callus at the ( ) healing stage;  is the healing efficiency at the 𝑛 ― 1 𝛿𝑛 ― 1

177 ( ) healing stage, calculated from the FE model. The iterative calculation 𝑛 ― 1

178 for the callus modulus is illustrated in Figure 2b. There are four layers of callus 

179 connecting the fracture gap along the axial direction, meshed using 8-node 

180 linear hexahedral solid elements with reduced integration (C3D8R) and a size 

181 of 0.5 mm. In total, there are 2852 elements.

182

183 The compressive loading conditions were varied in the time-dependent model 

184 to account for the mobility improvement after the operation (Table 2): during the 

185 initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal 

186 to 1.12 times body weight (BW); 24 in the third stage (8-12 weeks), the load was 

187 increased to 2 times BW, representative of walking with a walking-stick;31 in the 

188 final stage (12-16 week), the load was raised to 3 times BW, representative of 

189 normal walking without a walking-stick. 31 The axial stiffness is defined as the 

Page 10 of 38

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

190 axial compressive load divided by the displacement at the centre points of the 

191 two ends of the bone (as illustrated in Figure 1a).

192

193 2.3 Design of screw configurations  

194 Different screw configurations were studied (Figure 3) by varying the working 

195 length (the distance between the closest screws on either side of the fracture, 

196 case 1), the number of screws (case 2), and the position of screws (case 3). 

197 For case 1 (C15, C25, C35, C45), the working length was increased with two 

198 screws. For case 2 (C15, C145, C1345, C12345) the screw numbers were 

199 increased with a constant working length. For case 3 (C125, C135, C145), the 

200 middle screw was positioned differently relative to the fracture gap with a 

201 constant screw number and working length. The fifth screw (the screw near the 

202 distal side) was tightened in each configuration to ensure an adequate torsion 

203 stiffness of fixation 4. This resulted in nine different screw configurations, each 

204 tested under five scenarios: post-operation using the time-independent model; 

205 1–4 weeks, 4-8 weeks, 8-12 weeks and 12-16 weeks using the time-dependent 

206 model. In total, 45 simulation scenarios were conducted. 

207

208 (Insert Figure 3)

209

210 2.4 Data processing and analysis

211 Non-parametric repeated measure Friedman tests were employed to assess 
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212 the differences in axial stiffness and corresponding healing efficiency in 

213 different healing stages. Post-hoc comparisons were then conducted using a 

214 Wilcoxon signed-rank test with Bonferroni correction. Furthermore, Spearman's 

215 correlation coefficient (ρ) was used to calculate any correlations in predicted 

216 stiffness and healing efficiency between the time-independent model and the 

217 time-dependent model. The strength of the correlations was categorized as 

218 poor (ρ < 0.3), fair (0.3 < ρ < 0.5), moderately strong (0.6 < ρ < 0.8), very strong 

219 (0.8 < ρ < 1), and perfect (ρ = 1). 36 All statistical analysis was performed with 

220 SPSS (R26, IBM co. ltd, US) with a significance level of α = 0.01.

221
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222 3. Result

223 The predicted axial stiffness using the time-independent model was compared 

224 with previous studies, as shown in Figure 4. Despite the variations in material 

225 properties and loading conditions, our estimations were within a reasonable 

226 range (between 713.1 N/mm and 836.8 N/mm), indicating that our model was 

227 capable of predicting LCP stiffness accurately.

228

229 (Insert Figure 4)

230

231 In the time-dependent model, Young’s modulus of callus increased across four 

232 stages, resulting in a corresponding increase in axial stiffness (Figure 5). 

233 Notably, the configuration of C45 exhibited the lowest axial stiffness (Figure 

234 6a).  The predicted axial stiffness from the time-dependent model exhibited a 

235 significant correlation with that from the time-independent model (Figure 6c, ρ 

236 ≥ 0.733, p ≤ 0.025) as well as with the healing efficiency (Figure 6d, ρ ≥ 0.717, 

237 p ≤ 0.030). 

238

239 (Insert Figure 5 and Figure 6)

240

241 The highest healing efficiency accompanied by a strain of less than 2%, was 

242 observed at 4-8 weeks post-operation (Figure 7). Among the configurations 

243 tested, C12345 exhibited the largest area of strain that is less than 2% (Table 
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244 3). 

245

246 (Insert Figure 7, Table 3)

247

248 The working length had a significant effect on both axial stiffness and healing 

249 efficiency (p-adjust＜0.001). The addition of screws increased both the stiffness 

250 and healing efficiency, but its effect was not statistically significant (p-adjust  ≥

251 0.017 and p-adjust  0.024).≥

252

253 (Insert Figure 8)
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254 4. Discussion

255 This study aimed to develop a finite element modelling framework for simulating 

256 callus growth during the fracture healing process, considering three 

257 configuration parameters: working length, screw number and screw position. 

258 According to clinical recommendations,41 the C12345 configuration is 

259 commonly believed to provide the highest stiffness and stability. However, 

260 when comparing different configurations over an extended duration, our 

261 modelling framework revealed that C125 outperformed C12345 in terms of both 

262 stiffness and healing efficiency during weeks 4-12, despite using fewer screws. 

263 During the 4-8-week period, C12345 exhibited the largest area of strain that 

264 was less than 2%, potentially impeding callus growth and resulting in lower 

265 healing efficiency. This effect persisted until the 8-12-week period, as the 

266 reduced healing efficiency at the 4-8-weeks contributed to the reduced callus 

267 modulus at the later stage. This finding suggests that C125 may represent a 

268 more effective screw configuration for LCP fixation under the given conditions, 

269 as indicated by the higher mean healing efficiency of 75.3% when compared to 

270 the mean healing efficiency of 73.7% in C12345 between weeks 4-12.

271

272 This study provided novel insights into the relationship between stiffness and 

273 healing efficiency in the LCP with combi-holes during the healing process. Our 

274 time-dependent model revealed a significant, positive correlation between 

275 stiffness and healing efficiency in four different healing stages (ρ ≥ 0.717) 
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276 highlighting the importance of achieving an optimal level of stiffness for 

277 promoting bone healing. Interestingly, our results showed that most of the 

278 screw configurations resulted in a "loose" fixation, as identified by the IFS 

279 greater than 10% (Figure 7). However, a moderate increase in fixation stiffness 

280 could increase the area of IFS between 2-10%, promoting callus growth and 

281 bone healing. This finding is consistent with the available literature, which 

282 suggests that increased compressive force can accelerate bone healing.42,43 

283 Moreover, our study indicates that weight-bearing activities after four weeks of 

284 operation could be an effective means of achieving this goal.

285

286 Our hypothesis that the screw configuration affects fracture healing was 

287 partially supported. We found that only the working length significantly affected 

288 healing efficiency (Figure 8, p < 0.001), while the effects of the screw number 

289 and position were not significant in the healing process (Figure 8). Our findings 

290 are in line with previous studies, which have indicated that using an excessive 

291 number of screws may not always result in improved healing efficiency.44-46 

292 While it is challenging to recommend a definite number of screws for LCP usage, 

293 it is advisable to anchor in the fragments proximal and distal to the fracture 

294 zone.47 Our findings align with this recommendation, as C15 outperformed the 

295 others with the same number of screws in terms of axial stiffness and healing 

296 efficiency.

297
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298 Our time-dependent callus modelling was based on the strain-driven 

299 mechanism in which a displacement index IFS was applied to calculate the 

300 material property of the callus. This approach differs from some modelling 

301 studies that have used a stress-driven mechanism.48 Stress-driven models can 

302 be more susceptible to boundary conditions, and the strain-driven approach 

303 employed in this study could avoid contradictory results with previous studies. 

304 In the Appendix, the predicted stress pattern at the bone-callus interface was 

305 provided for comparison with the IFS strain pattern observed in previous 

306 studies.18

307

308 The study had several limitations that need to be considered when interpreting 

309 the results. Firstly, we only modelled one fracture scenario, namely the 

310 transverse fracture with a gap size of 2.1 mm. This established a baseline for 

311 the investigation of screw configurations. Additionally, only a limited set of 

312 screw configurations were modelled; other potential configurations, such as 

313 C1245, C2345, and C1235, were not considered. Importantly, it's worth noting 

314 that the relative differences between screw configurations are not expected to 

315 be influenced by the size of the transverse fracture gap. Secondly, our model 

316 only incorporated the central callus and excluded the peripheral and adjacent 

317 regions, which avoids geometric nonlinearity and convergence issues. 

318 However, this limitation may affect the predicted stiffness due to peripheral 

319 tissue differentiation during the healing process. Third, the study did not 

Page 17 of 38

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

320 account for intra-operative variability, such as soft tissues and patient/surgeon 

321 factors, which may confound the theoretical findings. Fourth, our FE model 

322 solely accounted for the compressive force along the longitudinal direction of 

323 the femur and its increase at different healing stages, indicating improved 

324 mobility post-operation. However, it fails to adequately represent the 

325 physiological loading conditions as it overlooks thigh muscle contractions and 

326 shear from internal hip joint contact forces. These estimations pose 

327 computational challenges and are sometimes infeasible. Considering these 

328 limitations and modelling assumptions, we acknowledge that our results may 

329 not be directly transferable to clinical recommendations for patients. In clinical 

330 practice, significant variations exist among different fracture types and 

331 circumstances, both between patients and surgeons. However, our study 

332 leverages the advantages of numerical simulation to investigate the effects of 

333 screw configuration at different healing stages and their resulting influence on 

334 later stages, providing insights to enhance overall healing efficiency throughout 

335 the entire healing process, specifically for simple transverse fractures under 

336 axial loading conditions. 
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337 5. Conclusions

338 A novel time-dependent FE model was developed to assess the impact of 

339 screw configurations on the LCP fixation stiffness and healing efficiency 

340 throughout a complete fracture healing process. Under axial compressive 

341 loading conditions, our findings suggest that a decrease in the working length 

342 can effectively promote fixation stability and healing efficiency. The positive 

343 correlation between healing efficiency and axial stiffness also underscores the 

344 importance of using configurations with higher stiffness. However, it is important 

345 to note that during the 4-8-week post-surgery, configurations like C12345 may 

346 lead to overconstraint in bone motion. Overall, our study suggests that under 

347 axial compressive loading conditions, the use of the C125 screw configuration 

348 can enhance callus formation during the 4-12-week period for transverse 

349 fractures. The findings provide insights into managing fractures using LCPs with 

350 combi-holes over an extended duration, with the potential to improve healing 

351 efficiency.  
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549 Figure 1. A schematic diagram of a typical 32-A3 internal fixation for a fracture. 

550 (a) A combi-hole LCP model with a fracture gap of 2.1 mm; (b) A transverse 

551 section of the bone and LCP; (c) Details of the interfaces between the LCP, 

552 screw, and bone with tie constraints. The LCP combi-hole has the smallest 

553 tetrahedron element size of 0.15 mm. 

554

555
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556 Figure 2. An illustration diagram of callus growth in the time-dependent model. 

557 (a) The “central callus” was modelled in the fracture gap; (b) The iterative 

558 calculation of callus properties is shown in the flowchart. The definitions of 

559 interfragmentary strain (ε) and healing efficiency ( ) are displayed in the graph.𝛿

560

561

Page 27 of 38

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

562 Figure 3. Nine different screw configurations. The configurations are denoted 

563 as C15, C25, C35, and C45 for variations in working length; C15, C135, C1345, 

564 and C12345 for variations in screw number; and C125, C135, and C145 for 

565 variations in screw position. The screw holes are named from proximal to distal 

566 to the fracture gap by ID 1-5, and all configurations are symmetrically distributed 

567 around the fracture gap.

568
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569 Figure 4. Comparisons of axial stiffness between our study (red) and the other 

570 studies (blue-experimental measures; yellow-computational modelling). The 

571 axial stiffness predicted from our study was within the range of other studies.4 5 

572 7, 13, 22,33-40 The plate material and boundary conditions are given at the bottom and 

573 top, respectively. The labels “Clamp”, “Pin” and “Free” represent fixed 6 

574 degrees of freedom (DOF) jig, fixed 3 translational DOF jig and direct loading 

575 without constraint at the femur, respectively.

576

577

Page 29 of 38

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

578 Figure 5. Young’s modulus of callus at four stages in the time-dependent model, 

579 along with the corresponding axial stiffness. Each colour represents a 

580 configuration. 

581
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582 Figure 6.  (a) Predicted axial stiffness and (b) healing efficiency using the time-

583 independent model. (c) The predicted axial stiffness using the time-

584 independent model is correlated with that from the time-dependent model. (d) 

585 there is a correlation between the predicted axial stiffness and the healing 

586 efficiency.

587

588
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589 Figure 7. The contour of the fracture area for different configurations during 

590 four healing stages. The coloured areas indicate an interfragmentary strain (IFS) 

591 between 2-10%; the grey areas indicate an IFS greater than 10%; and the black 

592 areas indicate an IFS less than 2% (i.e., C15, C125, C135, C145 and C12345 

593 in 4-8 weeks post-operation)

594

595
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596 Figure 8. Statistical distributions of the axial stiffness (a) and healing efficiency 

597 (b) under the different working lengths (WL), screw numbers (SN) and screw 

598 position (SP), represented by box plots. The upper and lower edges of each 

599 box represent the 75th and 25th percentiles, respectively; the upper and lower 

600 bars extend to the largest and smallest values within 1.5 times the interquartile 

601 range (IQR); the horizontal line inside each box represents the median, and the 

602 square represents the mean. The differences in axial stiffness and healing 

603 efficiency were tested using the Friedman test with a significance level of 0.01, 

604 with significant differences indicated by ** (p-adjust ＜ 0.01). Post-hoc 

605 comparisons were performed using a Wilcoxon signed-rank test with Bonferroni 

606 correction.

607
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608 Table 1. Material properties for bone, screw, and LCP 25-27

Parts
Young’s modulus 

(GPa)
Poisson ratio

Yielding 

stress (MPa)

Axial transverse
Cortical bone

18.4 25 7.2 0.12 0.37 106.2

Cobalt-based 

superalloy screw
215.0 26  0.29 487.5

Titanium alloy 

LCP
113.8 27 0.33 839.9

609

610
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611 Table 2. Callus modulus and loading conditions at different healing stages in 

612 the time-dependent FE model 

1-4 week 4-8 week 8-12 week 12-16 week

Standard callus modulus 

( , MPa)17𝐸𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
0.19 28 30.6 75

Loading 

(N and BW)

1053.6 N 

(1.12×BW) 24  

1881.6 N 

(2×BW) 31  

2822.4 N

(3×BW) 31 
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615 Table 3. The percentage of interfragmentary strain (IFS) area

1-4 week 4-8 week 8-12 week 12-16 weekIFS area 

(%) < 2 2-10 > 10 < 2 2-10 > 10 < 2 2-10 >10 < 2 2-10 >10

C15 0.0 61.9 38.1 1.2 93.2 5.6 0.0 54.8 45.2 0.0 57.9 42.1

C25 0.0 57.9 42.1 0.0 86.6 13.4 0.0 51.3 48.7 0.0 55.2 44.8

C35 0.0 57.3 42.7 0.0 83.6 16.4 0.0 50.6 49.4 0.0 54.5 45.5

C45 0.0 57.1 42.9 0.0 83.1 16.9 0.0 50.1 49.9 0.0 53.6 46.4

C125 0.0 63.9 36.1 2.8 95.2 2.0 0.0 55.3 44.7 0.0 58.8 41.2

C135 0.0 63.5 36.5 2.1 94.0 3.9 0.0 55.1 44.9 0.0 58.5 41.5

C145 0.0 63.1 36.9 1.8 93.3 4.9 0.0 54.7 45.3 0.0 58.2 41.9

C1345 0.0 63.6 36.4 2.2 94.3 3.5 0.0 54.9 45.1 0.0 60.1 39.9

C12345 0.0 64.3 35.7 4.2 92.5 3.3 0.0 54.9 45.1 0.0 61.9 38.1

616 <2, 2-10 and >10 indicate the percentage of IFS area of less than 2%, 

617 between 2-10% and greater than 10%, respectively. 

618
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619 Appendix

620 Fig.A1  The stress pattern at fracture section for nine screw configuration in four 

621 healing period.

622

623

624 The von Mise stress pattern at the fracture section is shown in Fig.A1. Among 

625 the nine different screw configurations, their stress pattern showed a similarity 

626 during the same healing stage. The high-stress location presented an excellent 

627 correspondence with the high IFS strain area in Fig.6. For the four healing 

628 stages, the stress values continuously increased with the increased femur 

629 loading. It is also observed the stress pattern experienced a significant change 

Page 37 of 38

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

630 after the 4th week; the stress distribution becomes less uniform due to the 

631 callus modulus update. 

632

633
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