UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Biomechanical analysis of Combi-hole locking compression plate during fracture healing

Li, Zeyang; Pollard, Stuart; Smith, Gemma; Deshmukh, Subodh; Ding, Ziyun

License: Other (please specify with Rights Statement)

Document Version Peer reviewed version

Citation for published version (Harvard):

Li, Z, Pollard, S, Smith, G, Deshmukh, S & Ding, Z 2024, 'Biomechanical analysis of Combi-hole locking compression plate during fracture healing: a numerical study of screw configuration', *Institution of Mechanical Engineers. Proceedings. Part H: Journal of Engineering in Medicine*.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This is the accepted author manuscript of an article accepted for publication in Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine; the final published version will be available at http://www.uk.sagepub.com/journals/Journal202022 Reuse is restricted to non-commercial and no derivative uses.

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Biomechanical analysis of Combi-hole locking compression plate during fracture healing: a numerical study of screw configuration

Journal:	Part H: Journal of Engineering in Medicine
Manuscript ID	JOEIM-23-0211.R1
Manuscript Type:	Original article
Date Submitted by the Author:	20-Dec-2023
Complete List of Authors:	Li, Zeyang; Cardiff University Pollard, Stuart; University of Birmingham Smith, Gemma; Royal Orthopaedic Hospital Deshmukh, Subodh; Sandwell and West Birmingham Hospitals NHS Trust Ding, Ziyun; University of Birmingham, School of Engineering
Keywords:	Finite Element [Biomechanics], Bone Biomechanics, Bone Remodelling, Implants/ Prosthetics, Finite Element Modelling/ Analysis [Medical]
Abstract:	Background: Locking compression plates (LCPs) have become a widely used option for treating femur bone fractures. However, the optimal screw configuration with combi-holes remains a subject of debate. The study aims to create a time-dependent finite element (FE) model to assess the impacts of different screw configurations on LCP fixation stiffness and healing efficiency across four healing stages during a complete fracture healing process. Methods: To simulate the healing process, we integrated a time-dependent callus formation mechanism into a FE model of the LCP with combi-holes. Three screw configuration parameters, namely working length, screw number, and screw position, were investigated. Results: Increasing the working length negatively affected axial stiffness and healing efficiency ($p < 0.001$), while screw number or position had no significant impact ($p > 0.01$). The time-dependent model displayed a moderate correlation with the conventional time-independent model for axial stiffness and healing efficiency ($p \leq 0.733$, $p \leq 0.025$). The highest healing efficiency (95.2%) was observed in screw configuration $C125$ during the 4-8-week period. Conclusions: The results provide insights into managing fractures using LCPs with combi-holes over an extended duration. Under axial compressive loading conditions, the use of the C125 screw configuration can enhance callus formation during the 4-12-week period for transverse fractures. When employing the C12345 configuration, it becomes crucial to avoid overconstraint during the 4-8-week period.

SCHOLARONE[™] Manuscripts

1		
2 3		
4 5	1	Biomechanical analysis of Combi-hole locking compression
6 7 0	2	plate during fracture healing: a numerical study of screw
9 10	3	configuration
11 12 13	4	Zeyang Li ¹ , Stuart Pollard ² , Gemma Smith ³ , Subodh Deshmukh ³ , Ziyun Ding ^{2*}
14 15 16	5	
17 18	6	1. School of Engineering, Cardiff University, Cardiff, UK
19 20 21	7	2. School of Engineering, University of Birmingham, Birmingham, UK
22 23	8	3. Royal Orthopaedic Hospital, Birmingham, UK
24 25 26	9	
27 28 29	10	
30 31	11	Correspondence:
32 33 34	12	Ziyun Ding
35 36 37	13	School of Engineering
38 39	14	University of Birmingham
40 41 42	15	Birmingham
43 44	16	UK
45 46 47	17	B15 2TT
48 49 50	18	z.ding@bham.ac.uk
51 52	19	
53 54	20	
55 56 57 58 59 60	21	

22 Abstract

Background: Locking compression plates (LCPs) have become a widely used option for treating femur bone fractures. However, the optimal screw configuration with combi-holes remains a subject of debate. The study aims to create a time-dependent finite element (FE) model to assess the impacts of different screw configurations on LCP fixation stiffness and healing efficiency across four healing stages during a complete fracture healing process. Methods: To simulate the healing process, we integrated a time-dependent callus formation mechanism into a FE model of the LCP with combi-holes. Three screw configuration parameters, namely working length, screw number, and screw position, were investigated. Results: Increasing the working length negatively affected axial stiffness and healing efficiency (p < 0.001), while screw number or position had no significant impact (p > 0.01). The time-dependent model displayed a moderate correlation with the conventional time-independent model for axial stiffness and healing efficiency ($p \ge 0.733$, $p \le 0.733$) 0.025). The highest healing efficiency (95.2%) was observed in screw configuration C125 during the 4-8-week period. Conclusions: The results provide insights into managing fractures using LCPs with combi-holes over an extended duration. Under axial compressive loading conditions, the use of the C125 screw configuration can enhance callus formation during the 4-12-week period for transverse fractures. When employing the C12345 configuration, it becomes crucial to avoid overconstraint during the 4-8-week period.

44	Keywords: screw configuration; fracture healing; finite element; callus;
45	locking compression plate
46	
47	
48	
70	
49	

50 1. Introduction

The use of locking compression plates (LCP) in plate osteosynthesis is a significant advancement. In comparison to conventional plates, such as dynamic compression plates (DCP), LCPs offer several advantages in reducing the risk of biological complications, including infection and non-union.^{1,2} This is achieved through indirect reduction that avoids direct bone-implant contact, promoting relative stability rather than absolute stability. The non-contact features of LCPs contribute to optimal healing and biological callus formation, with factors such as axial stiffness and inter-fragmentary movement (IFM) being crucial to the process.^{3,4} Proper levels of axial stiffness and IFM are beneficial to healing,⁵⁻⁹ but excessive or insufficient levels can be detrimental and even cause non-union. Therefore, achieving the optimal trade-off between these mechanical variables is essential for successful healing.^{10-13.}

LCPs with combi-holes, which combine conventional and threaded holes, provide versatility and flexibility by accommodating both conventional and locking head screws. However, this introduces uncertainty that requires careful consideration of the biomechanical implications of different screw configurations. Although previous biomechanical studies have mainly investigated the effects of screw configurations, none have analysed the use of LCPs with combi-holes.⁹⁻¹⁶ Therefore, it is important to investigate the mechanical properties of LCPs with combi-holes to determine the most effective

72 screw configurations and optimize their clinical use.

During the fracture healing process, bone and soft tissues undergo continuous changes in shape and material properties, posing a challenge in determining the optimal screw configurations. Numerical finite element (FE) modelling has shown promise in simulating this healing process. For example, Gardner et al. simulated the formation of callus tissue successfully and calculated the Young's modulus of callus at different healing stages¹⁷; expanding upon Gardner's works, Kim developed a time-dependent callus model to investigate the influence of the plate materials on tibia DCP fixation stiffness¹⁸; building on this research, Mehboob et al. used a stress-based rejection coefficient algorithm to calculate callus properties during the healing process.¹⁹ However, these studies focused primarily on healing simulation or were limited to a DCP system, making them incapable of investigating the effects of different screw configurations in an LCP system over an extended duration.

This study aims to develop a finite element modelling framework for simulating callus growth during the fracture healing process. To achieve this, a timedependent callus model was incorporated into an FE model of the bone-implant construct. Three configuration parameters, namely the working length (WL), screw number (SN) and screw position (SP) were investigated to assess the quantitative impact of screw configuration on fracture healing under given

-		
2		
3 4	04	loading conditions. We hypothesised that the screw configuration affects
5	34	loading conditions. We hypothesised that the screw configuration affects
6		
7	95	mechanical variables, specifically, axial stiffness and interfragmentary strain
8		
9	96	(IFS), which were known to influence healing efficiency. This information can
10		
11	97	provide insights into managing fractures at different stages based on the
12	57	provide insights into managing indotates at amerent stages based on the
14	00	astation of communications for LCD plates with combination. Qual
15	98	selection of screw configurations for LCP plates with compl-holes. Such
16		
17	99	consideration may potentially contribute to improved healing efficiency
18		
19	100	throughout the entire healing process.
20		
22	101	
23		
24		
25		
26		
27 28		
29		
30		
31		
32		
33		
34		
36		
37		
38		
39		
40		
41 42		
43		
44		
45		
46		
47 49		
48 49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		

Page 7 of 38

1

2	
3	
1	
-	
S	
6	
7	
8	
õ	
9 10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
∠∪ 21	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
27	
22	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
56	
50	
5/ 5/	
58	
59	
60	

102 2. Me	thods and	materials
------------------	-----------	-----------

103 2.1 The bone-implant construct

A standardised LCP with ten combi-holes (VP4031, APLUS BIOTEC Ltd) and locking screws (LS5034, APLUS BIOTEC Ltd) was modelled using Solidworks 2020 (DS Solidworks Copr., USA), as illustrated in Figure 1a. The LCP had dimensions of 150 mm length, 10 mm width, and 4 mm thickness, with an 11 mm distance between adjacent combi-holes. The locking head screw had a length of 34 mm, an inner diameter of 7.2 mm, an external diameter of 5 mm and a shaft diameter of 4.3 mm.

111

112 (Insert Figure 1)

113

To construct the bone-implant model, the contour of femoral cortical bone was 114 derived from magnetic resonance imaging (MRI) scans of a healthy male 115 116 subject (age: 44 years, height: 1.84 m, weight: 96 kg) using Mimics (Mimics 19.0, Materialise, Belgium). The average cross-sectional area was 103.9 mm² 117 118 and the cortical thickness was 3.5 mm, as shown in Figure 1b. It was then extruded longitudinally to a length of 140 mm to construct the three-dimensional 119 120 shape. To enhance computational efficiency, this work excluded the trabecular structure.^{19,21} In addition, to simulate a 32-A3 femoral shaft fracture, a 121 122 transverse gap of 2.1 mm was created in the middle of the cortical bone. The transverse fracture introduces symmetry along the fracture gap, and the size of 123

the transverse gap is consistent with previous studies, within the range of 2 mm to 5 mm.^{7-9,22} In the context of midshaft transverse fracture, previous studies also indicated the limited impact of the bone length.^{18,25,31} A time-independent FE model was created using ABAQUS (2020, Dassault Systèmes, USA). The model incorporated a 2 mm offset between the bone and plate, and symmetry along the longitudinal axis, effectively reducing computational cost.²³ The screw-bone and screw-plate interfaces were represented as tied. One end of the bone was fixed, while the other end was

subjected to a compressive load of 1053.6 N, equivalent to 1.12 times the body
 weight of the subject.²⁴ The LCP plate and screws were made of homogeneous

135 and isotropic Titanium alloy (Ti–6Al–4V) and cobalt-based superalloy,
136 respectively. The cortical bone was anisotropic. Table 1 provides detailed

137 information on the material properties.

139 (Insert Table 1)

The screws and cortical bone were meshed using an 8-node linear hexahedral solid element with reduced integration (C3D8R), while the plate was meshed using a tetrahedron element (C3D4).⁴ A mesh convergence analysis was performed iteratively until the maximum stress change was less than 2% with decreasing mesh size.²⁰ A smaller mesh size of 0.15 mm was required at the

3 4 5	146	tied interfaces, reducing the maximum stress from 10.4% to 1.5% (Figure. 1c).
6 7	147	The remaining part had an average size between 0.5 mm to 0.7 mm. The model
8 9 10	148	consisted of approximately 50,000 and 572,000 hexahedral elements for the
11 12 13	149	screws and bone, and 725,600 tetrahedron elements for the plate.
14 15	150	
16 17 18	151	2.2 A time-dependent model
19 20 21	152	In addition to the time-independent model described in Section 2.1, a time-
22 23	153	dependent model was proposed by modelling the callus tissue, which
24 25 26	154	possesses time-dependent material properties in different healing stages ^{18,25,28} .
27 28 20	155	Only the central component of the callus was modelled as it provides the
30 31	156	primary load-bearing capacity and is the most sensitive to the IFM.
32 33 34	157	
35 36	158	According to the interfragmentary strain theory, ²⁹ callus growth can be
37 38 39	159	determined by interfragmentary strain (IFS, ϵ): an IFS between 2-10% promotes
40 41	160	callus growth, while an IFS below 2% or above 10% inhibits it. ^{18,30} IFS was
42 43 44	161	calculated as the displacement of the fracture gap divided by its original size
45 46 47	162	(as illustrated in Figure 2b). The success of callus growth determines healing
48 49	163	efficiency (δ), expressed as the ratio of A _c and A _t . A _c is the area with an IFS
50 51 52	164	between 2-10% and A_t is the total fracture area (as illustrated in Figure 2b).
53 54	165	
55 56 57	166	(Insert Figure 2)
58 59 60	167	

In our study, we divided a complete healing process into four stages (i.e., 1-4 weeks, 4-8 weeks, 8-12 weeks and 12-16 weeks). ¹⁷ As a result, the Young's modulus of callus (E_n) during a particular healing stage (n) was estimated as follows: $E_n = \delta_{n-1} \cdot E_{standard,n} + (1 - \delta_{n-1}) \cdot E_{n-1}$ (1) where $E_{standard,n}$ represents the standard callus modulus and its values at four stages are outlined in Table 2. These values are determined under the condition where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus of the callus at the ($n - 1$) healing stage; δ_{n-1} is the healing efficiency at the ($n - 1$) healing stage, calculated from the FE model. The iterative calculation for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of		
weeks, 4-8 weeks, 8-12 weeks and 12-16 weeks). ¹⁷ As a result, the Young's modulus of callus (E_n) during a particular healing stage (n) was estimated as follows: $E_n = \delta_{n-1} \cdot E_{standard, n} + (1 - \delta_{n-1}) \cdot E_{n-1}$ (1) where $E_{standard, n}$ represents the standard callus modulus and its values at four stages are outlined in Table 2. These values are determined under the condition where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus of the callus at the ($n - 1$) healing stage; δ_{n-1} is the healing efficiency at the ($n - 1$) healing stage, calculated from the FE model. The iterative calculation for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm, in total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of	168	In our study, we divided a complete healing process into four stages (i.e., 1-4
modulus of callus (E_n) during a particular healing stage (n) was estimated as follows: $E_n = \delta_{n-1} \cdot E_{standard, n} + (1 - \delta_{n-1}) \cdot E_{n-1}$ (1) where $E_{standard, n}$ represents the standard callus modulus and its values at four stages are outlined in Table 2. These values are determined under the condition where the healing efficiency (δ) is equal to 100% ; ¹⁷ E_{n-1} is Young's modulus of the callus at the $(n-1)$ healing stage; δ_{n-1} is the healing efficiency at the (n-1) healing stage, calculated from the FE model. The iterative calculation for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of	169	weeks, 4-8 weeks, 8-12 weeks and 12-16 weeks). ¹⁷ As a result, the Young's
follows: $E_n = \delta_{n-1} \cdot E_{standard, n} + (1 - \delta_{n-1}) \cdot E_{n-1} \qquad (1)$ where $E_{standard, n}$ represents the standard callus modulus and its values at four stages are outlined in Table 2. These values are determined under the condition where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus of the callus at the $(n - 1)$ healing stage; δ_{n-1} is the healing efficiency at the (n - 1) healing stage, calculated from the FE model. The iterative calculation for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of	170	modulus of callus (E_n) during a particular healing stage (n) was estimated as
172 $E_n = \delta_{n-1} \cdot E_{standard, n} + (1 - \delta_{n-1}) \cdot E_{n-1}$ (1) 173 where $E_{standard, n}$ represents the standard callus modulus and its values at four 174 stages are outlined in Table 2. These values are determined under the condition 175 where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus 176 of the callus at the $(n - 1)$ healing stage; δ_{n-1} is the healing efficiency at the 177 $(n - 1)$ healing stage, calculated from the FE model. The iterative calculation 178 for the callus modulus is illustrated in Figure 2b. There are four layers of callus 179 connecting the fracture gap along the axial direction, meshed using 8-node 180 linear hexahedral solid elements with reduced integration (C3D8R) and a size 181 of 0.5 mm. In total, there are 2852 elements. 182 183 The compressive loading conditions were varied in the time-dependent model 184 to account for the mobility improvement after the operation (Table 2): during the 185 initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal 186 to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was 187 increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the 188 final stage (12-16 week), the load was raised to 3 times BW, representative of	171	follows:
where $E_{standard, n}$ represents the standard callus modulus and its values at four stages are outlined in Table 2. These values are determined under the condition where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus of the callus at the $(n-1)$ healing stage; δ_{n-1} is the healing efficiency at the (n-1) healing stage, calculated from the FE model. The iterative calculation for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements.	172	$E_n = \delta_{n-1} \cdot E_{standard, n} + (1 - \delta_{n-1}) \cdot E_{n-1} $ (1)
174 stages are outlined in Table 2. These values are determined under the condition 175 where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus 176 of the callus at the $(n-1)$ healing stage; δ_{n-1} is the healing efficiency at the 177 $(n-1)$ healing stage, calculated from the FE model. The iterative calculation 178 for the callus modulus is illustrated in Figure 2b. There are four layers of callus 179 connecting the fracture gap along the axial direction, meshed using 8-node 180 linear hexahedral solid elements with reduced integration (C3D8R) and a size 181 of 0.5 mm. In total, there are 2852 elements. 182 183 The compressive loading conditions were varied in the time-dependent model 184 to account for the mobility improvement after the operation (Table 2): during the 185 initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal 186 to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was 187 increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the 188 final stage (12-16 week), the load was raised to 3 times BW, representative of	173	where $E_{standard, n}$ represents the standard callus modulus and its values at four
where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus of the callus at the $(n - 1)$ healing stage; δ_{n-1} is the healing efficiency at the (n - 1) healing stage, calculated from the FE model. The iterative calculation for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements.	174	stages are outlined in Table 2. These values are determined under the condition
of the callus at the $(n - 1)$ healing stage; δ_{n-1} is the healing efficiency at the ($n - 1$) healing stage, calculated from the FE model. The iterative calculation for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of	175	where the healing efficiency (δ) is equal to 100%; ¹⁷ E_{n-1} is Young's modulus
177 $(n-1)$ healing stage, calculated from the FE model. The iterative calculation178for the callus modulus is illustrated in Figure 2b. There are four layers of callus179connecting the fracture gap along the axial direction, meshed using 8-node180linear hexahedral solid elements with reduced integration (C3D8R) and a size181of 0.5 mm. In total, there are 2852 elements.182183184to account for the mobility improvement after the operation (Table 2): during the185initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal186to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was187increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the188final stage (12-16 week), the load was raised to 3 times BW, representative of	176	of the callus at the $(n-1)$ healing stage; δ_{n-1} is the healing efficiency at the
 for the callus modulus is illustrated in Figure 2b. There are four layers of callus connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	177	(n-1) healing stage, calculated from the FE model. The iterative calculation
 connecting the fracture gap along the axial direction, meshed using 8-node linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	178	for the callus modulus is illustrated in Figure 2b. There are four layers of callus
 linear hexahedral solid elements with reduced integration (C3D8R) and a size of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	179	connecting the fracture gap along the axial direction, meshed using 8-node
 of 0.5 mm. In total, there are 2852 elements. The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	180	linear hexahedral solid elements with reduced integration (C3D8R) and a size
182 183 The compressive loading conditions were varied in the time-dependent model 184 to account for the mobility improvement after the operation (Table 2): during the 185 initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal 186 to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was 187 increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the 188 final stage (12-16 week), the load was raised to 3 times BW, representative of	181	of 0.5 mm. In total, there are 2852 elements.
The compressive loading conditions were varied in the time-dependent model to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of	182	
 to account for the mobility improvement after the operation (Table 2): during the initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	183	The compressive loading conditions were varied in the time-dependent model
 initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	184	to account for the mobility improvement after the operation (Table 2): during the
 to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	185	initial two stages (1-4 weeks and 4-8 weeks), the compressive load was equal
 increased to 2 times BW, representative of walking with a walking-stick;³¹ in the final stage (12-16 week), the load was raised to 3 times BW, representative of 	186	to 1.12 times body weight (BW); ²⁴ in the third stage (8-12 weeks), the load was
188 final stage (12-16 week), the load was raised to 3 times BW, representative of	187	increased to 2 times BW, representative of walking with a walking-stick; ³¹ in the
	188	final stage (12-16 week), the load was raised to 3 times BW, representative of
189 normal walking without a walking-stick. 31 The axial stiffness is defined as the	189	normal walking without a walking-stick. ³¹ The axial stiffness is defined as the

1

2	
2	
3	
4	
5	
ر م	
6	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
10	
10	
17	
18	
10	
17	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
20	
50	
31	
32	
33	
⊃^	
54	
35	
36	
27	
5/	
38	
39	
40	
44	
41	
42	
43	
<u></u> <u></u>	
44	
45	
46	
47	
-+/	
48	
49	
50	
£1	
21	
52	
53	
51	
J4	
55	
56	
57	
57	
58	
59	
•••	

axial compressive load divided by the displacement at the centre points of the
two ends of the bone (as illustrated in Figure 1a).

193 **2.3 Design of screw configurations**

194 Different screw configurations were studied (Figure 3) by varying the working 195 length (the distance between the closest screws on either side of the fracture, case 1), the number of screws (case 2), and the position of screws (case 3). 196 For case 1 (C15, C25, C35, C45), the working length was increased with two 197 screws. For case 2 (C15, C145, C1345, C12345) the screw numbers were 198 increased with a constant working length. For case 3 (C125, C135, C145), the 199 middle screw was positioned differently relative to the fracture gap with a 200 201 constant screw number and working length. The fifth screw (the screw near the distal side) was tightened in each configuration to ensure an adequate torsion 202 stiffness of fixation ⁴. This resulted in nine different screw configurations, each 203 204 tested under five scenarios: post-operation using the time-independent model; 1-4 weeks, 4-8 weeks, 8-12 weeks and 12-16 weeks using the time-dependent 205 206 model. In total, 45 simulation scenarios were conducted.

207

208 (Insert Figure 3)

209

210 **2.4 Data processing and analysis**

211 Non-parametric repeated measure Friedman tests were employed to assess

2	
3	
4	
ر د	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
15	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
58	
59	

212	the differences in axial stiffness and corresponding healing efficiency in
213	different healing stages. Post-hoc comparisons were then conducted using a
214	Wilcoxon signed-rank test with Bonferroni correction. Furthermore, Spearman's
215	correlation coefficient (ρ) was used to calculate any correlations in predicted
216	stiffness and healing efficiency between the time-independent model and the
217	time-dependent model. The strength of the correlations was categorized as
218	poor (ρ < 0.3), fair (0.3 < ρ < 0.5), moderately strong (0.6 < ρ < 0.8), very strong
219	(0.8 < ρ < 1), and perfect (ρ = 1). ³⁶ All statistical analysis was performed with
220	SPSS (R26, IBM co. ltd, US) with a significance level of α = 0.01.
221	

2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
J∠ 22	
22 24	
34 25	
35	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
~~	

222 **3. Result**

The predicted axial stiffness using the time-independent model was compared with previous studies, as shown in Figure 4. Despite the variations in material properties and loading conditions, our estimations were within a reasonable range (between 713.1 N/mm and 836.8 N/mm), indicating that our model was capable of predicting LCP stiffness accurately.

228

(Insert Figure 4)

230

231	In the time-dependent model, Young's modulus of callus increased across four
232	stages, resulting in a corresponding increase in axial stiffness (Figure 5).
233	Notably, the configuration of C45 exhibited the lowest axial stiffness (Figure
234	6a). The predicted axial stiffness from the time-dependent model exhibited a
00E	significant correlation with that from the time independent model (Figure 6a. a
235	significant correlation with that from the time-independent model (Figure oc, p
236	≥ 0.733 $p \leq 0.025$) as well as with the healing efficiency (Figure 6d, $o \geq 0.717$
200	= 0.100, p = 0.020) do won do with the fielding enclosed (figure out, p = 0.11),
237	<i>p</i> ≤ 0.030).

238

239 (Insert Figure 5 and Figure 6)

240

The highest healing efficiency accompanied by a strain of less than 2%, was observed at 4-8 weeks post-operation (Figure 7). Among the configurations tested, C12345 exhibited the largest area of strain that is less than 2% (Table

2		
3 4	244	3).
5 6 7	245	
8 9 10	246	(Insert Figure 7, Table 3)
11 12 12	247	
14 15	248	The working length had a significant effect on both axial stiffness and healing
16 17 18	249	efficiency (<i>p</i> -adjust < 0.001). The addition of screws increased both the stiffness
19 20 21	250	and healing efficiency, but its effect was not statistically significant (<i>p</i> -adjust \geq
21 22 23	251	0.017 and <i>p</i> -adjust \geq 0.024).
24 25 26	252	
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90 51 52 53 54 55 56 57 58 90	253	(Insert Figure 8)

2	
3	
4	
5	
6	
7	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
22	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
50	
50	
51	
52 52	
55 ۲	
54	
55	
56	
57	
58	
59	
60	

254 4	4. Dis	scussion
-------	--------	----------

255	I his study aimed to develop a finite element modelling framework for simulating
256	<mark>callus growth during the fracture healing process</mark> , considering three
257	configuration parameters: working length, screw number and screw position.
258	According to clinical recommendations, ⁴¹ the C12345 configuration is
259	commonly believed to provide the highest stiffness and stability. However,
260	when comparing different configurations over an extended duration, our
261	modelling framework revealed that C125 outperformed C12345 in terms of both
262	stiffness and healing efficiency during weeks 4-12, despite using fewer screws.
263	During the 4-8-week period, C12345 exhibited the largest area of strain that
264	was less than 2%, potentially impeding callus growth and resulting in lower
265	healing efficiency. This effect persisted until the 8-12-week period, as the
266	reduced healing efficiency at the 4-8-weeks contributed to the reduced callus
267	modulus at the later stage. This finding suggests that C125 may represent a
268	more effective screw configuration for LCP fixation under the given conditions,
269	as indicated by the higher mean healing efficiency of 75.3% when compared to
270	the mean healing efficiency of 73.7% in C12345 between weeks 4-12.
271	

This study provided novel insights into the relationship between stiffness and healing efficiency in the LCP with combi-holes during the healing process. Our time-dependent model revealed a significant, positive correlation between stiffness and healing efficiency in four different healing stages ($\rho \ge 0.717$)

> highlighting the importance of achieving an optimal level of stiffness for promoting bone healing. Interestingly, our results showed that most of the screw configurations resulted in a "loose" fixation, as identified by the IFS greater than 10% (Figure 7). However, a moderate increase in fixation stiffness could increase the area of IFS between 2-10%, promoting callus growth and bone healing. This finding is consistent with the available literature, which suggests that increased compressive force can accelerate bone healing.^{42,43} Moreover, our study indicates that weight-bearing activities after four weeks of operation could be an effective means of achieving this goal.

Our hypothesis that the screw configuration affects fracture healing was partially supported. We found that only the working length significantly affected healing efficiency (Figure 8, p < 0.001), while the effects of the screw number and position were not significant in the healing process (Figure 8). Our findings are in line with previous studies, which have indicated that using an excessive number of screws may not always result in improved healing efficiency.44-46 While it is challenging to recommend a definite number of screws for LCP usage. it is advisable to anchor in the fragments proximal and distal to the fracture zone.⁴⁷ Our findings align with this recommendation, as C15 outperformed the others with the same number of screws in terms of axial stiffness and healing efficiency.

Our time-dependent callus modelling was based on the strain-driven mechanism in which a displacement index IFS was applied to calculate the material property of the callus. This approach differs from some modelling studies that have used a stress-driven mechanism.⁴⁸ Stress-driven models can be more susceptible to boundary conditions, and the strain-driven approach employed in this study could avoid contradictory results with previous studies. In the Appendix, the predicted stress pattern at the bone-callus interface was provided for comparison with the IFS strain pattern observed in previous studies.¹⁸

The study had several limitations that need to be considered when interpreting the results. Firstly, we only modelled one fracture scenario, namely the transverse fracture with a gap size of 2.1 mm. This established a baseline for the investigation of screw configurations. Additionally, only a limited set of screw configurations were modelled; other potential configurations, such as C1245, C2345, and C1235, were not considered. Importantly, it's worth noting that the relative differences between screw configurations are not expected to be influenced by the size of the transverse fracture gap. Secondly, our model only incorporated the central callus and excluded the peripheral and adjacent regions, which avoids geometric nonlinearity and convergence issues. However, this limitation may affect the predicted stiffness due to peripheral tissue differentiation during the healing process. Third, the study did not

http://mc.manuscriptcentral.com/(site)

account for intra-operative variability, such as soft tissues and patient/surgeon factors, which may confound the theoretical findings. Fourth, our FE model solely accounted for the compressive force along the longitudinal direction of the femur and its increase at different healing stages, indicating improved mobility post-operation. However, it fails to adequately represent the physiological loading conditions as it overlooks thigh muscle contractions and shear from internal hip joint contact forces. These estimations pose computational challenges and are sometimes infeasible. Considering these limitations and modelling assumptions, we acknowledge that our results may not be directly transferable to clinical recommendations for patients. In clinical practice, significant variations exist among different fracture types and circumstances, both between patients and surgeons. However, our study leverages the advantages of numerical simulation to investigate the effects of screw configuration at different healing stages and their resulting influence on later stages, providing insights to enhance overall healing efficiency throughout the entire healing process, specifically for simple transverse fractures under axial loading conditions.

337	5.	Conc	lusions

A novel time-dependent FE model was developed to assess the impact of screw configurations on the LCP fixation stiffness and healing efficiency throughout a complete fracture healing process. Under axial compressive loading conditions, our findings suggest that a decrease in the working length can effectively promote fixation stability and healing efficiency. The positive correlation between healing efficiency and axial stiffness also underscores the importance of using configurations with higher stiffness. However, it is important to note that during the 4-8-week post-surgery, configurations like C12345 may lead to overconstraint in bone motion. Overall, our study suggests that under axial compressive loading conditions, the use of the C125 screw configuration can enhance callus formation during the 4-12-week period for transverse fractures. The findings provide insights into managing fractures using LCPs with combi-holes over an extended duration, with the potential to improve healing efficiency.

2 3	
4	
5	
6	
7	
0 9	
10	
11	
12	
13	
14	
16	
17	
18	
20	
21	
22	
23	
24 25	
26	
27	
28	
29 30	
31	
32	
33 24	
35	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
46	
47	
48 40	
49 50	
51	
52	
53 F 4	
54 55	
56	
57	
58	

352 Acknowledgements

- Zeyang Li would like to thank the support of the China Scholarship Council for 353
- sponsoring his PhD project at Cardiff University. 354

355

1

- **Conflict of Interest** 356
- No benefits in any form have been or will be received from a commercial party 357

related directly or indirectly to the subject of this manuscript. 358

1 2	
3 4 5	360
6	361
7	362
8 9	363
10	364
11	365
12	366
13	367
15	368
16	369
17	370
19	371
20	372
21 22	373
22	374
24	375
25 26	376
26 27	377
28	378
29	379
30 31	380
32	381
33	382
34 35	383
36	384
37	385
38	386
39 40	387
41	388
42	389
43 44	390
45	391
46	392
47 48	393
48 49	394
50	395
51 52	396
52 53	397
54	398
55	399
56 57	400
58	401
59	402
60	

360 References

Farouk O, Krettek C, Miclau T, et al. Effects of percutaneous and
 conventional plating techniques on the blood supply to the femur. *Arch Orthop Trauma Surg* 1998; 117: 438-441.

2. Hasenboehler E, Rikli D, and Babst R. Locking Compression Plate with
Minimally Invasive Plate Osteosynthesis in diaphyseal and distal tibial fracture:
A retrospective study of 32 patients. *Injury* 2007; 38: 365-370.

369 3. Duda N, Kirchner H, Wilke J, et al. A method to determine the 3-D stiffness 370 of fracture fixation devices and its application to predict inter-fragmentary 371 movement. *J Biomech* 1997; 31(3): 247-252.

4. MacLeod A, Simpson AH and Pankaj P. Experimental and numerical
investigation into the influence of loading conditions in biomechanical testing of
locking plate fracture fixation devices. *Bone Jt Res* 2018; 7(1): 111-120.

5. JoonHoe T, Natarajan E, Lim W, et al. Effects of bone-plate materials on the healing process of fractured tibia bone under time-varying conditions: a finite element analysis. *Mater Res Express* 2021; 8: 095308.

381 6. Lujan J, Henderson C, Madey S, et al. Locked plating of distal femur
382 fractures leads to inconsistent and asymmetric callus formation. *J Orthop*383 *Trauma* 2010; 24: 156-162.

7. Frank A, Brianza S, Plecko M et al. Variable Fixation Technology Provides
Rigid as Well as Progressive Dynamic Fixation: A Biomechanical Investigation. *J Bone Jt Surg* 2020; 102: e115,.

8. Layher F, Matziolis G, and Kayhan L N. Minimally Invasive Internal Fixation
of Femoral Shaft Fractures—A Biomechanical Study with a Disruptive
Technique. *Life* 2021, 11(11): 1254.

393 9. Hak J, Althausen P and Hazelwood S. Locked Plate Fixation of
 394 Osteoporotic Humeral Shaft Fractures: Are Two Locking Screws Per Segment
 395 Enough? *J Orthop Trauma* 2010; 24: 207-211.

397 10. Augat P, Burger J, Schorlemmer S, et al. Shear movement at the fracture
 398 site delays healing in a diaphyseal fracture model. *J Orthop Res* 2010; 21:
 399 1011-1017.

401 11. Kuhn S, Appelmann P, Pairon P, et al. A new angle stable nailing concept 402 for the treatment of distal tibia fractures. *Int Orthop* 2014; 38: 1255-1260.

 403 403 404 412. Kenwright J and Gardner T. Mechanical influences on tibial fracture healing. <i>Clin Orthop Relat Res</i> 1998; 355: 179-190. 407 408 409 409 409 409 409 409 409 401 410 411 414. Snow M, Thompson G and Turner P. A Mechanical Comparison of the Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression Plate (DCP) in an Osteoporotic Bone Model. <i>J Orthop Trauma</i> 2008; 22: 121- 125. 416 415. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research International</i> 2019; 5958631. 418 419 420 430 441 <li< th=""></li<>
 12. Kenwright J and Gardner T. Mechanical influences on tibial fracture healing. <i>Clin Orthop Relat Res</i> 1998; 355: 179-190. 13. Dobele S, Horn C, Eichhorn S, et al. The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. <i>Langenbeck's Arch Surg</i> 2010; 395: 421-428. 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression Plate (DCP) in an Osteoporotic Bone Model. <i>J Orthop Trauma</i> 2008; 22: 121- 125. 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research International</i> 2019; 5958631. 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch res notices</i> 2013. 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture-an FEM study. <i>J Biomech</i> 2000; 33: 415-425. 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time- varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 19. Mehboob A and Chang S. Effect of composite bone plates on callus generation and healing of fractured tibia with different screw configurations. <i>Compos Sci Technol</i> 2018; 167: 96-105.
405 Clin Orthop Relat Res 1998; 355: 179-190. 406 407 13. Dobele S, Horn C, Eichhorn S, et al. The dynamic locking screw (DLS) can 408 increase interfragmentary motion on the near cortex of locked plating constructs 409 by reducing the axial stiffness. Langenbeck's Arch Surg 2010; 395: 421-428. 411 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the 412 Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression 413 Plate (DCP) in an Osteoporotic Bone Model. J Orthop Trauma 2008; 22: 121- 414 125. 415 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate 416 Configurations for Femoral Shaft Fracture Fixation. BioMed Research 418 International 2019; 5958631. 419 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- 421 DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. Int sch 422 res notices 2013. 43 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on 422 the pattern of tissue differentiation in a long bone fracturean FEM study. J 423 Biomech 2000; 33: 415-425. 424 17. Gardner N, Stoll T, Marks L, et al. The influe
406 9 13. Dobele S, Horn C, Eichhorn S, et al. The dynamic locking screw (DLS) can 10 408 11 13. Dobele S, Horn C, Eichhorn S, et al. The dynamic locking screw (DLS) can 11 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the 12 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the 13. Dobele S, Horn C, Eichhorn S, et al. The dynamic locking screw (DLS) can 14 11. Snow M, Thompson G and Turner P. A Mechanical Comparison of the 14 Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression 14 12. Snow M, Thompson G and Turner P. A Mechanical Comparison of the 14 Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression 14 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- 17 DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. Int sch 18 res notices 2013. 19 Ho anter of tissue differentiation in a long bone fracturean FEM study. J 19 Biomech 2000; 33: 415-425. 19 Nehboob A and Chang S. Effect of composite bone plates on c
 407 13. Dobele S, Horn C, Eichhorn S, et al. The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. <i>Langenbeck's Arch Surg</i> 2010; 395: 421-428. 410 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression Plate (DCP) in an Osteoporotic Bone Model. <i>J Orthop Trauma</i> 2008; 22: 121- 125. 415 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research International</i> 2019; 5958631. 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch res notices</i> 2013. 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J Biomech</i> 2000; 33: 415-425. 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time- varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 19. Mehboob A and Chang S. Effect of composite bone plates on callus generation and healing of fractured tibia with different screw configurations. <i>Compos Sci Technol</i> 2018; 167: 96-105. 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in a confid acrew implement an 2D fiele for thread design on stress distribution in a confid acrem implement and path and benerat analysis of a 1 a public do and Long D. The effect of thread design on stress distribution in a complexent and healing of fractured tibia with different screw configurations.
 increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. <i>Langenbeck's Arch Surg</i> 2010; 395: 421-428. 11 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression Plate (DCP) in an Osteoporotic Bone Model. <i>J Orthop Trauma</i> 2008; 22: 121- 125. 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research International</i> 2019; 5958631. 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch res notices</i> 2013. 17. Gardner N, Stoll T, Marks L, et al, The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J Biomech</i> 2000; 33: 415-425. 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time- varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 19. Mehboob A and Chang S. Effect of composite bone plates on callus generation and healing of fractured tibia with different screw configurations. <i>Compos Sci Technol</i> 2018; 167: 96-105. 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in a confid acrow implante a 20 Fielie alement analysis of a stress distribution in
11409by reducing the axial stiffness. Langenbeck's Arch Surg 2010; 395: 421-428.124101411114. Snow M, Thompson G and Turner P. A Mechanical Comparison of the12Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression13Plate (DCP) in an Osteoporotic Bone Model. J Orthop Trauma 2008; 22: 121-14125.15Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate1615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate1716. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight-18International 2019; 5958631.1916. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight-11DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. Int sch12res notices 2013.1342417. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on14the pattern of tissue differentiation in a long bone fracturean FEM study. J13Biomech 2000; 33: 415-425.14191419. Mehboob A and Chang S. Effect of composite bone plates on callus13generation and healing of fractured tibia with different screw configurations.1419. Mehboob A and Chang S. Effect of thread design on stress distribution in19Nehboob A and Chang S. Effect of thread design on stress distribution in19Nehboob A and Chang S. Effect of thread design on stress distribution in19Nehboob A and Chang N. The effect of thread design on st
 410 411 14. Snow M, Thompson G and Turner P. A Mechanical Comparison of the Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression Plate (DCP) in an Osteoporotic Bone Model. <i>J Orthop Trauma</i> 2008; 22: 121- 125. 416 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research</i> <i>International</i> 2019; 5958631. 418 420 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> <i>res notices</i> 2013. 423 424 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J</i> <i>Biomech</i> 2000; 33: 415-425. 426 427 428 428 429 429 430 431 431 432 431 432 433 434 434 434 435 436 436 436 436 436 437 438 438 439 431 431 431 431 432 433 434 434 434 435 435 436 436 437 437 438 438 438 439 439 430 431 431 431 431 432 433 434 434 435 435 436 436 437 438 438 438 439 439 430 431 431 431 431 432 433 434 434 435 435 436 436 437 438 438 438 439 439 430 430 431 431 4
1414. Snow M, Thompson G and Turner P. A Mechanical Comparison of the15Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression16113Plate (DCP) in an Osteoporotic Bone Model. J Orthop Trauma 2008; 22: 121-17141125.1815. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate191615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate1016. Mariolani S for Femoral Shaft Fracture Fixation. BioMed Research18International 2019; 5958631.1916. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight-10DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. Int sch19res notices 2013.1017. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on1118. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia17applied by composite bone plates considering contact conditions and time-18Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia19applied by composite bone plates considering contact conditions and time-10varying properties of curing tissues. Compos Struct 2010; 92: 2109-2118.1119. Mehboob A and Chang S. Effect of composite bone plates on callus13generation and healing of fractured tibia with different screw configurations.1414210. Eraslan O and Inan Ö. The effect of thread design on stress distribution in1414220. Eraslan O and Inan Ö. The effect of thread design on stress dist
15412Locking Compression Plate (LCP) and the Low Contact-Dynamic Compression16413Plate (DCP) in an Osteoporotic Bone Model. J Orthop Trauma 2008; 22: 121-17141125.1841615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate1941615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate2041615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate21417Configurations for Femoral Shaft Fracture Fixation. BioMed Research22418International 2019; 5958631.2441916. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight-2542016. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight-26272878272817. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on28422782942317. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on2042417. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on2942542630426Biomech 2000; 33: 415-425.3142718. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia3742818. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia3742919. Mehboob A and Chang S. Effect of composite bone plates on callus3843043143119. Mehboo
16413Plate (DCP) in an Osteoporotic Bone Model. J Orthop Trauma 2008; 22: 121-17141125.1841615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate171615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate1817Configurations for Femoral Shaft Fracture Fixation. BioMed Research18International 2019; 5958631.1916. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight-10DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. Int sch10res notices 2013.1117. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on12the pattern of tissue differentiation in a long bone fracturean FEM study. J13Biomech 2000; 33: 415-425.1418. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia17applied by composite bone plates considering contact conditions and time-18Varying properties of curing tissues. Compos Struct 2010; 92: 2109-2118.19Mehboob A and Chang S. Effect of composite bone plates on callus19Mehboob A and Chang S. Effect of composite bone plates on callus1920Eraslan O and Inan Ö. The effect of thread design on stress distribution in1920Eraslan O and Inan Ö. The effect of thread design on stress distribution in1920Eraslan O and Inan Ö. The effect of thread design on stress distribution in1920Eraslan O and Inan Ö. The effect of thread design on stress distribution in
11414125.1241615. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate131415. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate1417. Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research</i> 18 <i>International</i> 2019; 5958631.1916. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight-10DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> 12 <i>res notices</i> 2013.134241417. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on14the pattern of tissue differentiation in a long bone fracturean FEM study. J13 <i>Biomech</i> 2000; 33: 415-425.1418. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia19Mehboob A and Chang S. Effect of composite bone plates on callus19Mehboob A and Chang S. Effect of composite bone plates on callus1119. Mehboob A and Chang S. Effect of thread design on stress distributions.13 <i>Compos Sci Technol</i> 2018; 167: 96-105.1410. Eraslan O and Inan Ö. The effect of thread design on stress distribution in1419. Certal and and Inan Ö. The effect of thread design on stress distribution in1516171617171918191910191019101910191019101910<
 415 416 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research</i> <i>International</i> 2019; 5958631. 419 420 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> <i>res notices</i> 2013. 423 424 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J</i> <i>Biomech</i> 2000; 33: 415-425. 425 426 427 428 428 429 429 420 420 420 421 421 422 423 423 424 425 425 426 427 428 429 429 420 420 420 420 420 421 421 422 422 423 423 424 431 432 434 434 434 435 436 436 436 436 437 438 438 439 439 430 430 431 431 431 432 434 435 435 436 436 436 437 438 438 439 439 430 430 431 431 431 431 432 433 434 434 434 435 436 436 436 437 438 438 438 439 439 430 430 431 431 431 432 431 432 433 434 434 434 435 436 436 436 437 438 438 <
 15. Beaino E, Morris R, Lindsey R, et al. Biomechanical Evaluation of Dual Plate Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research</i> <i>International</i> 2019; 5958631. 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> <i>res notices</i> 2013. 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J</i> <i>Biomech</i> 2000; 33: 415-425. 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time- varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 19. Mehboob A and Chang S. Effect of composite bone plates on callus generation and healing of fractured tibia with different screw configurations. <i>Compos Sci Technol</i> 2018; 167: 96-105. 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in and in a context of thread design on stress distribution in and in a context of thread design on stress distribution in and in a Composite on the alphanet analysis of 200 for the strest of thread design on stress distribution in
 417 Configurations for Femoral Shaft Fracture Fixation. <i>BioMed Research</i> 418 <i>International</i> 2019; 5958631. 419 420 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- 421 DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> 422 <i>res notices</i> 2013. 423 424 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on 425 the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J</i> 426 <i>Biomech</i> 2000; 33: 415-425. 427 428 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia 429 applied by composite bone plates considering contact conditions and time- 431 varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 431 432 19. Mehboob A and Chang S. Effect of composite bone plates on callus 433 generation and healing of fractured tibia with different screw configurations. 434 <i>Compos Sci Technol</i> 2018; 167: 96-105. 435 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in 436 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in
 417 Commandations for Femoral ontait Fracture Fr
 418 International 2019, 5930031. 419 419 420 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. Int sch res notices 2013. 423 424 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean FEM study. J Biomech 2000; 33: 415-425. 426 428 428 428 429 429 420 420 420 420 420 421 422 422 423 424 425 426 427 428 428 429 429 420 420 420 429 420 420 420 420 420 421 422 422 432 433 434 434 435 436 436 436 436 437 438 438 439 439 430 430 431 431 431 432 433 434 435 435 436 436 437 438 438 439 439 430 430 431 431 431 432 433 434 435 435 436 436 437 438 438 439 439 439 430 430 431 431 431 432 433 434 435 435 435 436 436 437 438 438 439 439 439 430 430 430 431 431 431 432 433 434 435 435 435 436 436 437 437 438 <l< td=""></l<>
 419 420 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- 421 DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> 422 423 424 425 425 426 427 426 427 427 428 428 428 429 429 4200; 33: 415-425. 427 428 429 4200; 33: 415-425. 421 420 428 429 4200; 33: 415-425. 420 428 429 4200; 33: 415-425. 427 428 429 420 420 420 420 421 420 421 421 421 422 431 431 432 433 434 434 435 435 436 436 436 436 436 437 436 436 436 437 437 438 438 439 439 430 430 431 431 431 431 431 432 433 434 435 436 436 436 436 437 436 438 436 436 437 437 438 438 439 439 430 430 430 431 431 431 431 431 432 433 434 434 435 435 436 436 437 437 438 438 439 439 430 430 430 431 431
 420 16. Mariolani L and Belangero W. Comparing the In Vitro Stiffness of Straight- 421 DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> 422 <i>res notices</i> 2013. 423 424 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on 425 the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J</i> 426 <i>Biomech</i> 2000; 33: 415-425. 427 428 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia 429 applied by composite bone plates considering contact conditions and time- 430 varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 431 432 19. Mehboob A and Chang S. Effect of composite bone plates on callus 433 generation and healing of fractured tibia with different screw configurations. 434 <i>Compos Sci Technol</i> 2018; 167: 96-105. 435 436 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in 437 a colid corrowimplanti a 2D finite element analysis O's O's O's O's O's O's O's O's O's O'
 DCP, Wave-DCP, and LCP Bone Plates for Femoral Osteosynthesis. <i>Int sch</i> <i>res notices</i> 2013. 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean FEM study. <i>J</i> <i>Biomech</i> 2000; 33: 415-425. 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time- varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 19. Mehboob A and Chang S. Effect of composite bone plates on callus generation and healing of fractured tibia with different screw configurations. <i>Compos Sci Technol</i> 2018; 167: 96-105. 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in applied argum implant a 2D finite element analysis Of a first light of the stress distribution in
 422 res notices 2013. 423 424 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on 425 the pattern of tissue differentiation in a long bone fracturean FEM study. J 426 Biomech 2000; 33: 415-425. 427 428 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia 429 applied by composite bone plates considering contact conditions and time- 430 varying properties of curing tissues. Compos Struct 2010; 92: 2109-2118. 431 432 19. Mehboob A and Chang S. Effect of composite bone plates on callus 433 generation and healing of fractured tibia with different screw configurations. 434 Compos Sci Technol 2018; 167: 96-105. 435 436 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in 437 applied by composite a 2D finite element analysis O and line of the plates of
 423 424 424 424 425 426 426 427 427 428 428 428 428 428 428 429 429 429 429 429 429 429 420 420 420 420 420 421 421 422 422 423 424 431 432 431 432 431 432 433 434 434 435 435 436 436 436 437 437 438 438 439 439 430 431 431 431 432 434 435 435 435 436 436 437 437 438 438 439 439 430 431 431 431 431 432 433 434 434 435 435 436 436 436 437 438 439 439 439 430 431 431 431 431 431 432 433 434 435 435 435 436 436 437 437 438 439 439 430 431 431 431 431 431 432 433 434 435 435 435 435 436 436 437 437 438 439 439 439 430 431 431 431 431 431 431 432 433 434 435 435 435 435 436 436 437 437 438 439 439 439 440 441 441 441 442 441
 424 17. Gardner N, Stoll T, Marks L, et al. The influence of mechanical stimulus on 425 the pattern of tissue differentiation in a long bone fracturean FEM study. J 426 Biomech 2000; 33: 415-425. 427 428 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia 429 applied by composite bone plates considering contact conditions and time- 430 varying properties of curing tissues. Compos Struct 2010; 92: 2109-2118. 431 432 19. Mehboob A and Chang S. Effect of composite bone plates on callus 433 generation and healing of fractured tibia with different screw configurations. 434 Compos Sci Technol 2018; 167: 96-105. 435 436 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in 436 areaw implant a 2D finite element analysis O'an law effect of thread design on stress distribution in
 the pattern of tissue differentiation in a long bone fracturean FEM study. J <i>Biomech</i> 2000; 33: 415-425. 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time- varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 19. Mehboob A and Chang S. Effect of composite bone plates on callus generation and healing of fractured tibia with different screw configurations. <i>Compos Sci Technol</i> 2018; 167: 96-105. 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in a calid corrow implant a 2D figite element analysis O(in Oral lowertin 2010) 41.
 Biomech 2000; 33: 415-425. 427 428 428 428 428 429 429 429 429 420 429 420 430 430 431 431 431 432 431 433 434 435 435 436 436 436 436 437 437 438 438 439 439 439 430 431 431 431 431 431 432 433 434 434 435 435 436 436 436 436 436 437 437 438 438 439 439 430 431 431 434 435 435 435 436 436 436 437 437 438 439 439 439 430 431 434 435 435 435 436 436 436 437 437 438 439 439 439 430 430 431 431 431 431 432 433 434 434 435 435 435 436 436 437 437 438 438 439 439 439 430 431 431 431 431 431 431 431 431 431 432 433 434 435 435 435 435 436 436 437 437 438 438 439 439 439 430 431 431 431 431 431 432 431 434 435 435 435 435 435 436 436 437 438 <li< td=""></li<>
 427 428 428 428 428 428 429 430 430 430 431 431 431 431 431 432 431 432 433 434 434 435 435 436 436 437 437 438 439 439 439 430 431 431 431 432 431 433 434 434 434 435 435 436 436 436 437 437 438 439 439 430 430 431 431 434 435 435 436 436 436 437 437 438 439 439 439 430 431 434 435 435 435 436 436 437 437 438 439 439 439 430 430 431 432 433 434 434 435 435 436 436 437 437 438 439 439 439 430 431 432 433 434 434 435 435 435 435 435 436 436 437 438
 18. Kim H, Chang S and Jung H. The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 19. Mehboob A and Chang S. Effect of composite bone plates on callus generation and healing of fractured tibia with different screw configurations. <i>Compos Sci Technol</i> 2018; 167: 96-105. 20. Eraslan O and İnan Ö. The effect of thread design on stress distribution in a colid eareur implant is 2D finite element analysis of a fractureatin 2010; 41.
 applied by composite bone plates considering contact conditions and time- applied by composite bone plates considering contact conditions and time- varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 431 432 433 434 434 435 436 436 436 437 437 438 438 439 439 439 430 430 431 431 431 432 433 434 434 435 435 435 436 436 437 437 438 439 439 439 430 430 430 431 431 431 431 432 433 434 434 435 435 435 436 436 437 437 438 439 439 430 430 431 431 431 431 432 433 434 435 435 435 436 436 437 437 438 439 439 439 430 430 431 431 431 431 431 431 432 431 434 435 435 435 436 436 437 437 438 439 439 439 430 430 431 431 431 431 431 431 431 432 433 434 435 435 435 436 437 437 438 439 439 439 430 430 431 431 431 431 431 431 431 432 431 433 434 435 435 435 441
 429 applied by composite bone plates considering contact conditions and time-varying properties of curing tissues. <i>Compos Struct</i> 2010; 92: 2109-2118. 431 432 433 434 434 435 435 436 436 20. Eraslan O and İnan Ö. The effect of thread design on stress distribution in 437 437
 430 Varying properties of caring tissues. Compositive 2010, 92. 2109-2110. 431 431 432 19. Mehboob A and Chang S. Effect of composite bone plates on callus 433 generation and healing of fractured tibia with different screw configurations. 434 435 435 435 436 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in 437 a calid acrow implants a 2D finite element analysis. Of a Cont Investige 2010;144.
 431 431 432 432 433 433 433 434 434 434 435 435 436 436 437 437 431 431 434 435 435 435 436 436 437 437 438 439 439 430 430 431 431 431 431 432 433 434 434 435 435 435 435 436 436 437 437 438 439 439 439 430 430 431 431 431 432 431 432 433 434 435 435 435 435 435 436 436 437 437 438 439 439 439 430 430 430 431 431 431 432 431 432 433 434 435 435 435 435 436 437 437 437 438 438 439 439 439 430 430 430 431 431 431 432 431 432 432 432 433 434 435 435 435 435 436 436 437 437 437 438 438 439 439 439 430 431 431 431 432 431 432 432 431 431 431 432 431 431 432 432 431 432 432 431 432 432 431 431 432 431 432 431 432 432 432 433
 41 432 19. Menboob A and Chang S. Effect of composite bone plates on callus 42 433 generation and healing of fractured tibia with different screw configurations. 43 434 Compos Sci Technol 2018; 167: 96-105. 45 435 46 436 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in 47 437 a colid acrow implants a 2D finite element archivity. Order Investige 2010;144.
 433 generation and healing of fractured tibla with different screw configurations. 434 434 Compos Sci Technol 2018; 167: 96-105. 435 436 436 20. Eraslan O and İnan Ö. The effect of thread design on stress distribution in 47 437 a colid acrow implants a 2D finite clement archivity. Order Investign 2010;144.
 434 Compos Sci Technol 2018; 167: 96-105. 435 435 46 436 436 20. Eraslan O and İnan Ö. The effect of thread design on stress distribution in 47 437 a solid acrow implanti a 2D finite alement archivity Order to solid acrow implantia.
 435 436 436 436 436 437 437 438 439 439 430 430 431 431 432 431 432 433 434 434 435 435 436 437 437 438 438 439 439 430 430 431 431 432 432 434 435 435 436 436 437 437 437 438 438 438 438 438 439 430 431 432 435 435 436 436 436 437 437 438 /ul>
⁴⁶ 436 20. Eraslan O and Inan Ö. The effect of thread design on stress distribution in ⁴⁷ a calid acrow implants a 2D finite element and tails. <i>Olive Oral Investig</i> 2010;11:
4/ ADZ a polid paraw implants a 2D finite alament analysis. Olis Over Investive 004044
43 437 a solid screw implant: a 3D finite element analysis. Clin Oral Investig 2010;14:
49 438 411-416.
50 439
⁵¹ 440 21. Kim J. Nam J and Jang I. Computational study of estimating 3D trabecular
52 441 bone microstructure for the volume of interest from CT scan data <i>Int i numer</i>
54 <i>AA2</i> method biomed and 2018: 34: e2950
55 442 method blomed eng 2010, 34. 02000.
56 144 22 Loo H. Shih K. Hou C. et al. Simulation based particle owers estimication
$_{57}$ 444 22. Let Π , \Im Π Λ , Π \Im U , et al. \Im Π Π Π Ω as a particle swarm optimisation
58 445 and mechanical validation of screw position and number for the fixation stability
446 of a remoral locking compression plate. <i>Med Eng Phys</i> 2014;36: 57-64.

•		
2		
4	447	
5	448	23. Knor F, Cronin D, Watson B, et al. Importance of asymmetry and anisotropy
6	449	in predicting cortical bone response and fracture using human body model
/ 8	450	femur in three-point bending and axial rotation. J Mech Behav Biomed Mater
9	451	2018; 87: 213-229.
10	452	
11	453	24. Duda N, Schneider E and Chao E. Internal forces and moments in the
12	454	femur during walking <i>J Biomech</i> 1997:30: 933-941
13	455	
14 15	456	25 Kim H I S H Kim and S H Chang Finite element analysis using
16	400	25. Kill, H. J., S. H. Kill, and S. H. Charly. Fille element analysis using
17	457	interragmentary strain theory for the fracture healing process to which
18	458	composite bone plates are applied. <i>Compos Struct</i> 2011; 93: 2953-2962.
19	459	
20	460	26. Cep, R., A. Janasek, J. Petru, L. Cepova, and J. Valicek. Hard Machinable
21	461	Machining of Cobalt-based Superalloy. Manuf Technol 2013; 13: 142-147,.
23	462	
24	463	27. Shams, S. F., A. Mehdizadeh, M. M. Movahedi, S. Pavdar, and S. A.
25	464	Hadhpanah The comparison of stress and strain between custom-designed
26	465	hope plates (CDBP) and locking compression plate (LCP) for distal femure
27	405	frosture Fur LOrthan Surg Troumatel 2022
20 29	400	nacture. Eur J Onnop Surg Traumator. 2022.
30	467	
31	468	28. Liu, C., R. Carrera, V. Flamini, et al. Effects of mechanical loading on
32	469	cortical defect repair using a novel mechanobiological model of bone healing.
33	470	Bone 2017; 145-155.
34 35	471	
36	472	29. Perren, S. Physical and biological aspects of fracture healing with special
37	473	reference to internal fixation Clin Orthon Relat Res 1979 175-196
38	474	
39	475	20 East A Kubick N Eulkorson E at al Riemochanics of locked plates and
40	475	So. Lyor A, Rublak IN, Fulkerson L, et al. Diomechanics of locked plates and
41	476	sciews. J Onnop Trauma 2004, 18(8). 488-493.
43	477	
44	478	31. Mehboob, H., and S. H. Chang. Optimal design of a functionally graded
45	479	biodegradable composite bone plate by using the Taguchi method and finite
46	480	element analysis. Compos Struct 2015; 119: 166-173.
4/	481	
40 49	482	32. Akoglu, H. User's guide to correlation coefficients. Turk J Emerg Med
50	483	2018:18: 91-93
51	191	2010,10.01.00.
52	404	22 Cay P. M. Cluda, C. Haagaad, at al. Diamaghanigal comparison of a
53	460	33. Gay B., M. Giyue, G. Hosgoou, et al. Biomechanical comparison of a
54 55	486	notched head locking I-Plate and a straight locking compression plate in a
56	487	Juxta-Articular fracture model. Vet Comp Orthop Traumatol 2021; 34: 161-170.
57	488	
58	489	34. Ahmad M, Nanda R, Bajwa A, et al. Biomechanical testing of the locking
59	490	compression plate: when does the distance between bone and implant
00		

2		
3 4	491	significantly reduce construct stability? Injury. 2007; 38: 358-364.
5	492	
6	493	35. Rowe M, Markel M and Bleedorn J. Mechanical evaluation of locking,
/	494	nonlocking, and hybrid plating constructs using a locking compression plate in
o 9	495	a canine synthetic bone model. Vet Surg 2015; 44: 838-842.
10	496	
11	497	36. Schmidt U and Penzkofer R. Implant Material and Design Alter Construct
12	498	Stiffness in Distal Femur Locking Plate Fixation: A Pilot Study. Clin Orthop Relat
13 14	499	Res 2013: 471: 2808-2814.
15	500	
16	501	37 Libi I M B Sequin A S Kanatkin K S Schulz T C Garcia and S M
17	501	Stover, Mechanical comparison of 3.5 mm broad dynamic compression plate
18	502	broad limited contrast dynamic compression plate, and parrow looking
19 20	503	broad infited-contact dynamic compression plate, and harrow locking
21	504	compression plate systems using interfragmentary gap models. Vet Surg 2008;
22	505	37: 663-673.
23	506	
24 25	507	38. Nasr, S., S. Hunt, and N. A. Duncan. Effect of screw position on bone tissue
25 26	508	differentiation within a fixed femoral fracture. <i>J Biomed Sci Eng</i> 2013;6: 71.
27	509	
28	510	39. Chao, P., B. P. Conrad, D. D. Lewis, M. Horodyski, and A. Pozzi. Effect of
29	511	plate working length on plate stiffness and cyclic fatigue life in a cadaveric
30 21	512	femoral fracture gap model stabilized with a 12-hole 2.4 mm locking
32	513	compression plate BMC Vet Res 2013 9:1-7
33	514	
34	515	40 Stoffel K II Dieter G Stachowiak A Gächter and M S Kuster
35	516	Biomechanical testing of the LCPhow can stability in locked internal fixators
30 37	510	be controlled? Injury 2002: 24: P11 10
38	517	be controlled? Injury 2003, 34. BT1-19.
39	518	14 Oneith D. Zinen D. Anglen, I. et al. Lealing, platest ting, and trialing. (Dans
40	519	41. Smith R, Ziran B, Anglen J, et al. Locking plates: tips and tricks. J Bone
41	520	Joint Surg. 2007;89: 2298-2307.
42	521	
44	522	42. Mavčič, B., and V. Antolič. Optimal mechanical environment of the healing
45	523	bone fracture/osteotomy. Int Orthop 2012;36: 689-695.
46	524	
47 48	525	43. Field R, Törnkvist H, Hearn T, et al. The influence of screw omission on
49	526	construction stiffness and bone surface strain in the application of bone plates
50	527	to cadaveric bone. <i>Iniury</i> 1999:30: 591-598.
51	528	
52	529	44 Wagner M General principles for the clinical use of the LCP <i>Injury</i> 2003
53 54	520	$31 \cdot 31 - 12$
55	521	די יס דע.
56	551	45 Sommer C. F. Coutier M. Müller D. I. Helfet and M. Manner First
57	532	45. Sommer, C., E. Gautier, W. Muller, D. L. Helfet, and M. Wagner. First
58 50	533	clinical results of the Locking Compression Plate (LCP). Injury 2003; 34: 43-54.
60	534	

1		
2		
4	535	46. Sanders, R., G. J. Haidukewych, T. Milne, J. Dennis, and L. L. Latta.
5	536	Minimal versus maximal plate fixation techniques of the ulna: the biomechanical
6	537	effect of number of screws and plate length. J Orthop Trauma 2002; 16: 166-
7	538	171.
8	539	
9 10	540	47. Niemever, P. and Sudkamp, N.P., 2006. Principles and clinical application
11	541	of the locking compression plate (LCP) Acta Chir Orthop Traumatol Cech 2006
12	542	73(4) 221_228
13	542	10(4), 221 220.
14 15	545	49 Nouriss I. A. Basari I. Sudak and C. Baubi. The Effects of Basa Saraw
16	544	40. Nourisa, J., A. Baseri, L. Suuak, and G. Rouri. The Effects of Bone Sciew
17	545	Configurations on the internagmentary Movement in a Long Bone Fixed by a
18	546	Limited Contact Locking Compression Plate. J Blomed Eng 2005; 08: 590-600.
19 20	547	
20 21	548	
22	540	
23		
24		
25 26		
20 27		
28		
29		
30 21		
32		
33		
34		
35		
30 37		
38		
39		
40 41		
41 42		
43		
44		
45 46		
40 47		
48		
49		
50 51		
51 52		
53		
54		
55 56		
סכ 57		
58		
59		
60		

Figure 1. A schematic diagram of a typical 32-A3 internal fixation for a fracture.
(a) A combi-hole LCP model with a fracture gap of 2.1 mm; (b) A transverse
section of the bone and LCP; (c) Details of the interfaces between the LCP,
screw, and bone with tie constraints. The LCP combi-hole has the smallest
tetrahedron element size of 0.15 mm.

Figure 2. An illustration diagram of callus growth in the time-dependent model. 556 (a) The "central callus" was modelled in the fracture gap; (b) The iterative 557 calculation of callus properties is shown in the flowchart. The definitions of 558 interfragmentary strain (ϵ) and healing efficiency (δ) are displayed in the graph. 559 (a) Peripheral callus Bone segments Simplify Central callus Adjacent callus Revised model with Central callus (b) Time-dependent model Initial FEM model Deformation result Computing $l_o=2.1$ mm $\varepsilon = |(l_d - l_o)/l_o|$ l_d Input: Interfragmentary initial callus E: Updating callus 1 strain & calculation 0.19MPa property, Loading in initial loading: time period n 1.12BW Axial stiffness calculation Updating Callus modulus by Eq.1 Healing efficiency δ calculation $\delta = Ac/At$ Ac = shadow area where ε Output: Updating in 2-10% healing efficacy δ, time period At = total section area axial stiffness n=n+1 Fracture cross-section 560 561

Figure 3. Nine different screw configurations. The configurations are denoted as C15, C25, C35, and C45 for variations in working length; C15, C135, C1345, and C12345 for variations in screw number; and C125, C135, and C145 for variations in screw position. The screw holes are named from proximal to distal to the fracture gap by ID 1-5, and all configurations are symmetrically distributed around the fracture gap.

Configuration variation: Working length

Figure 4. Comparisons of axial stiffness between our study (red) and the other studies (blue-experimental measures; yellow-computational modelling). The axial stiffness predicted from our study was within the range of other studies.^{4 5} 7. ^{13, 22,33-40} The plate material and boundary conditions are given at the bottom and top, respectively. The labels "Clamp", "Pin" and "Free" represent fixed 6 degrees of freedom (DOF) jig, fixed 3 translational DOF jig and direct loading without constraint at the femur, respectively.

Figure 6. (a) Predicted axial stiffness and (b) healing efficiency using the timeindependent model. (c) The predicted axial stiffness using the timeindependent model is correlated with that from the time-dependent model. (d) there is a correlation between the predicted axial stiffness and the healing efficiency.

Figure 7. The contour of the fracture area for different configurations during four healing stages. The coloured areas indicate an interfragmentary strain (IFS) between 2-10%; the grey areas indicate an IFS greater than 10%; and the black areas indicate an IFS less than 2% (i.e., C15, C125, C135, C145 and C12345 in 4-8 weeks post-operation)

Figure 8. Statistical distributions of the axial stiffness (a) and healing efficiency (b) under the different working lengths (WL), screw numbers (SN) and screw position (SP), represented by box plots. The upper and lower edges of each box represent the 75th and 25th percentiles, respectively; the upper and lower bars extend to the largest and smallest values within 1.5 times the interquartile range (IQR); the horizontal line inside each box represents the median, and the square represents the mean. The differences in axial stiffness and healing efficiency were tested using the Friedman test with a significance level of 0.01, with significant differences indicated by ** (*p*-adjust < 0.01). Post-hoc comparisons were performed using a Wilcoxon signed-rank test with Bonferroni correction.

	Parts	Young's modulus		Poisson ratio		Yielding	
		(GPa)				stress (I	
	Cortical bone	Axial	transverse	-			
	Oshalt hasad	18.4 ²⁵	7.2	0.12	0.37	106.2	
		215.0 ²⁶		0.29	0.29		
	Titopium allov						
		113.8 ²⁷		0.33		839.9	
	LCP						
609							
610							

	1-4 week	4-8 week	8-12 week	12-16 wee
Standard callus modulus	0.19	28	30.6	75
Loading	<mark>1053.6 N</mark>		<mark>1881.6 N</mark>	<mark>2822.4 N</mark>
(N and BW)	(1.12×BW)	24	(2×BW) ³¹	(3×BW) ³¹

IFS area	1-4 v	veek		4-8 w	eek		8-12	week		12-16	week	
(%)	< 2	2-10	> 10	< 2	2-10	> 10	< 2	2-10	>10	< 2	2-10	>10
C15	0.0	61.9	38.1	1.2	93.2	5.6	0.0	54.8	45.2	0.0	57.9	42.1
C25	0.0	57.9	42.1	0.0	86.6	13.4	0.0	51.3	48.7	0.0	55.2	44.8
C35	0.0	57.3	42.7	0.0	83.6	16.4	0.0	50.6	49.4	0.0	54.5	45.5
C45	0.0	57.1	42.9	0.0	83.1	16.9	0.0	50.1	49.9	0.0	53.6	46.4
C125	0.0	63.9	36.1	2.8	95.2	2.0	0.0	55.3	44.7	0.0	58.8	41.2
C135	0.0	63.5	36.5	2.1	94.0	3.9	0.0	55.1	44.9	0.0	58.5	41.5
C145	0.0	63.1	36.9	1.8	93.3	4.9	0.0	54.7	45.3	0.0	58.2	41.9
C1345	0.0	63.6	36.4	2.2	94.3	3.5	0.0	54.9	45.1	0.0	60.1	39.9
C12345	0.0	64.3	35.7	4.2	92.5	3.3	0.0	54.9	45.1	0.0	61.9	38.1

Table 3. The percentage of interfragmentary strain (IFS) area

616 <2, 2-10 and >10 indicate the percentage of IFS area of less than 2%,

Zicz

617 between 2-10% and greater than 10%, respectively.

619 Appendix

620 Fig.A1 The stress pattern at fracture section for nine screw configuration in four

healing period.

The von Mise stress pattern at the fracture section is shown in Fig.A1. Among the nine different screw configurations, their stress pattern showed a similarity during the same healing stage. The high-stress location presented an excellent correspondence with the high IFS strain area in Fig.6. For the four healing stages, the stress values continuously increased with the increased femur loading. It is also observed the stress pattern experienced a significant change

2		
2 3 4	630	after the 4th week; the stress distribution becomes less uniform due to the
5 6 7	631	callus modulus update.
8 9	632	
10 11 12	633	
13 14	000	
15 16 17		
18 19		
20 21 22		
23 24		
25 26 27		
28 29		
30 31 32		
33 34 35		
36 37		
38 39 40		
41 42		
43 44 45		
46 47 48		
49 50		
51 52 53		
54 55		
50 57 58		
59 60		