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Abstract
Recent experiments have revealed the interesting cleaning effects that take place

due to the shape mode oscillation of bubbles over a rigid boundary. Whilst a microbub-
ble was undertaking shape oscillation moving over a bacterial biofilm, it removed the
contaminants from the boundary and created a clean path through the biofilm. This
demonstrated much higher cleaning efficiency than that associated with the volume
oscillation of cavitation bubbles, however the mechanism is unknown. Here we study
this phenomenon using the boundary integral method, with the viscous effects mod-
elled using the viscous potential flow theory and the compressible effects using the
weakly compressible theory. The viscous stress at the rigid boundary is approximated
using boundary layer theory. We observed that the natural frequencies of shape mode
oscillation decrease significantly due to the presence of the boundary. The shear stress
at the boundary due to the shape oscillation of a nearby bubble is at least twenty times
higher than that due to volume oscillation with the same energy, and is significant only
within the area directly beneath the bubble. This is explained by the notably faster
decay for higher shape modes of the kinetic energy in the fluid as the distance to the
centre of the bubble r increases, with the induced velocity of mode k decaying at a
rate of O(r−(k+2)) away from the bubble. These results achieve excellent agreement
with the intriguing cleaning effects first observed in the experiment, and explain the
mechanism behind this new highly efficient method of cleaning.

1 Introduction
Bubble dynamics has been a central research topic for many decades, providing essential
insight into cavitation damage to pumps, turbines, and propellers (Blake and Gibson [1987];
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Figure 1: Bubbles on the surface exhibit shape oscillations whilst disrupting the biofilm
(Vyas et al. [2020]: supplementary video e).

Lauterborn and Kurz [2010]). Microbubble dynamics subject to an acoustic wave are as-
sociated with applications to cavitation cleaning (Ohl et al. [2006]; Chahine et al. [2016];
Reuter et al. [2017]). In practice this has been used to remove bacterial biofilms from dental
implants, contaminants from microchips, and aide in the sterilisation of medical instruments
(Mason [2016]). This has been attributed to the pressure impulse, the micro-steaming as-
sociated with bubble oscillation, and high-speed jetting during bubble collapse (Ohl et al.
[2006]; Chahine et al. [2016]; Reuter et al. [2017]).

Recently, Vyas et al. [2020] observed an interesting phenomenon in experiments removing
dental biofilms from surfaces using cavitation bubbles generated by a scaler tip vibrating at
high frequency. As shown in figure 1, a microbubble in shape mode oscillation directly above
a biofilm migrated along the biofilm due to the first Bjerknes force. The shape oscillating
bubble removed the contaminating biofilm from the surface and created a clean path through
the biofilm, like a brush sweeping away dust. This new phenomenon demonstrated higher
cleaning efficiency than that associated with the volume oscillation of microbubbles (Vyas
et al. [2020]). This is therefore linked with important applications in ultrasonic cleaning;
however, the associated mechanisms are unknown.

There are two important issues to activate and control these applications. Firstly, we
need to find the natural frequency of shape modes for a bubble near a rigid boundary. This
is because, to activate shape oscillation of bubbles, the driving acoustic wave should be near
the natural frequency of shape modes. However, the natural frequency of shape modes has
mainly been studied for bubbles in an infinite field. Secondly, it is important to study the
cleaning mechanism of a bubble in shape mode oscillation over a boundary, specifically the
magnitude and distribution of the shear stress generated at the boundary due to the shape
oscillation of the bubble. This is because the mechanism for surface cleaning is the appli-
cation of shear stress onto contaminants, dislodging them from the surfaces being cleaned.
Theoretical studies were undertaken on shape oscillations of bubbles at small amplitudes
using perturbation methods via spherical harmonics, predicting the natural frequency of
shape modes and the stability threshold (Plesset [1954]; Prosperetti [1977]; Shaw [2009,
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2017]; Doinikov [2004]; Guédra et al. [2017], Guédra and Inserra [2018]). It has been noticed
that the natural frequency and amplitude of spherical oscillation of bubbles are affected by
the presence of a wall (Garbin et al. [2007]; Doinikov and Bouakaz [2010]; Roovers et al.
[2019]). Recently, Maksimov [2020] extended the theory for a bubble far away from a flat
rigid boundary using the method of images.

To study the above two problems, we describe a numerical model for a bubble in shape
mode oscillation near as well as in contact with a rigid boundary, based on the boundary
integral method (BIM). The viscous effects are approximated by the viscous potential flow
theory (Joseph and Wang [2004]; Wang et al. [2022]) and the compressible effects are mod-
elled using weakly compressible flow theory (Wang and Blake [2010, 2011]). Validation of the
model is carried out by comparison with theoretical results (Tsamopoulos and Brown [1983];
Maksimov [2020]). The viscous shear stress at the rigid boundary is then approximated using
boundary layer theory (Nyborg [1958]; Doinikov and Bouakaz [2010]). Parametric studies
are subsequently carried out for the natural frequency of various shape modes and the shear
stress generated at the boundary, in terms of the shape mode and the standoff distance of
the bubble from the wall.

2 Viscous compressible BIM model
Consider a bubble near a rigid boundary in a weakly compressible potential flow. Using the
weakly compressible theory (Wang and Blake [2010, 2011]), the velocity potential ϕ in the
inner region satisfies Laplace’s equation, ∇2ϕ = 0. It thus may be represented as a surface
integral over the bubble surface S as follows:

c(r, t)ϕ(r, t) =

∫
S

(
∂ϕ(q)

∂n
G(r, q)− ϕ(q)

∂G(r, q)

∂n

)
dS(q), (2.1)

where r is the field point, t is time, q the source point, c(r, t) the solid angle, and n̂ the
unit outward normal at the bubble surface S directed from liquid to gas. To satisfy the
impermeable boundary condition on the wall, the Green’s function is given as G(r, t) =
|r − q|−1 + |r − q′|−1, where q′ is the image of q reflected in the wall.

The boundary condition of the potential in the inner region at the far field is (Wang and
Manmi [2014], Wang [2016])

ϕ(r, t) =
1

2πc
V̈ (t) as |r| −→ ∞, (2.2)

where c is the speed of sound in the liquid, V (t) is the bubble volume at time t, and the over
dots denote the derivative in time t.

In the viscous potential flow theory, the dynamic boundary condition at the bubble
surface is given as follows:

pL + pvc + σκ− 2µ
∂2ϕ

∂n2
= pB, (2.3)

where µ is viscosity of the liquid, pL the liquid pressure at the bubble surface, pvc the viscous
pressure correction to be described later, σ surface tension, and κ the local mean curvature
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of the bubble surface. The last term on the left-hand side is the normal stress due to viscous
effects. We assume the internal pressure pB of the bubble gas follows the adiabatic law

pB = pv + pg0

(
V0

V

)λ

, (2.4)

where pv is the vapour pressure, V0 is the initial volume of the bubble, λ is the ratio of
specific heats, and pg0 is the initial pressure of the non-condensable bubble gas. We do not
consider the thermal effects associated with this phenomenon (Szeri et al. [2003]; Fuster and
Montel [2015]). The effects of viscoelasticity were included in the potential flow theory of
microbubbles by Lind and Phillips [2010, 2012, 2013].

The viscous pressure correction pvc is given as follows:

pvc = −uτ · τL
s

un

on S, (2.5)

where the normal velocity un, tangential velocity uτ and shear stress τL
s are due to the po-

tential flow. This equation is obtained from the conservation of energy at the bubble surface
(Wang et al. [2022]). Classical potential flow theory does not satisfy the conservation of
energy at a free surface, rather satisfying the normal stress balance equation. The conserva-
tion of energy can be satisfied by adding the pressure correction (2.5) into the normal stress
balance equation.

Using the Bernoulli equation, the dynamic boundary condition (2.3) at the bubble surface
can be written as

ρ
Dϕ

Dt
= p∞ − pB +

1

2
ρ|∇ϕ|2 + σκ− 1

2πc
ρV̈ + 2µ

∂2ϕ

∂n
+ pvc on S. (2.6)

This equation is the same as classical incompressible potential flow theory, except for the
last three terms on the right-hand side. The term ρV̈ reflects the compressible effects of the
liquid, and the last two terms represent the weakly viscous effects.

2.1 Modelling a bubble connected to a rigid boundary

When a part of a bubble surface is nearly in contact with the rigid boundary, it tends to
remain being nearly in contact with the boundary (Wang et al. [2015]). This results in nu-
merical instabilities in the simulations using the BIM. To avoid these numerical instabilities,
we remove the thin layer of liquid between the bubble surface and the boundary, join the
bubble surface with its image to the boundary and simulate “the combined bubble” (Ni et al.
[2015]; Wang et al. [2015]). In the simulations performed in this paper, the join takes place
when the minimum distance δmin between bubble surface and the boundary is in the range
of 0.01 to 0.04.

As the bubble surface is in contact with the rigid boundary, the contact angle of the
liquid-gas interface with the rigid boundary depends on the properties of the liquid, gas and
the hydrophilic property of the boundary and may change with the dynamics (Shikhmurzaev
[2007]). For simplicity, we assume that the contact line between them is fixed. With the
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Figure 2: A schematic of a bubble with surface S connected to its image with surface S ′ on
a rigid boundary. The contact angle between the bubble wall and the rigid boundary is θc.

smoothed cubic spline used for the interpolation of the bubble surface (Wang et al. [2019]),
the solid angle c(r, t) takes the value 2π at the bubble surface except for at the contact line.
The solid angle at the point on the contact line is given by

c(r, t) =

∫∫
Sε

dS

ε2
, (2.7)

where Sε is the part of a spherical surface with radius ε centred at the contact point, cut by
the tangent plane of the bubble surface and the tangent plane of the imaged bubble surface
at the contact point. Now,

c(r, t) = 2

∫ π

0

dθ

∫ θc

0

ε2 sinϕ

ε2
dϕ = 2π(1− cos θc), (2.8)

where θc is the angle between the bubble surface and rigid wall at the contact line. This
configuration is shown in figure 2.

2.2 Calculating shear stress at the rigid boundary

Nyborg [1958] obtained an approximate solution for the local viscous flow near a rigid bound-
ary due to steady oscillating irrotational flow near a fluid-solid interface using boundary layer
theory. The viscous shear stress at the rigid boundary is then approximated using boundary
layer theory (Nyborg [1958]; Doinikov and Bouakaz [2010]) by

τzr2 =

√
ρµ

ω

(
ur2

∂ur2

∂r2

)
z=0

=

√
ρµ

ω

(
∂ϕ

∂r2

∂2ϕ

∂r22

)
z=0

. (2.9)
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Here we assume that the z-axis is along the axis of symmetry and the origin is at the rigid
boundary; r2 is the r-coordinate in cylindrical coordinates.

To compare the shear stress for various modes of oscillation, we need to ensure that the
bubble system has equal initial energy for each mode. The potential energy of the system is
equivalent if the initial radius and bubble gas pressure are kept constant in each case. Thus
it remains that the initial kinetic energy of the bubble system must be kept the same.

The kinetic energy of a bubble in a potential flow reads (Wang [2016]):

Ek(t) =
ρ

2

∮
S

ϕϕn dS. (2.10)

Initially the bubble is spherical, meaning

Ek(0) = −ρ

2

∮
S

ϕϕr dS. (2.11)

Assuming the bubble is initially oscillating in shape mode k with amplitude ak, the initial
potential and its derivative with respect to r are given as

ϕk(r, 0) =
ak
rk+1

Pk(cos θ),
∂ϕk(r, 0)

∂r
= −(k + 1)

ak
rk+2

Pk(cos θ). (2.12)

Substituting equation 2.12 into 2.11 yields

Ek(0) =
ρ

2
(k + 1)

a2k
R2k+1

0

∫ 2π

0

P 2
k (cos θ) dθ

∫ π

0

sinϕ dϕ = (k + 1)ρ

∫ 2π

0

P 2
k (cos θ)dθ, (2.13)

where Pn is the Legendre polynomial of order n and R0 is the initial radius of the bubble. In
eqs. (2.11-2.13), (r, ϕ, θ) are the spherical coordinates with the origin at the bubble centre.
With suitable choice of the amplitude ak, the initial kinetic energy of the bubble system
can be set at the same value for different modes k. The shape modes k = 0, 1 are for the
spherical oscillation, translation of a bubble, and k ≥ 2 is for non-spherical oscillation.

3 Numerical results and discussion

3.1 Validation of BIM model

The ability of the present BIM model to accurately model nonlinear oscillations is demon-
strated in figure 3 in a comparison with the analytic results of Tsamopoulos and Brown
[1983]. A bubble, initially at equilibrium, with a radius of 0.06 cm is surrounded by an
infinite fluid, in this case taken to be water. The density of the surrounding fluid is ρ = 998
kg m−3, the viscosity is µ = 10−3 Pa·s, the surface tension coefficient is σ = 0.073 N m−1,
and the polytropic constant is taken to be λ = 1.4. The ambient pressure is taken as p∞ =
101300 Pa, and the vapour pressure inside the bubble is pv = 2980 Pa. Here, the natural
frequency of mode two oscillation is plotted against an increasing amplitude of oscillation
measured by the axis ratio at maximum prolate shape (L/W ). As the ratio increases, i.e. the

6



size of the initial disturbance at the surface of the bubble increases, the natural frequency of
oscillation decreases at a nonlinear rate. The numerical results of the BIM agree very well
up to an axis ratio of L/W = 1.5, before starting to diverge from the analytic results. This
can be explained by the limitations of the asymptotic model, which is only accurate up to a
certain order.
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Asymptotic results

Figure 3: Comparison between change in n = 2 oscillation frequency with increasing ampli-
tude of oscillation for the numerical results of the BIM (dashed line), and the analytic results
of Tsamopoulos and Brown [1983] (solid line). A bubble with initial equilibrium radius R0

= 0.06 cm is surrounded by an infinite field of water, with parameters γ = 1.4, σ = 0.073 N
m−1, ρ = 998 g m−3, µ = 10−3 Pa·s, p∞ = 101300 Pa and pv = 2980 Pa.

The ability of the BIM model to numerically calculate the natural frequency of small order
shape mode oscillations of a bubble is demonstrated in table 1. The initial bubble has a
radius of 25 µm, with the remaining parameters the same as in figure 3. A small perturbation
to the initial potential at the surface of the bubble is used to stimulate oscillation. This is
of the form ϕ0 = εPl(cos θ), where ε ≪ 1, l is the shape mode number, Pl the Legendre
polynomial of order l, and θ the angle between the position on the bubble surface and the
r-axis. This initial potential is small and allows for an accurate comparison with the analytic
results. As can be seen from table 1, the error in the calculation of the natural frequency
of shape mode oscillation is very low. This demonstrates the ability of the present model to
accurately predict the natural frequency of the shape mode oscillation of a bubble.
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Figure 4: The natural frequency of shape mode three oscillation of a bubble, with initial
radius R0 = 0.001 m in water, calculated at multiple stand-off distances γ. The analytic
results of Maksimov [2020] are compared with the present BIM model. The remaining
parameters are as in figure 3.

Mode number Analytic natural frequency Numerical natural frequency Error
(Hz) (Hz)

0 132,395 132,369 0.02%
2 37,684.4 37,710.6 0.07%
3 68,802.1 68,843.0 0.06%
4 103,203 103,329 0.10%

Table 1: Comparison between analytic natural frequency, numerically calculated natural
frequency and the associated error for four shape modes of oscillation. The initial radius is
25 µm and the remaining parameters are as in figure 3.

Now, the calculation of natural frequency near to a rigid boundary is compared with
the analytic results of Maksimov [2020]. For these analytic results, the natural frequency
of shape mode three oscillation of a bubble with initial radius R0 = 0.001 m in water is
derived depending on the initial dimensionless stand-off distance to the wall γ = h/R0. The
effects of surface tension, viscosity, and compressibility are ignored. As axisymmetric shape
oscillations are considered, the angular momentum m = 0.

As can be seen in figure 4, excellent agreement is achieved between the results of the
present BIM and the analytic results as γ ≥ 1.5. As γ ≤ 1.5, the wall effects are significant
and are under-predicted by the analytic results. This demonstrates the capability of the BIM
to accurately predict the natural frequency of a bubble in the presence of a rigid boundary.
Now, these results can be extended to a viscous, compressible fluid, as well as extending the
values of the initial stand-off distance that are to be considered.
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3.2 Natural frequency of shape mode oscillation for varying stand-
off distances

The effects of an increasing stand-off distance on the natural frequency of different shape
mode oscillations are detailed in figures 5a-5d. The non-dimensional stand-off distance be-
tween the rigid boundary and the centre of the bubble, γ = h/R0, is measured against the
change in natural frequency of shape mode n, (ω − ωn)/ωn. Here, ωn represents the natural
frequency of mode n in an infinite fluid. Each case will be using the parameters previously
defined in table 1. Volumetric oscillation (n = 0) and shape modes two, three and four are
considered. Mode one representing translation is not considered.
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(c) n = 3
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(d) n = 4

Figure 5: The change in shape mode n natural frequency with increasing stand-off distance
for four different modes of oscillation. The bubble has initial radius R0 = 25 µm, initial
potential ϕ0 = ϵPn(cos θ) where ϵ ≪ 1, θ is the angle between the position on the bubble
surface and the r-axis, and Pn(cos θ) is the Legendre polynomial of order n. The remaining
parameters are the same as in figure 3.

Figure 5a shows the change in natural frequency of shape mode zero, representing volu-
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metric oscillation, for different stand-off distances. As the initial distance between the bubble
and the wall decreases, the natural frequency decreases. This is the effect of the flow between
the bubble and the wall being inhibited by the wall, which has a greater impact the closer
the bubble is to the wall. As the stand-off distance becomes large, the natural frequency
tends to the natural frequency of a bubble in an infinite fluid. When the non-dimensional
stand-off distance γ = 50, the natural frequency of shape mode zero oscillation is within one
percent of that in an infinite fluid.

As the stand-off distance increases above γ = 10, the change in natural frequency begins
to increase at a linear rate. Below this point, the natural frequency changes at a non-linear
rate. It is below γ = 5 that the natural frequency begins to rapidly decrease, signifying the
growing impact of the wall as the distance between the bubble and wall decreases. When
the bubble is fixed to the wall for γ ≤ 1, the natural frequency continues to decrease at the
same rate before tailing off around γ = 0.5. At γ = 0, the effect of the wall is at a maximum
and so the natural frequency is at its minimum. This corresponds to a 21 percent decrease
in natural frequency compared to a bubble in an infinite fluid.

Figure 5b shows the change in natural frequency of shape mode two oscillation for differ-
ent stand-off distances. For stand-off distances greater than γ = 1.75, the natural frequency
of mode two oscillation is within one percent of an equivalent bubble in an infinite fluid.
The change in frequency slowly increases and tends towards zero as the stand-off distance
increases beyond γ = 1.75. The wall has a significantly smaller effect on the oscillation
frequency of shape mode two, when compared to mode zero oscillation, for γ ≥ 1.

When the stand-off distance decreases below γ = 0.7, the change in natural frequency
begins to increase. It continues to steadily increase until it reaches a maximum at γ = 0 of
a 9 percent increase compared to a bubble in an infinite fluid. This can be explained by the
effect of the fixed contact line on the shape mode two oscillation. When γ = 0, the bubble is
a hemisphere resting on the wall. In this case, the fixed contact line is located at an antinode
of oscillation for shape mode two. Enforcing the fixed contact line is analogous to imposing
fixed boundary conditions to a freely oscillating system. This in turn leads to an increased
natural frequency due to a reduced amplitude of oscillation.

Figures 5c and 5d show the change in natural frequency of shape modes three and four
oscillation for different stand-off distances respectively. Both figures show similar behaviour,
with the change in natural frequency approaching that of a bubble in an infinite fluid as
γ increases. The natural frequency of shape mode oscillation is within one percent of an
equivalent bubble in an infinite fluid when the stand-off distance is greater than γ = 1.44
for mode three, and γ = 1.28 for mode four.

In both cases, as the stand-off distance increases, the change in natural frequency in-
creases. The change in natural frequency of shape mode three increases at a much greater
rate than shape mode four, when the stand-off distance is between γ = 0 and γ = 0.8. For
both figures, the decrease in natural frequency is at its maximum when γ = 0. Shape mode
three oscillation sees a 29 percent decrease, and shape mode four oscillation sees a 17 percent
decrease at this point.

Comparing the different modes, we can make a number of observations. Firstly, for
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stand-off distances greater than approximately γ = 1.2, we note that as the mode number
increases, the effect of the wall on the natural frequency decreases. This can be seen by
comparing the exact stand-off distance at which the natural frequency of the mode is within
one percent of a bubble in an infinite fluid. For mode zero this value is γ = 50, for mode
two γ = 1.75, mode three γ = 1.44, and mode four γ = 1.28.

As the mode number increases, there is a decrease in natural frequency at γ = 0 when
considering the even and odd modes separately. This implies that there are two separate
behaviours for the even and odd modes. This trend can be seen in figure 6 in which the
change in natural frequency is plotted against the increasing shape mode number. We see
that the odd modes are more affected by the presence of the wall, as there is a larger decrease
in natural frequency for odd modes compared to their even counterparts.
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Figure 6: The change in natural frequency at a stand-off distance γ = 0 for increasing mode
number. The even and odd modes are separated due to their different behaviours. The
parameters are the same as in figure 5.

3.3 Shear stress generated on a rigid boundary by different modes
of oscillation

Here, we consider a bubble initially at equilibrium with radius R0 = 25 µm, at a nondi-
mensional stand-off distance from a rigid boundary of γ = 1.3 and γ = 5.0. The remaining
parameters are the same as defined in table 1. The stand-off distance γ = 1.3 represents the
behaviour of the bubble when it exists close to the wall, and the stand-off distance γ = 5.0
represents the behaviour of the bubble far away from the wall.

For both cases, the initial potential prescribed to the surface of the bubble is chosen to
be ϕ0 = ϕa Pn(cos θ), where ϕa is the dimensionless amplitude of the potential distribution.
To satisfy the constraint requiring the same initial kinetic energy for each modes, the size
of the potential amplitude when γ = 1.3 is ϕa = 0.00692, 0.00780, 0.00785, and 0.00787 for
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modes zero, two, three, and four respectively. When γ = 5.0, the potential amplitude is ϕa

= 0.00775, 0.00954, 0.00978, and 0.00991 for modes zero, two, three, and four respectively.
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Figure 7: Comparison between the dimensionless shear stress generated on a rigid boundary
by a bubble in shape mode zero, two, three and four oscillation at a stand-off distance of
(a) γ = 1.3 and (b) γ = 5.0. The bubble has initial radius R0 = 25 µm and dimensionless
initial potential ϕ0 = ϕaPn(cos θ), where in (a) ϕa = 0.00692, 0.00780, 0.00785 and 0.00787,
and in (b) ϕa = 0.00775, 0.00954, 0.00978 and 0.00991 for modes zero, two, three and four,
respectively. The remaining parameters are as in figure 3.

Figures 7a and 7b display the shear stress on a rigid boundary generated by different
shape modes when the bubble is close to and far away from the boundary respectively. The
shear stress distribution is chosen at the time that the maximum shear stress occurs. Ob-
serving figure 7a, it is clear that as the shape mode increases, so too does the maximum
shear stress on the wall. Not only this, but the position of the maximum point moves closer
to the axis of symmetry as the mode number increases. This could be explained by the fact
that the width of the protrusion closest to the boundary decreases with increasing shape
mode. For example, mode three is characterised by three protrusions of equal width, whilst
mode four is characterised by four protrusions of equal width. The mode four protrusions
have smaller width than those of mode three when both are compared on a bubble of the
same size.

The maximum shear stress increasing with mode number may be explained by the speed
of the protrusion closest to the wall. As the mode number increases, the frequency of shape
mode oscillation increases, as does the speed of shape mode oscillation. The maximum occurs
during the first oscillation, in which the protrusion closest to the boundary moves towards
the boundary. As this protrusion dictates the behaviour of the shear stress, it follows that
higher modes are associated with greater shear stress on the boundary due to the higher
speeds. This is the case when the bubble is close to the wall where surface oscillations dom-
inate the behaviour of the shear stress.

It can also be seen that as the mode number increases, the smaller the area the majority
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of the shear stress acts upon. For example, mode four oscillation exhibits the largest shear
stress close to the axis of symmetry, however when the distance from the axis exceeds 0.6, the
other modes begin to have greater values. On the other hand, despite mode zero oscillation
having the smallest values of shear stress near to the axis of symmetry, when the distance
exceeds approximately 1.8, mode zero has the greatest effect on the wall. In this region
beyond a distance of 1.8, the behaviour is essentially reversed, and the values of shear stress
decrease with increasing mode number.

For a bubble close to a boundary, higher shape modes of oscillation lead to a concentra-
tion of shear stress towards the axis of symmetry. This leads to significant increases in the
maximum shear stress on the wall; shape mode four has a maximum shear stress approxi-
mately 20 times larger than that of mode zero. For higher modes, the majority of the shear
stress occurs in the area directly beneath the bubble. Beyond a distance of approximately
1.5 from the axis of symmetry, the effect of the shear stress is essentially negligible when
compared to that in the inner region. This could greatly benefit applications such as targeted
ultrasonic cleaning.

Observing figure 7b, it is clear that the maximum value of shear stress decreases with an
increasing mode number. As with a bubble initiated close to a boundary, the position of the
maximum value approaches the axis of symmetry when the mode number increases. Now,
however, it is volumetric oscillation that drives the behaviour of the shear stress rather than
surface oscillations.

As the bubble is further away from the boundary, it is no longer just the protrusion clos-
est to the boundary that has the most significant impact. As the mode number increases, the
amplitude of volumetric oscillation decreases. This explains why the maximum shear stress
decreases as the mode number increases, given that volumetric oscillation is the driving force
behind the generation of shear stress when the bubble is far away from the wall. Now, in
contrast to the case with a bubble close to a wall, mode zero is by far the most effective
shape mode to generate shear stress.

This implies that an approach with with two frequencies would be advisable to target
both behaviours. This will ensure a more uniform cleaning and is in line with the approach
used in industry.

3.4 Bubble shapes

The trends observed in figures 5 - 7 should have an effect on the shapes of the bubbles gen-
erated in these configurations. In order to observe these trends, we will consider three cases:
a bubble initiated on a rigid boundary, close to a rigid boundary, and far away from a rigid
boundary. To best contrast these behaviours, the three cases are taken to have stand-off
distances of γ = 0.0, γ = 1.3, and γ = ∞ respectively. The specifications remain the same
as in table 1, just with a larger initial potential amplitude. A larger potential amplitude is
taken to better illustrate the changes to the bubble shapes.

The shapes at maximum expansion of modes three and four are compared to demon-
strate the difference between odd and even modes. To conserve energy between cases, the
dimensionless potential amplitude ϕa for mode three is taken to be ϕa = 0.0321, 0.2550, and
0.0265 when γ = ∞, 1.3, and 0.0 respectively. For mode four, the potential amplitude is
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Figure 8: A comparison between the bubble shapes at maximum expansion for a bubble with
initial radius R0 = 25 µm close to a wall (γ = 1.3, dashed line), and far away from a wall (γ
= ∞, solid line). Two cases are considered: mode three (left), and mode four (right). The
dimensionless initial potential for mode three is ϕ0 = ϕaP3(cos θ) with potential amplitude
ϕa = 0.0321 and 0.0255 for γ = ∞ and 1.3, respectively. For mode 4, ϕa = 0.0326 and 0.0254
for γ = ∞ and 1.3, respectively. The remaining parameters are as in figure 3.

taken to be ϕa = 0.0326, 0.2540, and 0.0251 when γ = ∞, 1.3, and 0.0 respectively. Figure
8 displays how the bubble shapes change with stand-off distance for modes three and four.
Figure 9 compares how the bubble shapes change between modes for a bubble initiated on
a wall and close to a wall.

Inspecting figure 8, we observe that mode three oscillation has a larger amplitude when
the bubble is closer to the wall. This corresponds with the decreasing natural frequency as
the bubble approaches the wall as in figure 5c. On the other hand, mode four displays very
similar bubble shapes for both the close and far cases. As can be seen by comparing figures
5c and 5d, the natural frequency of mode four oscillation is less affected by the wall than
mode three oscillation. Thus it follows that the wall should have less of an effect on the
bubble shape. This trend is also reflected by the decreasing distance from the wall at which
the natural frequency of increasingly higher shape modes of oscillation is within one percent
of that of an equivalent bubble in an infinite fluid. Thus we would expect that the bubble
shape at a fixed stand-off distance should be less affected by the wall as the mode number
increases.

Inspecting figure 9, we observe the differences between the shapes at maximum expansion
of mode three and mode four oscillation at stand-off distances of γ = 0.0 and γ = 1.3. When
the stand-off distance γ = 0.0, the bubble is initially a hemisphere connected to the rigid
boundary. As can be seen, the fixed point connecting the bubble to the wall occurs at a node
of mode four oscillation, inhibiting the ability of the bubble to reach maximum expansion.
On the other hand, the fixed point does not occur at a node of mode three oscillation, leaving
the bubble more free to expand. This property is the reason for the two separate behaviours
of the oscillation frequency of odd and even modes, as the inhibited oscillation of even modes
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Figure 9: A comparison between the bubble shapes at maximum expansion for a bubble with
initial radius R0 = 25 µm of mode three (solid line) and mode four (dashed line) oscillation,
considering a bubble initiated at a stand-off distance of γ = 0.0 (left) and γ = 1.3 (right). The
initial potential for mode three is ϕ0 = ϕaP3(cos θ) with dimensionless potential amplitude
ϕa = 0.0255 and 0.0265 for γ = 1.3 and 0.0, respectively. For mode 4, ϕa = 0.0254 and
0.0251 for γ = 1.3 and 0.0, respectively. The remaining parameters are as in figure 3.

leads to a lower amplitude and hence higher frequency.
At a stand-off distance of γ = 1.3, the tip of the node closest to the rigid boundary is

narrower than the equivalent case at γ = ∞. This corresponds with the narrower distribu-
tion of shear stress on the rigid boundary when the bubble is closer to the wall, as seen in
figures 7a and 7b. Additionally, the tip of the mode four node is narrower than that of the
mode three node, corresponding with the findings of figure 7a.

The shape mode three node closest to the wall has a larger amplitude than that of mode
four. This is due to the higher frequency of mode four oscillation than mode three. The
maximum shear stress generated on the wall, however, is larger for mode four than mode
three. This indicates that the effect of the larger velocity associated with mode four oscil-
lation makes up for the smaller amplitude of oscillation when compared with mode three.
This explains the larger maximum shear stress generated on the wall by mode four oscillation
than mode three, a trend which continues as the mode number increases.

3.5 Comparison with experimental observations

Having analysed the shear stress generated on a rigid boundary when the bubble is close and
far away, we now consider the case of a bubble initiated on the wall. This is to compare with
the experimental results of Vyas et al. [2020], in which a bubble attached to a rigid boundary
is shown only cleaning the area in the immediate vicinity of the bubble (supplementary video
d).

To compare with this case, the contact angle between the bubble surface and the wall
is chosen to be θc = π/4, translating to an initial stand-off distance of approximately γ =
0.707. The remaining parameters are the same as in previous cases, with the exception of the
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Figure 10: Dimensionless shear stress generated on a rigid boundary by a bubble located
at a stand-off distance of γ = 0.70. Shape modes two, three and four are compared. The
remaining parameters are the same as in figure 5, with dimensionless potential amplitude ϕa

= 0.00470, 0.00475 and 0.00480 for modes two, three and four, respectively.

potential amplitude selected to be ϕa = 0.00470, 0.00475 and 0.00480 in order to conserve
energy between modes.

As is seen in figure 10, shear stress is generated directly in the region near to the bubble
surface. This agrees with experimental observations. Additionally, higher shape modes gen-
erate a larger maximum shear stress on the boundary. This suggests that higher shape modes
should be targeted to maximise the removal of contaminants from a rigid boundary. The
order of the maximum shear stress increases significantly as the stand-off distance decreases,
so targeting higher shape modes located close to a rigid boundary should prove to be optimal
for removal. The results from this paper for the behaviour of the natural frequency of shape
mode oscillation at different stand-off distances can be used to more effectively target these
higher shape modes near to a wall.

4 Conclusions
A numerical model is described for the shape mode oscillation of a bubble near to as well as
connected to a rigid boundary. It is based on the boundary integral method, with the viscous
effects modelled using viscous potential flow theory and the compressible effects using weakly
compressible theory. The viscous stress at the boundary is approximated using boundary
layer theory. Parametric studies are carried out for the natural frequency of shape modes
and the shear stress at the rigid boundary in terms of the shape modes and the standoff
distance of the bubble from the boundary. A series of new features have been noticed, which
may be summarized as follows.

The natural frequency of shape mode oscillation of a bubble near a rigid boundary is
decreased by the presence of the boundary. The wall effects decrease as the standoff dis-
tance increases, and the larger the mode number, the faster the wall effects decrease. The
maximum decreases in the natural frequency for modes k = 0 (spherical mode), 2, 3, 4 are
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21%, 30%, 29% and 14%.
As a bubble oscillates with shape modes either very close to or in contact with a rigid

boundary, significant shear stress occurs only within approximately 1.5 Req from the axis of
symmetry, with the maximum value of shear stress located within the image of the projec-
tion of the bubble onto the wall. The shear stress at the rigid boundary decreases when the
standoff distance of the bubble from the boundary increases. The shear stress due to shape
oscillation decreases faster with the standoff distance than that due to the volume oscillation
of bubbles. The larger the shape mode the faster the shear stress decreases with the standoff
distance.

In particular, the magnitude of the shear stress generated by the shape oscillation of a
bubble very close to the rigid boundary is at least twenty times larger than that due to
spherical oscillation with the same energy. This is because the shape mode oscillation of
bubbles generates more local streaming and stress rather than that due to volume oscillation
of a bubble at the same energy. This explains the dramatic cleaning effects of a bubble
oscillating with shape modes in very close proximity to a rigid boundary, the experimental
findings of Vyas et al. [2020], in which the bubble only cleans the area in close proximity to
the bubble surface.

These results are consistent with the order analysis based on perturbation theory. The
induced velocity due to shape mode k is O(r−(k+2)), decaying faster for a larger mode k.
For the non-spherical shape modes, i.e. k ≥ 2, the induced velocity decreases much faster
than that of spherical oscillation (k = 0). The disturbance of shape oscillation to the flow
decays much faster away from the bubble than that of spherical oscillation. As such, the
wall effects for shape mode oscillation decrease with the standoff distance much faster than
spherical oscillation; the higher the shape mode k the faster the decrease.

The shear stress distribution at the rigid boundary generated by shape mode k isO(r−3(k+3))
using equation 2.9, decaying faster with the standoff distance than the induced velocity. This
confirms the local nature of the shear stress at the rigid boundary due to shape oscillation.
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