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A B S T R A C T   

Membrane filtration is commonly used in biorefineries to separate cells from fermentation broths containing the 
desired products. However, membrane fouling can cause short-term process disruption and long-term membrane 
degradation. The evolution of membrane resistance over time can be monitored to track fouling, but this calls for 
adequate sensors in the plant. This requirement might not be fulfilled even in modern biorefineries, especially 
when multiple, tightly interconnected membrane modules are used. Therefore, characterization of fouling in 
industrial facilities remains a challenge. In this study, we propose a hybrid modeling strategy to characterize both 
reversible and irreversible fouling in multi-module biorefinery membrane separation systems. We couple a linear 
data-driven model, to provide high-frequency estimates of trans-membrane pressures from the available mea-
surements, with a simple nonlinear knowledge-driven model, to compute the resistances of the individual 
membrane modules. We test the proposed strategy using real data from the world’s first industrial biorefinery 
manufacturing 1,4-bio-butanediol via fermentation of renewable raw materials. We show how monitoring of 
individual resistances, even when done by simple visual inspection, offers valuable insight on the reversible and 
irreversible fouling state of the membranes. We also discuss the advantage of the proposed approach, over 
monitoring trans-membrane pressures and permeate fluxes, from the standpoints of data variability, effect of 
process changes, interaction between module in multi-module systems, and fouling dynamics.   

1. Introduction 

Biorefineries are facilities that integrate sustainable biomass con-
version processes and equipment to output a range of products (Veli-
dandi et al., 2023), among which fuels, such as ethanol (Delgenes, 1996) 
or biodiesel (McCurdy et al., 2014), and building-block chemicals, such 
as succinic acid (Mancini et al., 2020) or 1,4-bio-butanediol (Burgard 
et al., 2016). Concepts of sustainability, social impact, and circular 
economy are accounted for in biorefinery process design and life cycle 
assessment (Ioannidou et al., 2020; Julio et al., 2017; Sikdar, 2003), 
aiming to ensure a sustainable production of substances traditionally 
derived from petroleum (Martín and Grossmann, 2013). Process oper-
ations typically include: feedstock and media preparation, preliminary 
growth of microorganisms, and large scale fermentation in the upstream 
section; broth sterilization, cell separation, and product recovery and 
purification in the downstream section (Bähner et al., 2021). 

Fermentation broths containing the desired products are usually 

diluted solutions, which entails high downstream processing cost 
(Cuellar and Straathof, 2020; Martín and Grossmann, 2013). Membrane 
filtration has been identified as an effective technology to remove cells 
(and compounds with high molecular weight) from the solutions con-
taining the main product (Prochaska et al., 2018). The topic has been 
widely investigated (Abels et al., 2013; Carstensen et al., 2012; Ennaceri 
et al., 2022; Gerardo et al., 2014; Jiang and Zhu, 2013; Saha et al., 2017) 
and is in fact becoming increasingly relevant in biorefineries (Abels 
et al., 2013; Ennaceri et al., 2022; Saha et al., 2017), due to the lower 
operating costs compared to conventional thermal separation processes 
(Ennaceri et al., 2022; Gerardo et al., 2014; Jiang and Zhu, 2013; Saha 
et al., 2017). 

Pressure-driven membrane separation processes (e.g., ultrafiltration 
and nanofiltration operated (semi-)continuously) are most used to 
separate biomass from the fermentation products (Rudolph et al., 2019). 
However, when such processes are applied to the filtration of fermen-
tation broths, they can strongly suffer from membrane fouling (Arnese- 
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Feffin et al., 2023; Mancini et al., 2020; Prochaska et al., 2018). Mem-
brane fouling can be characterized as reversible or irreversible: the 
former is relatively fast, triggers short-term process disruption, and can 
be removed by hydraulic or chemical cleaning; the latter acts slowly and 
causes long-term membrane degradation (Huang et al., 2021; Shi et al., 
2014). Both fouling types affect membranes at the same time and cause 
decrease of permeate flux in constant pressure filtration (Abels et al., 
2013) or increase of trans-membrane pressure (TMP, pressure difference 
across the membrane) in constant flux separation (Klimkiewicz et al., 
2016), also implying an increase in energy expenditure in the latter case. 
However, monitoring fouling by means of these process variables might 
be cumbersome: they have been reported to exhibit strong variability 
(Philippe et al., 2013), which is in fact determined not only by mem-
brane fouling, but also by the variability of process conditions. 

Microfiltration and ultrafiltration can be generally described by the 
integral form of Darcy’s equation (Meindersma et al., 1997; Whitaker, 
1986), which relates the permeate volume-flux and the TMP to the 
membrane resistance to flow (or to its reciprocal, the membrane 
permeability). In a way, membrane resistance represents the health state 
of a membrane and provides an indirect measure of its fouling, as proved 
by several studies of membrane fouling focusing on resistance/perme-
ability modeling and prediction (Barello et al., 2014; Dologlu and Sildir, 
2022; Geissler et al., 2005; Han et al., 2020, 2020; Huang et al., 2021; 
Kallioinen et al., 2006; Philippe et al., 2013; Ruiz-García and Nuez, 
2016). In the context of plant operation, the assessment of fouling 
through online monitoring of membrane resistance is of paramount 
importance to guarantee prompt processing of upstream fermentation 
broth, smooth downstream operation, and economical optimality of 
production. 

Estimation of membrane resistance (or permeability) by Darcy’s 
equation is straightforward, provided that one has access to online 
measurements of permeate flux and TMP. However, even such simple 
demands might not be met in full-scale industrial processes, or even in 
pilot plants. Online measurements of permeate flux and TMP are 
available in plants employing a single membrane module (Chen et al., 
2014; Han et al., 2020), but this is not usually the case when multiple 
modules are used, despite multi-module membrane separation being a 
common occurrence in industrial practice (Dologlu and Sildir, 2022; 
Geissler et al., 2005; Kallioinen et al., 2006; Klimkiewicz et al., 2016; 
Ruiz-García and Nuez, 2016). Given the limited availability of appro-
priate online data, only the average resistance/permeability of the 
membrane ensemble is estimated, thus neglecting the actual resistances/ 
permeabilities of single membrane modules. This clearly offers limited 
insight on the actual fouling state of the modules and hinders the 
identification of severe fouling events acting on single modules. 

On the other hand, online measurements are not the only data source 
available in industrial processes. In fact, offline measurements are 
collected during process operations to monitor critical variables not 
available through online sensors, or that cannot be acquired automati-
cally by cheap and/or reliable sensors (Kadlec et al., 2009). Therefore, 
available data are typically multi-rate, featuring online variables auto-
matically acquired by the data acquisition system at a high sampling rate 
(time scale is seconds or minutes), and offline variables manually 
measured by operators at a low sampling rate (time scale is variable, for 
example one point per day or per week (Lin et al., 2009)). Assuming, for 
instance, that available data for each membrane module operating in the 
plant consist of high sampling rate permeate flux measurements coming 
from the data acquisition system, and low sampling rate TMP mea-
surements coming from operator-read manometers installed on mod-
ules, single-module resistances can still be estimated at the TMP 
sampling rate (the lowest one). This solution might nonetheless be un-
satisfactory, because the resolution of estimates could be too low to 
properly characterize relatively fast reversible fouling, therefore hin-
dering prompt detection. 

Despite the aforementioned limitations, many literature studies aim 
at modeling the evolution of membrane resistance by exploiting the 

information hidden in process data. Recent literature reviews (Bagheri 
et al., 2019; Velidandi et al., 2023) highlight that the most common 
approach is to consider only the average resistance in multi-module 
systems, and to focus on either reversible or irreversible fouling, with 
limited attempts to resolve the two types (Chan et al., 2017; Huang et al., 
2021; Klimkiewicz et al., 2016). Furthermore, strongly nonlinear 
models, such as neural networks, are used by default, which requires 
massive datasets (Rendall et al., 2019; Sun and Braatz, 2021) to ensure 
robustness and to discern relevant phenomena (i.e., fouling) from 
common-cause process variability (i.e., to avoid overfitting). However, 
such datasets are typically not available for large-scale processes 
(Rendall et al., 2019; Sun and Braatz, 2021). On the other hand, simpler, 
linear modeling approaches are less demanding in terms of data amount, 
but are seldom used as they may require sophisticated measurements (e. 
g., concentration of relevant compounds in the inlet stream) acquired in 
specifically designed experimental campaigns (Philippe et al., 2013) to 
achieve good performance. Linear models can still achieve good per-
formance in the prediction of TMP rather than resistance, as proved by 
Kaneko and Funatsu (2015), but TMP may not be the most appropriate 
variable to monitor when the purpose is discriminating between 
reversible and irreversible fouling. 

A different approach is to develop a soft-sensor (Kadlec et al., 2009) 
combining data and process knowledge in a hybrid modelling frame-
work (Reis et al., 2019; Sansana et al., 2021; Solle et al., 2017; Tidriri 
et al., 2016). Whereas the potential of soft sensors has been recognized 
to enhance sustainable process operation (Perera et al., 2023), their 
application to biorefineries and membrane separation processes at the 
industrial scale is still limited. In fact, few studies (Chan et al., 2017; 
Chew et al., 2017; Hwang et al., 2009; Piron et al., 1997) considered the 
hybrid modelling approach, and most of them (Chew et al., 2017; 
Hwang et al., 2009; Piron et al., 1997) used neural networks to predict 
the parameters of a knowledge-driven model (the cake filtration model) 
aimed at describing the evolution of resistance due to reversible fouling 
(therefore neglecting irreversible fouling). Such studies considered a 
single-module pilot plant (Chew et al., 2017), or multi-module lab 
equipment (Piron et al., 1997) and pilot plants (Hwang et al., 2009), 
estimating only the average resistance in the latter cases. Chan et al. 
(2017) adopted a different approach, using the cake filtration model to 
estimate the energy requirement of single process runs and Gaussian 
process regression to model the prediction mismatch between runs, 
indirectly providing separate models for reversible and irreversible 
fouling. However, they achieved such results in a single laboratory-scale 
membrane module operated under controlled fouling conditions. 

In this study, we address the problem of characterizing both 
reversible and irreversible fouling in multi-module industrial bio-
refinery membrane separation systems by a hybrid modeling strategy 
that enables high-frequency estimation of the resistances of individual 
membrane modules. High sampling-rate process data, together with low 
sampling-rate TMP data, are first used to calibrate (and then use) a PLS 
soft sensor (Geladi and Kowalski, 1986; Wold et al., 2001) that estimates 
at high frequency the TMPs of each membrane module. The Darcy’s 
equation is then used to obtain high-frequency estimates of the re-
sistances of each module. To test the proposed strategy, we use real data 
from two years of operation of an industrial-scale biorefinery that 
manufactures 1,4-bio-butanediol (bio-BDO) via fermentation of renew-
able raw materials (Novamont S.p.A., 2016; Satam et al., 2019; Silva 
et al., 2020). The microfiltration section separates cells from the 
fermentation broth and features seven interconnected membrane mod-
ules equipped with online sensors that measure the permeate fluxes; 
only offline manometers are available to measure the TMPs, thus 
requiring manual readings by operators. We show how individual 
resistance monitoring, even when done by simple visual inspection, 
offers valuable insight on the reversible and irreversible fouling state of 
membranes. We also discuss the advantage of monitoring individual 
resistances, rather than TMPs and permeate fluxes, from the standpoints 
of data variability, effect of process changes, interaction between 
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modules in multi-module systems, and dynamic evolution of fouling. 
The remainder of the paper is organized as follows. The process 

investigated in this study, with the available dataset, are described in 
Section 2. Section 3 focuses on the mathematical models. Results are 
discussed in Section 4, and conclusions are drawn in Section 5. 

2. Ultrafiltration process and data 

2.1. Ultrafiltration process 

This study focuses on the world’s first industrial biorefinery process 
operating a single-step bioconversion of sugars to bio-BDO by geneti-
cally engineered microorganisms (Burgard et al., 2016; Novamont S.p. 
A., 2016). Three main blocks can be identified in the process: materials 
preparation, upstream processing, and downstream processing. Sugars, 
formulated culture medium, and a microorganism inoculum are fed to a 
series of fed-batch bioreactors for bio-BDO production; mature 
fermentation broth is sent to continuous downstream processing with 
separation operations such as membrane filtration, ion-exchange chro-
matography, evaporation, and distillation. 

The ultrafiltration unit processes the fermentation broth and is a 
critical operation in the downstream train due to the high fouling po-
tential of the feed. A simplified process flow diagram of this operation is 
illustrated in Fig. 1. Seven membrane modules filter the fermentation 
broth to remove cells and high molecular weight compounds, yielding a 
clarified permeate stream containing the bio-BDO. Five of the modules 
employ a diafiltration strategy to maximize the bio-BDO recovery 
(Mulder, 1996). The feed flow rate is fixed, while flow rates of retentate 
and diafiltration solvent are adjusted based on preset ratios to the feed 
flow rate. The overall permeate flow rate (controlled variable) is kept 
constant by changing the overall TMP through feed pressure (by acting 
on the feed pump speed, manipulated variable) adjustment. Further-
more, the modules adopt the cross-flow configuration; therefore, the 
cross-flow velocities are adjusted by manipulating the speeds of the 
pumps incorporated in each of the modules (each speed can be manip-
ulated independently), in such a way as to counteract the effects of 
fouling. The permeate flow rates of single modules are not controlled; 
therefore, they vary according to both membrane age (i.e., resistance) 
and applied TMP. The process is interrupted and cleaning is triggered 
when a preset volume of feed has been filtered or when the feed pressure 
exceeds a given threshold. Ultrafiltration is therefore run in semi- 
continuous mode, alternating operating and cleaning phases (Klimkie-
wicz et al., 2016; Philippe et al., 2013). The overall feed pressure and 
cross-flow velocity of one module on a selected timespan are reported as 
an example in Fig. 2, where shaded intervals identify cleaning opera-
tions. For confidentiality reasons, all variables will be reported as 
normalized values within the [0,1] interval in all figures throughout this 

paper. 
According to the current plant operation, the state of membrane 

modules is monitored using offline measurements. Readings of ma-
nometers installed on each module allow computing the TMPs (see Eq. 
(4)). Matching online measurements of permeate fluxes are then used to 
compute the flux-to-TMP ratios (one for each module), which are pro-
portional to membrane permeabilities. An example is shown in Fig. 3 for 
a period where the membrane of the relevant module was replaced 
(vertical solid black line), as can be clearly inferred by the trend of flux- 
to-TMP ratio. Fig. 3 also shows the effects of both reversible fouling 
(permeability increases after cleaning) and irreversible fouling (average 

Fig. 1. Scheme of the ultrafiltration operation in the downstream processing section.  

Fig. 2. Example of run/cleaning sequences in the ultrafiltration plant. Shaded 
intervals identify cleaning operations. 

Fig. 3. Example of the effect of membrane replacement (vertical solid black 
line) onto the flux-to-TMP ratio. Shaded intervals identify cleaning operations. 
The arrow indicates the last observation before a significant fouling event, 
which was not detected until the following observation due to the low fre-
quency at which measurements are taken. 
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permeability decreases across runs), though the former is harder to 
characterize properly due to the low frequency of readings. For example, 
a fouling event was detected in the third-to-last run shown in Fig. 3 only 
after membrane permeability was largely degraded (see arrow in the 
figure), while an earlier detection would have helped operators to take 
action immediately. 

2.2. Ultrafiltration data 

Fig. 1 illustrates all the online variables available through the data 
acquisition system. Level, temperature, and pH are measured for each 
one of the feed tanks. The feed manifold features flow rate, pressure, and 
conductivity sensors. Flow rate measurements are available for the 
retentate and diafiltration solvent manifolds, while pressure sensors are 
installed on the retentate and permeate manifolds. Each one of the cross- 
flow membrane modules is operated with controlled cross-flow velocity 
(inferred from the measured pump powers), and mounts sensors for 
temperature, permeate flow rate, and diafiltration solvent flow rate 
(when relevant). Online pressure sensors are not available on membrane 
modules, but manometers installed on the feed and retentate pipes allow 
for manual readings of pressure, which is made available as offline data. 

Besides thirty-eight online variables and fourteen offline variables, 
some additional ones are computed due to the valuable information they 
provide. The overall permeate flow rate, V̇P, is computed as: 

V̇P
=

∑7

l=1
V̇P

l −
∑6

l=3
V̇D

l (1)  

where V̇P
l and V̇D

l are permeate and diafiltration flow rates of module l, 
respectively. The volume conversion ratio (VCR) of the multi-module 
system is computed as: 

VCR = min

{

V̇F
,
V̇F

V̇R

}

(2)  

where the minimum operator is introduced so as to limit the maximum 
value of the VCR for cases where the retentate flow rate is very low, 
typically during the startup and shutdown phases of each run. The multi- 
module system TMP is defined as: 

ΔP =
PF + PR

2
− PP (3)  

namely, as the difference between the average feed-side pressure and the 
permeate pressure. 

The variables available through relevant offline sensors are also 
illustrated in Fig. 1. These variables are used to compute the TMPs ΔPl of 
single membrane modules: 

ΔPl =
PF

l + PR
l

2
− PP (4)  

where PF
l and PR

l are offline readings of the feed and permeate pressures 
of module l, while PP is the corresponding online measurement of the 
pressure of the permeate manifold, assumed to be equal for all modules. 

Data covering almost two years of operation are available for 
modeling. Data for some periods are missing due to the change in 
operational production. A total of 496 runs is found in the datasets. The 
number of observations per batch for each online variables spans be-
tween 21 and 260, with an average of 172, thus entailing a strong 
variability in the batch duration. On the other hand, offline variables are 
recorded between 1 and 6 times per batch, with an average of 4; most 
offline measurements are unevenly spaced and not aligned across runs. 
However, measurements of both online and offline variables are time-
stamped, in such a way that observations can be matched. The available 
data are used to build a PLS-based soft sensor for online prediction of 
TMPs of all membrane modules using online variables only. This will be 

discussed in the next section. 

3. Background 

3.1. Partial least-squares regression 

PLS regression (Geladi and Kowalski, 1986; Wold et al., 2001) 
models the linear relationship between a set of input variables and 
output variables. N observations of the VX inputs are collected in matrix 
X ∈ RN × RVX , while observations of the VY outputs are gathered in 
matrix Y ∈ RN × RVY . These matrices are assumed to be autoscaled 
(mean-centered and scaled to unit variance) prior to PLS model 
calibration. 

PLS modeling identifies a sequence of A pairs of mutually orthogonal 
latent variables (LVs) defined as linear combinations of input and output 
variables; one LV in the pair refers to input variables, the other to output 
variables. LVs are defined so as to maximize the input-output cross- 
covariance. In fact, models for X and Y matrices are provided as well: 

X = T⋅PT +E (5)  

Y = U⋅QT +F (6)  

where T ∈ RN × RA and U ∈ RN × RA are called scores matrices, whose 
rows represent the projection of input and output observations 
(respectively) onto the space of LVs, P ∈ RVX × RA and Q ∈ RVY × RA are 
called loading matrices, and E ∈ RN × RVX and F ∈ RN × RVY are resid-
ual matrices of the models of X and Y (respectively); the symbol ⋅ rep-
resents the row-by-column matrix product. 

LVs are identified in such a way as to optimize the linear relationship 
between corresponding columns of the score matrices. To this end, a 
weight matrix for inputs, W ∈ RVX × RA, is computed column by col-
umn; for example, the first weight is the eigenvector of the cross- 
covariance XT⋅Y⋅YT⋅X corresponding to its largest eigenvalue (Wold 
et al., 2001). A matrix of corrected weights, W* ∈ RVX × RA, is then 
defined as: 

W* = W⋅
(
PT⋅W

)− 1 (7)  

and used to compute the input scores: 

T = X⋅W* (8)  

Finally, an optimal linear relationship between corresponding columns 
of T and U is obtained solving the linear regression problem: 

U = T⋅diag(b)+H (9)  

where diag(b) is a diagonal matrix containing vector b ∈ RA, called inner 
regression coefficients, on the main diagonal, while H ∈ RN × RA is the 
residual matrix of the regression model between scores. Once A has been 
set by the user, all entities involved in the model (i.e., T, U, P, Q, W, and 
b) are computed by any PLS calibration algorithm to respect all model 
equations. The reader may consult the papers by Geladi and Kowalski 
(1986) and by Wold et al. (2001) for more information. 

After calibration, the PLS model can be used to compute ŷnew, which 
is an estimate of the unknown output observation ynew ∈ RVY , given the 
corresponding input observation xnew ∈ RVX . The input observation is 
first projected onto the space of input LVs by Eq. (8): 

tT
new = xT

new⋅W* (10)  

The best estimate of the output scores in a least-squares sense, ûT
new, is 

then obtained using the inner regression coefficients as in Eq. (9): 

ûT
new = tT

new⋅diag(b) (11)  
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Finally, the estimate of the output observation is computed as for Eq. (6): 

ŷT
new = ûT

new⋅QT (12)  

Eqs. (10) to (12) can be summarized in a single equation directly relating 
xnew and ŷnew: 

ŷT
new = xT

new⋅
(
W*⋅diag(b)⋅QT ) = xT

new⋅B (13)  

where B ∈ RVX × RVY is the matrix of PLS (outer) regression coefficients. 

3.2. Estimation of membrane resistances 

Permeation and filtration in membranes are generally modelled 
through the transport theory. A thorough treatment of such a theory is 
out of the scope of this study; interested readers are referred to notable 
literature resources (Baker, 2004; Mulder, 1996; Spiegler and Kedem, 
1966; Vilker et al., 1984). 

Filtration through porous membranes can be described by the pore- 
flow model, i.e., Darcy’s equation (Darcy, 1856) in its integral form 
(Meindersma et al., 1997): 

v =
1

μR
ΔP (14)  

where v is the permeate volume-flux (permeate flow rate divided by the 
flow surface), μ is the dynamic viscosity of the permeate, R is the 
membrane resistance to flow, ΔP is the TMP (average pressure differ-
ence between the feed side and the permeate side of the membrane). 
Osmotic pressure is usually neglected for membrane filtration of 
fermentation broths because it is negligible for solutes with high mo-
lecular weight (Vilker et al., 1984; Wankat, 2009). Given the available 
online measurements, Eq. (14) allows to compute online the average 
resistance of the sequence of membrane modules in Fig. 1. The re-
sistances of each module can also be computed using offline measure-
ments and applying Eq. (14) to each membrane module l: 

Rl =
1

μlvl
ΔPl, l ∈ {1,⋯, 7} (15)  

The resistance computed in Eq. (15) represents the overall resistance of 
the membrane, including contributions from both reversible and irre-
versible fouling. However, since the frequency of offline measurements 

is low, the trend of the overall resistance does not allow to properly 
monitor reversible fouling. Therefore, we seek to obtain high-frequency 
estimates of the resistances of each membrane module in Fig. 1. A hybrid 
estimation approach is proposed, combining data-driven and 
knowledge-driven model components. Namely, offline observations of 
TMPs for each module, together with the corresponding observations of 
a subset of downsampled online and computed variables, are first used 
to calibrate a PLS model that estimates the TMP; subsequently, the 
model is used to obtain high-frequency estimates of TMPs thanks to 
online variables at their original sampling rate (details on the PLS model 
calibration and assessment are provided in Section 4.1). This corre-
sponds to the data-driven component of the hybrid estimation approach. 
The knowledge-driven component is made by Eq. (15), which is used to 
estimate the module resistances once the TMP estimates are available. 
The logic of the soft sensor is graphically represented in Fig. 4. 

Viscosity measurements are not available online. Expert knowledge 
from plant operators is leveraged to assume a reasonable value for vis-
cosity. Water-like behavior is postulated for permeate viscosities on all 
modules, and the effect of pressure and composition variation is deemed 
negligible. The temperature dependence of viscosity is modeled empir-
ically (Perry and Green, 2008): 

μl = exp
(

− 52.843 +
3703.6

Tl
+ 5.866ln(Tl) −

(
5.879⋅10− 29)T10

l

)

(16)  

where temperature is in [K] and viscosity is obtained in [Pa s]. Note that, 
even if the aforementioned assumptions on viscosity might seem strong, 
the purpose of the soft sensor is not to yield extremely accurate estimate 
of the membrane resistance, but to accurately represent its trend so as to 
allow to properly monitor the process. 

4. Results and discussion 

Results of the study are presented in this section. Section 4.1 presents 
the workflow for PLS model development and assessment, which are 
entirely achieved on MATLAB R2022a (The Mathworks, 2022) with in- 
house-developed code. Sections 4.2 and 4.3 discuss the advantages of 
using resistances rather than fluxes and TMPs for process monitoring. 

4.1. PLS model calibration and assessment 

Direct prediction of membrane resistance by data-driven modeling 

Fig. 4. Logic of the proposed soft sensor. The middle column represents the data-driven component, while the column on the right represents the knowledge- 
driven component. 
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usually requires strongly nonlinear models (Bagheri et al., 2019; Veli-
dandi et al., 2023), while linear modeling may require to carry out ad- 
hoc experiments to acquire sophisticated measurements, e.g., concen-
tration of foulants (Philippe et al., 2013). In fact, preliminary tests with a 
linear data-driven model (PLS) to directly estimate resistances yielded 
very unsatisfactory results: residuals featured a clear trend not captured 
by the model, thus denoting the need for a nonlinear model (results are 
not shown for brevity); furthermore, significant autocorrelation was 
detected in the residuals, indicating that the process dynamics was not 
modelled. Therefore, as discussed in the previous section, we tackle the 
problem by using a hybrid modeling approach: namely, we use a linear 
data-driven model (PLS) in the form of a soft sensor to provide estima-
tions of TMPs from the available measurements; then, we couple this 
model to a simple nonlinear knowledge-driven model (Darcy’s equa-
tion) to estimate the individual resistances from TMPs. A somewhat 
similar approach, yet in a different context, was used by Kaneko and 
Funatsu (2013). The advantages of using a linear data-driven model is 
that, compared to a nonlinear data-driven model, model calibration is 
simplified and model robustness is improved. 

With respect to the PLS model, TMPs of membrane modules, 
computed by Eq. (4) from observations of offline (i.e., low frequency) 
variables, are regarded as output variables, while input variables are the 
corresponding observations of a subset of online and computed vari-
ables, as reported in Table 1. 

To build the PLS model, the online observations are downsampled to 
match the timestamps of online and offline observations; more sophis-
ticated approaches to multi-rate modeling (Lin et al., 2009) were not 
needed for this study. Observations from all runs are stacked vertically 
to obtain the data matrices to be processed by the modeling algorithm. 
Stating the same in a multivariate batch data analysis parlance, the 
structures of data matrices is the variable-wise unfolding one (Lee et al., 
2004). Cleaning periods are not included in the data matrices, as well as 
the startup and shutdown phases of each run. These preprocessing op-
erations results in a X matrix with dimension [1621 × 30] and a Y matrix 
with dimension [1621 × 7]. 

The output variables feature a remarkable correlation (the minimum 
value of correlation is 0.9057), as can be inferred from the correlation 
matrix reported in Table 2. The correlation among TMPs reflects the 
action of the control system, which adjusts the TMPs to adapt to the 

fouling state of each individual membrane. This guarantees that the 
overall permeate flow rate matches the assigned set-point, while the 
permeate flow rates of individual modules are free to change according 
to the fouling state of each membrane. Since it is desirable to model such 
valuable information on the interaction among the modules, PLS is a 
natural choice due to its well-known ability to exploit correlation in 
inputs and outputs formulating LVs (Burnham et al., 1996). 

The available data feature a dynamic component (due to the effects 
of fouling and the control system), which naturally calls for the use of 
dynamic PLS (Baffi et al., 2000; Dong and Qin, 2015; Ricker, 1988; Zhu, 
2021). However, lagged matrices (on either data or scores) would then 
be required, which would set a constraint on the time step of observa-
tions in the prediction phase. Furthermore, lagged matrices require an 
even time step, while available data are sampled irregularly. Therefore, 
a static PLS model is developed. This allows one to calibrate the soft 
sensor with low sampling rate data, and to use it with high sampling rate 
data in the prediction phase. The choice of a static model for dynamic 
data is also backed up by two additional considerations. Firstly, LV 
models can capture dynamic information in data using additional LVs 
(Vanhatalo and Kulahci, 2016). Secondly, dynamic modelling is not 
necessarily needed to capture the input/output relation, as the dynamics 
on outputs could be solely induced by dynamics on inputs (Sun and 
Braatz, 2021). 

A preliminary PLS model is fitted on autoscaled data matrices by the 
SIMPLS algorithm (de Jong, 1993) selecting the number of LVs by 
repeated k-fold cross validation (Burman, 1989; Geisser, 1975) with 
one-standard-error-rule (Filzmoser et al., 2009; Hastie et al., 2009). The 
performance index is defined as the average of root-mean squared errors 
on all seven output variables, which results in nine LVs. Data from nine 
runs are removed due to high values of the squared prediction error 
(SPE) for reconstruction of input data (Nomikos and MacGregor, 1995), 
while data from three more runs are deemed as outliers and discarded 
due to high leverages (Berber and Akcay, 2005; Rousseeuw and Van 
Zomeren, 1990). The preliminary PLS model is re-calibrated after 
removal of observations, which reduces the number or rows in the X and 
Y matrices to 1579; cross-validation results in twelve LVs. 

Residuals of the new model feature remarkable dynamics, tested by 
the significance of coefficients of the autocorrelation function (ACF; Box 
et al., 2016) on 95 % confidence limits computed by Bartlett’s formula 
(Bartlett, 1946), as can be seen in Fig. 5(a). Therefore, additional LVs are 
included in the model to remove as much residual autocorrelation as 
possible (i.e., to improve the dynamics captured by the PLS model), 
while preserving smoothness of prediction. Such tuning is aided by vi-
sual assessment of ACFs of the seven outputs and of predictions, and 
results in a final PLS model with twenty latent variables as best 
compromise. Fig. 5(b) proves that most of the residual autocorrelation is 
removed. This approach was attempted also on the preliminary tests 
with the purely data-driven model for direct estimation of resistances, 
but significant dynamics was still left in the residuals even using all the 
available LVs. This further proves the value of the proposed hybrid 
modelling approach. 

The generalization performance of the model are investigated by 
means of nested cross-validation (Varma and Simon, 2006) employing 
repeated k-fold splitting in both the inner and outer loops (Filzmoser 

Table 1 
Input and output variables of the PLS soft sensor.  

ID Name Symbol Type 

Input variables 
1 Feed flow rate V̇F Measured 

2 Retentate flow rate V̇R Measured 

3 Permeate flow rate V̇P Computed by Eq. 
(1) 

4 Diafiltration solvent flow 
rate 

V̇D Measured 

5 Overall TMP ΔP Computed by Eq. 
(3) 

6 Feed pressure PF Measured 
7 Retentate pressure PR Measured 
8 Permeate pressure PP Measured 
9 VCR VCR Computed by Eq. 

(2) 
10–16 Permeate flow rate of 

modules 1 to 7 
V̇P

l , with 
l ∈ {1,⋯, 7}

Measured 

17–23 Temperature of modules 1 to 
7 

Tl, with 
l ∈ {1,⋯, 7}

Measured 

24–30 Pump power of modules 1 to 
7 

Wl, with 
l ∈ {1,⋯, 7}

Measured  

Output variables 
1–7 TMP of modules 1 to 7 ΔPl, with 

l ∈ {1,⋯, 7}
Computed by Eq. 
(4)  

Table 2 
Correlation matrix of the TMPs (output variables of the PLS soft sensor) for the 
seven membrane modules.   

ΔP1 ΔP2 ΔP3 ΔP4 ΔP5 ΔP6 ΔP7 

ΔP1  1.0000  0.9485  0.9323 0. 9196  0.9141  0.9183  0.9057 
ΔP2  0.9485  1.0000  0.9570 0.9434  0.9424  0.9390  0.9417 
ΔP3  0.9323  0.9570  1.0000 0.9664  0.9692  0.9567  0.9417 
ΔP4  0.9196  0.9434  0.9664 1.0000  0.9678  0.9560  0.9432 
ΔP5  0.9141  0.9424  0.9692 0.9678  1.0000  0.9600  0.9561 
ΔP6  0.9183  0.9390  0.9567 0.9560  0.9600  1.0000  0.9561 
ΔP7  0.9057  0.9216  0.9417 0.9432  0.9561  0.9561  1.0000  
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et al., 2009). Such a tool was also used to make sure that the manual 
tuning does not deteriorate generalization performance. Average 
determination coefficients of the preliminary and final PLS model in 
calibration, validation, and testing are reported in Table 3. The final 
model shows a satisfactory generalization performance. Furthermore, 
determination coefficients in calibration and testing are similar, denot-
ing that the model does not overfit even after manual tuning of the 
number of LVs. 

An example of prediction of the final PLS model on high frequency 
online data is shown in Fig. 6. The model successfully captures dynamic 
effects of both reversible and irreversible fouling. The effect of mem-
brane replacements are excellently reconstructed, as can be seen in 
Fig. 6: for instance, considering module 2, predictions jump down after 
the membrane replacement occurred at observation no. 1650, and this 
follows the trend of experimental data. Predictions tend to be unreliable 
at the very beginning of a run, which is especially clear considering the 
seventh module; however, they tend to realign to the actual TMPs in a 
relatively short time (which typically corresponds to ~2 h). Prediction 
reliability can be assessed by means of the PLS model monitoring sta-
tistics, namely Hotelling’s T2 and SPE (Nomikos and MacGregor, 1995). 
Predictions are deemed as unreliable when SPE is beyond its 95 % 
control limit, while a T2 beyond the limit denote that the process is 
drifting far from the average conditions. Fig. 7 reports such statistics in 
logarithmic form and allows one to clearly identify anomalous tails at 
the beginning of runs after observation no. 1950 in Fig. 6, which are 
associated to statistics well beyond their control limits. 

4.2. Membrane resistances to monitor short-term fouling trends 

The TMPs estimated by the PLS model are plugged in Eq. (15) with 
online measurements of permeate fluxes and temperatures to estimate 
resistances of all membrane modules online. Resistances allow for a 
better monitoring and understanding of the filtration process as opposed 
to fluxes and TMPs. Some examples concerning the monitoring of short- 
term fouling are discussed in this Section. 

The increase in interpretability is clear from Fig. 8, reporting profiles 
of permeate flux, TMP, and resistance for one of the separation modules 
during two example batches ((a) and (b) in the figure). In Fig. 8(a) the 
estimated TMP features an increasing trend, whereas the permeate flux 
exhibits an erratic behavior with both fast and slow variations, which 
somewhat casts doubt on the interpretation of the TMP behavior. 
However, the estimated resistance features a well-defined, mostly 
monotonic trend, which allows one to unambiguously monitor the 
evolution of reversible fouling along the batch for the membrane under 
investigation. A significant fouling event is visible around batch time 

equal to 0.8, where the resistance steps up and then steadily increases 
thereafter; in fact, this specific batch had to be interrupted soon after 
that event due to significant pressure build-up. Fig. 8(b) highlights how 
membrane resistance can capture the occurrence of hydraulic cleaning 
within a batch. In this case, the material being filtered sedimented on the 
membrane surface in the initial part of the batch. Such deposition was 
removed due an increase in cross-flow velocity dictated by the control 
system shortly after batch time 0.3, which caused a decrease of the 
resistance. The increased flux however eventually enhanced membrane 
fouling, as can be argued from the rapid increase of the resistance after 
batch time 0.6. 

For this particular example, the trends of membrane resistance and 
TMP are not too different, and one might think that both variables are 
equally effective to monitor short-term membrane fouling. However, 
that is not generally the case, and in fact monitoring resistances, rather 
than TMPs, offers significant advantages from the process understanding 
point of view. To appreciate this, recall that the plant layout (Fig. 1) 
consists in several separation modules, but only the overall permeate 
flow rate is controlled, and this is achieved by manipulating the overall 
feed pressure. Therefore, a linear constraint acts on permeate fluxes 
from single modules, which are therefore not independent and must 
compensate for each other. Such a strong correlation between fluxes 
makes it difficult to trace flux variations back to the fouling state of each 
single membrane, and this can impact also TMP trends. Furthermore, 
promptly identifying fouling events that act on single modules is 
cumbersome or impossible if done by visual inspection of the recorded 
data, due to the low frequency of offline readings. However, both issues 
are fixed if membrane resistance is monitored by the proposed approach, 
as elucidated in Fig. 9 for two different batches ((a) and (b)). The effect 
of interdependence of permeates fluxes is clear from Fig. 9(a), where 
fluxes of modules 2 to 7 increase to make up for the decrease in flux of 
module 1. However, TMPs of modules 2 to 7 also increase, which makes 
it difficult to conjecture anything about the fouling state of membranes. 
On the other hand, resistances allow one to clearly understand that 
modules 1 and 2 are the ones mostly suffering from reversible fouling in 
this batch. Similar considerations can be done for the batch illustrated in 
Fig. 9(b). Additionally, this figure enables one to appreciate that the 
onset of significant fouling events affecting single modules becomes 
clear if resistances (rather than TPMs or fluxes) are monitored. These 
events occurred in module 5 and 7 shortly after the batch start, and in 
module 6 around batch time equal 0.5, where the slope of the resistance 
changes. 

4.3. Membrane resistance to monitor long-term fouling trends 

The proposed model is helpful also in the analysis of long-term trends 
in fouling, which can be obtained by computing averages of estimated 
resistances from the profiles over batches. While this is possible also 
using low frequency offline measurements, the high frequency estima-
tions of resistances offer stronger reliability and increased robustness to 
outliers, thus allowing one to properly visualize and monitor long-term 
fouling trends for each single membrane module. We denote such batch- 

Fig. 5. Autocorrelation function of residuals for an example output variable of the (a) preliminary PLS model with twelve LVs and (b) final PLS model with twenty 
LVs. Significant coefficients are represented as red dots outside of the shaded envelope of the 95% confidence interval. 

Table 3 
Average determination coefficients R2 of the preliminary and final PLS models in 
calibration, validation, and testing estimated by nested cross-validation.  

Model LVs Calibration Validation Testing 

Preliminary 12  0.9012  0.8979  0.8977 
Final 20  0.9047  0.9005  0.9002  
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averaged variables as features in the following. 
The most prominent advantage of using estimated resistances in the 

context of long-term fouling investigation is the possibility to decouple 
membrane aging effects from flux interdependencies across modules. As 
an example, consider Fig. 10, which illustrates the trends of the 
permeate flux, TMP, and resistance features for one separation module 
across several consecutive batches. The end-of-life replacement of the 

module membrane occurs at batch no. 112 and is indicated by a solid 
black line in the figure. This causes the flux to step up in that module. 
However, due to the interdependence of fluxes across modules, the other 
fluxes adjust accordingly (often stepping down). On the other hand, 
TMP values are so strongly affected by variability across batches that 
membrane replacement passes almost unnoticed. We conclude that 
analyzing fluxes or TMPs confounds the diagnosis of membrane health. 

Fig. 6. Example of predictions of TMPs by the final PLS model. Low frequency, offline measurements are represented as orange triangles, while high frequency, 
online estimates are blue solid lines. Dotted lines delimit single process runs, while vertical solid black lines separate runs with a replacement of the membrane of the 
relevant module in between. 

Fig. 7. Example of monitoring statistics to diagnose the reliability of predictions of the final PLS model; results refer to the predictions of Fig. 6. 95% control limits 
are represented as red dash-dotted lines, vertical dotted lines delimit single process runs, and vertical solid black lines separate runs with a replacement of the 
membrane of any module in between. 
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Fig. 8. Time profiles of fouling-related variables for one membrane module to highlight the increased interpretability of (a) reversible fouling trend in one batch, and 
(b) within-batch hydraulic cleaning phenomena due to the control system in a different batch. 

Fig. 9. Time profiles of fouling-related variables for all membrane modules to highlight (a) the increased interpretability due to the monitoring of membrane re-
sistances in one batch, and (b) the identification of significant fouling events acting on a single module in a different batch. 
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Indeed, the true health state of the membrane is represented by its 
resistance, which clearly decreases right after replacement, thus facili-
tating monitoring. One additional advantage of monitoring the mem-
brane resistance is that it does not change when the membranes in other 
modules are replaced (dashed lines in Fig. 10); conversely, both TMP 
and flux are affected by the replacement. 

The last, less apparent advantage of the proposed approach regards 
the decoupling of reversible and irreversible fouling, which can be 
achieved by combining the proposed model with knowledge of the 
process operation rationale. Features computed by averaging resistances 
over an entire batch mix up the effects of reversible and irreversible 
fouling into one single indicator. Intuitively, irreversible fouling is 
represented by the “baseline resistance” of a membrane at the beginning 
of a batch, and the within-batch increase of resistance above the baseline 
is due to reversible fouling. This within-batch variation is compensated 
for by the process control systems, which adjusts the cross-flow velocity 
on discrete levels in response to reversible fouling, as shown in Fig. 11: 
while the first two levels are always reached under normal operation, 
the following levels are enforced only when the feed pressure rises above 
preset thresholds. Reversible fouling is believed to be under control (in 
the plant being considered) when the cross-flow velocity is set to the 

two/three lowest levels. 
The outlined rationale can be exploited to decompose the overall 

resistance feature in a batch into its contributions from irreversible and 
reversible fouling. The contribution due to irreversible fouling is 
computed as the average of the resistance profile where the cross-flow 
velocity is set to the three lowest levels; the contribution due to 
reversible fouling is computed as the difference between the average of 
the resistance profile along the entire batch and the contribution due to 
irreversible fouling calculated as above. This decomposition is exem-
plified in Fig. 12 for the membrane of one module. The overall resistance 
shows a clear long-term trend, which is associated to irreversible fouling 
and provides indirect indication of how the membrane state changes 
across a production campaign. However, batch-to-batch variability, due 
to the effect of within-batch reversible fouling, somewhat confounds the 
across-batch trend, particularly near membrane replacement (shortly 
before batch no. 70). The proposed resistance feature decomposition 
allows one to decouple the two effects: the resistance feature for irre-
versible fouling is affected by a much smaller variability, while the 
resistance feature for reversible fouling allow one to clearly identify 
batches that suffered from intense fouling, whose profiles can therefore 
undergo additional, in-depth investigation. 

5. Conclusions 

In this study, we developed a hybrid modeling strategy to estimate 
individual resistances of a multi-module membrane separation system in 
an industrial biorefinery that manufactures 1,4-bio-butanediol from 
fermentation of sustainable biomass. We combined a partial least- 
squares regression model, for online estimation of trans-membrane 
pressure (TMP) of each membrane module, and Darcy’s equation for 
modeling of membrane resistances. The proposed modelling strategy 
achieved excellent generalization performance using a linear data- 
driven modeling component, as opposed to the dominant literature ap-
proaches using nonlinear data-driven models that require massive 
datasets for calibration. To the best of the author’s knowledge, this is the 
first time that such results were achieved on a complex industrial bio-
refinery process with limited data. 

The main advantage of the proposed resistance-based monitoring 
approach for membrane fouling characterization are the reduced vari-
ability and increased interpretability of resistances with respect to 
permeate fluxes and TMPs. We illustrated examples on how resistances 
feature clear and defined dynamics, allowing one to properly infer the 
reversible fouling state of membranes and to promptly identify the onset 

Fig. 10. Long-term trends of permeate flux, TMP, and resistance features of one 
membrane module across several consecutive batches. Each dot represents the 
average of profiles of the relevant variable on a batch. The vertical solid black 
lines indicate replacement of the membrane of the same module, while vertical 
dashed lines are membrane replacements of other modules. 

Fig. 11. Time profiles of fouling-related variables for one membrane module 
during one batch to illustrate the rationale of the variation of the cross-flow 
velocity on discrete levels (L.) to counteract the effects of reversible fouling. 
Time periods with constant cross-flow velocity are delimited by vertical lines. 

Fig. 12. Decomposition of overall resistance features (averages over batch 
profiles) of a module in their contributions form irreversible and reversible 
fouling. Vertical solid black lines indicate replacement of the membrane of the 
relevant module, while vertical dashed lines are membrane replacements of 
other modules. 
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of irreversible fouling. We showed how the resistance of a module is 
independent of the resistances of other modules (therefore of membrane 
replacements), a feature that fluxes lack when subject to linear con-
straints such as a control system controlling the overall permeate flow 
rate. Finally, we discussed how to aggregate resistances as batch- 
averages to monitor the long-term evolution of fouling, proposing a 
method to decompose the overall membrane resistance in contributions 
from reversible and irreversible fouling by leveraging process knowl-
edge. Results show that the contribution due to irreversible fouling 
features a monotonic trend, while the contribution due to reversible 
fouling allows one to clearly identify batches that suffered from signif-
icant fouling issues, whose profiles can be analyzed more in-depth for 
diagnostic purposes. 
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