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Abstract. A model of nonlocal heat transfer at nanoscale in rigid bodies is considered. Depending on the relevance of the
particular interaction’s mechanism between the heat carriers and the lateral walls, three different strategies for the setting-
up of the boundary conditions are analyzed, and the consequent forms of the basic fields have been obtained, as well.
From the physical point of view, the possible influence of those interactions on the unknown fields is pointed out. From the
mathematical point of view, instead, the well-posedness of the problem is shown.
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1. Introduction

The rapid progress in nanotechnology and its very huge impact in modern life have stimulated a true
revolution in the heat-transfer phenomenon, spreading its domain of applicability and discovering new
regimes and phenomenologies wherein either the Fourier law, or classical (continuum thermodynamic)
theories are no longer applicable, if one aims at the correct modeling and interpretation of the experimental
data [1–11].

An outstanding model of heat transfer in a rigid body at nanoscale (which goes beyond the classical
thermodynamics) lies upon the following equations [1,2,4,5]:

cvθ̇ + qi,i = 0 (1a)

τ q̇i + qi + κθ,i − �2
(
2qj,ji + qi,jj

)
= 0 (1b)

Remark 1. Throughout this paper, we assume that all fields are defined in a fixed and compact subset
Ω ⊂ R

3 with a piecewise smooth boundary ∂Ω. Since the arguments of the present study regard solid
materials, we assume for Ω the mathematical model of a rigid body, i.e., the boundary ∂Ω is independent
of time (t) here.

In the above theoretical model the heat transport in Ω is described by means of momentum and energy
exchanges between phonons (i.e., quanta of the vibrational mechanical energy arising from oscillating
atoms within a crystal which, in the present paper, are the only heat carriers). In more details, in Eq. (1)
we have

θ = T − T0 (2)
with T being the non-equilibrium temperature [12,13], whereas T0 is the (constant) reference value of
the local-equilibrium temperature. In those equations, furthermore, qi means the local heat-flux vector,
cv the specific heat at constant volume (per unit volume), κ the thermal conductivity, τ the relaxation
time of resistive phonon collisions, and � the phonon mean-free path (related both to the resistive, and
to the normal phonon collisions).
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We note that Eq. (1a) directly follows from the local balance of energy in the case of a rigid body, once
the usual relation du = cvdT (u being the internal energy per unit volume) is used; Eq. (1b), instead,
has been derived for the first time in Refs. [1,2] starting from the Boltzmann equation for phonons in
the Callaway approximation [4,5]. The compatibility of Eqs. (1) with the basic tenets of Continuum
Mechanics has been proved in different contexts (see § 9.3.2 in Ref. [5], for example). Further comments
about Eq. (1b) are postponed in the closing section of this paper. The main merit of Eqs. (1) in the
determination of the unknown basic fields θ (or, alternatively, T by means of Eq. (2)) and qi is the
emphasis given to the role of the nonlocal effects in the heat transport, a topic of much interest at
nanoscale wherein even small temperature differences may lead to high temperature gradients.

From a pure mathematical point of view, one could indeed observe that the actual values of the
aforementioned basic fields (predicted by Eqs. (1)) are strictly related to initial and boundary conditions
(BCs), the setting-up of the latter primarily made in order to ensure a well-posed problem. From the
physical point of view, instead, those conditions should arise from physical evidences and/or have a clear
meaning.

The determination of the initial conditions is generally of no concern either in steady-state situa-
tions, or in transient problems, since it is usually admitted that the system at hand is initially in a
thermodynamic equilibrium.

The right setting-up of BCs, instead, is more delicate and controversial. It should be noted, moreover,
that in the case of Eqs. (1) it becomes still more acute since therein the two unknown fields are coupled:
the BCs on θ and qi, therefore, cannot be independent of each other. As a consequence, the following
question may naturally arise: how to correctly furnish BCs to solve Eqs. (1) both from the physical, and
from the mathematical point of view? To answer that question one may follow different strategies, and/or
theoretical models [5,14–18].

Especially focusing our attention on the role played by the heat flux in the BCs setting-up, from the
pure mathematical point of view here we propose and investigate three possible strategies that can be
used to tackle Eqs. (1). As it will be discussed in what follows, those strategies, which may be related both
to the particular heat-transport regime and to the wall features, have also a clear physical root in such a
way that two of them represent special cases which can be found, in principle, in practical applications
at nanoscale in dealing with the propagation of heat. The present study, therefore, aims at a complete
analysis of heat transfer at nanoscale: without loss of continuity, in fact, by means of our proposal one
might correctly describe a very wide range of heat-transfer regime. In the special case of one-dimensional
(1D) heat transfer, in particular, the goal of this paper is twofold:

(i) From the mathematical point of view, we prove existence and uniqueness of the basic fields in all
the aforementioned BC strategies;

(ii) From the physical point of view, we try to point out the possible (relevant) influence of phonon–wall
interactions on the form of the basic fields.

Summarizing, the present article is organized as follows:

• In Sect. 2 we write down the 1D model equations arising from Eqs. (1);
• In Sect. 3 we investigate about the existence and uniqueness of the solutions of different boundary

value problems related to Eqs. (1);
• In Sect. 4 we furnish the solutions of Eqs. (1) in the above cases of BCs, and comment about the

possible relevance of the phonon–wall interactions;
• in Sec 5 we give final remarks and comments.
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2. Heat transfer in 1D nanostructures

In this paper, we are primarily interested in thermal transport within the so-called 1D nanostructures
(specifically nanowires, nanofibers, nanotubes, and nanorods). For some comprehensive reviews about
the use of these material systems, the readers can refer, for example, to Refs. [19,20] and the references
cited therein. Here we however note that the use of 1D nanostructured materials (with compositions
based on oxides, nitrides, or metals) either due to an extraordinary surface-volume relationship, or to
tunable thermal and transport properties, have become fundamental elements for the development of
energy processes. The heat transfer has been also studied in 1D multi-layer models of polymer foams in
order to determine the equivalent thermal conductivity [21].

In the present analysis, therefore, we always have Ω ≡ [0, l] and ∂Ω ≡ {0; l}, l being the characteristic
(finite) length of the system at hand. Specifically, in what follows we assume 1D heat flow along the
z-axis of a Cartesian coordinate system (see Fig. 1 for a qualitative sketch of the coordinate system under
consideration in the present paper, for example). In this case the aforementioned unknown fields take the
forms

θ = θ (x, t) (3a)

qi = (q (x, t) ; 0; 0) (3b)

and, consequently, Eq. (1) reduces to

cvθt + qx = 0 (4a)

τqt + q + κθx − 3�2qxx = 0 (4b)

Notation 1. From now on, a subscript t denotes time partial derivatives (i.e., ft := ∂f
∂t ), and a subscript

x stands for spatial partial derivative (i.e., fx := ∂f
∂x ).

z

x

0

External heat flux

Local heat flux

l

Fig. 1. Nanolayer heated by an external heat flux perpendicular to it (i.e., the vertical arrows—orange in figure) which
produces a heat flux (i.e., the horizontal arrow—red in figure) in the longitudinal z direction. In this case the subset Ω
indicates a transversal section (i.e., the dashed-dotted line, sketched in figure, the length of which is l) of the nanolayer
which becomes the interval [0; 1] once the non-dimensional variable x is introduced. The two fields h (x, t) and ϑ (x, t) are,
instead, the (non-dimensional) local heat flux and deviation of the non-equilibrium temperature from the local-equilibrium
temperature in that transversal section, respectively (color figure online)
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For computational convenience, we introduce the dimensionless variables

x :=
x

l
t :=

t

τ
ϑ :=

θ

T0
h :=

lq

κT0
(5)

such that we have Ω ≡ [0, 1] and ∂Ω ≡ {0; 1}. Equations (5), indeed, also allows us to switch from the
original couples of

• variables (x, t) ∈ [0, l] × [0, tf ) to the new couple of variables (x, t) ∈ [0, 1] × [0,∞);
• unknown functions θ and q to the new couple of unknown functions ϑ, h : [0, 1] × [0,∞) �→ R.
Furthermore, if we estimate the resistive relaxation time of phonons as

τ =
�

V0p
(6)

wherein V0p stands for the average phonon speed (measured at the reference temperature-value T0), and
we use the well-known Ziman limit [22] for the thermal conductivity, i.e., if we assume that

κ =
cvτV2

0p

3
(7)

then straightforward calculations may show that Eqs. (4) becomes

ϑt +
Kn2

3
hx = 0 (8a)

ht + h + ϑx − 3Kn2hxx = 0 (8b)

with
Kn =

�

l
(9)

being the so-called Knudsen number of the heat transfer. We note that in the case of nanoscale (thermal)
transport regimes one usually has Kn ∼ O (1) (i.e., � ≥ l), whereas the cases in which Kn → 0+ (i.e.,
� 
 l) correspond to macroscale (thermal) transport regimes.

Remark 2. Depending on the Kn value, in principle, at nanoscale the following three different heat-
transfer regimes can be found [23,24]:

• Fourier diffusive regime. In this case Kn is small, and the phonons principally undergo multiple
scattering in the bulk of the system.

• Poiseuille phonon flow. In this case Kn attains moderate values, and the phonon–wall collisions are
comparable to the internal (i.e., in the bulk) phonon scatterings.

• Ballistic regime. In this case Kn is very high, and the boundary-phonon scattering becomes prevalent
among the other mechanisms of scatterings.

Referring the readers to Sect. 3 for the theoretical models of BCs, it seems worth observing that to
our goals we also need prescribing initial data (ID) for the two unknown scalar-valued functions h and ϑ,
too. To this end, let us here assume

h (x, 0) = h0 (x) , ∀x ∈ [0, 1] (10a)

ϑ(x, 0) = 0, ∀x ∈ [0, 1] (10b)

wherein h0 is a regular scalar-valued function of the indicated argument.

Remark 3. From the practical point of view, the above ID means that the system at hand is perturbed
from its local equilibrium only by the application of an external heat flux, given by Eq. (10a). In Ref. [25]
(see, in particular, therein § 4), for example, the authors proposed (externally controllable) heat lenses,
namely, the possibility of focusing plane heat waves into a given (focal) point by the external application
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of a heat flux in the orthogonal direction of a nanolayer. In that case, for example, Ω will be just a
transversal section of the nanolayer (see Fig. 1 for a qualitative sketch) wherein the behaviors of the two
unknown fields h (x, t) and ϑ (x, t) have to be determined for own practical needs.

According with the observations made in Sect. 1, since in the next we choose to prescribe BCs on the
unknown function h (x, t), BCs on the unknown function ϑ (x, t) cannot be freely imposed, too, but they
have to directly follow from the model equations. To this end, as a direct consequence of Eqs. (8a) and
(10b), we may observe that we are able to write

ϑ (x, t) = −Kn2

3

t∫

0

hx (x, T )dT (11)

and hence we have

ϑ (0, t) = −Kn2

3

t∫

0

hx (0, T )dT , ∀t ∈ R
+ (12a)

ϑ (1, t) = −Kn2

3

t∫

0

hx (1, T )dT , ∀t ∈ R
+ (12b)

as the BCs for the unknown scalar-valued function ϑ (x, t).

3. BCs setting-up: existence and uniqueness of solutions

The aim of this section is to prove the well-posedness of the proposed problem. To this end, we will
use the semigroup of linear operators theory. The first step is to see our problem as an abstract Cauchy
problem defined on a convenient Hilbert space. Precisely we will prove existence and uniqueness of the
solutions of our model equations by appending to Eqs. (1) three different types of BCs for the local heat-
flux field and, investigating the consequent problems principally from the mathematical point of view,
we recast Eqs. (8) into an abstract setting introducing a suitable functional framework. Some physical
considerations about the above BCs setting-up strategies are given in Sect. 5.

Let’s consider, therefore, the functional space

H = L2 (0, 1) × L2 (0, 1) (13)

and let A be the operator given by

AU =

⎛

⎝
−h (x, t) − ϑx (x, t) + 3Kn2hxx (x, t)

−Kn2

3
hx (x, t)

⎞

⎠ (14)

where U = (h, ϑ) ∈ H.

3.1. Strategy I: the Robin BCs

In order to solve Eqs. (1) the following Robin (R-) type BCs can be used:

qi − C�qi,jnj = 0, ∀xi ∈ ∂Ω, ∀t ≥ 0 (15)

Equation (15), with nj meaning the outward normal-unit vector to ∂Ω, states that in principle the local
heat flux attains a non-vanishing value at the walls: for this reason we also use the appellation slip-heat
BCs when we refer to Eq. (15). Moreover, therein C is a positive constant (non-dimensional) parameter
which can be related to boundary’s features and models the phonon–wall interactions. Although other
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theoretical proposals of BCs for qi can be found in literature (see, for example, Ref. [26]), avoiding a
deeper microscopic derivation of Eq. (15), let us here only note that they are similar to the velocity-slip
condition in the so-called Maxwell-slip model for rarefied gases [27–29]. A heuristic derivation of Eq. (15)
can be also found in Ref. [17] (see therein § 5). Further physical considerations about Eq. (15) (especially
on C) are postponed to Sect. 5.

In 1D situations Eq. (15) yields

h (0, t) − CKnhx (0, t) = 0, ∀t ∈ R
+ (16a)

h (1, t) + CKnhx (1, t) = 0, ∀t ∈ R
+ (16b)

when the dimensionless variables in Eq. (5) are introduced. Once the R-BCs in Eqs. (16) hold, H in
Eq. (13) is a Hilbert space with the norm

‖U‖2
H = ‖h‖2 +

3
Kn2 ‖ϑ‖2 +

3C

Kn

[
|ϑ (0, t)|2 + |ϑ (1, t)|2

]
. (17)

In addition, the domain D (A) of the operator defined in Eq. (14) is

D (A) =

⎧
⎪⎪⎨

⎪⎪⎩

U ∈ H ; h ∈ H2 (0, 1) , ϑ ∈ H1 (0, 1) :
h (0, t) = CKnhx (0, t) and h (1, t) = −CKnhx (1, t)

ϑ (0, t) = −Kn2

3

t∫

0

hx (0, T )dT and ϑ (1, t) = −Kn2

3

t∫

0

hx (1, T )dT

⎫
⎪⎪⎬

⎪⎪⎭

Under the above notations, the original problem can be therefore written as

d
dt

U (t) = AU (t) , U (0) = U0, ∀t ∈ R
+ (18)

wherein U0 ∈ H stands for the initial datum defined by Eqs. (10).
The well-posedness of the problem given above is guaranteed by the following results.

Theorem 1. Let the operator A be given by Eq. (14). Then A generates a C0-semigroup G (t) of contrac-
tions over H.

Proof. First of all, D (A) is dense in H and it is straightforward to prove that 0 ∈ � (A) (the resolvent
set of A). To this aim, suppose that 0 /∈ � (A); therefore there exists U = 0 in D (A) satisfying equation
AU = 0 which, in terms of its components, can be explicitly written as

− h (x, t) − ϑx (x, t) + 3Kn2hxx (x, t) = 0 (19a)

− Kn2

3
hx (x, t) = 0 (19b)

From Eq. (19b) it follows hx (x, t) = 0, which implies h (x, t) = 0 because, from Eqs. (16), h becomes a
null function on the boundary. Substituting this into Eq. (19a), it follows that ϑx (x, t) = 0. Since Eqs. (12)
assures that also ϑ becomes a null function on the boundary, we conclude that ϑ = 0. This shows that
U = 0, which is a contradiction. Therefore, 0 ∈ � (A).

In addition it is not difficult to see that A is a dissipative operator in the space H. More precisely,
multiplying Eq. (8a) and Eq. (8b) by h and ϑ, respectively, integrating by part and using boundary
conditions, we have that the Real part of the corresponding scalar product in H can be written as

Re〈AU, U〉H = −
[
‖h‖2 + 3Kn2‖hx‖2 + 3CKn3

(
|hx (0, t)|2 + |hx (1, t)|2

)]
(20)

Therefore, from Lumer–Phillip’s theorem (see Ref. [30]), we have that A is the infinitesimal generator
of a contraction C0-semigroup �

From Theorem 1 we can then state the following result (see Ref. [30]):
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Theorem 2. (Existence and Uniqueness) For any U0 ∈ H there exists a unique mild solution of the
problem set by Eq. (18). Moreover, if U0 ∈ D (A) then the solution is strong and U ∈ C1 ([0, ∞) ; H) ∩
C ([0, ∞) ; D (A)).

According to Theorems 1 and 2, for a given initial datum U0 ∈ H we have

U(t) = G (t)U0

3.2. Strategy II: the Dirichlet BCs

Equations (1) can be also solved by means of the following Dirichlet (D-) type BCs for the local heat-flux
field:

qi = 0, ∀xi ∈ ∂Ω, ∀t ≥ 0 (21)
Equation (21), which state that the local heat flux attains a vanishing value at the walls, in 1D

situations becomes

h (0, t) = 0, ∀t ∈ R
+ (22a)

h (1, t) = 0, ∀t ∈ R
+ (22b)

when the dimensionless variables in Eqs. (5) are introduced. We note that the D-BCs in Eq. (21) (or,
alternatively, in Eqs. (22)) directly arise from the R-BCs in Eq. (15) (or, alternatively, in Eqs. (16)) when
C → 0+, namely, when the diffusive phonon–wall scatterings are predominant. For this reason, we also
use the appellation diffusive BCs when we refer to Eqs. (22).

The well-posedness of our problem is guaranteed if we consider D-BCs, too. In this case, the domain
of the operator A defined in Eq. (14) becomes

D (A) =

⎧
⎨

⎩

U ∈ H ; h ∈ H2
0 (0, 1) , ϑ ∈ H1 (0, 1) :

ϑ (0, t) = −Kn2

3

t∫

0

hx (0, T )dT and ϑ (1, t) = −Kn2

3

t∫

0

hx (1, T )dT

⎫
⎬

⎭

and its norm and dissipativeness can be obtained by Eqs. (17) and (20), respectively, by imposing C → 0+.
In fact they read

‖U‖2
H = ‖h‖2 +

3
Kn2 ‖ϑ‖2 (23)

and
Re〈AU, U〉H = −

[
‖h‖2 + 3Kn2‖hx‖2

]
(24)

Moreover, following the same strategy as in R-BCs, we obtain 0 ∈ � (A). Hence, Theorem 1 holds and
Theorem 2 assures the existence and uniqueness for the solution of the problem with D-BCs.

3.3. Strategy III: the Neumann BCs

A further strategy, which can be pursued to integrate Eqs. (1), lays upon the introduction of the following
Neumann (N-) type BCs for the local heat-flux field:

qi,jnj = 0, ∀xi ∈ ∂Ω, ∀t ≥ 0 (25)

Equation (25), stating that the normal derivative of the local heat flux attains a vanishing value at the
walls, directly arises from the R-BCs in Eq. (15) when C → +∞, namely, when the specular phonon–wall
scatterings are predominant: for this reason, Eq. (25) could be also named as specular BCs.

In 1D situations the above N-BCs become

hx (0, t) = 0, ∀t ∈ R
+ (26a)

hx (1, t) = 0, ∀t ∈ R
+ (26b)
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when the dimensionless variables in Eqs. (5) are introduced. In this case, following Eqs. (12), N-BCs on
h impose D-BCs on ϑ.

The well-posedness result can be achieved also here and deserve a brief discussion. Precisely, in this
case Eq (23) still holds, whereas the domain of the operator A defined in Eq. (14) becomes

D (A) =
{
U ∈ H ; h ∈ H2 (0, 1) , ϑ ∈ H1

0 (0, 1) :
hx (0, t) = 0 and hx (1, t) = 0

}

and its dissipativeness can be obtained by Eq. (20), respectively, by imposing boundary conditions. In
fact it reads

Re〈AU, U〉H = −
[
‖h‖2 + 3Kn2‖hx‖2

]
(27)

Moreover, in order to prove that 0 ∈ � (A), by contradiction we suppose that 0 /∈ � (A). As observed
in the case of the R-BCs, there exists U = 0 in D (A) satisfying equation AU = 0, from which, being
hx = 0 and ϑx = −h, we obtain that h is constant and ϑ a linear function of x. Once more, from the null
boundary conditions on ϑ, we obtain that U = 0, which is a contradiction.

Hence, existence and uniqueness result directly follows from Theorems 1 and 2

Remark 4. In the present theoretical approach to the problem of BCs setting-up, the coefficient C is used
to describe with continuity the transition from a regime of heat transfer wherein the specular phonon–wall
scatterings are predominant (large values of C) to a regime of heat transfer wherein the diffusive phonon–
wall scattering mechanism only matters (small values of C). The limit situation C = 0 characterizes a
wall which completely absorbs the incoming phonons (modeled as flowing rigid particles, according with
the approach used in Refs. [16,26] and our comments in Sect. 5).

4. Forms of heat-flux field: BCs in comparison

In this Section we explicitly furnish the forms of the two basic fields h (x, t) and ϑ (x, t), once both the
above strategies of BCs setting-up are pursued. We refer the readers to the “Appendix” at the end of
this paper for a sketch of the solution method used to obtain Eqs. (28), (30) and (31). Therein the forms
of the 2n constants λ1

n and λ2
n (appearing in those equations) can be found, as well as information about

the n numerical constants βn.
Since in the present analysis we have primarily focused our attention on the role played by the heat

flux at the boundaries, in this Section then we only discuss the qualitative behaviors of h (x, t) in the
system at hand.

4.1. Strategy I: the Robin BCs

Once the slip-heat BCs in Eqs. (16) are prescribed, Eqs. (8) yields the following forms of the basic fields
h and ϑ:

h (x, t) =
+∞∑

n=0

(
Aneλ1

nt + Bneλ2
nt
)

cos (γn − βnx) (28a)

ϑ (x, t) =
Kn2

3

+∞∑

n=0

βn

[
An

λ1
n

(
1 − eλ1

nt
)

+
Bn

λ2
n

(
1 − eλ2

nt
)]

sin (γn − βnx) (28b)

wherein

γn = arctan
(

1
βnCKn

)
, ∀n ∈ N (29)

and the values of the several constants An and Bn arise from the initial conditions in Eqs. (10).
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Fig. 2. R-BCs: h VS (x, t). Theoretical result arising from Eq. (28a). The computation has been made by assuming C = 2.5
and Kn = 2

In Fig. 2 we plot the theoretical result arising from Eq. (28a). As an example, for the sake of compu-
tation, to obtain that profile we have specialized Eq. (10a) as

h0 (x) = 1 − ecos(x2−x)−1

4.2. Strategy II: the Dirichlet BCs

If the diffusive BCs in Eqs. (22) are prescribed, instead, Eqs. (8) yields the following forms of the basic
fields h and ϑ:

h (x, t) =
+∞∑

n=0

(
Aneλ1

nt + Bneλ2
nt
)

cos
(π

2
− (n + 1) πx

)
(30a)

ϑ (x, t) =
Kn2

3

+∞∑

n=0

(n + 1) π

[
An

λ1
n

(
1 − eλ1

nt
)

+
Bn

λ2
n

(
1 − eλ2

nt
)]

sin
(π

2
− (n + 1) πx

)
(30b)

with the values of the several constants An and Bn being given by the initial conditions in Eqs. (10).
Note that Eqs. (30) directly arise from Eqs. (28)–(29) when C → 0+ therein.

In Fig. 3 we plot the theoretical results arising from Eq. (30a): for the sake of computation, to obtain
that profile we have specialized Eq. (10a) as

h0 (x) = 1 − ecos(x2−x)−1
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Fig. 3. D-BCs: h VS (x, t). Theoretical result arising from Eq. (30a). The computation has been made by assuming Kn = 2

4.3. Strategy III: the Neumann BCs

The specular BCs in Eqs. (26), instead, allow to obtain the following forms of the basic fields h and ϑ
from Eqs. (8):

h (x, t) =
+∞∑

n=0

(
Aneλ1

nt + Bneλ2
nt
)

cos ((n + 1) πx) (31a)

ϑ (x, t) = −Kn2

3

+∞∑

n=0

(n + 1) π

[
An

λ1
n

(
1 − eλ1

nt
)

+
Bn

λ2
n

(
1 − eλ2

nt
)]

sin ((n + 1) πx) (31b)

with the values of the several constants An and Bn being given by the initial conditions in Eqs. (10).
Note that Eqs. (31) directly arise from Eqs. (28)–(29) when C → +∞ therein.

In Fig. 4 we plot the theoretical result arising from Eq. (31a). As an example, for the sake of compu-
tation, to obtain that profile, we have specialized Eq. (10a) as

h0 (x) = 1 − ecos(x2−x)−1
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Fig. 4. N-BCs: h VS (x, t). Theoretical result arising from Eq. (31a). The computation has been made by assuming Kn = 2

4.4. BCs in comparison: role of the different mechanisms of phonon–wall scattering

Although the shapes of the unknown basic field h (x, t) plotted in Figs. 2, 3 and 4 are related to the
particular ID in Eqs. (10), some interesting considerations on the role played by the different BCs (i.e.,
the different mechanisms of phonon–wall scattering) can be however pointed out by their analysis. First
of all, as it was naturally expected owing to dissipative effects, from those figures it is possible to see
that (in all the situations under consideration in the present paper) the field h (x, t) tends to a steady
profile which is characterized by heat-flux plateau values lower than the initial ones in any point of Ω.
In particular, in the cases of slip-heat and specular BCs the heat-flux profile tends to the steady profile
faster than in the case of diffusive BCs. Although being a very fast process in any situations, this is a
tantamount to claim that in latter case the system reaches its thermodynamic equilibrium slower than
in the two former cases: therefore in Ω the local equilibrium seems to be reached as more slowly as
the diffusive phonon–wall scatterings are more predominant with respect to the specular phonon–wall
scatterings. Incidentally, we also underline that in Ω the equilibrium is characterized by a flat profile of
h (x, t) both in the case of Eqs. (16), and in the case of Eqs. (26), whereas it is not uniform in the case
of Eqs. (22). Similar results have been obtained in Ref. [24], for example.

From Figs. 2, 3 and 4 it is also interesting to point out that the heat-flux plateau value attained both
in the case of Eqs. (16), and in the case of Eqs. (26), will be higher than the heat-flux plateau value
attained in the case of Eqs. (22). This result was indeed expected owing to the non-vanishing values of
the heat flux at the lateral walls predicted by the BCs in Eqs. (16) and (26): the above plateau values
of the heat flux (which characterize the thermodynamic equilibrium of the systems), in fact, are clearly



  147 Page 12 of 21 I. Bochicchio, F. Giannetti and A. Sellitto ZAMP

related to heat flux at the boundary. Noticing that the heat-flux value at the equilibrium is substantially
related to the energy which has been stored by (or transferred to) the system, the observation above
could be useful for practical applications at nanoscale since one of the aspects which is currently studied
is the heat removal and the consequent cooling of very small areas heated by some external source, either
static (as hot spot due to a very miniaturized working device), or a fast laser pulse, for instance. Starting
from this observation, a possible interesting role of the system’s boundary seems to come out: ∂Ω, in fact,
could be modeled for own needs, instead of changing the characteristic dimensions of the system.

On the other hand, it seems also worth observing that the theoretical profiles in Figs. 2 and 4 are
practically the same; although a more exhaustive analysis is required, at the present stage we suppose
that this may be fundamentally due to the role played by the Knudsen number (which characterizes the
particular regime of heat transfer, according to Remark 2), too: Eq. (26), in fact, can be not only viewed
as the limit of Eqs. (16) for very large values of C, but also as the limit of Eqs. (16) for very high values
of Kn (which is related to �, according with Eq. (9)).

Since the phonon mean-free path is also related to the material of the system at hand, depending on
the aimed needs, the above observations point out that one should always look for the best combination
between the material and the boundary’s shape of the system at hand.

5. Conclusions

In non-metallic materials the heat-transfer phenomenon is fundamentally due to phonons. Depending
on the comparison between the characteristic size l of the system at hand and the phonon mean-free
path �, the phonons may undergo different regimes. When l � �, in fact, the mechanism of phonon-
bulk scattering is predominant: the heat transfer is diffusive and it can be correctly described by the
usual Fourier law. Whenever l ≤ �, instead, phonon–wall scatterings predominate over phonon-bulk
scatterings, and the heat-transport regime may be either hydrodynamic, or ballistic. In these two cases,
the Fourier law breaks down [3,9,31,32]. Among the different theories and/or approaches which have been
developed to face with the breakdown of the Fourier law at nanoscale and to describe thermal transport
in nanosystems, a special attention should be put on the phonon hydrodynamics [5,16,23,24,26] since it
connects mesoscopic and microscopic approaches. On the other hand, an interesting question is whether
phonon–wall collisions should be taken into account in prescribing the BCs for the local heat-flux value,
or not, whenever the Fourier law is no longer applicable. To this end, it seems worth noticing that in
nanosystems the surface scattering is expected to play an important role [16,33–38] in such a way that,
for example, thermal perturbations across the transversal section of a layer are well described by an
effective thermal conductivity which decreases for decreasing thickness of the layer [16,37].

Our answer to the above question is affirmative: therefore in this paper we look at a possible strategy
which can be used to predict the two basic fields T and qi from the heat-transfer model in Eqs. (1). In
particular, by considering the thermal transport within a strip (i.e., a nanolayer wherein the thickness is
much smaller than its other two characteristic sizes, see Fig. 1 for a qualitative picture of the problem at
hand) we have focused our analysis in a cross section Ω of it which indeed reduces to a line, thus sketching
a 1D nanosystem. Hence, the domain of our interest is the 1D interval [0, l] which has been scaled to [0, 1]
for computational convenience by means of Eqs. (5). In this domain, we imposed that the perturbation
from the local equilibrium is obtained by the application of an external heat flux perpendicular to Ω
wherein we are interested to evaluate the consequent heat transfer (as sketched in Fig. 1). In doing this we
underline that, on a mesoscopic level, in our approach the heat flux is only the consequence of moving heat
carriers [16,24,26] which in our case are only the phonons. On the light of this observation, in any time,
all the phonons inside Ω will give a positive contribution to the local heat flux: they certainly cross that
section. The same cannot be said, instead, for the phonons that collide with the lateral walls ∂Ω which,
therefore, should deserve a detailed discussion: depending on the particular phonon–wall interactions, in
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Fig. 5. Interaction of the phonons with the wall. Specular reflections yield that the phonons are reflected with an angle of
reflection equal to the angle of incidence. Diffusive reflections involve the possible consequent motion of the phonons in all
directions. The circle (red in figure) stands for a phonon hitting the lateral wall (color figure online)

fact, after the collision a phonon may either continues to move in the positive z direction, or turn back and
move in the negative z direction. For this reason, in a first approach, we can classify the above interactions
in two different types: specular and diffusive. In the former case, after the collision, the phonon moves
in the positive direction with an angle of reflection equal to the angle of incidence; in the latter case,
instead, all the directions of reflection are equiprobable after the collision. Both the above two different
types of phonon–wall interactions are qualitatively sketched in Fig. 5.

Since those reflections could sensibly modify the number of the phonons crossing Ω, in our approach
we strategically insert them into the BCs setting-up, thus prescribing them on the heat flux. Precisely,
the general possibility that both specular and diffusive interactions occur is included into the slip-heat
R-BCs in Eq. (15) that finds its original physical root in the phonon-hydrodynamic approach [16,24,26]
which regards the whole set of heat carriers as free particles of a gas in a box [39], the hydrodynamic-
like equations of which describe the heat transport [26,40]. The occurrence in which one type of those
interactions is predominant with respect to the other is instead meant as a particular case (or a limiting
case, depending on the actual value of C) of Eq. (15) in our approach. In particular

i. when the diffusive reflections are completely predominant with respect to the specular ones Eq. (15)
reduces to Eq. (21), namely, the diffusive D-BCs hold;

ii. when the specular reflections are completely predominant with respect to the diffusive ones Eq. (15)
reduces to Eq. (25), namely, the specular N-BCs hold.

We note that the drastic BC in Eq. (21), holding when the number of diffusive reflections is sensibly
higher than the number of specular reflections, in our approach directly arises from the observation that
in principle, since all the reflection directions have the same probability of occurring, the average number
of phonons going forward is null: in a certain sense, the boundary is able to stop all the incoming hitting
phonons.

All these observations may explain why, in contrast with the usual approaches, we propose a novel
approach to BCs, setting them on the local heat-flux field, instead of on the temperature field. It is
also important to note that our approach, that is substantially related to the way as the phonon–wall
interactions are included in the model, is reflected in Eq. (1b) that has indeed an important differences
with respect to the original proposal of Guyer and Krumhansl [2]. In Ref. [2], the authors include the
phonon–wall interactions in the relaxation time and in the consequent effective thermal conductivity
appearing in the model equations. Precisely, in order to estimate τ , they combine a relaxation time τb

(due to phonon–wall interactions) with the usual relaxation time due to the bulk resistive mechanisms
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by means of the Matthiessen rule as

1
τ

=
1
τu

+
1
τi

+
1
τd

+
1
τb

being τu the relaxation time of umklapp phonon-phonon collisions, τi the relaxation time of phonon-
impurity collisions, and τd the relaxation time of phonon-defect collisions. Once the combined resistive-
boundary collision time is so obtained, an effective thermal conductivity κeff (depending on the size of
the system through τb) was calculated as in Eq. (7) and then it is used in the third term of the left-hand
side of Eq. (1b). In our approach, instead,

i. the phonon-boundary collisions do not display any contribution in τ , but they are directly included
in the BCs by means of the heat flux;

ii. we assume that κ in Eq. (1b) is the usual bulk thermal conductivity, and not the effective one as
done in Ref. [2].

At the very end we remark that, in our approach to the BCs setting-up problem, an important role is
played by the (positive and non-dimensional) coefficient C. As aforementioned observed, in fact, Eq. (15)
yields both Eq. (21) for vanishing values of C, and Eq. (25) for very high values of C. In principle, that
parameter can be related to the combination of diffusive and specular phonon–wall scattering as [16,24,26]

C = 2
(

1 + p

1 − p

)
ξ (32)

with p ∈ (0, 1) being the relative number of phonon–wall specular collisions as compared to the to-
tal number of specular and diffusive collisions, according with the kinetic theory of rarefied gases and
electrons [22,41,42], and ξ being a positive numerical constant (smaller than 1 [17]) which models the
mechanical features of the lateral walls. In Ref. [37], for example, that parameter has been related both
to the root-mean-square value of the roughness fluctuations, and to the average distance between rough-
ness peaks. Hence, large values of C mean that the specular phonon–wall scattering dominates over the
diffusive one; conversely, small values of C mean that diffusive phonon–wall collisions are predominant
over specular ones. Along with this point view the BCs in Eq. (21) (which are more restrictive in com-
parison with the other BCs used in the present paper), besides the situation of an adiabatically isolated
system, may also model the circumstance in which the phonon–wall interactions lead to a suppression of
the heat flux at the boundary, thus recalling the idea of the metal-insulator Anderson transition [43,44]
which can be found in amorphous systems, for example, wherein the atomic disorder is so high that
extended electron states become suppressed and only localized electron states remain, which do not allow
a long-range electron current. A reduction in the heat flux may in principle arises from the localization
due to quantum effects: indeed, when the radius of a nanowire becomes very small, for example, in view
of the Heisenberg principle, it follows that the transversal speed of the particles must become high, thus
reducing the energy going along the nanowire, as a fraction of the total energy will be removed from
the longitudinal dimension to feed the energy of the transversal direction. Thus, even in smooth walls,
for sufficiently thin nanowires, quantum localization effects could strongly reduce the total heat flux be-
yond the reduction implied by classical collisions of phonons with the walls [26]. This possibility, which
should deserve deeper investigation, allows us to claim that the present study about the setting-up of
BCs, although encompassing a quite comprehensive overview of mechanisms of phonon–wall interactions,
is however still far from its final end; a refined model of BCs, for example, should also account for the
phonon backscattering, namely, the possibility that in a very narrow region close to the walls the local
heat flux may also have the same direction of the temperature gradient [26,37].
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Appendix

For the sake of a pedagogical goal, here we furnish some details about the mathematical method used to
solve Eqs. (8) when Eqs. (16), (22) and (26) are prescribed as BCs. Indeed, as a direct consequence of
Eqs. (8), we firstly have

ϑtx +
Kn2

3
hxx = 0

htt + ht + ϑxt − 3Kn2hxxt = 0

which then yield

htt + ht − Kn2

3
hxx − 3Kn2hxxt = 0 (33)

The so-called Fourier method suggests to find the solution of Eq. (33) in the form

h (x, t) = G (x) F (t) , ∀ (x, t) ∈ [0, 1] × [0,∞) (34)

wherein G and F are two regular scalar-valued functions of the indicated arguments. Since the coupling
of Eqs. (33) and (34) it turns out

G′′

G
=

F ′′ + F ′

3Kn2F ′ + Kn2

3 F
. (35)

From the above relation, it is easy matter to observe that the two above functions G = G (x) and
F = F (t) have to fulfill, respectively, the following ODEs

G′′ − αG = 0 (36a)

F ′′ + F ′ − α

(
3Kn2F ′ +

Kn2

3
F

)
= 0 (36b)

with α ∈ R, in principle.
The solutions of ODEs (36) are clearly influenced by the sign (and the value) of α, which has to be

such that the following Sturm–Liouville (SL) problems do not admit the only trivial solution G (x) =
0, ∀x ∈ [0, 1]. Thus:

http://creativecommons.org/licenses/by/4.0/
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(I) ⎧
⎨

⎩

G′′ − αG = 0
G (0) − CKnG′ (0) = 0
G (1) + CKnG′ (1) = 0

(37)

when the R-BCs (16) have been assigned,
(II) ⎧

⎨

⎩

G′′ − αG = 0
G (0) = 0
G (1) = 0

(38)

when the D-BCs (22) hold. Note that the SL problem (38) directly arises from the SL problem (37)
when C → 0+ (the diffusive phonon–wall scatterings being predominant).

(III) ⎧
⎨

⎩

G′′ − αG = 0
G′ (0) = 0
G′ (1) = 0

(39)

when the N-BCs (26) hold. Note that the SL problem (39) directly arises from the SL problem (37)
when C → +∞ (the specular phonon–wall scatterings being predominant).

In order to have information about α, the following result can be used.

Theorem 3. Let G : [0, 1] �→ R the general solution of ODE (36a). The SL problems (37)–(39) display
nontrivial solutions if, and only if, α < 0.

Proof. To prove Theorem 3, it can be useful to distinguish the following cases.
Case 1: α = 0
In this case Eq. (36a) yields

G (x) = Âx + B̂ (40)
and, consequently, by direct calculations we obtain what follows.
(I) The SL problem (37) does not admit the only trivial solution if, and only if,

1 + 2CKn = 0

which is only fulfilled for the unphysical condition 2CKn = −1 (according with the aforementioned
considerations about C and Kn: both of them are positive constants).

(II) The SL problem (38) always admits the only solution G (x) = 0, ∀x ∈ [0, 1].
(III) The SL problem (39) has no solutions.

Case 2: α > 0
In this case Eq. (36a) yields

G (x) = Âe−√
αx + B̂e

√
αx (41)

Recalling what previously said about the case α = 0, the considerations below are enough to claim
that α cannot be a positive value, if the only trivial solution G (x) = 0, ∀x ∈ [0, 1], is not desired.
(I) The SL problem (37) does not admit the only trivial solution if, and only if,

(
1 +

√
αCKn

)2
e

√
α −

(
1 −

√
αCKn

)2
e−√

α = 0 (42)

which is only fulfilled if α = 0 therein (whatever the value of CKn is).
(II) The SL problem (38) does not admit the only trivial solution if, and only if,

e
√

α − e−√
α = 0

which is only fulfilled if α = 0 therein. Note that the above relation directly arises from Eq. (42)
when C → 0+ therein.
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Fig. 6. Δ− versus β for different values of CKn: results arising from Eq. (44)

(III) The SL problem (39) does not admit the only trivial solution if, and only if,

α
(
e

√
α − e−√

α
)

= 0

which is only fulfilled if α = 0 therein. Note that the above relation directly arises from Eq. (42)
when C → +∞ therein.

Case 3: α < 0
In this case Eq. (36a) yields

G (x) = Â cos (βx) + B̂ sin (βx) (43)

wherein we set β :=
√

|α| just for the sake of a simple notation. Straightforward calculations point out
the following results.

(I) The SL problem (37) does not admit the only trivial solution if, and only if, β is a zero of the
following function:

Δ− := sinβ
[
β2 (CKn)2 − 1

]
− 2βCKn cos β (44)

As it can be clearly seen from Fig. 6 (wherein we plot Δ− versus β for different values of CKn), in
addition to β = 0 (which is not admissible according with what previously pointed out), the Δ−

function displays n (infinite) zeros.
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(II) The SL problem (38) does not admit the only trivial solution if, and only if, the condition sinβ = 0
holds, namely, if β = (n + 1) π, ∀n ∈ N. We note that this result directly arises by checking the
zeros of the Δ− function above when C → 0+.

(III) The SL problem (39) does not admit the only trivial solution if, and only if, the condition β2 sin β = 0
holds, namely, if β = (n + 1) π, ∀n ∈ N. We note that this result directly arises by checking the
zeros of the Δ− function above when C → +∞.

The considerations above are enough to prove Theorem 3. �

Remark 5. Equation (44) cannot be indeed analytically solved. Its infinite solutions are clearly scalar-
valued functions of the type βn = βn (C,Kn). Since those functions do not have analytical expressions,
therefore, they are only indicated by βn in Eqs. (28). From the aforementioned considerations, however,
we may infer that

lim
C→0+

βn = nπ, ∀n ∈ N

lim
C→+∞

βn = nπ, ∀n ∈ N

As a direct consequence of the results above, we have:
(I) The SL problem (37) admits n (infinite) eigenvalues βn. The corresponding eigenfunctions are

Gn (x) = DR
n cos (γn − βnx) , ∀n ∈ N (45)

with γn being given by Eq. (29), and DR
n are suitable (infinite) numerical constants. The values of

βn also influence the solutions of ODE (36b) which, however, read

Fn (t) = Aneλ1
nt + Bneλ2

nt, ∀n ∈ N (46)

wherein we have

λ1,2
n = −

(
1 + 3β2

nKn2

2

)
⎡

⎣1 ∓

√

1 − 4
3

(
βnKn

1 + 3β2
nKn2

)2
⎤

⎦ (47)

Incidentally we note that λ1,2
n < 0, ∀n ∈ N.

The coupling of Eqs. (45) and (46) allows us to obtain Eq. (28a) which, in turn, gives Eq. (28b)
from Eq. (11).

(II) The SL problem (38) admits the n (infinite) eigenvalues βn := (n + 1) π, ∀n ∈ N. The corresponding
eigenfunctions are

Gn (x) = DD
n cos

(π

2
− (n + 1) πx

)
, ∀n ∈ N (48)

with DD
n being suitable (infinite) numerical constants. When those eigenvalues are inserted into

ODE (36b), straightforward calculations allow us to obtain again Eq. (46) with

λ1,2
n = −

[
1 + 3π2 (n + 1)2 Kn2

2

]
⎧
⎪⎨

⎪⎩
1 ∓

√√
√
√1 − 4

3

[
(n + 1) πKn

1 + 3π2 (n + 1)2 Kn2

]2
⎫
⎪⎬

⎪⎭
(49)

in this case. We also note that Eqs. (48) and (49) directly arise from Eqs. (45) and (47), respectively,
when C → 0+. It is also worth noticing that λ1,2

n < 0, ∀n ∈ N again.
The coupling of Eqs. (46) and (48) allows us to obtain Eq. (30a) which, in turn, gives Eq. (30b)
from Eq. (11).

(III) The SL problem (39) admits the n (infinite) eigenvalues βn := (n + 1) π, ∀n ∈ N, too. The corre-
sponding eigenfunctions, instead, are

Gn (x) = DN
n cos ((n + 1) πx) , ∀n ∈ N (50)
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with DN
n suitable (infinite) numerical constants. When those eigenvalues are inserted into ODE (36b),

straightforward calculations allow us to obtain again Eq. (46) with λ1,2
n still given by Eq. (49). We

also note that Eqs. (50) and (49) directly arise from Eqs. (45) and (47), respectively, when C → +∞.
The coupling of Eqs. (46) and (50) allows us to obtain Eq. (31a) which, in turn, gives Eq. (31b)
from Eq. (11).

Equations (28), (30) and (31) contain the 2n numerical constants An and Bn. In order to determine
all of them we need to prescribe two independent sets of n linear algebraic equations.

The first set arises from the initial condition on the heat flux, i.e., Eq. (10a), and reads:

(i) h0 (x) =
∑n

k=0 (Ak + Bk) cos (γk − βkx) , ∀n ∈ N

in the case of R-BCs.
(ii) h0 (x) =

∑n
k=0 (Ak + Bk) sin ((n + 1) πx) , ∀n ∈ N

in the case of D-BCs. Note that this set of linear algebraic equations directly follows from the set i)
above when C → 0+ therein.

(iii) h0 (x) =
∑n

k=0 (Ak + Bk) cos ((n + 1) πx) , ∀n ∈ N

in the case of N-BCs. Note that this set of linear algebraic equations directly follows from the set i)
above when C → +∞ therein.

The second set of n linear algebraic equations cannot be obtained by the initial condition on the
temperature: Eqs. (28b), (30b) and (31b), in fact, trivially give ϑ (x, t) = 0 at the initial time t := 0, and
no conditions on the numerical constants An and Bn can be therefore obtained. On the other hand, by
requiring that Eqs. (28) (in the case of the R-BCs), (30) (in the case of the D-BCs), and (31) (in the case
of the N-BCs) always (i.e., ∀ (x, t) ∈ [0, 1] × (0,+∞)) fulfill Eq. (8), straightforward calculations allow us
to obtain the following second set of n linear algebraic equations

(i) in the case of R-BCs

0 =
Kn2

3

n∑

k=0

β2
k

(
Ak

λ1
k

+
Bk

λ2
k

)
cos (γk − βkx) , ∀n ∈ N (51)

with λ1
n and λ2

n being given by Eq. (47).
(ii) in the case of D-BCs

0 =
Kn2

3

n∑

k=0

π2 (k + 1)2
(

Ak

λ1
k

+
Bk

λ2
k

)
sin ((k + 1) πx) , ∀n ∈ N (52)

with λ1
n and λ2

n being given by Eq. (49).
Note that Eqs. (52), remembering Eqs. (29), arises from Eq. (51) when C → 0+ therein.

(iii) in the case of N-BCs

0 =
Kn2

3

n∑

k=0

π2 (k + 1)2
(

Ak

λ1
k

+
Bk

λ2
k

)
cos ((k + 1) πx) , ∀n ∈ N (53)

with λ1
n and λ2

n being still given by Eq. (49).
Note that also in this case Eq (53), remembering Eq (29), arises from Eq. (51) when C → +∞
therein.

Remark 6. Both from the coupling of Eqs. (28b) and (51) (in the case of slip-heat BCs), and from the
coupling of Eqs. (30b) and (52) (in the case of diffusive BCs), as well as from the coupling of Eqs. (31b)
and (53) (in the case of specular BCs), we may turn out that ϑ (x, t) → 0 when t → +∞: from the
practical point of view, me may therefore claim that the system at hand turns back to an equilibrium
state when t → +∞. This is a condition which is physically expected, if one also observes that h (0, t) → 0
when t → +∞ in all the BC strategies analyzed.
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