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Efficient Structure Slimming for Spiking
Neural Networks

Yaxin Li, Xuanye Fang, Yuyuan Gao, Dongdong Zhou, Jiangrong Shen,
Jian K. Liu, Gang Pan, Qi Xu∗

Abstract—Spiking neural networks (SNNs) are deeply in-
spired by biological neural information systems. Compared to
convolutional neural networks (CNNs), SNNs are low power
consumption because of their spike based information processing
mechanism. However, most of the current structures of SNNs
are fully-connected or converted from deep CNNs which poses
redundancy connections. While the structure and topology in
human brain systems are sparse and efficient. This paper aims
at taking full advantage of sparse structure and low power
consumption which lie in human brain and proposed efficient
structure slimming methods. Inspired by the development of
biological neural network structures, this paper designed types
of structure slimming methods including neuron pruning and
channel pruning. In addition to pruning, this paper also considers
the growth and development of the nervous system. Through
iterative application of the proposed neural pruning and rewiring
algorithms, experimental evaluations on CIFAR-10, CIFAR-100,
and DVS-Gesture datasets demonstrate the effectiveness of the
structure slimming methods. When the parameter count is
reduced to only about 10% of the original, the performance
decreases by less than 1%.

Impact Statement—Spiking neural networks, with spiking neu-
ron models as the fundamental units, exhibit excellent qualities
such as biological interpretability and low power consumption.
Drawing inspiration from the plasticity of the network structure
in the biological neural system, we propose a method for adaptive
learning in spiking neural networks. This method explores the
network structure at two levels: neuron granularity and feature
map granularity. During the process of network training, inactive
units are identified and pruned to achieve a sparse network
structure. This process resembles the sparse connectivity and
ultra-low power consumption employed by the human brain in
processing various perceptual information. Our method main-
tains high accuracy even when compressing the network structure
to a larger extent. By combining the plasticity of the biological
neural system and learning methods of artificial neural networks,
we explore a novel framework for adaptive sparse learning in
neural networks.

Index Terms—Channel pruning, network slimming, spiking
neural networks, structure learning, weight pruning
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I. INTRODUCTION

The human brain has billions of neurons and synapse
structures, yet very little energy is required. Spiking neu-
ral networks (SNNs) are constructed to mimic the working
principles and mechanisms of the human brain, utilizing
spiking sequences to transmit information. Most of the model
structures of SNNs are derived from existing structures in
artificial neural networks (ANNs), and such structures are
fixed and unchanged during the training process. However,
the neurons and connection structure of the human brain
are constantly changing during development, including the
growth, development, and death of neurons [1], [2].

Considering the event-driven and biological plausible na-
ture, SNNs are supposed to be a more energy efficient model
compared to traditional deep neural networks (DNNs). Al-
though SNNs are deeply inspired by biological neural systems,
most of the current structures of typical SNNs are not sparse
as biological neural systems which results in more energy
consumption as DNNs did.

Because of the fixed fully-connected structure, there exists
parameter redundancy for most of the SNNs which makes
them lack rich structural plasticity and could not mimic highly
efficient neural computation of biological neural systems.
More importantly, the redundant connections and parameters
would get the whole network model into an energy-draining
situation whenever during training or inference [3] [4] [5].

Currently, many existing SNN architectures heavily rely
on dense and fixed connections and are often constructed
using well-established structures such as ResNet and VGG
[6] [7]. However, when these complex architectures are used
to build larger and deeper neural networks for training tasks,
they demand significant computational power and resources.
This poses challenges when it comes to deploying them on
resource-constrained embedded devices for practical applica-
tions. In the human brain, network connections are typically
sparse [8], and the amount of energy required to operate
is also very low. Therefore, there is a growing interest in
exploring methods to sparsify network structures in the context
of SNNs. By doing so, we aim to harness the energy-efficient
characteristics of SNNs more effectively. It’s crucial to clarify
that this sparsification approach is distinct from simply porting
traditional ANNs to SNNs. Instead, it involves redesigning and
optimizing SNN architectures to better align with the sparse
and energy-efficient principles observed in biological neural
networks.

Aiming at this, this paper proposed an efficient structure
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Fig. 1: Slimming based on neuron pruning.

slimming method for SNNs. Inspired by slimming method
[9], this paper combing the surrogate gradient method and
network pruning method to construct deep but not redundant
SNN models.

This framework includes two pruning methods: pruning
at the neuron level and pruning at the feature map level.
Pruning at the neuron level involves compressing the network
structure by removing individual neurons, including removing
unimportant neurons during training and allowing important
neurons to regenerate. Pruning at the feature map level as-
sesses the importance of channels using a corresponding factor
and removes unimportant channels.

Implementing the sparse training of SNNs from scratch by
the proposed structure slimming method, any type of SNNs
could be optimized with a slimming structure. The proposed
spiking based slimming method not only trains the SNNs
from scratch with surrogate gradient method, but also makes
the structure sparse during training and inference period. The
contributions of this paper is summarized as follows:

• This paper proposed a spiking based network slimming
method, this kind of pruning method could make the
objective SNN model sparse to reduce the redundancy
and save energy.

• Combing the surrogate gradient training method, the
proposed method analyses the memory and energy quan-
titatively. From the perspective of channel and neuron,
the proposed method could be more targeted to slim the
SNNs.

• The experimental evaluations on CIFAR10, CIFAR100,
and DVS-Gesture showed that the proposed method could
discard the redundant parameters and save memory and
energy efficiency while maintaining the performance well
and significantly outperforming baseline methods.

II. RELATED WORKS

A. Model training
The learning algorithms of SNNs are mainly divided into:

unsupervised learning method, supervised method and ANN-

to-SNN conversion method. The unsupervised learning meth-
ods are almost based on the principle of STDP (Spike-Timing-
Dependent Plasticity) [10]–[15], but these methods are unable
to build deep and complex neural networks. Besides, by
adjusting the local connection, global energy consumption
cannot be ignored.

Drawing on the idea of backpropagation (BP) in deep
learning, some learning methods based on gradient descent
rule appear to train SNNs with complex and deep structures.
These methods usually back-propagate the error by computing
an approximation to the gradient [16]. Wu et al. [17] pro-
posed the STBP (Spatio-Temporal Backpropagation) method
utilizes the temporal and spatial domain to update the neuron
state. Zheng et al. [18] introduced a tdBN (a threshold-
dependent Batch Normalization) layer to the STBP network
and this method performs well on ResNet structure. With the
exploration of the difference between ANN and SNN at the
residual structure, Fang et al. [6] achieved identity mapping
with element-wise functions which is applicable to all neuron
models and this is the first time that directly training deep
SNNs more than 100 layers. The surrogate gradient method
has a loss in approximating the gradient. Deng et al. [19]
analyze the reason and proposed the TET (Temporal Efficient
Training) method to compensate for the loss. Zhang et al. [20]
proposed a a spike-timing-dependent BP (STDBP) learning
algorithm for deep networks which combine temporal coding
and BP learning. There is also research that integrates attention
mechanisms to design suitable spiking forms for RNNs [21].
The ANN-to-SNN conversion methods transfer the weight
values from ANN to SNN which can build complex and deep
networks [22]. Alternatively, employing ANN knowledge
distillation can also enhance the performance of SNNs [23].
Although these methods normally perform best among all of
the training methods, they generally need error compensation
to reduce performance degradation due to conversion [24],
[25]. For the three methods mentioned above, these deep
structures of SNNs usually require high power consumption
and have some redundancy in the structure with the restriction
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Fig. 2: Slimming based on channel pruning.

of redundant connections.

B. Pruning method
The network architectures used in deep learning always

are complex and computationally expensive. Thus, some re-
searchers pruned synaptic connections which lead to a sparse
structure to improve the efficiency. The earliest selective
removal methods were proposed by Reed [26] as early as
the late 1980s for smaller-scale multilayer perceptron models.
As the network structures become more and more complex,
compressing the number of network parameters becomes an
important requirement. In ANNs, there are two main pruning
methods which can be categorized as unstructured pruning
and structured pruning. Unstructured pruning methods gener-
ally remove the weight connections with lower weight [7],
[27], [28]. The method proposed by Han et al. [7] prunes
the network weights through a two-step iteration of pruning
connections and training weights. Deep R can regenerate the
pruned connections during training [29]. Unstructured pruning
methods are flexible but usually require specific hardware
and library support. Structured pruning methods tend to be
coarse-grained pruning such as channel pruning, filter pruning,
and layer pruning. The filters with the lower sum of the
absolute values mean unimportant and can be discarded which
is proposed by Li et al. [30]. Liu et al. [9] introduced a scaling
factor to judge the importance of feature maps. Structured
pruning can more effectively compress the number of network
parameters while maintaining performance.

SNNs have bionic properties and use spikes to transmit
information. In order to better simulate the sparsity and low
power consumption of biological brains, some sparsity learn-
ing methods are introduced in SNNs. Qi et al. [31] proposed
a method of jointly training the connections and weights

which uses STDP (Spike Timing Dependent Plasticity) and
Tempotron algorithm to iterate in turn. This method learned
the connections structure by training a gate function according
to the timing information of spikes. With the emergence of
some deep SNN models, some studies have proposed slimming
methods that are suitable for spiking based surrogate gradient
training methods. Shen et al. [32] proposed an evolutionary
structure learning framework which learning the structure
from an initial sparse network. Deng et al. [3] combined
ADMM optimization tools with STBP methods for pruning.
Inspired by changes in the state of dendritic spines, Chen et
al. [5] pruned the SNN models through three rules when the
trainable parameters are in different states. For ANN2SNN
training method, a sparse learning method called attention-
guided compression (AGC) technique uses attention-maps to
guide the compression [33]. More than just pruning, some
algorithms combine pruning and regeneration together such
as Grad R [4]. Different from the existing methods, the
proposed considered the impact of time which plays a crucial
role in neural dynamics. Thus, the whole SNN could be pruned
dynamically and adaptively.

C. Motivation

Due to the binary nature of the spiking sequence, it is
difficult to train the SNNs with BP method directly. What’s
more, because if lacking suitable network structures, SNNs did
not play to their advantage in energy consumption. General
SNNs with deep structures generally have the disadvantage
of redundancy. Inspired by the synaptic connection structure
of the human brain, this paper proposed a structure slimming
method for SNNs that can better utilize the low power con-
sumption of SNNs. In order to get the sparse but efficient
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model, this paper pruned the redundant connections of the pre-
trained SNNs at different grading. In this paper, we proposed
two structure learning methods which are slimming based on
weight pruning and slimming based on channel pruning.

After pruning the pre-trained SNNs models, the amount of
parameters is much reduced while the performance did not
drop too much compared to the original model. This method
is designed to build a model with a more low-power sparse
connection which is more biomimetic. The slimming SNN
model not only simplifies the network structure but is also
more conducive to deployment in resource-constrained embed-
ded devices such as spiking based neuromorphic hardware.

III. METHODS

Aiming at finding an efficient structure of SNN, the pro-
posed method prunes redundant and unimportant neurons
during the training phase dynamically. Our method provides
two ways for structure slimming including neuron pruning and
channel pruning at different grading. It utilizes the surrogate
gradient method for training which can apply to deep SNNs
with different structures on static and neuromorphic datasets.

A. The slimming framework

Overall framework of the slimming method. The slim-
ming framework is designed to get a sparse connection and
efficient SNN model which is inspired by the growth and
death of neurons during biological neural systems development
[1] [34] [2]. As shown in Fig.1 and Fig.2, the slimming
framework prunes redundant neurons at the individual neuron
level and at the feature map level. These redundant neurons
usually make little contribution to the correct classification or
may even cause interference. Sparse training is also used to
reduce the computational cost caused by the redundant neurons
in the network. Neuron-level sparsity is achieved by removing
and growing neurons simultaneously during training to obtain
a sparse model. Feature map-level pruning removes redundant
channels based on the magnitude of the normalization layer’s
factors.

Spiking neuron network. We use the IF (Integrate-And-
Fire Models) spiking neuron model as the basic neuron model
of the SNN. The spiking neuron model is a mathematical
model of differential equations established to simulate the
action potential process of biological neurons. The spiking
neuron models can be expressed as three equations Eq.( 1),
Eq. (2), Eq. (3) which is charge, discharge and reset:

H[t] = V [t− 1] +X[t] (1)

S[t] = Θ (H[t]− Vthreshold ) (2)

V [t] = H[t] ∗ (1− S[t]) + Vreset ∗ S[t] (3)

where V [t] denotes the membrane potential of the spiking
neuron model. X[t] is the external input current from the
presynaptic neurons at time step t. The IF model receives
the external current and the state of membrane potential is
stimulated to H[t]. If the membrane potential exceeds the
threshold Vthreshold , the neuron will fire a spike and reset to the
threshold Vreset. In this paper, we use the surrogate gradient

method to train the SNN. The common surrogate gradient
function is sigmoid function Eq. (4) which can be expressed
as:

σ(αx) =
1

1 + exp(−αx)
(4)

where α control the smoothness of the function and the α is
larger the function is closer to the Heaviside step function.

B. Slimming based on neuron pruning

Sparsity method. Slimming based on neuron pruning
removes redundant or unimportant neurons and regenerates
important neurons to obtain an appropriate network structure.
Neurons that fire fewer spikes may not contribute to correct
classification or may interfere with it, so we can compress
the network structure by removing redundant neurons while
maintaining accuracy. However, some important neurons may
be mistakenly pruned, so we can reactivate these incorrectly
pruned neurons through neuron regeneration. This is similar
to the growth and degeneration of neurons in the human brain
during development.

During pruning, we remove neurons with a lower number
of spikes at each iteration. First, we calculate the cumulative
number of spikes fired by each neuron in each layer of the
model on the training set and remove neurons with a number of
spikes below a certain threshold. Then, this method calculates
a pruning mask M l

pr where the corresponding positions of
the neurons to be removed are set to 0. During training, we
multiply this mask with the feature map.

During regeneration, we accumulate the membrane potential
of each neuron at each iteration. The neurons that were
removed can still accumulate membrane potential during train-
ing. If the membrane potential exceeds a certain threshold,
the neuron is regenerated. In the regenerate mask M l

re, the
corresponding positions of the regenerated neurons are set to
1, indicating that these neurons are activated. After updating
the neuron mask, the weight matrix of layer l can be expressed
as Eq. (5):

Wl = Wl ∗Ml = Wl ∗ (M l
pr +M l

re) (5)

where Wl and Ml represent the weight and the pruning mask
of the layer l.

Training algorithm. In the training stage, L2 regularization
is added to better perform sparse training. During each itera-
tion of training, neuron pruning, and regeneration operations
are performed to update the mask. This method learns a sparse
network structure while training the parameters. The overall
algorithm is shown in Algorithm 1.

C. Slimming based on channel pruning

Sparsity method. Slimming based on channel pruning
prunes the redundant and unimportant connections by re-
moving the entire channel which sparse the network more
effectively. This method introduced a scaling factor γ [9]
corresponding to each channel at the last layer which can be
trained with the network weight jointly. We use the values of
parameters to determine the importance of the channel and
remove the channel with small scaling factors. We know that
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Algorithm 1 Training SNN model with neuron pruning and
regeneration.

Require: the neuron mask M , the weight matrix W , input
dataset samples X , true labels ytrue .

Ensure: Sparse SNN model
1: for each training epoch i do
2: Update the neuron mask;
3: (1)remove the neurons with lower spikes;
4: (2)regenerate the neurons with high membrane poten-

tial;
5: (3)update the neuron mask M ;
6: for each layer l of neurons do
7: The weight matrix W is W = W ∗M ;
8: Compute the forward propagation;
9: Compute the cumulative spike count and membrane;

the potential of each neuron;
10: end for
11: Compute the backward propagation;
12: end for

the batch normalization (BN) layer computes the meaning and
standard deviation values of each corresponding channel and
then scales the features with the parameters γ and β of the
BN layer. If there is a BN layer after the convolution layer,
the scaling parameters γ of the BN layer as follows Eq. (6)
can be used as the scaling factors.

ẑ =
zin − µB√
σ2
B + ϵ

; zout = γẑ + β (6)

where γ and β are the scale and shift parameters of the BN
layer. µB and σB denote the meaning and standard deviation
of the features zin of the last layer.

In order to achieve sparsity, we add an L1-norm penalty
to the BN layer of the network. Training with sparse makes
the scaling factors corresponding to redundant connections
converge to 0 and then this method removes smaller weights
proportionally. Thus, the loss function used in our method
includes two parts: the cross entropy loss and the L1-norm
regularization which can be expressed as Eq. (7):

L =
∑
(x,y)

l(f(x,W ), y) + λ
∑
γ∈Γ

g(γ) (7)

where f(x,W ) represents the output of the spiking rate of
the output layer and the g(γ) is the L1-norm regularization. If
the network model is skip-layer connections or pre-activation
such as ResNet, a channel selection layer will be added to
select the channels that contribute.

Batchnorm in spatio-temporal dimension. In SNNs, there
is an extra dimension of time which is different from ANN.
Therefore, we use the tdBN (threshold-dependent batch nor-
malization) as the BN layer which normalizes the features
in both spatio-temporal dimensions. The tdBN computes the
meaning E [xk] and standard deviation Var [xk] of the pre-
synaptic inputs along the time axis T and spatial axis (H,W ).
The features of the k-th channel xk =

(
x1
k, x

2
k, · · · , xT

k

)
can

be normalized as Eq. (8):

x̂k =
αVth (xk − E [xk])√

Var [xk] + ϵ
; yk = λkx̂k + βk (8)

where the αVth denotes the threshold of the spiking neuron
model. The normalization method of tdBN is more suitable
for SNNs which utilize spikes to transmit information. It
normalizes the features to N

(
0, (αVth)

2
)

which makes the
features keep the form of spikes in forward inference.

Training algorithm. In the first stage, we pre-train the
SNN model with a sparsity penalty so that we can select the
important channels better through the values of the scaling
factors. In the second stage, we prune a certain percentage
of channels with the lower absolute values of scaling factors
to get the slimming model. Then the slimming model is
fine-tuned without a sparsity penalty. The convolution kernel
simulates the receptive field of the biological visual system so
pruning on a coarse-grained makes it more compatible with the
sparsity and low-power nature of the human brain. Besides, the
proposed structure pruning method does not require specific
hardware and library support. The overall algorithm is shown
in Algorithm 2.

Algorithm 2 Training SNN model with channel pruning.

Require: input dataset samples X , true labels ytrue .
Ensure: Sparse SNN model

1: #During training
2: for each training epoch do
3: train the SNN model based on the surrogate gradient

with sparsity penalty;
4: end for
5: #During pruning
6: sort all the scaling parameters γ in tdBN layer;
7: compute the threshold thre
8: for each tdBN layer do
9: if γ < thre then

10: remove the tdBN channel;
11: remove the corresponding Conv2d channel;
12: end if
13: end for
14: #During fine-tuning
15: for each training epoch do
16: retrain the pruned SNN model;
17: end for

IV. EXPERIMENTS

In this section, we analyze the experiments of the proposed
slimming framework on static datasets and neuromorphic
datasets including MNIST, CIFAR10, CIFAR100, and DVS-
Gesture. In order to prove the robustness, we evaluate this
method on CIFAR10 with different levels of Gaussian noise.
Also, we compare this method with other SNN pruning
methods which demonstrate the superiority of the proposed
algorithm.
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TABLE I: Test accuracies of the SNN slimming framework
based on neuron pruning.

Dataset Arch. Reserved nerons ACC.(%) ACC loss(%) Synops Energy

CIFAR10 Resnet18

100% 92.92 - 334K 8.68E-06J
89.36% 92.91 -0.01 324K 8.42E-06J
81.55% 92.6 -0.32 313K 8.13E-06J
71.21% 91.73 -1.19 295K 7.67E-06J
64.95% 91.34 -1.58 280K 7.28E-06J

CIFAR100 WRN16-4

100% 69.14 - 322K 8.37E-06J
88.22% 69.40 0.26 291K 7.56E-06J
76.46% 69.25 -0.11 269K 6.99E-06J
63.63% 68.15 -0.99 250K 6.50E-06J
57.20% 67.46 -1.68 227K 5.90E-06J

CIFAR100 Resnet18

100% 70.41 - 472K 1.22E-05J
97.13% 70.69 0.28 456K 1.18E-05J
92.74% 70.39 -0.02 456K 1.18E-05J
87.95% 69.79 -0.62 441K 1.14E-05J
78.23% 69.04 -1.37 406K 1.05E-05J

TABLE II: Test accuracies of the SNN slimming framework
based on channel pruning.

Dataset Arch. Pruned Pruned
ACC.(%) Parameters Fine-tune

ACC.(%)

CIFAR10
VGG16

baseline 91.71 14.72M -
0 91.22 14.72M -

0.1 91.24 11.36M -
0.2 91.22 8.52M -
0.3 91.22 6.14M -
0.4 91.22 4.30M -
0.5 91.22 2.92M 91.24
0.6 90.90 2.18M 91.16

CIFAR10
Resnet18

baseline 92.92 11.18M -
0 92.71 11.18M -

0.1 92.70 9.01M -
0.2 92.70 7.02M -
0.3 92.71 5.39M -
0.4 92.71 3.91M -
0.5 88.36 3.45M 92.31

DVS-Gesture VGG13

baseline 95.40 9.41M -
0 94.80 9.41M -

0.1 93.42 6.86M 94.79
0.2 66.31 5.35M 94.79
0.3 24.03 4.30M 94.44
0.4 10.86 3.46M 94.44
0.5 8.31 2.57M 92.36

A. Experimental Settings

Datasets. The static datasets are MNIST, CIFAR10, and
CIFAR100. This static dataset is encoded as spikes sequence
when input into the network and transmitted as the form of
spikes. For the neuromorphic dataset, we need to pre-process
the dataset which integrates the event data to frame form. The
dataset DVS-Gesture is in the shape of 128*128*2 and has
11 categories. What’s more, we build noise datasets that add
Gaussian noise on CIFAR10 with variances of 0.01, 0.03, and
0.05.

Model training. The experiments are evaluated on the
server with 8 NVidia GeForce RTX 2080 Ti GPUs. The SNN
architectures we used are VGG and Resnet structures which
are usually used in deep networks. We construct the SNN

TABLE III: Test accuracies of the SNN slimming framework
based on channel on noise CIFAR10 datasets.

Gaussian noise Arch. Pruned Pruned
ACC.(%) Parameters Fine-tune

ACC.(%)

0.01
VGG16

baseline 83.01 14.72M -
0 82.81 14.72M -

0.1 82.84 11.31M -
0.2 82.82 8.46M -
0.3 82.84 6.09M -
0.4 82.83 4.25M -
0.5 82.81 2.90M -
0.6 81.77 2.41M 82.05

0.03 VGG16

baseline 78.11 14.72M -
0 77.45 14.72M -

0.1 77.47 11.30M -
0.2 77.46 8.42M -
0.3 77.46 6.07M -
0.4 77.45 4.24M -
0.5 77.45 2.98M -
0.6 51.79 2.60M 76.00

0.05 VGG16

baseline 74.41 14.72M -
0 73.58 14.72M -

0.1 73.57 11.34M -
0.2 73.58 8.46M -
0.3 73.56 6.07M -
0.4 73.59 4.20M -
0.5 73.64 3.06M -
0.6 21.04 2.64M 55.93

based on the Spikingjelly [35] which trains the SNN with
the surrogate gradient method. When pruning we gradually
increase the percentage of the pruned connections and then
fine-tune the whole network.

B. Evaluation on the slimming structures at different grading

To show the effectiveness of the slimming framework at
different grading, we evaluate the experiment at different
compression ratios.

Evaluation of slimming based on neuron pruning. As
shown in Table I, we use Resnet18 and WRN16-4 for the
slimming based on neuron pruning. For the CIFAR10 dataset,
Removing some neurons leads to a slight decrease in ac-
curacy, but reduces the number of synaptic spikes required
for computation. For the CIFAR100 dataset, after removing
some neurons the accuracy, there is a slight improvement in
accuracy. As the pruning percentage increases, the accuracy
still does not drop much. This result indicates that some
neurons with fewer spikes do not play a significant role in
the classification. We know that neurons that fire fewer or no
spikes have little impact on the spike firing of the neurons in
the layers that follow, which means that only a small fraction
of the connections in the network structure actually contribute
to the classification.

Evaluation of slimming based on channel pruning.
Channel pruning is a coarse-grained pruning method, as shown
in Table II, we evaluate this method with VGG16 and Resnet18
structures on static and neuromorphic datasets. The baseline
means the result without sparse training in which there is
no L1 regularization to the BN layer. After sparse training,
the accuracy of the model is slightly reduced. As the pruning
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TABLE IV: Parameters and synaptic operations evaluation of the slimming framework on CIFAR10.

Baseline Pruned 0 Pruned 0.1 Pruned 0.2 Pruned 0.3 Pruned 0.4 Pruned 0.5 Pruned 0.6 0.7 0.8

ACC.(%) 91.71 91.22 91.24 91.22 91.22 91.22 91.22 90.90 6.32 9.97
Fine-tune ACC.(%) - - - - - - 91.24 91.16 91.11 89.01

Param. 14.72M 14.72M 11.36M 8.52M 6.14M 4.30 2.92M 2.18M 1.64M 0.71M
Synops 32.46K 28.96K 28.28K 28.29K 28.35K 27.96K 28.33K 28.33K 28.79K 27.79K
Energy 8.43E-07J 7.52E-07J 7.35E-07J 7.35E-07J 7.37E-07J 7.26E-07J 7.36E-07J 7.36E-07J 7.49E-07J 7.22E-07J

Fig. 3: The neuron number during training.

percentage increases, the accuracy loss is all about 0.5. The
accuracy also can be made to go back up by fine-tuning
even when the pruning percentage is too large. It can be
seen that the accuracy of the VGG16 model on the CIFAR10
dataset only decreases 0.55 when the number of parameters
drops to 14.8% of the original. For the DVS-Gesture dataset,
the accuracy of the pruned network drops slightly but not
much. The reason for this result is that some feature maps
in the network are meaningless and their information in the
spike sequence does not contribute to the classification even
generates noise.

C. Evaluation on Noisy Influence

Noise resistance is an advantage of SNNs. To verify the
validity of this slimming method on noisy datasets, we added
Gaussian noise to the CIFAR10 images.

The variance of Gaussian noise we add is 0.01, 0.03,
and 0.05, respectively. Here, we choose the channel pruning
method to verify the noise resistance. As shown in Table III,
the accuracy loss after pruning is around 0.5 for different
intensities of noise. Especially, when the pruned channel
reaches 50%, the accuracy is almost the same as the sparse
training accuracy. Thus, it indicates that this method has good
robustness which maintains the original performance after
pruning. Under noisy conditions, this method can still distin-
guish important feature maps from redundant ones effectively.

D. Parameter Analysis

Here we analyze the parameters and synaptic operations of
this slimming framework. Though pruning, this method takes
better advantage of SNN’s low power consumption.

As shown in Table I, We can see that reducing the number
of neurons can decrease the overall number of synaptic oper-
ations in the network, which is very beneficial for reducing
computational power consumption. When deployed on the
TrueNorth neurosynaptic chip, each synaptic operation incurs
an energy cost of 26 pJ [36]. It can be observed from the
table that the energy consumption per operation decreases
as the pruning ratio increases. Fig.3 shows the variation of
the number of neurons during the training process. It can be
observed that the number of neurons decreases rapidly and
then stabilizes. thre represents different pruning thresholds of
0.05, 0.1, 0.15, and 0.2, which indicate the average number of
pulse firings of each neuron over the entire dataset. The larger
the pruning threshold, the fewer neurons will be converged to.
As shown in Table IV, we use the slimming method based
on channel pruning and analyze the consumption. As the
percentage of pruning increases, the number of parameters
decreased substantially, while the synaptic operations remain
essentially the same. It indicates that the number of spike firing
in the network does not change much after pruning which
means only a few neurons transmit important features.

E. Performance Comparison with Other Methods

In order to better demonstrate the proposed slimming frame-
work, we compare this work with other pruning methods of
SNNs.

As shown in Table V, our method can obtain sparse models
with better performance but need fewer time steps only 4. The
number of connections we calculate refers to the quantity of
parameters, which are the weights present in the network. For
the neuron pruning on the CIFAR100 dataset, the accuracy
loss has a slight improvement in accuracy when pruning a
few neurons.

For the channel pruning on the MNIST dataset, when
connectivity is only 26.21%, the accuracy loss is small only
0.10. Compared to other models such as Deep R, Grad R and
ADMM-based, this method has less accuracy loss at the same
pruning percentage. For the channel pruning on the CIFAR10
dataset, the accuracy loss is all around 0.5 when the pruning
ratio is small. When the parameter count is reduced to 4.82
times the original, the accuracy decreases by 2.70%. Although
the sparsity is not better than Deep R and State Transition,
the accuracy loss is less than theirs. This work only needs
4 time steps which is much smaller than the time steps of
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TABLE V: Test accuracies comparison of the SNN slimming framework with other methods.

Dataset Pruning method Training method Arch. Acc.(%) ACC.(%) loss Step Connectivity(%)

MNIST

Deep R [29] Surrogate Gradient 2FC 98.92

-0.36

8

37.14
-0.56 13.30
-2.47 4.18
-9.67 1.10

Grad R [4] Surrogate Gradient 2FC 98.92

-0.33

8

25.71
-0.43 17.94
-2.02 5.63
-3.55 3.06
-8.08 1.38

ADMM-based [3] Surrogate Gradient LeNet-5

99.19 0.12

10

75
99.08 0.01 60
99.10 0.03 50
99.64 -0.43 40
96.84 -2.23 25

Proposed (channel) Surrogate Gradient VGG11

98.61 -0.02

4

75.94
98.61 -0.02 54.93
98.62 -0.01 36.72
98.61 -0.02 34.23
98.53 -0.10 26.21
98.25 -0.38 17.11

CIFAR10

Deep R [29] Surrogate Gradient 6Conv 2FC 92.84
-1.98

8
5.24

-2.56 1.95
-3.53 1.04

Grad R [4] Surrogate Gradient 6Conv 2FC 92.84

-0.30

8

28.41
-0.34 12.04
-0.81 5.08
-1.47 2.35
-3.52 0.73

ADMM-based [3] Surrogate Gradient LeNet-5

89.8 0.27

8

75
89.75 0.18 60
89.15 -0.38 50
88.35 -1.18 40
87.38 -2.15 25

State Transition [5] Surrogate Gradient 6 Conv, 2FC 92.84
-0.35

4
2.23

-2.63 0.75

Spike-Thrift [33] ANN-to-SNN conversion VGG16
91.29 -1.63

2500
40

90.74 -2.56 5
90.15 -3.53 2.99

Proposed (neuron) Surrogate Gradient Resnet18

92.91 -0.01

4

89.36
92.6 -0.32 81.55
91.73 -1.19 71.21
91.34 -1.58 64.95

Proposed (channel) Surrogate Gradient VGG16

91.24 -0.47

4

77.17
91.22 -0.49 57.88
91.22 -0.49 41.71
91.22 -0.49 28.21
91.24 -0.47 19.83
91.16 -0.55 14.80
91.11 -0.60 11.13
89.01 -2.70 4.82

CIFAR100

ADMM-based [3] Surrogate Gradient 11-layer CNN 57.83 -0.52 8 50
Spike-Thrift [33] ANN-to-SNN conversion VGG16 63.02 -1.21 2500 10

Proposed (neuron) Surrogate Gradient WRN16-4

69.40 0.26

4

88.22
69.25 0.11 81.55
68.15 -0.99 63.63
67.46 -1.68 57.20

Proposed (channel) Surrogate Gradient VGG16

66.42 -0.27

4

76.03
66.40 -0.29 56.53
66.36 -0.33 40.89
65.21 -1.48 28.90
63.44 -3.25 20.24
56.63 -10.06 13.06

the spike-thrift method. This method can also be used on
complex datasets CIFAR100. The accuracy of this method
only decreases by 0.33 when the connectivity is 40.89%, which
is better performance than ADMM-based method. Compared
with the Spike-Thrift method, the time steps of our work are
much smaller although the sparsity is not better than it.

V. CONCLUSION

The deep structures improve the effectiveness of the SNNs,
however, the practical application effect of the model is hin-
dered by the redundancy of the connections. This paper fully
considers the characteristics of the human brain, neural circuits
could be both pruned and rewired during the development
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of the biological brain. We proposed efficient slimming and
rewiring methods for deep but sparse structures to SNNs,
combining the surrogate gradient method the proposed method
could facilitate the time based neural dynamics of spiking
model. Inspired by biological plausibility, the proposed meth-
ods could not only perform better than some dense models
but also have enormous potential for low power consumption,
especially on resource-constrained neuromorphic hardware
platforms.
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