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Abstract

Objective. Small-field dosimetry is an ongoing challenge in radiotherapy quality assurance (QA)
especially for radiosurgery systems such as CyberKnife™. The objective of this work is to demonstrate
the use of a plastic scintillator imaged with a commercial camera to measure the output factor of a
CyberKnife system. The output factor describes the dose on the central axis as a function of collimator
size, and is a fundamental part of CyberKnife QA and integral to the data used in the treatment
planning system. Approach. A self-contained device consisting of a solid plastic scintillator and a
camera was build in a portable Pelicase. Photographs were analysed using classical methods and with
convolutional neural networks (CNN) to predict beam parameters which were then compared to
measurements. Main results. Initial results using classical image processing to determine standard QA
parameters such as percentage depth dose (PDD) were unsuccessful, with 34% of points failing to
meet the Gamma criterion (which measures the distance between corresponding points and the
relative difference in dose) of 2 mm/2%. However, when images were processed usinga CNN trained
on simulated data and a green scintillator sheet, 92% of PDD curves agreed with measurements with a
microdiamond detector to within 2 mm /2% and 78% to 1%/1 mm. The mean difference between the
output factors measured using this system and a microdiamond detector was 1.1%. Confidence in the
results was enhanced by using the algorithm to predict the known collimator sizes from the
photographs which it was able to do with an accuracy of less than 1 mm. Significance. With refinement,
a full output factor curve could be measured in less than an hour, offering a new approach for rapid,
convenient small-field dosimetry.

1. Introduction

Quality assurance (QA) of radiotherapy treatment machines is a necessary part of the treatment pathway. It is
governed by Codes of Practice (Eaton et al 2020) which specify formal measurement protocols for reference
dosimetry that are traceable back to a primary standard. Relative dosimetry is less exacting and may be presented
asaratio which is normalised to a peak. As it is less time-consuming, relative dosimetry is performed more
frequently than reference dosimetry. Since changes to relative dosimetry may be used as an indicator for a
change in reference data (and therefore signify a deviation from the treatment planning system model), relative
dosimetry still must be performed with rigour and appropriate expertise.

There are particular challenges for dosimetry of small field sizes. An ionisation chamber with a collection
volume larger than the beam size will suffer from partial volume effects and could significantly perturb the dose
distribution. Ionisation chambers therefore require small-field corrections and so solid-state detectors based on
diodes or diamonds in a water tank are used for relative dosimetry, with some degree of uncertainty (Chalkley
and Heyes 2014). The CyberKnife™ (Accuray Inc., Sunnyvale, CA) system is a robot-mounted linear accelerator
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that delivers 6 MV radiation with a field size determined by secondary fixed collimators of 5-60 mm diameter. It
does not use a flattening filter, meaning that the dose rate is relatively high and the beam profile is not uniform.
Aswell as being inherently a small-field device, the CyberKnife is also inherently four-dimensional—it can
deliver radiation from any angle around the patient as a function of time.

Perhaps the most fundamental metric for relative dosimetry is the percentage depth dose curve (PDD) which
plots the dose deposited by the beam as it varies with depth along the central axis, normalised to d,,,,,, the
maximum dose on the central axis. Similarly, the profile measures the dose perpendicular to the central axis,
normalised to d ... Together, these curves, and parameters calculated from them, characterise many of the
beam properties in a visual and intuitive manner. These data will be used by the treatment planning system to
calculate the dose within a patient at points distant from the isocentre. A fundamental dataset within the
planning system is the relative output factor (ROF) which describes the change in dose on the central axis with
changing beam size as determined by the secondary collimator. A larger beam size leads to more scattered
radiation and so a higher dose on the central axis even as the number of monitor units delivered remains the
same. The output factor is defined for Cyberknife as the dose on the central axis at a depth of 15 mm for each
collimator at a source-surface distance of 785 mm (800 mm source to axis distance), normalised to the
equivalent dose for the largest (60 mm diameter) collimator. This is currently measured using an ionisation
chamber or solid-state detector in a water tank. Measurements to fully characterise the machine using a variety
of chambers is labour intensive and requires significant expertise in small field dosimetry. Detector choice,
volume, orientation, initial alignment to the beam central axis, and positioning accuracy within the beam all
affect the uncertainty of the measurement, and minimising these uncertainties is time consuming. Changes to
machine running parameters (for example beam steering adjustments, or changes to the beam energy) will affect
the accuracy of the dose calculation within the patient, and as such the data in the planning system requires
periodic validation, and scheduled measurements to verify following a repair or manufacturer intervention.

Verifying the entire 2D or 3D dose distribution is complex. One metric that is used is the Gamma Index
which combines the relative distance between corresponding points and the relative difference in dose (Low and
Dempsey 2003, Hussein et al 2017). A threshold of acceptability is generally quoted, for example 3%,/3 mm, and
the percentage of pixels that exceed this threshold is quoted.

An ideal dosimeter for small-field dosimetry would have certain characteristics:

+ Water equivalence to allow direct translation to clinical practice;
+ Aspatial resolution better than 0.5 mm to allow high dose gradients to be plotted;
+ Linear response with dose and dose rate to minimise the need for corrections;

+ Able to detect from multiple points simultaneously or rapidly so thata PDD or profile can be obtained
efficiently;

+ Able to be automated so that multiple collimators can be assessed efficiently;
+ Capable of recording Gamma Index to 1%/1 mm accuracy; and

» Easeofuse.

Scintillating materials can offer an alternate approach for relative dosimetry. This has been most commonly
proposed using plastic scintillating fibres coupled to a sensitive light detector (Beddar 2006, Kam et al 2022).
These devices meet some of the criteria above, but can only sample a limited number of points in the radiation
field. Photography of a solid scintillation block has been proposed for relative dosimetry of photon, electron and
proton beams (Helo et al 2014, Beaulieu and Beddar 2016, Almurayshid et al 2017) but has not yet been accepted
as areliable method for providing robust, quantitative relative measurements. Cherenkov emissions from
photon beams can also be imaged in conjunction with scintillation (Frelin et al 2005, 2008) or in its own right for
dosimetry (Pogue et al 2017) and for patient verification (Roussakis et al 2015), but like scintillation imaging has
not yet been accepted as a clinical tool.

Here, we investigate photography of a solid plastic scintillator block as a potential alternative device for
small-field relative dosimetry. A plastic scintillator is close to water equivalent; the spatial resolution is
determined by the camera; dose and dose rate responses are linear; and an entire image is acquired rapidly from
which PDD, profile, output factor and other parameters can be determined. We show that such a device analysed
using convolutional neural networks (CNN) can record dose distribution with sufficient accuracy for relative
dosimetry. Due to the ease of use of the system, plus the potential for automation, this would increase the clinical
availability of the system as less non-clinical time would be required for scheduled verification measurements,
and less time would be needed to verify the clinical accuracy of the machine after a repair intervention. We do
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Figure 1. Schematic diagram showing the detector in a Peli case in the treatment room, with control and analysis computers in the
control room.

not propose this as a solution for absolute dosimetry, or as a substitute for the initial ‘gold standard’
commissioning data with a watertank and detector, however it could be used to provide a verification dataset for
routine and scheduled quality assurance.

2. Method

2.1. Device configuration

The treatment beam excites a volume from which it is challenging to isolate the central axis, which is required to
reproduce the PDD and output factor. This problem was solved by using a thin scintillating sheet sandwiched
between two non-scintillating polystyrene blocks. The two blocks provide realistic water-equivalent scatter
while the thin scintillating sheet isolates a plane through the central axis, perpendicular to the optical axis of the
camera (figure 1). However, as the beam size increases, it excites both scintillation from the thin sheet in
proportion to the diameter of the beam and also Cherenkov radiation from the volume in proportion to the area
of the beam, meaning that the contribution from Cherenkov radiation quickly dominates.

Figure 1 is a schematic diagram of the final device. A 2 mm thick polystyrene scintillator sheet, sandwiched
between two 200 x 200 mm non-scintillating polystyrene blocks, is mounted inside a Peli case (Peli, UK)
together with a Nikon D7500 SLR camera with 20 mm lens and 20.9 MPixel detector. The Peli case has a thin
plastic window, ensuring the system is light-tight while minimising beam distortion due to build-up. Itis placed
on the CyberKnife couch and aligned using the CyberKnife room lasers (these are set to the centre of the room: a
point in space upon which the in-room kV imaging system is aligned). A patch panel allows for easy
communication with a control laptop which communicates by Ethernet to a network hub in the control room,
allowing multiple users to connect for simultaneous control and analysis.

The polystyrene blocks have density 1.03 g cm ™ and refractive index 1.57. Two different scintillating sheets
were used, both polystyrene, a standard blue scintillator (SP32 from Nuvia, Czech Republic with a peak emission
at425 nm) and a novel green scintillator (SP33, Nuvia, (Hamel et al 2020), with peak emission at 503 nm).
Cherenkov emission is predominantly blue, so it was anticipated that a green scintillator would maximise the
scintillation-to-Cherenkov ratio in the green channel of the camera. The central axis of the camera was aligned
with the top edge of the plastic blocks and the distance from the camera to the plastic block fixed so that the
entire width of the 20 cm block was in frame. If the camera pointed at the centre of the plastic blocks, there was a
significant artefact from light generated in the scintillator, reflecting off the underside of the plastic block and
obscuring the entry point.
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Figure 2. Example images for the 30 mm collimator, all normalised to the same intensity. (a) is an original photograph from the green
scintillator-polystyrene block; (b) shows Cherenkov light form the polystyrene block only; (c) is the subtracted image showing
scintillation light only.

2.2. Experimental method

The 6 MV treatment beam emits 1000 & 15 monitor units (MU)/min and delivers 10 Gy min™~" at 15 mm depth
with the 60 mm collimator beam. The machine was aligned orthogonally with the upper surface of the plastic
block, and centred onto the scintillating sheet. CyberKnife output factors are measured at 785 mm source to
surface distance (SSD) with the measurement point at 15 mm deep. The treatment planning system utilises
tissue phantom ratio (TPR) measurements, which is the ratio of absorbed dose at a given point to the dose ata
fixed reference depth using a constant source to axis distance by varying the SSD. For comparative data, and ease
of subsequent experimental setup, a PDD dataset can be measured alongside the TPR. PDD uses a constant SSD,
simplifying the measurement technique in a watertank. A full set of dosimetry measurements (PDD, ROF and
Off Centre Ratios) were made with a PTW-60019 synthetic single-crystal microDiamond ™ (PTW, Germany)
detector (repeating the method of Chalkley and Heyes 2014) at an SSD of 785 mm, with scintillation
photography performed at the same SSD for direct comparison. The camera ISO and aperture were set to
4001ISO and f/5.6, and the exposure time adjusted from 10 s to 30 s depending on the beam diameter to ensure
the images were well exposed without saturation. Photographs were taken while the beam was on, with the
timing determined by the camera shutter and were stored in Nikon’s NEF raw data format.

Every image taken with the polystyrene blocks and 2 mm thick scintillator sheet was paired with one without
the scintillator so that Cherenkov light could be identified and subtracted to generate an image showing
scintillation alone (figure 2). However, for large field sizes, the Cherenkov light was of a similar order of
magnitude to the scintillation light, so even after the Cherenkov image was subtracted, bias and statistical errors
remained in the scintillation image. Each measurement consisted of five identical repeated images. Dark
background images were acquired with the beam off and x-ray scatter was measured from the top half of the
image where no scintillator was present. The dark background was typically 0.03% of the maximum intensity
and the x-ray scatter was 1%—5% depending on the exposure time.

2.3.Monte Carlo simulation

The experimental pipeline was tested and verified with a Monte Carlo model implemented in GEANT4 (Allison
et al 2016) using the G4EmLivermorePhysics and G4OpticalPhysics classes and reproducing the geometry shown
in figure 1. The dose deposited in the polystyrene block was firstly modelled, with the resulting scintillation and
Cherenkov photons then simulated, propagated and focussed onto an image plane using a thin lens
approximation with a lens aperture of 4.1 cm, which ensured that the entire depth of the polystyrene block was
in focus. The speed of the simulation was increased by killing photons which were repeatedly internally reflected
and by simulating only those optical photons which are emitted in a solid angle that encompasses the lens. These
improvements decreased the time required to detect 10 simulated optical photons from about a week to about
10 h using an Intel Xeon E5-2430 2.7 GHz CPU.

The model was validated by simulating dose distributions and comparing them to the dose measured with a
microdiamond detector. The mean absolute difference (MAD) between simulated and measured dose was less
than 1% for the profile and output factor. For the PDD, this increased to 2% as the simulated dose distribution
increasingly underestimated the dose compared to microdiamond measurements as the depth increased. When
simulated and measured photographs were compared at different field sizes, the MAD was generally less than
2%, but increased to about 3% as the PDD got deeper and to about 5% at the steep edges of the profile. We
believe this was due to the scintillation light being scattered within the polystyrene block.
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Figure 3. The green channel of photographs of the scintillating block (a) before and (b) after application of the noise reduction process
described in section 2.4. To emphasise the difference, contrast has been stretched by histogram equalisation. The lines along which the
PDD and profile are extracted are shown in (b).

2.4. Classical image processing

The greatest source of noise in the image was due to photons from the scattered x-rays, leading to a mean noise-
to-signal ratio of 0.60. The most effective way to reduce this was to apply two median filters. First, each pixel was
adjusted so that it became the median value of that pixel across the five images. Second, a spatial median filter
with a3 x 3 pixel kernel was applied to the image five times. This reduced the mean noise-to-signal ratio to 0.04,
without distorting the spatial distribution of the image (figure 3).

The polystyrene blocks were photographed with a ruler to provide an absolute length scale which confirmed
the spatial resolution was 90 pm. All photographs were rotated so that an image showing the alignment laser
would appear vertical.

Each photograph of the scintillator sheet includes components from Cherenkov and scintillation light
(figure 2). We want an image that shows only the scintillation signal so the Cherenkov signal (taken from the
corrected photograph obtained from the plastic block with no scintillator) is subtracted from the
photograph showing the combined signal, as implemented by Beddar et al (1992), Yogo et al (2017) and others.
Finally, corrections are applied for refraction (with the application of Snell’s law), light intensity (with a
1/distance” factor) and exposure time (to ensure that pixel intensity is linear with exposure).

2.5.Deep learning methods

The classical image processing described above failed to meet clinical requirements (see section 3.1), so an
alternative approach based on CNN was implemented. A neural network is a layered structure of connected
nodes known as neurons where the strengths of the connections are adjusted to minimise an objective function.
Ina CNN, one or more of the layers includes a convolution operator which extracts simplified features of the
image, meaning that raw pixel data can be processed (see, for example, Shin et al 2016). CNNs have become the
method of choice for machine learning image analysis particularly for extracting information from noisy images
in a wide range of applications including medical imaging (Chen et al 2020) and in radiotherapy (Tomori et al
2018, Nyflotetal 2019).

Here, the training data consisted of pairs of simulated images where each pair consisted of the simulated dose
in the polystyrene block and the simulated photograph. We therefore trained the CNN to predict the dose given
the measured photograph (figure 4). The algorithm was validated on different images from those used to train
the model and throughout, the model was blind to the measured data. The model was implemented by
extending a standard ResNet CNN architecture provided by the python library TensorFlow (Abadi et al 2016).

In practice, different CNNs were implemented in order to predict PDD, output factor and other variables,
but the basic theory and structure of the models were the same as was the underlying Monte Carlo model.
Implementing different deep learning models to solve for different parameters might appear counterintuitive,
but to train a single CNN to fit for all the unknown parameters risks overfitting because it would need to be very
carefully trained and tuned for a specific configuration. It would then not be robust to any unexpected changes
that it has not been trained for. In addition, some of the parameters are correlated (for example, increasing the
beam width reduces the scintillation/Cherenkov ratio). This means that a combined CNN might learn that
correlation rather than learning the mapping between the image and the dose, which is what we want. Having
separate models means that the combined method is be more robust to unexpected changes. Tables 1 and 2
summarise details of the structure and performance of the algorithms used to calculate output factor and PDD.
The software is available on Gitlab http://gitlab.com /jeremyocampo /scintinets.
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Figure 4. Flow chart showing supervised learning approach.

Table 1. Model performance and size for predicting output factors on the
validation dataset. The absolute error between each predicted and
conventionally measured output factor was computed, from which the
mean absolute difference was calculated over all field sizes.

No. of trainable Mean absolute difference
No. of layers parameters in output factor
3 5x 10* 54472
12 2% 10° 8.4+4.0
24 (ResNet) 4% 10° 1L.0£1.2

Table 2. Model performance and size for predicting PDD on the
validation dataset. The absolute error between each predicted and
conventionally measured PDD was computed, from which the mean
absolute difference was calculated over all field sizes.

No. of trainable Mean absolute differ-
No. oflayers parameters ence in PDD (%)
3 7 x 10* 2.143.0
11 (Autoencoder) 4x10° 0.68 +0.65

One well-known disadvantage of deep learning methods is that they require a large training dataset (typically
10*—10° images). We do not have enough measured data to train a CNN, so instead we simulated a dataset using
the GEANT4 model described in section 2.3. To generate many images, the simulation parameters were varied
randomly within realistic ranges using a technique called domain randomisation (Tobin et al 2017). We chose to
randomly vary the beam energy, camera position, scintillator thickness, SSD, beam direction, beam width and
intensity, as shown in table 3. This provided 1546 training images and 386 other images that were used for
validation. Additional training images were created by randomly rotating, blurring, cropping and adding noise
to these images. The scintillation to Cherenkov ratio was also varied. This second round of adjustments could be
applied much more quickly than the simulations, allowing a large number of training images to be built up
efficiently. In total, 75 000 images were used to train the algorithm that was used to calculate PDD and 90 000 for
the output factor. Full details of the development of the algorithm can be found in Ocampo (2023).

2.6. Validation of deep learning algorithm
One of the criticisms of deep learning in safety-critical applications such as radiotherapy is that it is not always
easy to have confidence in the results, given that it is hard to understand how decisions are made. In an attempt
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Table 3. Domain randomisation parameters for the output factor and PDD models. Mean and
standard deviation are shown for normally distributed parameters; mean, maximum and
minimum are shown for parameters drawn from a uniform distribution. The peak energy for the
PDD model was drawn from a log-uniform distribution between 6 x 10~'>and 6 x 10"~ MV
(equivalent to 0.2-190 MeV). A log-uniform distribution ensures that the selection of energies is
distributed evenly over length scales while the broad range of energies was required to provide the
CNN with data with sufficient variation. With a narrower range, the PDDs were too similar for the
algorithm to learn the differences.

Domain randomisation for output factor

Mean Standard deviation Minimum Maximum

Beam width (mm) 25.8 4 62
Energy (MeV) 6.0 1.50

Lens to beam distance (cm) 52.1 32 70
Lens depth offset (mm) 100.1 92 108
Lens lateral offset (mm) 1.0 —10 10
Sheet thickness (mm) 2.7 1 6.5
SSD (cm) 78.4 1.02

Domain Randomisation for Percentage Depth Dose

Mean Standard deviation Minimum Maximum

Beam width (mm) 27.3 5 60
Energy (MeV) 14.9 2 150
Lens to beam distance (cm) 49.7 30 70
Lens depth offset (mm) 100.0 90 110
Lens lateral offset (mm) -0.2 -10 10
Sheet thickness (mm) 3.7 1 6.5
SSD (cm) 78.5 0.97

to mitigate this concern, the model was used to predict some parameters that are known a priori, such as the peak
energy (which is fixed at 6 MV in the CyberKnife), the beam width (which is determined by the fixed collimator
diameters) and the scintillation to Cherenkov ratio (which can be measured). A correct beam energy will
determine the position of maximum dose on the PDD curve, and also the ratio of dose at two points on the curve
(for example the ratio of dose at 20 cm deep to that at 10 cm deep). Beam width at depth, as predicted by the
model can be compared against the measured data which is defined by the fixed collimator diameter. As before,
to obtain the best performance, slightly different models were used to predict each parameter but the underlying
Monte Carlo model and fundamental model properties remained the same.

3. Results

The results presented below are taken from measured data. Results calculated from photographs are compared
to measurements taken with a microdiamond detector using standard radiotherapy quality assurance protocols.

3.1. Classical image processing

In all cases, images taken with the green scintillator agreed more closely to the microdiamond measurements
than those with the blue scintillator (figure 5). This supports our hypothesis that because Cherenkov light is
strongest in the blue, the scintillation-to-Cherenkov ratio is greatest in the green channel. Nevertheless, the
MAD between PDDs measured with the green scintillator sheet and the microdiamond detector were generally
around 3% for all collimator sizes (MAD was 12%—17% for the blue scintillator sheet), which is inadequate for
radiotherapy QA where we need to assess the Gamma criterion to 2%,/2 mm or better. A similarly poor
agreement was seen for profiles and the output factor curve, motivating the development of the machine
learning methods.

This lack of accuracy is likely caused by two main factors. First, the noise is propagated additively when the
Cherenkov-only image is subtracted from the Cherenkov-plus-scintillation image, and second light is present in
the tails of the profiles in photographs in regions where the measured dose was zero, confirming the presence of
scattered light mentioned in section 2.3 and observed by others (Petric et al 2006).

3.2. Deep learning methods

After processing photographs using the green scintillator with the CNN, the MAD between PDDs measured
with the CNN and those measured with the microdiamond detector was around 1%. Across all collimator
widths from 5 to 60 mm, 95% of points met the Gamma 3% /3 mm criterion, 92% met the 2% /2 mm criterion
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Figure 5. The PDD and profile with the 30 mm collimator measured using the classical approach, and the output factor measurements.
Measurements are shown with the blue scintillator (in blue with diamonds), green scintillator (in green with circles) and
microdiamond detector (in black with crosses). This demonstrates the noise in the raw measurements especially with the blue
scintillator, and the resulting poor determination of output factor.

and 78% met the 1%/1 mm criterion (compared to 41%, 34% and 24% respectively for PDDs determined
classically). The PDDs taken with the 20 mm collimator are shown in figure 6.

The improvement in calculation of output factors is shown in figure 7 which plots the output factor
calculated using the microdiamond detector and the CNN. The mean percentage difference between the CNN
and measurements is 1.1% (for the green scintillator) and 3.4% (for the blue scintillator) compared to 9% and
7% calculated classically. The deviation of 1.1% is in line with the ~2% difference in measurements made with
different solid state detectors reported by Chalkley and Heyes (2014). Furthermore, for most radiotherapy
applications, the accepted value should be within 2% for all field sizes (IPEM 2018), which we have achieved
except for the 5 mm collimator where the difference is 2.5%.

3.3. Validation of deep learning algorithm

The CNN was validated by predicting energy, scintillation to Cherenkov ratio and beam width. The mean
predicted energy was (5.85 & 1.43) MV compared to the true energy of 6.00 MV. The scintillation ratio was
significantly underestimated by 0.201 £ 0.167 (on a scale of 0—1) but the beam width was successfully predicted
with a MAD between the prediction and the actual collimator width 0f 0.92 4- 0.50 mm, or a mean percentage
difference of 5.3%.

Figure 8 shows the distributions of the predicted variables, along with those for PDD and output factor for
completeness. In almost all cases, the mean of the prediction agrees well with the model. The exception is the
prediction of beam width which tends to be overestimated. This is likely to be because the training data was
based on the beam widths available with the Cyberknife system and included relatively more data from small
beam widths than large beams widths.

4, Discussion

Measurements of PDD, profile and output factor following analysis by CNN suggest that this device could be
used for relative dosimetry. The results with the smallest (5 mm) and largest (60 mm) collimator were least
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Figure 8. Distributions of the predictions from the CNN models. (a) is the difference between the measured and predicted dose
prediction for PDD across all beam sizes. (b) is the difference between the modelled and predicted output factors for the 5 mm beam
size (where the agreement between CNN and measurements was poorest). (c) is the difference between modelled and predicted beam
width across all beam widths. (d) is the (dimensionless) difference measured and predicted scintillation/Cherenkov ratio across all
beam sizes. (e) is the modelled and predicted energies. The mean and standard deviation of the best fit Gaussians are given above each
figure.

accurate which we assume is because we did not generate training data outside that range, meaning there is less
information for the neural network to interpolate at the extremes.

The scintillation images are noisy, which poses a challenge for classical methods. This is a result of relatively
low light levels from the thin scintillator sheet, scattered optical radiation from within the scintillator and
secondary x-rays scattered from the scintillator to the camera. When subtracting the Cherenkov-only
photograph from the Cherenkov + scintillation photograph, the noise propagates additively, meaning that the
images remain noisy even after combining five images and carrying out median filtering.

Noise could be reduced experimentally, for example by using an image intensified camera, or by shielding
the camera and viewing the scintillator through a mirror. There are also improvements to be made to the
polystyrene blocks which could be optically coupled to each other using a gel or similar. However, we were
motivated to build a practical, light, low-cost system and all of these experimental improvements increase
complexity. We therefore implemented a deep learning approach which was shown to generate PDDs, profiles
and output factors with similar accuracy to those measured using solid state detectors.

The device is still a prototype and collimators need to be changed manually. If the process was automated, a
full set of photographs from which an output factor curve could be obtained would take less than an hour to
acquire.

Additional confidence in the performance of the CNN was offered by predicting known parameters. The
beam energy was predicted reasonably successfully (predicted 5.85 MV compared to the actual energy of 6 MV).
The scintillation ratio was underestimated especially at small beam widths where the volume emitting
scintillation light and that emitting Cherenkov light become similar. The beam width was predicted with a mean
absolute percentage difference of 5.3% which is sufficient to give some confidence in the outputs of the CNN.
These discrepancies are likely influenced by the choice of domain randomisation. The purpose of this work was
to model PDD and output factor and we chose the range of random variation in the simulations accordingly. For
example, we randomly sampled energies from 6 x 10° MV where sis uniformly sampled from [—1.5, 1.5]. This
gives a wide range, allowing the algorithm to learn from widely differing PDDs but does not allow good energy
resolution around the 6 MV energy of interest. This general approach—of predicting parameters that are known
in advance to give confidence in the output of machine learning algorithms—may be more widely applicable in
safety-critical applications such as medical imaging and radiotherapy.

5. Conclusion

We have demonstrated that machine learning methods in radiotherapy dosimetry are able to offer quantitative
predictions of output factor in small-field dosimetry when classical methods fail. We are aware that it is often
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challenging to translate machine learning based methods into clinical practice but, by predicting additional
parameters, we believe that we can offer indirect evidence for the quality and robustness of the algorithm which
give additional confidence that the method is robust and reliable.

In the introduction, we presented some characteristics of an ideal dosimeter for CyberKnife. Here, we review
those characteristics for the device described here:

+ Water equivalence. The polystyrene blocks have density 1.03 g cm ™ > and refractive index 1.57. Polystyrene’s
formula is (CgHg),,. According to the NIST tables (NIST 2004), the mass attenuation coefficient of polystyrene
at 6 MV is 0.0262 cm® g~ ' while that of water is 0.0277 cm” g~ .

+ Spatial resolution. The pixel resolution was 90 m which is sufficient to plot the steep descent of the
penumbra.

+ Linear response. Both dose and dose rate showed linear responses (R* > 0.999).

+ Multiple points. The system can detect from multiple points simultaneously so that a PDD or profile can be
obtained in a single shot.

+ Automation. In principle, the system could be automated so that multiple collimators can be assessed efficiently

+ Gamma index. Using our CNN models, 95% of points met a Gamma index of 3 mm/3%, 92% met 2 mm/
2% and 78% met 1 mm/1% over all collimator sizes when comparing model predictions to PDD
measurements.

+ Ease of use. As a prototype, the current system is not easy to use, but with further development, it could be
mostly automated so that a full output factor curve could be obtained in less than an hour.

Opverall, we believe that with some development of hardware and software to aid usability, this system meets
most of these requirements and could offer an alternative approach for small-field relative dosimetry.

We have proposed a method for determining PDD, profile and output factor for CyberKnife that is faster,
lower cost and easier to use than existing methods and that appears to have equivalent accuracy. We envisage this
being used for regular, relative QA to assess whether the linear accelerator’s performance has changed since the
previous QA test. We do not propose that this replaces absolute measurements with a water tank, but such a
system may allow for more frequent QA and more rapid return to clinical use following a service. Further
development would allow a movie to be recorded of the time-varying treatment field, potentially allowing
verification of the complex four-dimensional treatment plan.
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