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Abstract
Objective. Small-field dosimetry is an ongoing challenge in radiotherapy quality assurance (QA)
especially for radiosurgery systems such as CyberKnifeTM. The objective of this work is to demonstrate
the use of a plastic scintillator imagedwith a commercial camera tomeasure the output factor of a
CyberKnife system. The output factor describes the dose on the central axis as a function of collimator
size, and is a fundamental part of CyberKnifeQA and integral to the data used in the treatment
planning system.Approach. A self-contained device consisting of a solid plastic scintillator and a
camerawas build in a portable Pelicase. Photographswere analysed using classicalmethods andwith
convolutional neural networks (CNN) to predict beamparameters whichwere then compared to
measurements.Main results. Initial results using classical image processing to determine standardQA
parameters such as percentage depth dose (PDD)were unsuccessful, with 34%of points failing to
meet theGamma criterion (whichmeasures the distance between corresponding points and the
relative difference in dose) of 2mm/2%.However, when images were processed using aCNN trained
on simulated data and a green scintillator sheet, 92%of PDDcurves agreedwithmeasurements with a
microdiamond detector towithin 2mm/2%and 78% to 1%/1mm.Themean difference between the
output factorsmeasured using this system and amicrodiamond detector was 1.1%.Confidence in the
results was enhanced by using the algorithm to predict the known collimator sizes from the
photographswhich it was able to dowith an accuracy of less than 1mm. Significance.With refinement,
a full output factor curve could bemeasured in less than an hour, offering a new approach for rapid,
convenient small-field dosimetry.

1. Introduction

Quality assurance (QA) of radiotherapy treatmentmachines is a necessary part of the treatment pathway. It is
governed byCodes of Practice (Eaton et al 2020)which specify formalmeasurement protocols for reference
dosimetry that are traceable back to a primary standard. Relative dosimetry is less exacting andmay be presented
as a ratiowhich is normalised to a peak. As it is less time-consuming, relative dosimetry is performedmore
frequently than reference dosimetry. Since changes to relative dosimetrymay be used as an indicator for a
change in reference data (and therefore signify a deviation from the treatment planning systemmodel), relative
dosimetry stillmust be performedwith rigour and appropriate expertise.

There are particular challenges for dosimetry of smallfield sizes. An ionisation chamber with a collection
volume larger than the beam size will suffer frompartial volume effects and could significantly perturb the dose
distribution. Ionisation chambers therefore require small-field corrections and so solid-state detectors based on
diodes or diamonds in awater tank are used for relative dosimetry, with some degree of uncertainty (Chalkley
andHeyes 2014). TheCyberKnife™ (Accuray Inc., Sunnyvale, CA) system is a robot-mounted linear accelerator
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that delivers 6MV radiationwith afield size determined by secondary fixed collimators of 5–60mmdiameter. It
does not use aflatteningfilter,meaning that the dose rate is relatively high and the beamprofile is not uniform.
Aswell as being inherently a small-field device, the CyberKnife is also inherently four-dimensional—it can
deliver radiation fromany angle around the patient as a function of time.

Perhaps themost fundamentalmetric for relative dosimetry is the percentage depth dose curve (PDD)which
plots the dose deposited by the beam as it varies with depth along the central axis, normalised to dmax, the
maximumdose on the central axis. Similarly, the profilemeasures the dose perpendicular to the central axis,
normalised to dmax. Together, these curves, and parameters calculated from them, characterisemany of the
beamproperties in a visual and intuitivemanner. These data will be used by the treatment planning system to
calculate the dosewithin a patient at points distant from the isocentre. A fundamental dataset within the
planning system is the relative output factor (ROF)which describes the change in dose on the central axis with
changing beam size as determined by the secondary collimator. A larger beam size leads tomore scattered
radiation and so a higher dose on the central axis even as the number ofmonitor units delivered remains the
same. The output factor is defined for Cyberknife as the dose on the central axis at a depth of 15 mm for each
collimator at a source-surface distance of 785 mm (800 mmsource to axis distance), normalised to the
equivalent dose for the largest (60 mmdiameter) collimator. This is currentlymeasured using an ionisation
chamber or solid-state detector in awater tank.Measurements to fully characterise themachine using a variety
of chambers is labour intensive and requires significant expertise in smallfield dosimetry. Detector choice,
volume, orientation, initial alignment to the beam central axis, and positioning accuracywithin the beamall
affect the uncertainty of themeasurement, andminimising these uncertainties is time consuming. Changes to
machine running parameters (for example beam steering adjustments, or changes to the beam energy)will affect
the accuracy of the dose calculationwithin the patient, and as such the data in the planning system requires
periodic validation, and scheduledmeasurements to verify following a repair ormanufacturer intervention.

Verifying the entire 2D or 3Ddose distribution is complex. Onemetric that is used is theGamma Index
which combines the relative distance between corresponding points and the relative difference in dose (Low and
Dempsey 2003,Hussein et al 2017). A threshold of acceptability is generally quoted, for example 3%/3 mm, and
the percentage of pixels that exceed this threshold is quoted.

An ideal dosimeter for small-field dosimetry would have certain characteristics:

• Water equivalence to allow direct translation to clinical practice;

• A spatial resolution better than 0.5 mm to allow high dose gradients to be plotted;

• Linear response with dose and dose rate tominimise the need for corrections;

• Able to detect frommultiple points simultaneously or rapidly so that a PDDor profile can be obtained
efficiently;

• Able to be automated so thatmultiple collimators can be assessed efficiently;

• Capable of recordingGamma Index to 1%/1 mmaccuracy; and

• Ease of use.

Scintillatingmaterials can offer an alternate approach for relative dosimetry. This has beenmost commonly
proposed using plastic scintillating fibres coupled to a sensitive light detector (Beddar 2006, Kam et al 2022).
These devicesmeet some of the criteria above, but can only sample a limited number of points in the radiation
field. Photography of a solid scintillation block has been proposed for relative dosimetry of photon, electron and
proton beams (Helo et al 2014, Beaulieu andBeddar 2016, Almurayshid et al 2017) but has not yet been accepted
as a reliablemethod for providing robust, quantitative relativemeasurements. Cherenkov emissions from
photon beams can also be imaged in conjunctionwith scintillation (Frelin et al 2005, 2008) or in its own right for
dosimetry (Pogue et al 2017) and for patient verification (Roussakis et al 2015), but like scintillation imaging has
not yet been accepted as a clinical tool.

Here, we investigate photography of a solid plastic scintillator block as a potential alternative device for
small-field relative dosimetry. A plastic scintillator is close towater equivalent; the spatial resolution is
determined by the camera; dose and dose rate responses are linear; and an entire image is acquired rapidly from
which PDD, profile, output factor and other parameters can be determined.We show that such a device analysed
using convolutional neural networks (CNN) can record dose distributionwith sufficient accuracy for relative
dosimetry. Due to the ease of use of the system, plus the potential for automation, this would increase the clinical
availability of the system as less non-clinical timewould be required for scheduled verificationmeasurements,
and less timewould be needed to verify the clinical accuracy of themachine after a repair intervention.We do
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not propose this as a solution for absolute dosimetry, or as a substitute for the initial ‘gold standard’
commissioning datawith awatertank and detector, however it could be used to provide a verification dataset for
routine and scheduled quality assurance.

2.Method

2.1.Device configuration
The treatment beam excites a volume fromwhich it is challenging to isolate the central axis, which is required to
reproduce the PDDand output factor. This problemwas solved by using a thin scintillating sheet sandwiched
between two non-scintillating polystyrene blocks. The two blocks provide realistic water-equivalent scatter
while the thin scintillating sheet isolates a plane through the central axis, perpendicular to the optical axis of the
camera (figure 1). However, as the beam size increases, it excites both scintillation from the thin sheet in
proportion to the diameter of the beam and alsoCherenkov radiation from the volume in proportion to the area
of the beam,meaning that the contribution fromCherenkov radiation quickly dominates.

Figure 1 is a schematic diagramof thefinal device. A 2 mm thick polystyrene scintillator sheet, sandwiched
between two 200× 200 mmnon-scintillating polystyrene blocks, ismounted inside a Peli case (Peli, UK)
togetherwith aNikonD7500 SLR camerawith 20 mm lens and 20.9MPixel detector. The Peli case has a thin
plastic window, ensuring the system is light-tight whileminimising beamdistortion due to build-up. It is placed
on theCyberKnife couch and aligned using theCyberKnife room lasers (these are set to the centre of the room: a
point in space uponwhich the in-roomkV imaging system is aligned). A patch panel allows for easy
communicationwith a control laptopwhich communicates by Ethernet to a network hub in the control room,
allowingmultiple users to connect for simultaneous control and analysis.

The polystyrene blocks have density 1.03 g cm−3 and refractive index 1.57. Two different scintillating sheets
were used, both polystyrene, a standard blue scintillator (SP32 fromNuvia, Czech Republic with a peak emission
at 425 nm) and a novel green scintillator (SP33,Nuvia, (Hamel et al 2020), with peak emission at 503 nm).
Cherenkov emission is predominantly blue, so it was anticipated that a green scintillator wouldmaximise the
scintillation-to-Cherenkov ratio in the green channel of the camera. The central axis of the camerawas aligned
with the top edge of the plastic blocks and the distance from the camera to the plastic block fixed so that the
entire width of the 20 cmblockwas in frame. If the camera pointed at the centre of the plastic blocks, therewas a
significant artefact from light generated in the scintillator, reflecting off the underside of the plastic block and
obscuring the entry point.

Figure 1. Schematic diagram showing the detector in a Peli case in the treatment room,with control and analysis computers in the
control room.
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2.2. Experimentalmethod
The 6MV treatment beam emits 1000± 15monitor units (MU)/min and delivers 10 Gymin−1 at 15 mmdepth
with the 60 mmcollimator beam. Themachinewas aligned orthogonally with the upper surface of the plastic
block, and centred onto the scintillating sheet. CyberKnife output factors aremeasured at 785 mmsource to
surface distance (SSD)with themeasurement point at 15 mmdeep. The treatment planning systemutilises
tissue phantom ratio (TPR)measurements, which is the ratio of absorbed dose at a given point to the dose at a
fixed reference depth using a constant source to axis distance by varying the SSD. For comparative data, and ease
of subsequent experimental setup, a PDDdataset can bemeasured alongside the TPR. PDDuses a constant SSD,
simplifying themeasurement technique in awatertank. A full set of dosimetrymeasurements (PDD, ROF and
Off Centre Ratios)weremadewith a PTW-60019 synthetic single-crystalmicroDiamondTM (PTW,Germany)
detector (repeating themethod of Chalkley andHeyes 2014) at an SSD of 785mm,with scintillation
photography performed at the same SSD for direct comparison. The camera ISO and aperture were set to
400ISO and f/5.6, and the exposure time adjusted from10 s to 30 s depending on the beamdiameter to ensure
the imageswerewell exposedwithout saturation. Photographswere takenwhile the beamwas on, with the
timing determined by the camera shutter andwere stored inNikon’sNEF rawdata format.

Every image takenwith the polystyrene blocks and 2mm thick scintillator sheet was pairedwith onewithout
the scintillator so that Cherenkov light could be identified and subtracted to generate an image showing
scintillation alone (figure 2). However, for large field sizes, theCherenkov light was of a similar order of
magnitude to the scintillation light, so even after the Cherenkov imagewas subtracted, bias and statistical errors
remained in the scintillation image. Eachmeasurement consisted offive identical repeated images. Dark
background images were acquiredwith the beamoff and x-ray scatter wasmeasured from the top half of the
imagewhere no scintillator was present. The dark backgroundwas typically 0.03%of themaximum intensity
and the x-ray scatter was 1%–5%depending on the exposure time.

2.3.MonteCarlo simulation
The experimental pipelinewas tested and verifiedwith aMonte Carlomodel implemented inGEANT4 (Allison
et al 2016) using theG4EmLivermorePhysics andG4OpticalPhysics classes and reproducing the geometry shown
infigure 1. The dose deposited in the polystyrene blockwasfirstlymodelled, with the resulting scintillation and
Cherenkov photons then simulated, propagated and focussed onto an image plane using a thin lens
approximationwith a lens aperture of 4.1 cm,which ensured that the entire depth of the polystyrene blockwas
in focus. The speed of the simulationwas increased by killing photonswhichwere repeatedly internally reflected
and by simulating only those optical photonswhich are emitted in a solid angle that encompasses the lens. These
improvements decreased the time required to detect 105 simulated optical photons from about aweek to about
10 h using an Intel XeonE5-2430 2.7GHzCPU.

Themodel was validated by simulating dose distributions and comparing them to the dosemeasuredwith a
microdiamond detector. Themean absolute difference (MAD) between simulated andmeasured dosewas less
than 1% for the profile and output factor. For the PDD, this increased to 2%as the simulated dose distribution
increasingly underestimated the dose compared tomicrodiamondmeasurements as the depth increased.When
simulated andmeasured photographswere compared at different field sizes, theMADwas generally less than
2%, but increased to about 3% as the PDDgot deeper and to about 5% at the steep edges of the profile.We
believe this was due to the scintillation light being scatteredwithin the polystyrene block.

Figure 2.Example images for the 30mmcollimator, all normalised to the same intensity. (a) is an original photograph from the green
scintillator-polystyrene block; (b) showsCherenkov light form the polystyrene block only; (c) is the subtracted image showing
scintillation light only.
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2.4. Classical image processing
The greatest source of noise in the imagewas due to photons from the scattered x-rays, leading to amean noise-
to-signal ratio of 0.60. Themost effective way to reduce this was to apply twomedian filters. First, each pixel was
adjusted so that it became themedian value of that pixel across thefive images. Second, a spatialmedianfilter
with a 3× 3 pixel kernel was applied to the imagefive times. This reduced themean noise-to-signal ratio to 0.04,
without distorting the spatial distribution of the image (figure 3).

The polystyrene blocks were photographedwith a ruler to provide an absolute length scale which confirmed
the spatial resolutionwas 90 μm.All photographs were rotated so that an image showing the alignment laser
would appear vertical.

Each photograph of the scintillator sheet includes components fromCherenkov and scintillation light
(figure 2).Wewant an image that shows only the scintillation signal so theCherenkov signal (taken from the
corrected photograph obtained from the plastic blockwith no scintillator) is subtracted from the
photograph showing the combined signal, as implemented by Beddar et al (1992), Yogo et al (2017) and others.
Finally, corrections are applied for refraction (with the application of Snell’s law), light intensity (with a
1/distance2 factor) and exposure time (to ensure that pixel intensity is linear with exposure).

2.5.Deep learningmethods
The classical image processing described above failed tomeet clinical requirements (see section 3.1), so an
alternative approach based onCNNwas implemented. A neural network is a layered structure of connected
nodes known as neuronswhere the strengths of the connections are adjusted tominimise an objective function.
In aCNN, one ormore of the layers includes a convolution operatorwhich extracts simplified features of the
image,meaning that raw pixel data can be processed (see, for example, Shin et al 2016). CNNs have become the
method of choice formachine learning image analysis particularly for extracting information fromnoisy images
in awide range of applications includingmedical imaging (Chen et al 2020) and in radiotherapy (Tomori et al
2018,Nyflot et al 2019).

Here, the training data consisted of pairs of simulated images where each pair consisted of the simulated dose
in the polystyrene block and the simulated photograph.We therefore trained theCNN to predict the dose given
themeasured photograph (figure 4). The algorithmwas validated on different images from those used to train
themodel and throughout, themodel was blind to themeasured data. Themodel was implemented by
extending a standard ResNet CNNarchitecture provided by the python library TensorFlow (Abadi et al 2016).

In practice, different CNNswere implemented in order to predict PDD, output factor and other variables,
but the basic theory and structure of themodels were the same aswas the underlyingMonte Carlomodel.
Implementing different deep learningmodels to solve for different parametersmight appear counterintuitive,
but to train a single CNN tofit for all the unknown parameters risks overfitting because it would need to be very
carefully trained and tuned for a specific configuration. It would then not be robust to any unexpected changes
that it has not been trained for. In addition, some of the parameters are correlated (for example, increasing the
beamwidth reduces the scintillation/Cherenkov ratio). Thismeans that a combinedCNNmight learn that
correlation rather than learning themapping between the image and the dose, which is whatwewant. Having
separatemodelsmeans that the combinedmethod is bemore robust to unexpected changes. Tables 1 and 2
summarise details of the structure and performance of the algorithms used to calculate output factor and PDD.
The software is available onGitlab http://gitlab.com/jeremyocampo/scintinets.

Figure 3.The green channel of photographs of the scintillating block (a) before and (b) after application of the noise reduction process
described in section 2.4. To emphasise the difference, contrast has been stretched by histogram equalisation. The lines alongwhich the
PDD and profile are extracted are shown in (b).
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Onewell-knowndisadvantage of deep learningmethods is that they require a large training dataset (typically
104−106 images).We do not have enoughmeasured data to train aCNN, so insteadwe simulated a dataset using
theGEANT4model described in section 2.3. To generatemany images, the simulation parameters were varied
randomlywithin realistic ranges using a technique called domain randomisation (Tobin et al 2017).We chose to
randomly vary the beam energy, camera position, scintillator thickness, SSD, beamdirection, beamwidth and
intensity, as shown in table 3. This provided 1546 training images and 386 other images that were used for
validation. Additional training images were created by randomly rotating, blurring, cropping and adding noise
to these images. The scintillation toCherenkov ratiowas also varied. This second round of adjustments could be
appliedmuchmore quickly than the simulations, allowing a large number of training images to be built up
efficiently. In total, 75 000 images were used to train the algorithm that was used to calculate PDD and 90 000 for
the output factor. Full details of the development of the algorithm can be found inOcampo (2023).

2.6. Validation of deep learning algorithm
One of the criticisms of deep learning in safety-critical applications such as radiotherapy is that it is not always
easy to have confidence in the results, given that it is hard to understand howdecisions aremade. In an attempt

Figure 4. Flow chart showing supervised learning approach.

Table 1.Model performance and size for predicting output factors on the
validation dataset. The absolute error between each predicted and
conventionallymeasured output factor was computed, fromwhich the
mean absolute difference was calculated over allfield sizes.

No. of layers

No. of trainable

parameters

Mean absolute difference

in output factor

3 5× 104 5.4± 7.2

12 2× 106 8.4± 4.0

24 (ResNet) 4× 106 1.0± 1.2

Table 2.Model performance and size for predicting PDDon the
validation dataset. The absolute error between each predicted and
conventionallymeasured PDDwas computed, fromwhich themean
absolute difference was calculated over allfield sizes.

No. of layers

No. of trainable

parameters

Mean absolute differ-

ence in PDD (%)

3 7× 104 2.1± 3.0

11 (Autoencoder) 4× 106 0.68± 0.65
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tomitigate this concern, themodel was used to predict some parameters that are known a priori, such as the peak
energy (which isfixed at 6MV in theCyberKnife), the beamwidth (which is determined by thefixed collimator
diameters) and the scintillation toCherenkov ratio (which can bemeasured). A correct beam energy will
determine the position ofmaximumdose on the PDDcurve, and also the ratio of dose at two points on the curve
(for example the ratio of dose at 20 cmdeep to that at 10 cmdeep). Beamwidth at depth, as predicted by the
model can be compared against themeasured datawhich is defined by thefixed collimator diameter. As before,
to obtain the best performance, slightly differentmodels were used to predict each parameter but the underlying
Monte Carlomodel and fundamentalmodel properties remained the same.

3. Results

The results presented below are taken frommeasured data. Results calculated fromphotographs are compared
tomeasurements takenwith amicrodiamond detector using standard radiotherapy quality assurance protocols.

3.1. Classical image processing
In all cases, images takenwith the green scintillator agreedmore closely to themicrodiamondmeasurements
than thosewith the blue scintillator (figure 5). This supports our hypothesis that because Cherenkov light is
strongest in the blue, the scintillation-to-Cherenkov ratio is greatest in the green channel. Nevertheless, the
MADbetween PDDsmeasuredwith the green scintillator sheet and themicrodiamond detector were generally
around 3% for all collimator sizes (MADwas 12%–17% for the blue scintillator sheet), which is inadequate for
radiotherapyQAwherewe need to assess theGamma criterion to 2%/2mmor better. A similarly poor
agreementwas seen for profiles and the output factor curve,motivating the development of themachine
learningmethods.

This lack of accuracy is likely caused by twomain factors. First, the noise is propagated additively when the
Cherenkov-only image is subtracted from theCherenkov-plus-scintillation image, and second light is present in
the tails of the profiles in photographs in regionswhere themeasured dosewas zero, confirming the presence of
scattered lightmentioned in section 2.3 and observed by others (Petric et al 2006).

3.2.Deep learningmethods
After processing photographs using the green scintillator with theCNN, theMADbetween PDDsmeasured
with theCNNand thosemeasuredwith themicrodiamond detector was around 1%.Across all collimator
widths from5 to 60 mm, 95%of pointsmet theGamma 3%/3mmcriterion, 92%met the 2%/2mmcriterion

Table 3.Domain randomisation parameters for the output factor and PDDmodels.Mean and
standard deviation are shown for normally distributed parameters;mean,maximumand
minimumare shown for parameters drawn from a uniformdistribution. The peak energy for the
PDDmodel was drawn from a log-uniformdistribution between 6× 10−1.5 and 6× 101.5 MV
(equivalent to 0.2–190MeV). A log-uniformdistribution ensures that the selection of energies is
distributed evenly over length scales while the broad range of energies was required to provide the
CNNwith datawith sufficient variation.With a narrower range, the PDDswere too similar for the
algorithm to learn the differences.

Domain randomisation for output factor

Mean Standard deviation Minimum Maximum

Beamwidth (mm) 25.8 4 62

Energy (MeV) 6.0 1.50

Lens to beamdistance (cm) 52.1 32 70

Lens depth offset (mm) 100.1 92 108

Lens lateral offset (mm) 1.0 −10 10

Sheet thickness (mm) 2.7 1 6.5

SSD (cm) 78.4 1.02

DomainRandomisation for PercentageDepthDose

Mean Standard deviation Minimum Maximum

Beamwidth (mm) 27.3 5 60

Energy (MeV) 14.9 2 150

Lens to beamdistance (cm) 49.7 30 70

Lens depth offset (mm) 100.0 90 110

Lens lateral offset (mm) −0.2 −10 10

Sheet thickness (mm) 3.7 1 6.5

SSD (cm) 78.5 0.97
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and 78%met the 1%/1mmcriterion (compared to 41%, 34%and 24% respectively for PDDs determined
classically). The PDDs takenwith the 20mmcollimator are shown infigure 6.

The improvement in calculation of output factors is shown infigure 7which plots the output factor
calculated using themicrodiamond detector and theCNN. Themean percentage difference between theCNN
andmeasurements is 1.1% (for the green scintillator) and 3.4% (for the blue scintillator) compared to 9% and
7%calculated classically. The deviation of 1.1% is in linewith the∼2%difference inmeasurementsmadewith
different solid state detectors reported byChalkley andHeyes (2014). Furthermore, formost radiotherapy
applications, the accepted value should bewithin 2% for allfield sizes (IPEM2018), whichwe have achieved
except for the 5mmcollimatorwhere the difference is 2.5%.

3.3. Validation of deep learning algorithm
TheCNNwas validated by predicting energy, scintillation toCherenkov ratio and beamwidth. Themean
predicted energywas (5.85± 1.43)MVcompared to the true energy of 6.00MV. The scintillation ratiowas
significantly underestimated by 0.201± 0.167 (on a scale of 0–1) but the beamwidthwas successfully predicted
with aMADbetween the prediction and the actual collimatorwidth of 0.92± 0.50mm, or amean percentage
difference of 5.3%.

Figure 8 shows the distributions of the predicted variables, alongwith those for PDD and output factor for
completeness. In almost all cases, themean of the prediction agrees well with themodel. The exception is the
prediction of beamwidthwhich tends to be overestimated. This is likely to be because the training data was
based on the beamwidths available with theCyberknife system and included relativelymore data from small
beamwidths than large beamswidths.

4.Discussion

Measurements of PDD, profile and output factor following analysis byCNN suggest that this device could be
used for relative dosimetry. The results with the smallest (5mm) and largest (60mm) collimatorwere least

Figure 5.ThePDDandprofile with the 30mmcollimatormeasured using the classical approach, and the output factormeasurements.
Measurements are shownwith the blue scintillator (in bluewith diamonds), green scintillator (in greenwith circles) and
microdiamond detector (in blackwith crosses). This demonstrates the noise in the rawmeasurements especially with the blue
scintillator, and the resulting poor determination of output factor.
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Figure 6.Comparison of PDDswith the 20mmcollimatormeasured using themicrodiamond detector (in black), direct
measurements taken from the photograph using the classical approach (in blue) and the prediction from theCNNalgorithm (in red).

Figure 7.Output factors calculatedwith theCNNapproach.Measurements are shownwith the blue scintillator (in blue), green
scintillator (in green) andmicrodiamond detector (in black). Insert shows enlargement of collimator sizes<25mm.
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accurate whichwe assume is becausewe did not generate training data outside that range,meaning there is less
information for the neural network to interpolate at the extremes.

The scintillation images are noisy, which poses a challenge for classicalmethods. This is a result of relatively
low light levels from the thin scintillator sheet, scattered optical radiation fromwithin the scintillator and
secondary x-rays scattered from the scintillator to the camera.When subtracting theCherenkov-only
photograph from theCherenkov+ scintillation photograph, the noise propagates additively,meaning that the
images remain noisy even after combining five images and carrying outmedianfiltering.

Noise could be reduced experimentally, for example by using an image intensified camera, or by shielding
the camera and viewing the scintillator through amirror. There are also improvements to bemade to the
polystyrene blocks which could be optically coupled to each other using a gel or similar. However, wewere
motivated to build a practical, light, low-cost system and all of these experimental improvements increase
complexity.We therefore implemented a deep learning approachwhichwas shown to generate PDDs, profiles
and output factors with similar accuracy to thosemeasured using solid state detectors.

The device is still a prototype and collimators need to be changedmanually. If the process was automated, a
full set of photographs fromwhich an output factor curve could be obtainedwould take less than an hour to
acquire.

Additional confidence in the performance of theCNNwas offered by predicting known parameters. The
beam energy was predicted reasonably successfully (predicted 5.85MVcompared to the actual energy of 6MV).
The scintillation ratiowas underestimated especially at small beamwidthswhere the volume emitting
scintillation light and that emitting Cherenkov light become similar. The beamwidthwas predictedwith amean
absolute percentage difference of 5.3%which is sufficient to give some confidence in the outputs of theCNN.
These discrepancies are likely influenced by the choice of domain randomisation. The purpose of this workwas
tomodel PDDand output factor andwe chose the range of random variation in the simulations accordingly. For
example, we randomly sampled energies from6× 10sMVwhere s is uniformly sampled from [−1.5, 1.5]. This
gives a wide range, allowing the algorithm to learn fromwidely differing PDDs but does not allow good energy
resolution around the 6MVenergy of interest. This general approach—of predicting parameters that are known
in advance to give confidence in the output ofmachine learning algorithms—may bemorewidely applicable in
safety-critical applications such asmedical imaging and radiotherapy.

5. Conclusion

Wehave demonstrated thatmachine learningmethods in radiotherapy dosimetry are able to offer quantitative
predictions of output factor in small-field dosimetry when classicalmethods fail.We are aware that it is often

Figure 8.Distributions of the predictions from theCNNmodels. (a) is the difference between themeasured and predicted dose
prediction for PDDacross all beam sizes. (b) is the difference between themodelled and predicted output factors for the 5mmbeam
size (where the agreement betweenCNNandmeasurements was poorest). (c) is the difference betweenmodelled and predicted beam
width across all beamwidths. (d) is the (dimensionless) differencemeasured and predicted scintillation/Cherenkov ratio across all
beam sizes. (e) is themodelled and predicted energies. Themean and standard deviation of the bestfit Gaussians are given above each
figure.
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challenging to translatemachine learning basedmethods into clinical practice but, by predicting additional
parameters, we believe that we can offer indirect evidence for the quality and robustness of the algorithmwhich
give additional confidence that themethod is robust and reliable.

In the introduction, we presented some characteristics of an ideal dosimeter for CyberKnife. Here, we review
those characteristics for the device described here:

• Water equivalence.The polystyrene blocks have density 1.03 g cm−3 and refractive index 1.57. Polystyrene’s
formula is (C8H8)n. According to theNIST tables (NIST 2004), themass attenuation coefficient of polystyrene
at 6MV is 0.0262 cm2 g−1 while that of water is 0.0277 cm2 g−1.

• Spatial resolution. The pixel resolutionwas 90 μmwhich is sufficient to plot the steep descent of the
penumbra.

• Linear response. Both dose and dose rate showed linear responses (R2> 0.999).

• Multiple points. The system can detect frommultiple points simultaneously so that a PDDor profile can be
obtained in a single shot.

• Automation. In principle, the system could be automated so thatmultiple collimators can be assessed efficiently

• Gamma index.Using ourCNNmodels, 95%of pointsmet aGamma index of 3 mm/3%, 92%met 2 mm/
2%and 78%met 1 mm/1%over all collimator sizes when comparingmodel predictions to PDD
measurements.

• Ease of use. As a prototype, the current system is not easy to use, butwith further development, it could be
mostly automated so that a full output factor curve could be obtained in less than an hour.

Overall, we believe thatwith some development of hardware and software to aid usability, this systemmeets
most of these requirements and could offer an alternative approach for small-field relative dosimetry.

We have proposed amethod for determining PDD, profile and output factor for CyberKnife that is faster,
lower cost and easier to use than existingmethods and that appears to have equivalent accuracy.We envisage this
being used for regular, relativeQA to assess whether the linear accelerator’s performance has changed since the
previousQA test.We do not propose that this replaces absolutemeasurements with awater tank, but such a
systemmay allow formore frequentQA andmore rapid return to clinical use following a service. Further
development would allow amovie to be recorded of the time-varying treatment field, potentially allowing
verification of the complex four-dimensional treatment plan.
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