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Abstract The understanding of crowd behavior dynamics holds immense significance
in ensuring public safety across a range of situations, including emergency evacuations
and large-scale events. Our research focuses on two primary objectives: investigating
the impact of emotions on crowd movement and gaining valuable insights into collective
behavior within crowds. To achieve this, we present a coupled model, incorporating an en-
hanced ASCRIBE model with an agent displacement model. We introduce heterogeneity
into our model by incorporating specific mobility laws for different categories of panicked
crowds, considering the influence of emotions on both speed and direction. Through nu-
merical simulations, we analyze the model’s parameters, observe the behavior of uniform
crowds, and explore the collective dynamics within diverse crowds. By conducting com-
prehensive simulations and analyses, the findings from this study can contribute to the
development of more effective crowd management strategies and emergency evacuation
protocols.
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1 Introduction

For many years, researchers have been focused on the study of crowd behavior in var-
ious areas. Understanding how crowds move and behave is crucial, especially in panic
situations. Experimental setups, often involving real-world scenarios and controlled en-
vironments, have been designed to closely monitor and analyze crowd dynamics such as
pushing behaviour [1], bottleneck effects [2] and stop and go waves [3]. In an effort to
shed light on the factors influencing human crowd evacuation during such circumstances,
scientists have developed various models, focusing on two main categories: macroscopic
and microscopic models.

Macroscopic models represent the overall movement of a crowd through a set of dif-
ferential equations generally based on fluid mechanics. These equations describe the
changes in velocity and density at each point in space. Such models effectively showcase
the collective behavior of crowds. However, they tend to overlook the specific traits and
behaviors of individuals. On the other hand, microscopic models focus on capturing the
complex details of how pedestrians move as individuals, by describing their velocities and
directions. The social force model (SFM) [4], cellular automata model [5], and lattice gas
model [6] are widely recognized as prominent microscopic models. Among them, SFM
has gained significant popularity for its simple mathematical formulation, clear physical
meaning and good ability of describing the movement process [7], and continues to be
enhanced by numerous researchers to attain more accurate outcomes in diverse complex
environments. In our previous works [8–10], we developed a 2D discrete model based
on SFM model and the theory of non-smooth granular model proposed by Frémond to
manage multiple and simultaneous collisions between pedestrians. However, the model
is not adapted to deal with pedestrians’ emotional changes and to reproduce panic situ-
ations. Another practical challenge arises from considering pedestrians as homogeneous
rigid particles, as it fails to account for individual variations in the crowd.

Helbing et al. [11] integrated panic factor in both desired speed and desired direction
to model herding behaviour during evacuation process. Fu et al. [12] coupled cellular-
automata model with the SIRS model while introducing an emotion parameter for suscep-
tible individuals. Cao et al. [13] developed the P-SIS model by combining the OCEAN
model and SIS model and coupling it with the SFM. Cornes et al. [14] presented a model
of panic propagation process, where many individuals may suddenly switch to an anxious
state, that was coupled with the SFM. Other models [15, 16] interested to crowds evacu-
ation in multi-hazard situations. The movements of each individual in their models was
determined by modeling the emotion of panic and other features such as physical strength
consumption and officers assistance. Zhou et al. [17] proposed an emotion contagion that
considers personality traits, emotion state, intimacy, and panic level. Individual emotions
can influence the path selection time. Mao et al. [18] presented an emotional contagion-
based model that integrates peer decision-making in emergency evacuations, considering
factors such as emotion contagion, intimacy-based decision-making, environmental fa-
miliarity, and task difficulty. Liu et al. [19] established an emotional contagion model
based on information transmission process, enabling the construction of a behavior mech-
anism for agents taking into account emotional contagion. Cao et al. [20] proposed an
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evacuation model that integrates the influence of stress factors on crowd evacuation per-
formance by allowing evacuees to adjust their desired moving speed in response to the
surrounding fire event. In Xu et al. [21] paper, the emotional process assumes that pedes-
trians are influenced by nearby individuals, resulting in the identification of two emotional
states (negative and positive) that determine the pedestrian’s desired speed. To simulate
how people in panic follow their leader and escape, Mao et al. [22,23] developed a novel
crowd behavior simulation method that incorporates the Leader-Follower model, an emo-
tional model, and an enhanced SFM that considers forces within and among groups. Xiao
et al. [24] explored the dynamic emotional perception influenced by personal walking
speed and others in the domain, and integrated emotional contagion into an improved
cellular automata model. Li et al. [25] proposed a model that incorporates three crisis
factors (residence time, crowd density, and exit distance) directly impacting the desired
speeds of pedestrians, resulting in varying levels of emotion. Niu et al. [26] presented
a new model for emergent evacuation with assailants, utilizing the Susceptible-Infected-
Susceptible model. The panic factor was defined as a function of density and the distance
between pedestrians and the assailant, directly influencing their speed.

Many works aimed integrate heterogeneity in crowd models. Guo et al. [27] proposed
a heterogeneous lattice gas model for studying pedestrians’ evacuation processes, consid-
ering critical damage force, local density, and exit congestion as factors in the updating
rule. Cao et al. [20] proposed an improved SFM to model the raised stress created by the
physical threat of fire, incorporating the variation of evacuees’ stress levels. Hrabak et al.
[28] introduced parameters into the Floor-Field model such as velocity, aggressiveness,
and sensitivity to occupancy as heterogeneity features. Li et al. [29] developed a behavior-
based cellular automata model that introduced aggressiveness as an internal state, affect-
ing motion characteristics and pedestrians’ behavior preferences. Wu et al. [30] extended
an existing model to simulate the evacuation of mixed crowds, including disabled pedes-
trians, to achieve a more realistic representation. Ma et al. [7] analyzed desired speed
within the SFM, where nine models of desired speed are examined, highlighting the im-
pact of heterogeneity on model performance. Wu et al. (2021) developed a pedestrian
heterogeneity-based social force model (PHSFM) by incorporating physique and men-
tality coefficients, introducing a heterogeneous coefficient that modifies the self-driven
force. Later, the PHSFM model was improved to the behavioral heterogeneity-based so-
cial force model (BHSFM) [31], by explicitly considering panic parameters, physique
coefficients, and other emergency environment and individual difference factors.

Most of the aforementioned models have not taken into account the phenomenon of
emotional contagion that occurs during panic situations. Even for the models that do con-
sider panic factors, the integration of the contagion process is lacking, with the temporal
evolution of the panic parameter relying solely on the speed of movement. However, the
incorporation of emotional contagion is an important aspect that has been overlooked. By
considering the influence of emotional contagion, we may capture the complex dynamics
and behaviors exhibited by crowds during emergencies.

In this paper, Section 2 provides an introduction to the displacement model that was
developed earlier. Moving on to Section 3, we present an improved ASCRIBE model
that effectively captures the emotional dynamics of individuals and controls the spread of
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panic within a crowd. Section 4 introduces mobility laws specific to different categories of
panicked crowds, taking into account the impact of emotions on both speed and direction.
Finally, in Section 5, we conduct numerical simulations to analyze the parameters of
the coupled model, examine the behavior of uniform crowds, and explore the collective
dynamics within diverse crowds.

2 A modified SFM of pedestrian movement

The movement of individuals within specific locations is characterized using a social
force formalism. This framework considers each pedestrian as a particle that experiences
various forces. By employing Newton’s second law of dynamics, we can calculate the
displacement of pedestrians over time. The development of SFM originated from the
work of Helbing and Molnar [4] and has since been applied to analyze pedestrian flows
in a range of scenarios, including bottleneck entrances and panic situations. In our study,
we utilize a previously validated version of SFM that accurately captures the movement
of individuals within crowded environments [32, 33]. We describe the movement of each
individual as follows:

2.1 At a distance interactions

mi
dvi

dt
= fsel f

i +∑ fsoc
i j +∑ fobs

iW , (1)

Equation 1 presents the formulation governing the smooth evolution of the system,
which takes into account various factors influencing individual movement. In this equa-
tion, mi represents the mass of the individual, vi denotes their velocity vector, and fsel f

i
corresponds to the self-driven force acting on the individual. This force accounts for
the adjustment of pedestrian movement speed to attain the desired velocity vd, i and the
desired direction ed,i, as expressed by:

fsel f
i = mi

vd,i ed,i −vi

τi
, (2)

τi is the relaxation time which represents the needed time for the pedestrian velocity to
adapt to the desired speed.

We now incorporate the social psychological force exerted by pedestrians towards each
other. The initial formulation of this force was introduced by Helbing and Molnàr [4].
However, recent studies have modified this force to account for avoidance behavior be-
tween neighboring individuals and enable them to maintain a desired distance [32]. fsoc

i j
is the social psychological force between the i-th and j-th individuals, given as follows:

fsoc
i j =

{
Asoc exp

(
di j−dsoc

β soc

)
ei j, if di j < dsoc

0, elsewhere
, (3)

Asoc represents the magnitude of the social psychological force exerted between pedes-
trians, di j denotes the distance between two pedestrians, i and j, dsoc corresponds to the
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desired interpersonal distance, indicating the distance individuals tend to maintain be-
tween themselves, and βsoc characterizes the falloff length of the social psychological
force, governing how quickly the force diminishes with increasing distance.

Moreover, the interactions of each individual with the surrounding environment are ac-
counted by using the force fobs

iw . This force is an exponential repulsive force that intensifies
as an individual approaches walls or other obstacles, reflecting the inherent tendency to
avoid collisions and maintain a safe distance:

fobs
iw =

{
Aobs exp

(
diw−dobs

βobs

)
eiw, if diw < dobs

0, elsewhere
, (4)

where Aobs denotes the magnitude of the psychological force between a person and a wall.
The distance separating the individual from the wall is represented by diw. Each individual
strives to maintain a distance of dobs from the wall. βobs characterizes the falloff length of
the social psychological force, governing how quickly the force diminishes with distance
from the wall. Lastly, eiw is the normal vector that points from the wall towards pedestrian
i.

2.2 Contact management

When contact is detected, the velocities of the colliding particles become discontinuous.
Therefore, interior percussions pi

int and exterior percussions pi
ext are introduced and used

to calculate the velocity after the shock, following the equation:

mi
(
vi

+−vi
−)=−pi

int +pi
ext (5)

v− and v+ are the agent’s velocities before and after a collision. The interior per-
cussions pi

int take in account the dissipative interactions between the colliding particles
and the reaction forces that permit the avoidance of overlapping among particles. It is
expressed using a pseudo-potential of dissipation Φ as:

pint ∈ ∂Φ

(
D

(
v++v−

2

))
(6)

where D(v) = (∆(v),∆∗(v)) ,∆(v) represents the vector containing all the velocities of
deformation of all the particles in contact, and ∆

∗(v) represents the vector containing all
the at-a-distance deformation velocities of the particles belonging to groups. The operator
∂ is the sub-differential that generalizes the derivative for convex functions.

The convex function Φ is defined as the sum of two pseudo-potentials [10]:

Φ = Φ
d +Φ

r, (7)

where:

• Φd characterizes the dissipative interior percussions given by:
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Φ
d(D(v)) =

1
2 ∑

1≤i≤ j≤N
Kn

(t
∆i j(v) · en

i j
)2

(8)

The dissipation coefficient Kn for the normal component of dissipative percussion
characterizes the inelastic nature of the collisions between particles; an infinite
value of Kn implies a perfectly elastic collision.

• Φr characterizes the reactive interior percussions, which ensure non-interpenetration
between particles. It is equal to zero if the contact is not maintained after the col-
lision (that is, ∆i j (v+) · en

i j < 0) and positive if contact is maintained after collision
(i.e., ∆i j (v+) · en

i j = 0) where en
i j is the unit vector pointing from agent i to agent j.

These conditions allow us to write:

Φ
r = IR−

(
∆i j

(
v+

)
· en

i j
)

(9)

The introduced system leads to a constrained minimization problem:

X = arg min
Y∈R3Nc

[tYMY+Φ(D(Y))− t (2v−+M−1pext)MY
]

(10)

with Y = v++v−
2 and Nc the number of pedestrians in contact.

3 Emotional contagion model

In this paper, we distinguish between two extreme behaviors: terrified or stressed agents
who transmit negative emotions, and calm agents who transmit positive emotions. De-
pending on their personality traits, the other agents have an intermediate action and con-
tribute positively or negatively to the spread of panic. To accomplish this, we opt for a
solicitation-response paradigm, in which multiple reactions can occur depending on the
agent’s response to a solicitation applied by his environment (other agents, stimulus, etc.)

Let’s call Ei the emotional intensity of an agent i; A normalized dimensionless variable.
The value of Ei allows to assign different emotional states: calm if Ei = 0, anxiety if
Ei ∈ (0,0.4], panic if Ei ∈ (0.4,0.8], and hysteria if Ei ∈ (0.8,1] [34] . We note Ea

i the
local average emotional intensity in an agent’s neighborhood i, which is evaluated based
on the elementary solicitations exerted on agent i by agents j, with j ̸= i.

Consider a crowd of n agents. The evolution of the emotional intensity of an agent
2 ≤ i ≤ n is governed by the following dynamic system:

dEi

dt
= βi Ea

i (1−Ei)+(1−βi)Ei (Ea
i −1) (11)

where βi ∈ [0,1] is a resilience parameter that refers to how an agent interprets a stim-
ulus. The term Ea

i (1−Ei) is positive and corresponds to a population that tends to be
panicked with a speed Ea

i , whereas the term Ei (Ea
i − 1) is negative and used to describe

the calm population. The other behaviours can be generated by linearly combining these
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two regimes; If βi > 0.5, the agent has a negative perspective and is more likely to in-
crease his emotional intensity. The agent has a strong resilience and tends to lower his
emotional intensity if βi < 0.5. If βi = 0.5, the agent has a moderate resilience and adjusts
his emotional intensity to the average emotional intensity Ea

i .
The average local emotional intensity Ea

i refers to the applied environment’s solicitation
on agent i. It is affected by a variety of elements, including the expressivity of other
agents, their velocities and fields of vision, the quality of the domain and the type of the
stimulus. To define it, We propose using the following formula:

Ea
i =

n

∑
j=1
j ̸=i

gi j

∑
n
k=1
k ̸=i

gik
E j (12)

with gi jE j designates an elementary solicitation of agent j, and gi j reflects the ampli-
tude of this elementary solicitation, which can model the expressiveness of the agent j, as
well as the domain’s quality. Intuitively, with a large distance between two agents, it be-
comes hard to clearly define actions and expressions. Consequently, the elementary solic-
itation amplitude is impacted by the distance di j between these two agents. Thus, we de-
fine the amplitude of the elementary solicitation as a radial function gi j =

1
2(1+cos(di j

d0
π))

if di j < d0 else 0, with d0 is a characteristic radius to model the scope of the contagion
impacted by agent j.

4 Constitutive laws of emotions-velocities

Our modeling approach is based on insights from psychological studies [35], which have
identified four distinct categories in which agents tend to fall after experiencing a panic
situation: 1) Stupor: where persons are in a state of stupefaction caused by danger in
which the brain itself may decide that the best chance of survival is not to move at all.
2) Agitation: where persons have an intense energy that cannot channel effectively, start
to make large gestures, coming and going in a disordered way. 3) Panic Flight: where
persons instinctively run away or towards danger without paying attention to everything
around. 4) Adapted: persons who evacuate in an orderly fashion. They may obey orders,
or they may help others. Building upon these definitions, we have developed mobility
laws for each category, taking into account the influence of emotions on both speed and
direction, which we have summarized in Table 1.

In previous researches [11, 14–16], authors have employed a linear relationship to de-
scribe the connection between emotions and speed. However, unlike the linear relation-
ship, which maintains a constant slope and results in abrupt transitions, the sigmoid func-
tion offers a smooth and continuous transition from one value to another as the input
changes. This characteristic makes the sigmoid function a more suitable choice for cap-
turing the complex phenomenon of emotions-velocities dynamics, which cannot be ade-
quately represented by a simple linear function. Therefore, we propose a novel formula
that adopts a logistic form for modeling changes in speed, taking into account the intricate
nature of the emotions-velocities relationship:
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vd,i = fk,vlim(Ei) = g̃k(Ei)(vlim − v0)+ v0 (13)

g̃k represents the normalized version of the logistic function gk, ensuring its values lie
within the interval [0,1]:

gk(x) =
1

1+ exp(−x− k)
(14)

The variable v0 represents the typical speed exhibited by an agent when they are in a
calm state. On the other hand, vlim denotes the maximum speed that an agent can attain
when they are fully panicked. The coefficient k governs how sensitive the agent’s speed
is to changes in their emotional state. Higher values of k amplify the agent’s desired
speed even with relatively low levels of emotional intensity, causing the agent to converge
quickly towards the maximum speed. In simpler terms, even a slight increase in emotional
intensity can prompt the agent to desire a significant increase in speed. Conversely, lower
values of k result in the desired speed being less affected by minor changes in emotional
state and a slower convergence towards the maximum speed. In other words, the agent
does not have a strong inclination to run at high speed unless the emotional intensity
reaches a considerable level.

Regarding the decision-making process for choosing a direction, we provide the agent
with the ability to select from multiple directions based on their respective category. The
following definitions apply:

• Direction to the closest exit: To choose their path, individuals consider all the pedes-
trians and the congestions that are visible to them. To model this medium navigation
behavior, floor fields are used [32]. The dynamic floor field D(x, t) is constructed
by solving the following Eikonal equation:

V (x, t)∥∇D(x, t)∥= 1
D(x, t) = 0

(15)

D(x, t) represents the expected travel times giving the fastest path displacement
strategy and V (x, t) is the estimated travel speed. The static floor field has been
already used in our model only for V (x, t) = 1 and the shortest path strategy was
successfully modeled [36]. For simplicity, we choose this value for the rest of the
paper. The direction is then obtained by: eexit

i = ∇D(x,t)
∥∇D(x,t)∥ .

• Direction to zones with low emotional intensity: A natural response of an agent to
avoid zones with high emotional intensity increases panic and causes considerable
physical and mental damage [15]. We constitute a dynamic floor field based on the
emotional intensity Ei that we interpolate in space to obtain a continuous field. The
direction is then obtained by : eemotion

i =− ∇E(x,t)
∥∇E(x,t)∥ .

• Direction to zones with low density: In normal situations, people tend to avoid
high density zones while walking due to the increased risk of injury or accidents
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[37]. In a panic situation context, being in an overcrowded areas increases stress
and anxiety, as well as decreases reaction times in the event of an emergency. We
constitute a dynamic floor field based on the density ρi defined as the number of
agents on the radius of 2m that we interpolate in space to obtain a continuous field.
The direction is then obtained by :edensity

i =− ∇ρ(x,t)
∥∇ρ(x,t)∥ .

• Direction taken by the majority: People tend to follow the direction of others while
walking due to a phenomenon known as herding behaviour. This behavior is likely
due to a desire for predictability and familiarity. People are more comfortable when
they know what to expect from their environment and those around them. Following
the same direction as others provides this sense of security and familiarity. Addi-
tionally, following the same direction as others can help people save energy and
time since they don’t have to think about which way they should go. We choose
to represent this behavior by the mean direction of neighbors existing in a certain
radius [15]: eavg

i = ∑ j∈neighbors(i) e j.

Class Sensi-
tivity
k

Limit
velocity
vlim

Desired direction Resilience
βi

Initial emo-
tional inten-
sity

Stupor 4 0 ed,i = 1ρi<ρtheexit
i + (1 −

1ρi<ρth)e
avg
i

Random(0.5,
1)

Random(0.4,
1)

Agitation 4 vmax ed,i =

{
eexit

i during T1

erandom
i during T2

Random(0.5,
1)

Random(0.4,
1)

Panic
flight

3 vmax ed,i = 1Ei<Etheexit
i + (1 −

1Ei<Eth)eemotion
i

Random(0.5,
1)

Random(0.4,
1)

Adaptation 2 vmax p = argmin
(

diS
dmax

, ρi
ρmax

, Ei
Emax

)
ed,i =


eexit

i if p = 1
edensity

i if p = 2
eemotion

i if p = 3

Random(0,
0.5)

Random(0,
1)

Table 1 A summary of panicked crowd classes and their characterisations.

Table 1 provides a summary of panicked crowd classes with their respective emotional
and mobility attributes. The symbol 1 denotes the characteristic function (meaning that
for a given subset A, 1A(x) = 1 if x is an element of A, and 1A(x) = 0 if it is not). As
detailed in the table 1, the behavior of agents in the stupor class is characterized by al-
ternating actions: they either move towards the nearest exit or align with the majority’s
direction, the choice of which depends on the local density ρi value compared with a
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threshold ρth. The stupor class is also marked by a heightened response to emotional in-
tensity, as evidenced by a relatively high value of the coefficient k. Additionally, agents in
this class become immobile in situations of extreme panic, leading to a zero limit speed
value. In contrast, agents in the agitation class switch between heading towards the near-
est exit for a set duration T1, and then adopting a random direction for a subsequent period
T2. This class is defined by both high sensitivity and a high limit speed. The panic flight
class involves agents dynamically alternating between moving towards the nearest exit
and moving towards areas of low emotional intensity, with the choice influenced by their
current emotional intensity value compared with a threshold Eth. Compared to the agi-
tation class, the panic flight class is slightly less sensitive but also exhibits a high limit
speed. Finally, the adaptation class exhibits an oscillated behavior between the nearest
exit, areas of low density, and zones with low emotional intensity. Their decision-making
process involves the computation of a utility function that takes into account the distance
to the exit diS, the local density, and the emotional intensity. To ensure comparability,
these parameters are normalized using their maximal values dmax, ρmax, and Emax, align-
ing them within a consistent range. This class is characterized by the lowest sensitivity
due to their capacity of self-control.

5 Numerical simulations

This section studies the effect of model’s parameters, the behaviour of homogeneous
crowd constituted by each class, and the response of an heterogeneous crowd.

5.1 Experiment setup

The parameter settings of experimental evacuation scenario is the following: 200 agents
in a geometry configuration of a square compartment room with the size of 20m × 20m
with a 1m wide exit is set up for this study. Table 2 summarizes all parameters in the
model with the considered values in the simulation. The evacuation process is illustrated
in figure 1, where plot a heat map of the local emotional intensity in each point of the
space.

5.2 Impact of resilience on emotional contagion

The variation of an individual’s emotional intensity is influenced by a combination of two
fundamental elements: the degree of external stimulation provided by the surrounding
environment, denoted as the local average emotional intensity Ea

i , and the personal re-
silience of the agent βi, which encapsulates distinctive attributes of their character and
disposition. For a supposedly constant local average emotional intensity, the analytical
solution of equation 11 is given by:

Ei(t) = (Ei,0 −Ei,∞)exp(
−t
τi
)+Ei,∞ (16)
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Figure 1 Snapshots of evacuation with 200 evacuees at various time steps a) at t = 0s b) at t = 5s c) at
t = 20s d) at t = 50s.
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Parameter Interpretation Value
mi Mass of an individual agent 80 kg [11]
ri Radius of an individual agent 0.2 m [32]
τi Relaxation time 0.5 s [11]

Asoc,Aobs Social and obstacle force amplitudes 2000 N [11]
βsoc,βobs Social and obstacle interaction factors 0.08 m [11]
dsoc,dobs Social force interaction distance 1 m

Kn Normal coefficient for the tangential component of
percussion

105 kg [32]

d0 Characteristic radius for the emotional model 2 m
v0 Speed value in calm state 1.34m [32]

vmax Maximal speed in panicked state 3 m/s [16]
ρth Density threshold for switching direction 2 p/m2

Eth Emotional intensity threshold for switching direction 0.4 [34]
ρmax Maximal density value 5 p/m2 [38]
Emax Maximal emotional intensity value 1
dmax Maximal exit distance value 20 m

Table 2 Parameters, their interpretations, and values in the proposed model

with 1
τi
= (1− βi)− (1− 2βi)Ea

i and Ei,∞ = τiβiEa
i . The asymptotic behavior of an

agent’s emotional state remains unaffected by their initial emotional intensity in response
to a stimulus. Instead, it is primarily determined by two key factors: the individual’s
resilience βi, and the average local emotional intensity within their environment Ea

i . To
illustrate this, figure 2 provides the limit emotional intensity reached by an agent, based
on varying values of the parameter βi and the average local emotional intensity Ea

i . The
graph showcases the relationship between these two factors and their influence on the
agent’s ultimate emotional state. We note that in our analysis, two singular points, namely
(βi,Ea

i ) = (0,1) and (βi,Ea
i ) = (1,0), have been excluded. These points are characterized

by undefined values of the parameter τi, resulting in the agent maintaining their initial
emotional value over time. Therefore, we focus our examination on the remaining param-
eter space.

When considering a specific value of βi within the interval ]0,1[, the limit of emotional
intensity Ei,∞ varies in the same direction as the average local emotional intensity Ea

i . This
pattern, however, differs depending on whether the agent has a strong or weak resilience.
In contrast to agents with strong resilience (0 < βi < 0.5), agents with weak resilience
(0.5 < βi < 1) demonstrate high sensitivity to minor solicitation and are significantly
influenced by the emotional atmosphere in their environment. This implies that agents
with weak resilience are more susceptible to emotional stimuli and are prone to negative
effects from the surrounding emotional context.

Specifically, when βi is set to 0, the limit emotional intensity Ei,∞ is equal to 0. This
indicates that agents with a high level of resilience are capable of maintaining a state of
calmness regardless of the average local emotional intensity Ea

i . Their strong resilience
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Figure 2 Variation of the limit-emotional intensity Ei,∞ of an agent i as a function of its resilience βi and
its average local emotional intensity Ea

i .

shields them from being strongly affected by the emotional atmosphere in their surround-
ings. Conversely, when βi is equal to 1, the limit emotional intensity Ei,∞ is equal to 1.
This signifies that agents with weak resilience experience an extreme panic state, irre-
spective of the average local emotional intensity Ea

i . Their low resilience makes them
highly vulnerable to the influence of their emotional environment, resulting in heightened
emotional intensity. Finally, for agents with a resilience parameter of 0.5, the limit emo-
tional intensity Ei,∞ is equal to the average local emotional intensity Ea

i . This suggests
that agents with moderate resilience fully adopt and mirror the emotional intensity pre-
vailing in their immediate surroundings. Their response to the emotional atmosphere is
more balanced compared to those with strong or weak resilience.

By examining the effects of resilience, we gain insights into how different levels of
emotional strength or vulnerability shape an agent’s emotional state. Agents with strong
resilience are better equipped to regulate their emotional responses and remain calm even
in emotionally charged environments. On the other hand, agents with weak resilience are
highly reactive to emotional stimuli, which can lead to intensified emotional experiences.

5.3 Impact of movement on emotional contagion

This study aims to examine the impact of agents’ movement on emotional contagion
during crowd evacuation scenarios. Specifically, we compare the propagation of panic
within a crowd across different speed values, contrasting it with the static case where
agents remain stationary. To assess the influence of movement dynamics, we analyze key
indicators including the average emotional intensity and proportion of panicked agents.
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Figure 3 a) Average emotional intensity b) Proportion of panicked agents over time for the dynamic and
static cases. The shaded parts refer to the maximum and minimum response obtained by multiple
measures.
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Figure 4 The effect of the limit speed on the mean percentage of panicked agents over the evacuation
process

First, we track, as illustrated in figure 3, the average emotional intensity and the propor-
tion of panicked agents over time for the static when agents are immobile, and dynamic
cases when agents try to evacuate the room. In the static scenario, where the agents re-
mained immobile, we observed a convergence of the crowd’s emotional state towards a
stable mean value. This convergence can be attributed to the mathematical formulation
of the emotional model employed, in which the dynamic system seeks to establish an
equilibrium state based on agents characteristics, resulting in a steady emotional state
maintained throughout the duration of the simulation. In contrast, under dynamic condi-
tions, where agents attempt to evacuate the room, we observe an increasing trend in both
the average emotional intensity and the proportion of panicked agents over time. These
values continue to rise until they reach their peak levels when the agents gathered in close
proximity to the exit, decrease until they reached a null value as the last agents evacuate
the area.

Secondly, we investigate how different movement speeds affect the average proportion
of individuals experiencing panic during the evacuation process. As shown in figure 4,
the mean percentage is around 55% when agents are static, drops to 65% when the limit
speed is set to 0.5m/s, to arrive to around 70% when the limit speed reaches 3m/s.
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The observed trends can be explained by considering the distance between individuals
in different scenarios. When individuals remain stationary, there is a considerable dis-
tance between them compared to the situation during an evacuation where individuals
congregate near the exit, resulting a minimal distances between them. The close proxim-
ity during the evacuation facilitates the spread of emotions, leading to a higher proportion
of individuals experiencing panic. Furthermore, as the maximum speed increases, indi-
viduals spend more time in close proximity to the exit, providing ample opportunity for
panic to spread easily among them.

5.4 Impact of environment on emotional contagion

To comprehensively understand the phenomenon of emotional contagion, it is crucial to
consider how environmental factors affect the intensity of panic. Our current model pri-
marily focuses on the impact of emotions on speed. However, for this particular section,
we will explore the reverse effect, namely how speed influences emotions. Additionally,
in this part of our study, we will not engage with the concept of crowd repartition and will
instead consider a homogeneous crowd. This approach allows for a clearer analysis of the
basic dynamics at play. The exploration of how speed impacts emotions across the four
identified classes is a complex topic that warrants an in-depth investigation. We plan to
dedicate a separate paper to this subject, ensuring a thorough and focused examination.

In order to quantify the influence of speed on emotional responses, we propose to link
the emotional intensity of an individual to the gap between their actual speed and their
desired speed. This relationship is mathematically represented as follows:

Ei(t) = 1− vi(t)
vi,d

(17)

This formulation aligns with the perspective introduced by Helbing in [11]. According to
this model, when an individual’s actual speed is close to their desired speed, the emotional
intensity decreases, implying a low level of panic. Conversely, if the actual speed is much
lower than the desired speed (for instance, due to crowding or obstacles), the emotional
intensity increases, indicating a higher level of panic or stress.

The experimental design of our study, as depicted in figure 5, involves a designed space
measuring 25 meters in length and 10 meters in width, partitioned into two sections.
The first section is a rectangular room measuring 15m in length. Adjacent to this is a
corridor that extends for 5m in length, having an exit at its end. The width of the corridor,
represented as b, is the key variable in this setup. The objective of our research is to
analyze how the width b influences the overall emotional state of the crowd. The crowd
density is estimated as 2p/m2, and supposed initially in calm state, i.e. ∀i : Ei(t = 0) = 0.

The figure demonstrates that changes in the corridor width parameter b substantially
influence the emotional intensity among the crowd. Specifically, larger b values indicate a
wider corridor, facilitating smooth and uninterrupted evacuation for pedestrians, allowing
them to move at a velocity close to their preferred speed. This results in a gradual decrease
in emotional intensity over time. Conversely, smaller b values suggest a narrower corridor,
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Figure 5 Experimental design to study the environment impact on emotions
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Figure 6 Impact of corridor with on the overall emotional intensity of the crowd

leading to challenging and interrupted evacuation due to blockages, causing pedestrian
velocities to deviate significantly from their desired speeds. As a result, the level of
emotional intensity stays elevated throughout the period.

5.5 Impact of speed choice on evacuation process

At this stage, we focus our study on the impact of speed choice, specifically the speed
limit that an agent reaches when he is fully panicked vlim on evacuation process and the
sensitivity of agents speed to emotional changes k.

The arching effect is a phenomenon that occurs during the process of evacuation, where
a crowd forms a structure resembling to an arch. In our study, we monitored the size of this
arch-shaped structure over time while adjusting the speed limit allowed for the individuals
in the crowd. The results depicted in the figure 7 demonstrate that when the maximum
speed allowed is set for normal speed 1m/s, the arch is formed with a maximum radius
of 4 meters and diminishes quickly, indicating a smooth evacuation process. However,
as the maximum speed allowed increases, the arch becomes larger, reaching a maximum
radius close to 5 meters, and the decrease in size becomes much slower, which refers
to a clogging effect. In fact, when all individuals within a crowd move at a high speed,
they tend to reach the exit simultaneously. This simultaneous arrival leads to an increased
density of agents near the exit. Consequently, the flow rate of movement through this
restricted zone diminishes, making it more difficult for individuals to traverse out of the
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Figure 8 Effect of parameter k on the evacuation process: a) Number of agents remaining in the geometry
at each time of the simulation for different values of the parameter k b) Average crowd speed at
each time of the simulation for different values of the parameter k.

room.
In addition to the previous factor, the choice of speed in the evacuation process is also

influenced by an important parameter referred to as the coefficient k. This coefficient
governs the sensitivity of agent speed to emotional changes. To investigate the influence
of this parameter on crowd evacuation, we examine two key metrics: the number of agents
remaining within the designated geometry and the average speed of the crowd as functions
of time for various values of the parameter k, as illustrated in figure 8.

The rate of change of the number of agents remaining in the geometry is influenced by
the value of the coefficient k. When k is set to high values, the slope of this variation is
more pronounced, indicating a more significant reduction in the number of agents over
time. However, as k decreases, the slope becomes less steep, implying a weaker decrease
in the number of remaining agents. In parallel, the effect of k on the average speed of
the crowd demonstrates the same relationship. For low values of k, there is a notable
peak in the average speed, indicating a rapid increase in velocity. As k increases, this
peak becomes less pronounced, and the average speed of the crowd experiences a smaller
increase.

In fact, the parameter k plays a crucial role in determining the desired speed of in-
dividual agents and their sensitivity to emotional changes. Lower values of k indicate
a lower sensitivity to emotions, implying that even with high levels of panic intensity,
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an agent will move at a moderate speed without immediately reaching their maximum
desired velocity. This gradual transition in speed facilitates a smooth and efficient evac-
uation process, leading to faster overall evacuation times. In contrast, higher values of
k suggest a heightened sensitivity to emotions. This means that even with relatively low
panic intensity levels, an agent will quickly reach their maximum desired speed. This
abrupt transition in speed can result in congestion and slower evacuation rates, leading to
a clogging effect.

5.6 Homogeneous crowd behaviour

In panicked crowds, it is essential to examine how individuals in similar crowds respond
to stress and fear to better understand collective behavior. By exploring how individuals
in similar crowds react, we can gain valuable insights into crowd behavior as a whole.
This section aims to emphasize the importance of studying homogeneous crowd behavior
in panic situations.

5.6.1 Emotional Intensity

Firstly, we examine the changes in the overall intensity of emotions over time, as shown
in figure 9. Among the different categories of emotions, the agitation class exhibits the
highest level of panic, showing a significant upward trend. It is followed by the panic
flight class, which also experiences an increase in panic levels. The stupor class, on the
other hand, demonstrates a relatively lower level of panic compared to the previous two
classes. The adapted class, in contrast, exhibits the lowest level of panic, and there is a
gradual decrease in panic levels until reaching the calm state.

In fact, individuals belonging to the agitation and panic flight classes display less con-
cern for maintaining distance during the evacuation process. This lack of attention to dis-
tancing measures can contribute to the easier occurrence of the contagion phenomenon.
Conversely, individuals in the stupor class tend to follow the average direction, thereby in-
creasing the likelihood of contagion. In contrast, individuals in the adapted class demon-
strate greater attention to maintaining distance. Additionally, they actively avoid areas
with high levels of emotional intensity. These actions contribute to the suppression of the
contagion phenomenon, as individuals in the adapted class are better equipped to prevent
its spread.

5.6.2 Average Speed

Next, we study the variations in average speed over time, as depicted in figure 10. Re-
markably, all four classes exhibit a similar pattern: the average speed initially increases
until reaching a peak, followed by a gradual decline to a nonzero value, around which it
fluctuates. Nevertheless, the peak in average speed is most pronounced for the agitated
class, followed by the panic flight class, and then the adapted class. The stupor class
consistently displays the lowest speed.
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Figure 9 Changes in the overall intensity of emotions over time for each class.
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Figure 10 Changes in the mean speed over time for each class.

Specifically, individuals in the agitated class tend to run in various directions, utilizing
the available space to escape the intensity of their panic. Consequently, their average
speed is comparatively higher than that of the panic flight class. The individuals in the
panic flight class, on the other hand, oscillate between evacuating and moving away from
areas with high panic levels. This behavior leads to their congregating near exits, resulting
in a slowdown of their speed. In the case of the adapted class, individuals evacuate in an
orderly manner while avoiding zones characterized by high population density and panic
levels. This cautionary approach causes a relative deceleration in their speed, as they take
the time to analyze and determine the correct direction to proceed. Finally, individuals
in the stupor class exhibit a very slow speed, consistent with their psychological state of
paralysis caused by their heightened panic.

5.6.3 Dispersion

Subsequently, we examine the alignment between agents’ actual behavior and their in-
tended actions. This is assessed by quantifying the dispersion of agents, which is cal-
culated as the angle between their actual movement direction and their desired direction
at each time point during the simulation. To illustrate the degree and distribution of this
dispersion for each agent, figure 11 presents a box plot. In this plot, each data point
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Figure 11 Box plots for each class to quantify the mean dispersion of each agent.

corresponds to the average dispersion value of each agent within his respective class.
In comparison to the adapted class, the agitated class, stupor class, and panic flight

class exhibit higher levels of dispersion, with notable variations within the agitated and
stupor classes. This disparity can be attributed primarily to the occurrence of collisions
between agents during the evacuation process, leading to abrupt changes in direction.
Agents belonging to the agitated class experience elevated levels of dispersion due to their
inherent agitation, which is modeled by the introduction of random direction changes to
their desired path. As a result, their movements become more brutal, leading to increased
dispersion among the agents in this class. Similarly, agents in the stupor class display
high levels of dispersion as they attempt to imitate the movements of their neighboring
agents and adapt to their behavior. This tendency to follow others’ actions contributes to
a higher degree of dispersion within the stupor class.

5.6.4 Contact Forces

We interest to the pressure and the contact forces generated during collisions of pedes-
trians in a moving crowd. In previous works, we estimated the contact forces in dense
crowds as the difference in the percussion suffered by each agent multiplied by his mass.

As depicted in Figure 12, box plots are presented, where each data point represents
the average contact force experienced by individual agents within their respective classes.
Agents belonging to the adapted class generally exhibit lower contact force values, as their
displacement strategy involves actively avoiding close contact with other individuals. In
contrast, the agitated class experiences higher contact forces due to the collisions resulting
from their agitated state. The panic flight class tends to gather near exits in an attempt
to escape from potential danger, leading to elevated contact forces. Similarly, the stupor
class encounters moderate contact forces, as they tend to remain surrounded by the crowd
rather than actively avoiding contact.
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Figure 12 Box plots for each class to quantify the mean contact forces applied to each agent.

5.6.5 Evacuation Time

Evacuation time plays a critical role in evaluating the efficiency and effectiveness of crowd
evacuation, serving as a crucial indicator. The bar plot depicted in figure 13 illustrates the
evacuation time for different crowd densities across the four classes.

Across all densities, a consistent pattern emerges. Firstly, the agitation class exhibits the
highest evacuation time. This can be attributed to the agitated nature of individuals in this
class, as they tend to run in multiple directions. Their erratic behavior leads to a prolonged
evacuation process. Similarly, the panic flight class demonstrates a significant evacuation
time. Individuals in this class prioritize their own safety above all else, resulting in a rush
to evacuate. Consequently, congestion arises, retarding the overall evacuation process. In
contrast, the stupor class experiences a relatively slower evacuation process. Agents in
this class are unable to move at high speeds due to their impaired state. Consequently,
their evacuation time is also prolonged. Lastly, the adapted class agents display the most
efficient evacuation process. Their rational decision-making during evacuation allows for
a smoother flow. As a result, their evacuation time is significantly lower compared to the
other classes.

5.7 Heterogeneous crowd behaviour

Having examined the overall response of people in similar crowds during panic situations,
our investigation now shifts towards gaining a deeper understanding of collective behavior
within a heterogeneous crowd. This particular crowd consists of individuals belonging to
all four classes previously identified.

In the previous section, the study revealed a notable distinction between two classes of
individuals in terms of their behaviors during evacuations: the agitated class, displaying
highly intense emotions and reactive tendencies such as dispersion and contact force, and
the adapted class, characterized by more rational behavior. Due to the complexity of
studying the influence of all four classes on the evacuation process, we have chosen to
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Figure 13 Bar plot of the evacuation time for different crowd densities across the four classes.
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Figure 14 Emotional response of the crowd while varying the number of agitated class agents: the blue
points refer to the mean emotional value while the red line is the model fitting all points due to
linear regression.

focus our investigation exclusively on the agitated and adapted classes.
Initially, we consider a crowd comprising of n1 agents from the agitated class, n2 agents

from the adapted class, n3 agents from the stupor class, and n4 agents from the panic flight
class. Subsequently, we measure the emotional responses manifested by the crowd while
varying the number of agitated class agents, as illustrated in figure 14. The blue data
points correspond to the mean emotional values obtained from 10 experimental trials,
while the red line is the corresponding linear regression fit. The regression line, exhibiting
an R-squared value of 0.91, indicative of a good fitting of the model on the data points,
effectively captures the observed trend of increasing emotional intensity as the population
of agitated class agents within the crowd rises. In essence, the presence of agitated class
agents significantly amplifies the overall sense of panic within the crowd.

Next, we turn our attention to investigating the interplay between the agitated class and
the adapted class within the crowd. To facilitate this study, we adopt a percentage-based
perspective, representing the proportion of the agitated class as pag and the proportion of
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Figure 15 Crowd emotional response for different combinations of agitated class and adapted class pro-
portions.

the adapted class as pad . To simplify our analysis, we make the assumption that given
percentages pag and pad , the remaining portion of the crowd is evenly divided between
the stupor and panic flight classes. Consequently, the percentages of these two classes are
identical and equal to (1− pag − pad)/2. By employing this simplified assumption, we
explore the emotional response of the crowd while simultaneously varying both pag and
pad . The outcomes of this investigation are presented in figure 15, presenting the effect
of different combinations of agitated class and adapted class proportions on the crowd’s
emotional response. The plot supports our earlier observation reaffirming that an increase
in the proportion of the agitated class leads to a heightened overall emotional intensity
within the crowd. Conversely, an increase in the proportion of the adapted class strongly
influences a reduction in emotional intensity, meaning that the presence of the adapted
class exerts a calming effect on agents from other classes.

The results underscore the vital significance of the adapted class, which serves as a
mechanism for minimizing the detrimental consequences that may arise from panic situ-
ations. This role aligns directly with the role of security agents, who play a crucial part in
upholding order and instilling a sense of security and assurance among individuals. The
finding highlights the importance of having well-trained professionals who possess the
expertise to efficiently oversee and direct crowds during emergency situations.
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5.8 Comparison with other models

In the current phase of our research, we intend to conduct a comparative analysis of our
model against established models in the field. Our primary focus is on contrasting our
model with the original SFM outlined by Helbing [4]. This comparison is pivotal, given
that our model is an extension of the original SFM framework. Additionally, we compare
our model with the Improved Social Force Model Based on Emotional Contagion and
Evacuation Assistant (ecaSFM) presented by Zheng et al. [16]. This model is particularly
relevant for comparison due to its incorporation of multiple evacuation strategies and the
integration of the assistant’s category, which closely aligns with the adapted class in our
model.

For an effective and comprehensive comparison, we align the configuration settings of
our model to match those used in [16]. Specifically, we simulate an environment repli-
cating a room with the size of 80m × 50m with a 2m wide exit. The parameter values of
SFM used in [16] are identical to those used in our model.

The initial metric for comparison is the evacuation time. Figure 16 illustrates the evacu-
ation time for the two models as well as for the different classes of our model, and that for
different population sizes, varying from 100 to 500 individuals. The results align closely
with the findings from subsection 5.6.5. Particularly, the adapted class in our model sur-
passes both the original SFM and the ecaSFM in terms of evacuation efficiency. This
improvement becomes particularly noticeable in scenarios involving large-scale crowd
evacuations, such as with 500 individuals. In these cases, our model shows a 35.8% opti-
mization in evacuation time over the original SFM, and a 17.2% improvement compared
to the ecaSFM. The key factor contributing to this enhanced performance is the diversity
of evacuation strategies incorporated into this class. This variety effectively reduces the
occurrence of bottlenecks, a common issue when the entire crowd attempts to evacuate
simultaneously. By facilitating more dynamic movement patterns, our model significantly
improves overall evacuation efficiency.

Furthermore, the ecaSFM has demonstrated the positive impact of assistance on en-
hancing evacuation efficiency. This aligns with our findings presented earlier (section
5.7), where we established that the inclusion of the adapted class significantly mitigates
the crowd’s emotional response. This reduction in emotional intensity implicitly con-
tributes to more efficient evacuation processes.

6 Conclusion

This paper presents a coupled SFM-ASCRIBE model to understand the dynamics of pan-
icked crowds and focuses on two key objectives: examining the influence of emotions on
crowd movement and gaining valuable insights into collective behavior within crowds. To
accomplish these objectives, a coupled model is proposed, combining an enhanced AS-
CRIBE model with an agent displacement model. Heterogeneity is introduced into our
model by incorporating specific mobility laws for different categories of panicked crowds,
considering the impact of emotions on both speed and direction of crowd movement.
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Figure 16 Comparison of evacuation time for the original SFM, ecaSFM, and our the different classes of
our model, and for different population sizes, varying from 100 to 500 individuals

By conducting numerical simulations, we examine various parameters of our model,
such as resilience and desired speed. We study the impact that environmental factors
and geometric configurations have on the spread of emotions. Findings illustrate that the
physical layout of a space, such as its dimensions and structural design, plays a crucial
role in shaping how emotions propagate among individuals within that environment. This
effect is particularly evident in scenarios where space constraints or design elements in-
fluence movement, interaction, and ultimately, the emotional dynamics of a group. We
observe the behavior of homogeneous crowds composed of different classes of panicked
individuals and explore the collective dynamics within heterogeneous crowds. The re-
sults indicate that the presence of agitated class agents greatly amplifies the overall panic
intensity within the crowd, while an increase in the proportion of the adapted class results
in a heightened overall panic intensity among the crowd. These findings highlight the
crucial importance of the adapted class, which acts as a mechanism for minimizing the
harmful consequences that can arise from panic situations. To effectively manage a panic
situation, it is advisable to ensure prompt intervention by security agents to effectively
manage the situation and control agitated individuals, displaying high energy levels and
engaging in large gestures.
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