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Abstract:
Tight oil reservoirs hold immense development potential but are characterized by chal-
lenging reservoir properties, severe heterogeneity, and extremely low permeability and
porosity. Massive hydraulic fracturing of horizontal wells is applied to achieve sustainable
production in these reservoirs. The swift assessment of pressure depletion in tight
reservoirs is essential for their successful and cost-effective development. Traditional
pressure testing methods necessitate well shutdown, impacting subsequent production,
while numerical simulation methods demand significant computational resources and
expertise from technical personnel. To identify the sensitivity parameters influencing the
reservoir pressure drop, this study uses a Plackett-Burman design and variance analysis.
Using numerical simulations, variance analysis and multi-linear regression, we formulate
evaluation indices and surrogate models for individual well depletion. The method’s
reliability is validated through multiple experiments along with testing data. Our rapid
evaluation method accurately assesses pressure depletion in typical well groups, with a
fitting rate exceeding 85%. In regions where the pressure maintenance is below 80%,
indicating severe reservoir depletion, enhanced oil recovery treatments, e.g., gas or water
injection, are applied based on the evaluation results. The proposed method for evaluating
individual well pressure depletions provides crucial guidance for realizing the efficient
development of tight oil reservoirs.

1. Introduction
China has an abundance of proven tight oil reservoirs.

Achieving the efficient development of tight oil reservoirs
holds both practical and strategic significance in alleviating the
growing demand for petroleum in the country in the medium to
long term (Hu et al., 2018; Kang et al., 2022). In comparison
to medium- to high-permeability sandstone reservoirs, tight
oil reservoirs exhibit characteristics such as extremely low
permeability and porosity, strong heterogeneity, along with
complex fluid flow mechanisms (Kang et al., 2022; Ji and
Fang, 2023). In recent years, the development of horizontal
well hydraulic fracturing has emerged as a crucial approach
for the efficient exploitation of low-permeability reservoirs
(Ren et al., 2015; Al-Tailji et al., 2016). Through volume
fracturing, a complex network of natural and induced fractures

is formed in the near-wellbore zone, reducing flow resistance
and enhancing development effectiveness (Ranjith et al., 2019;
Li et al., 2022a). However, influenced by factors such as
poor reservoir properties and low formation energy, the early
depletion stage of development faces major challenges such as
rapid decline in the formation energy and difficulties in main-
taining stable production (Li et al., 2022b). Thus, accurately
assessing the pressure depletion in the formation and devising
rational energy enhancement strategies are becoming crucial
for enhancing production and achieving efficient development
in the context of low-permeability depletion development
reservoirs.

Currently, the assessment of pressure conditions within
the reservoir relies on two main methodologies: pressure
testing and numerical simulation. By utilizing pressure testing,
dynamic and static pressure conditions within the reservoir
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can be accurately determined. Specifically, static pressure
testing involves the deployment of sensors at the well bottom,
temporary well shutdown after a routine production period,
and the analysis of pressure recovery to evaluate reservoir
energy states and fluid supply capacity (Li et al., 2018). Due to
the slow recovery of production capacity in tight oil reservoirs,
this procedure considerably influences subsequent production
rates (Ponomareva et al., 2022).

Furthermore, reservoir numerical simulation plays a crucial
role in foreseeing the dynamic properties of reservoirs (Adeo-
sun et al., 2020; Lesan et al., 2023; Scerbacova et al., 2023).
Wang et al. (2019) developed a three-dimensional three-
phase mathematical model for tight oil reservoirs subjected
to microemulsion flooding and conducted comprehensive nu-
merical simulation studies. They analyzed the variation in
formation pressure with injection volume, gaining insights into
the distinct impacts of water and microemulsion on reservoir
energy supplementation and recovery. Compared to liquid
media, gaseous media such as CO2 bring greater advantages
to increasing the reservoir energy and enhancing the crude oil
recovery rates. Liu et al. (2021) developed a numerical simula-
tion model for a five-spot well pattern to analyze the changes
in injection pressure and recovery across various CO2 injection
scenarios, optimizing the development parameters. Similarly,
utilizing refined research insights from reservoir description
and a detailed three-dimensional geological model, Zhou et
al. (2023) established a reservoir numerical simulation model
and successfully conducted history matching. Their analysis
of changes in oil saturation and pressure fields revealed the
remaining development potential and energy characteristics
associated with different development stages. Based on the nu-
merical simulation results for reservoirs, the evolution pattern
of formation pressure can be analyzed to quantitatively assess
the current energy deficit of the formation. However, creating a
geological simulation model for reservoirs involves analyzing
a large amount of data, which requires a significant workload
(Peaceman, 2000; Fanchi, 2005). Moreover, it demands high
computational capabilities of the equipment and a proficient
level of expertise from the technical personnel, posing chal-
lenges to widespread implementation in the oilfield.

In recent years, machine learning and artificial intelligence
have found widespread application in reservoir pressure pre-
diction. Based on the analysis of wellbore flow hydraulic
models, Liang et al. (2021) established an improved simu-
lated annealing-support vector regression (SA-SVR) system
for monitoring the bottom hole pressure in managed pressure
drilling by combining the SA algorithm with SVR. Integrating
the static mud column pressure, annular pressure loss and
surface back pressure data, an enhanced pressure monitoring
model was constructed, achieving bottom hole pressure data
monitoring without the need for downhole pressure gauge
instruments. However, this approach only provides the bottom
hole pressure, while the inter-well formation pressure remains
unknown. Tang et al. (2022) utilized low-cost interferometric
synthetic-aperture radar monitoring data to infer changes in
reservoir pressure. They utilized ensemble smoother with
ensemble smoother multiple data assimilation to update the
three-dimensional geological properties and predict reservoir

pressure. The principal component analysis method was ap-
plied to reduce dimensionality and facilitate rapid pressure
forecasting. However, despite the significant advantages of
machine learning in feature extraction and computational
efficiency, this approach tends to neglect the inherent physical
properties of reservoirs, rendering it ineffective in character-
izing the interactions among various parameters.

Extensive research has highlighted the influence of reser-
voir properties and development methods on the extent of pres-
sure drop, revealing a robust correlation between the associated
parameters and the depletion of formation pressure. Shao et
al. (2015) conducted depletion development experiments using
natural outcrop core samples, and suggested that development
methods and liquid production rates significantly influence the
development outcomes. Based on physical simulation exper-
iments, Chi and Zhang (2021) utilized reservoir numerical
simulations to explore the influence of stress sensitivity on
tight oil reservoir productivity, revealing that critical factors
like permeability and porosity determine the pressure distri-
bution characteristics in porous media. Similarly, Cheng et
al. (2023) delved into the factors influencing air flooding
in tight oil reservoirs using reservoir numerical simulation.
The results indicated that reservoir permeability and injection
rates both influence the development outcomes. On the other
hand, Ponomareva et al. (2022) conducted a statistical study
to explore the impact of parameters such as initial formation
pressure, production time and skin factor on reservoir pressure.
They developed a reservoir pressure prediction model using
multidimensional regression methods, which was rigorously
tested in the Sukharev oil field and the model exhibited
strong agreement with the measured data. Nevertheless, this
approach may not fully consider the impact of fluid flow
capacity on reservoir energy, indicating the need for further
refinement. Furthermore, to deepen the evaluation of the
correlation between each parameter and reservoir pressure
depletion, a sensitivity analysis is necessary. Plackett-Burman
designs, as a statistical method, allow for the systematic
assessment of the relative importance of various factors in
the target output based on a limited number of experiments
(Beres and Hawkins, 2001). With this advantage, as well as
rapid assessment and high accuracy, it can efficiently identify
the impact of each parameter on reservoir pressure depletion.

This study utilizes a Plackett-Burman design and vari-
ance analysis to identify the essential sensitivity parameters
influencing reservoir pressure drop. Evaluation indices and
surrogate models for individual well depletion are developed
via numerical simulations, analysis of variance and multilinear
regression. Multiple sets of experiments are designed and
combined with on-site pressure measurement data to validate
the reliability of our methodology, which is then applied to
the WX tight oil reservoir in Xinjiang, China, to assess the
pressure depletion levels in typical well groups.

2. Selection of pressure depletion indexes
Drawing upon dynamic and static production data from

the oilfield, a preliminary assessment has pinpointed 10 key
factors significantly affecting reservoir energy: permeability,
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Table 1. Sensitive parameters and their value ranges.

Parameter Low level Intermediate value High level

Permeability (mD) 4 12 20

Temperature (°C) 40 60 80

Viscosity (cp) 0.28 2.24 4.2

Oil density (kg/m3) 680 780 880

Porosity (%) 8 11.5 15

Liquid production rate (m3/d) 10 20 30

Production duration (years) 1 3 5

Reservoir depth (m) 2,550 2,600 2,650

Formation dip angle (°) 4 14 24

Reservoir thickness (m) 3 6 9
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Fig. 1. Numerical simulation model of the WX H well group
reservoir.

temperature, viscosity, oil density, porosity, liquid production
rate, production duration, reservoir depth, formation dip angle,
and reservoir thickness. For a deeper comprehension of the
impact of these ten parameters on the formation pressure
drop in the target reservoir, we selected the Plackett-Burman
experimental design method, referred to as “P-B design”
(Plackett and Burman, 1946) for the sensitivity analysis of
parameters. The P-B design is a two-level experimental design
method suitable for rapidly and effectively screening out the
most important factors from a multitude of factors. The main
steps are as follows: firstly, analyzing the impact of each
parameter on evaluation indicators such as formation pressure
drop, clarifying the value range, and determining their low-
level (minimum) and high-level (maximum) values. We then
establish the experimental design based on the number of
parameters, creating a P-B matrix to determine parameter
values and formulating the experimental plan. The number
of experiments is generally a multiple of 4, with commonly
used values including 8, 12, 16, 20, etc. Subsequently, based
on the experimental plan, physical or numerical simulation
experiments are conducted to obtain simulation results for each
scenario. Finally, to determine the sensitivity of each parameter
to the evaluation target, variance analysis is performed on the
results by comparing the differences between the two levels
of each parameter and determining the overall differences.

By utilizing the research framework described earlier and
integrating geological and developmental insights, we could
accomplish the initial establishment of adjustable ranges for
the 10 parameters (Table 1).

We established a P-B matrix (Table 2) for a 15-run exper-
iment, encompassing 3 control groups corresponding to the
two levels of the 10 parameters. In the matrix, -1, 0 and +1
respectively represent the low-level value, intermediate value
and high-level value for the corresponding parameter. Each
column represents the different values of the corresponding
parameter in each scenario, while each row represents an
experimental plan. The control groups consist of scenarios
where all values are set to 0.

In order to examine the pressure depletion conditions in
depleted reservoirs under diverse reservoir and development
conditions, we focused on a typical well group in the WX tight
oil reservoir. We established reservoir numerical simulation
models for different well groups based on the geological
model (Fig. 1). We adjusted the oil-water phase permeability
curves, permeability, porosity, and other parameters to achieve
dynamic history matching. Based on Table 1 and Table 2,
we made corresponding modifications to the parameters to
establish different numerical simulation scenarios. Then, we
conducted reservoir numerical simulations and analyzed the
evolution patterns of pressure and saturation fields. By an-
alyzing the average formation pressures at the end and the
beginning of development, we could assess the formation
pressure depletion. We used the pressure drop value (∆P) to
characterize the extent of reservoir pressure depletion under
each scenario, reflecting the conditions at the end of the de-
velopment period compared to the initial development stages.

Through analysis of variance, we further determined the
sensitivity of each parameter to the single-well pressure de-
pletion. The overall variance is divided into two components:
within-group variance and between-group variance, with the
former reflecting the random variation among individuals
within a group, and the latter reflecting the differences among
groups. By calculating the ratio of between-group mean square
to within-group mean square, the assessment of whether the
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Table 2. P-B design matrix for 10 parameters (15 runs).

Experiment Permeability Temperature Viscosity Oil
density

Porosity
Liquid
production
rate

Production
duration

Reservoir
depth

Formation
dip angle

Reservoir
thickness

1 0 0 0 0 0 0 0 0 0 0

2 +1 -1 +1 -1 -1 -1 +1 +1 +1 -1

3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

4 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1

5 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1

6 +1 -1 -1 -1 +1 +1 +1 -1 +1 +1

7 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1

8 -1 -1 -1 +1 +1 +1 -1 +1 +1 -1

9 +1 +1 -1 +1 +1 -1 +1 -1 -1 -1

10 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0

12 +1 +1 -1 +1 -1 -1 -1 +1 +1 +1

13 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1

14 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1

15 -1 -1 +1 +1 +1 -1 +1 +1 -1 +1

0 1 2 3 4 5

Porosity

Production duration

Permeability

Viscosity

Liquid production rate
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Fig. 2. Results of variance analysis.

between-group differences are significant, indicating sensitiv-
ity, can be made. The critical value can be determined based
on the significance level and the degrees of freedom. Fig. 2
presents the results of variance analysis. It can be observed that
permeability, oil density, crude oil viscosity, porosity, liquid
production rate, and production duration are the most sensitive
parameters to the formation pressure deficit. Consequently, we
selected these parameters as the indicators for the single-well
pressure depletion evaluation method.

3. Pressure depletion surrogate model
Considering the reservoir characteristics of the target well

group, we divided the six selected indexes into multiple
levels within a reasonable range to simulate different reservoir
and development conditions. Following the principles of or-

thogonal experimentation, we designed different experimental
schemes and conducted reservoir numerical simulations to
obtain the formation pressure depletion. Finally, through the
utilization of multiple linear regression, we constructed a
surrogate model to characterize the corresponding relation-
ships between each parameter and the drop in formation
pressure. Orthogonal experimentation allows the simultaneous
consideration of multiple factors based on fewer experimental
runs. By adopting a stratified approach in the design process,
different levels of multiple factors can be combined, avoiding
the adverse effects of interactions between factors on the
experimental results. Based on the principles of orthogonal
experimentation, we designed 25 experimental schemes for six
parameters at five levels each. Using the established reservoir
numerical simulation model, we performed corresponding
parameter modifications and conducted reservoir numerical
simulations. We subsequently employed linear regression to
establish the correlation between parameter values and simu-
lation results, leading to the derivation of the surrogate model.
The rapid evaluation expression for the model is as follows:

∆P = 1.1659+0.2062K −0.0046ρ +0.3022µ

−22.9355φ −0.0094v+1.0104t
(1)

where ∆P represents pressure drop, K represents permeability,
ρ represents crude oil density, µ represents crude oil viscosity,
φ represents reservoir porosity, v represents liquid production
rate, and t represents production duration.

In order to validate the accuracy of the pressure depletion
function, the parameters of the 25 numerical simulation models
were input into the surrogate models to calculate the reservoir
pressure drop values. Fig. 3 illustrates the comparison between
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Table 3. Comparison of numerical simulation and surrogate model calculations.

Case Permeability
(mD)

Oil
density
(kg/m3)

Viscosity
(cp)

Porosity
(%)

Liquid
production
rate
(m3/d)

Production
duration
(years)

Simulated
pressure
drop
(MPa)

Calculated
pressure
drop
(MPa)

Error
(MPa)

Fitting
Rate
(%)

26 20 830 4.2 13 30 3 9.575 9.126 0.449 95.31

27 8 780 3.4 15 20 5 9.590 8.454 1.136 88.15

28 20 880 1.7 15 25 4 9.754 9.176 0.578 94.07

29 16 730 4.2 15 15 5 9.823 9.764 0.059 99.40
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Fig. 3. Comparison of reservoir numerical simulation results
and surrogate model calculations.

the numerical simulation results and the calculated results
from the pressure drop function. The multiple linear regression
results show a good fit, indicating that the surrogate models
effectively characterize the corresponding relationships be-
tween various sensitive parameters and the pressure drop under
different value conditions. Furthermore, we designed four sets
of experimental schemes to conduct numerical simulations
and obtain pressure drop values. By comparing the calculated
pressure drop values with the numerical simulation results
(Table 3), it can be seen that the pressure drop values cal-
culated using the surrogate models are close to those obtained
from numerical simulations, with a fitting rate above 85%
and within an acceptable range of error. Therefore, using
the surrogate models to calculate the reservoir pressure drop
values provides a reliable means to assess the extent of
reservoir pressure depletion.

4. Applications
The established method was applied to typical well groups

in the WX tight oil reservoir in the Xinjiang oilfield, China.
The WX reservoir is mainly composed of sandy gravel
reservoirs, with a predominant porosity ranging from 10%
to 15%, averaging 13.5%. Here, the reservoir permeability
varies from tight to low-permeability and is mostly less than
5 mD, with an average of 4.3 mD. High-pressure reservoirs
are rare, with pressure coefficients usually ranging from 0.8 to
1.06 and averaging 1.00. In the early stages of development,
hydraulic fracturing was performed on horizontal wells in the
reservoir, and a depletion development strategy was adopted.

Due to the poor reservoir properties and low reservoir energy,
the contradiction between rapid decline and the difficulty
in achieving stable production during development became
increasingly prominent. To address the challenge of rapid
and accurate evaluation of the current reservoir energy of
each horizontal well and the formulation of reasonable energy
supplementation plans, we reviewed the basic data of typical
single wells in the WX reservoir. We then used the established
method to evaluate the reservoir pressure depletion for each
well (Table 4). We conducted pressure measurements on-site
for wells W1 to W4. From the data, it can be observed that
the calculated results have a small margin of error compared
to the pressure measurement data, confirming the accuracy of
the method. According to these results, it is evident that the
pressure in the target well area generally remains below 80%,
indicating an urgent need for an enhanced energy design to
replenish the reservoir energy.

In order to address the issue of insufficient energy, we
conducted field enhancement experiments, which showed pre-
liminary success. For well W5, after a thorough analysis of
the oil-water movement patterns, we performed a nanoparticle
emulsion squeeze test. A total of 3,028 cubic meters of fluid
was injected, and oil production was observed as early as 3
days after soaking. Initially, a 2 mm oil nozzle self-sprayed,
reaching a peak daily oil increase of 7.6 tons per day. Over
55 days, the cumulative incremental oil production reached
287 tons. For well W7, following an in-depth study of the
reservoir energy changes, we conducted a nitrogen-assisted
enhancement test, wherein a total of 450,000 cubic meters of
nitrogen and 1,440 cubic meters of water were injected. The
oil production increased from 2.8 tons per day to 18.4 tons
per day. Over 152 days, the cumulative oil production reached
2,339 tons (Fig. 4).

5. Conclusions
In this work, P-B design, analysis of variance and multi-

linear regression were combined to formulate a rapid pressure
depletion evaluation method. The following conclusions can
be drawn:

1) The sensitive parameters that significantly impact reser-
voir pressure depletion include permeability, oil density,
oil viscosity, porosity, liquid production rate, and produc-
tion duration.

2) Surrogate models were established through linear regres-
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Table 4. Evaluation of reservoir pressure depletion for typical single wells.

Well Permeability
(mD)

Oil
density
(kg/m3)

Viscosity
(cp)

Porosity
(%)

Liquid
production
rate
(m3/d)

Production
duration
(years)

Calculated
pressure
drop
(MPa)

Actual
pressure
drop
(MPa)

Pressure
maintenance
level
(%)

Error
(MPa)

W1 40 880 2.8 8 1.1 2 4.093 4.041 74.33 -0.052

W2 24 880 2.8 8 0.1 7 7.456 7.115 55.49 -0.341

W3 8 780 0.28 13 15 5 8.004 7.96 47.96 0.044

W4 22 780 0.28 15 15 5 9.698 9.38 39.01 0.318

W5 20 880 2.8 3 1.3 1 3.588 / 66.93 /

W6 3.9 880 2.8 17 1.8 3 5.180 / 73.21 /

W7 4.3 880 2.8 14 0.2 3 5.965 / 59.61 /

W8 4 880 2.8 16 17 3 5.444 / 68.59 /

W9 1.5 840.5 0.39 10 30 5 7.858 / 71.28 /

W10 2 840.5 0.34 10 15 3 6.041 / 48.93 /
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Fig. 4. Production dynamic curve before and after nitrogen-assisted enhancement for well W7.

sion, forming a single-well pressure depletion evaluation
method. The reliability of this method was validated
through numerical simulation results and on-site well
pressure test data.

3) In typical well groups of WX tight oil reservoirs where
the degree of pressure drop maintenance is generally
below 90%, various methods such as nanoscale emul-
sion flooding and nitrogen injection can be employed to
supplement reservoir energy and the improve production
efficiency.
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