Advances in Geo-Energy Research⁻

Original article

Mechanism of shale oil displacement by CO₂ in nanopores: A molecular dynamics simulation study

Zhengbin Wu^{1,2}, Zhe Sun², Kun Shu³, Shu Jiang¹, Qiyang Gou¹, Zhangxing Chen²

¹Key Laboratory of Theory and Technology of Petroleum Exploration and Development in Hubei Province, China University of Geosciences, Wuhan 430074, P. R. China

²Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Alberta, Canada

³Research Institute of Exploration & Development, PetroChina Tuha Oilfield Company, Hami 839009, P. R. China

Keywords:

Shale oil molecular dynamics simulation micro mechanisms enhanced oil recovery

Cited as:

Wu, Z., Sun, Z., Shu, K., Jiang, S., Gou, Q., Chen, Z. Mechanism of shale oil displacement by CO₂ in nanopores: A molecular dynamics simulation study. Advances in Geo-Energy Research, 2024, 11(2): 141-151. https://doi.org/10.46690/ager.2024.02.06

Abstract:

Utilizing CO₂ to enhance shale oil recovery has a huge potential and thus has gained widespread popularity in recent years. However, the microscopic mechanisms of CO2 enhancing shale oil recovery remain poorly understood. In this paper, the molecular dynamics simulation method is adopted to investigate the replacement behavior of CO_2 in shale oil reservoirs from a micro perspective. Three kinds of n-alkanes are selected as the simulative crude oil in silica nanopores. Molecular dynamics models are established to study the occurrence patterns of different alkanes on the rock surface and the alkanestripping characteristics of CO2. The fluid density, mean square displacement and centroid variation are evaluated to reveal the effect of CO_2 on alkanes. The results indicate that different alkanes exhibit varying occurrence characteristics of oil film on the rock surface of the shale reservoir. Specifically, a higher carbon number leads to a thicker oil film. Through the alkane molecular gaps, CO_2 penetrates the alkane molecular system and reaches the rock surface to effectively strip the oil film of different alkane molecules. CO2 will more readily mix with the stripped oil molecules and displace them from the rock surface when the carbon number is small. The process for CO_2 replacing crude oil on the rock surface can be divided into four typical stages, namely, CO_2 diffusion, competitive adsorption, emulsification and dissolution, and CO_2 -alkanes miscible phase (for light alkanes). This study contributes to the improvement of micro-scale enhanced oil recovery mechanisms for shale oil via CO₂ injection and provides a guidance for enhancing shale oil recovery by using CO₂.

1. Introduction

With the increasing global energy demand, oil and gas production is shifting from conventional to unconventional. The shale oil and gas revolution, which originated in the United States and Canada, is transforming the world's oil and gas supply pattern. Shale reservoirs as unconventional energy sources are characterized by low permeability and porosity due to the extensive development of nanoscale pores (Gou et al., 2019; Dong et al., 2023a). Under the conventional development conditions of horizontal fracturing, the movable reserves of shale oil are generally less than 10%, along with problems such as poor oil recovery effect, rapid production decline and low reservoir recovery efficiency. Field tests and applications have demonstrated that CO_2 can effectively exploit oil and gas resources in shale reservoirs and achieve superior production enhancement (Michael et al., 2013; Sheng, 2017; Alafnan, 2022; Wan et al., 2024). Under the formation condition, CO_2 is in a supercritical state and has a special property that its density is close to that of liquid and its viscosity is close to that of gas. CO_2 is highly diffusible and can enter pores larger than its molecular diameter (0.33 nm). With the multiple actions of energy enhancement, viscosity reduction and phase miscibility, the remaining oil in deep nanoscale pores of shale reservoir can be used effectively, which is a

Yandy
Scientific
Press*Corresponding author.
E-mail address: wuzb@cug.edu.cn (Z. Wu); zhe.sun@ucalgary.ca (Z. Sun); shukunyjy@petrochina.com.cn (K. Shu);
jingsu@cug.edu.cn (S. Jiang); gouqiyang1003@163.com (Q. Gou); zhachen@ucalgary.ca (Z. Chen).
2207-9963 © The Author(s) 2023.
Received Octomber 14, 2023; revised December 5, 2023; accepted December 28, 2023; available online January 3, 2024.

realistic avenue for enhancing shale oil recovery. After CO_2 injection into the formation, the effects between CO_2 and crude oil mainly include the formation of the miscible phase of CO_2 and crude oil, the stripping of adsorbed crude oil on the rock surface, and the displacement of oil phase in the rock pores. Due to the difficulty of obtaining deep core samples, the harsh experimental conditions at the nanoscale, and the nanoconfined conditions, the traditional petroleum geology theory and flow theory may not be suitable for oil and gas research in nanopores; therefore, the importance of simulation technology has become increasingly prominent (Feng et al., 2020; Jin and Firoozabadi, 2022).

In recent years, molecular dynamics (MD) simulation technology has become an important research method in the field of shale oil development (Pathak et al., 2018; Cui et al., 2022; Sun et al., 2023). This technique can not only make up for the shortcomings of experimental nanoscale research and reduce the relevant costs but also reveal the dynamic behavior of shale oil in confined space and the microscopic interaction mechanism with the rock wall based on atomic details. Therefore, research on the development of shale oil using CO₂ based on MD simulations is helpful to clarify the mechanisms of CO₂ enhanced oil recovery (EOR) at the nanoscale and enrich the relevant theories of CO₂ development of shale oil. Wang et al. (2015, 2016b, 2021) performed MD simulation runs to study the occurrence state of liquid alkanes in organic-rich shale pores and revealed the periodic fluctuations of the density distribution of alkanes. They found that near a solid wall, alkanes form a "solidlike layer" with a density $1.5 \sim 3$ times that of a free fluid, and the predominant form of adsorption is multilayer. The number of adsorption layers is affected by fracture width and fluid composition, and the thickness of each adsorption layer is consistent with the width of an alkane molecule. Meanwhile, the adsorption capacity of heavy components on an organic matter surface is stronger. Based on the thickness and average density of each adsorption layer obtained by MD simulation, and considering the different occurrence states of crude oil in a reservoir, the researchers separated the adsorption state and the free state of crude oil and established a petrophysical model and a mathematical model for shale oil resource estimation. Furthermore, they explored the microscopic flow law of shale oil in pore throats of typical shale minerals such as quartz, organic matter and calcite. The results indicated that the flow characteristics of crude oil in nanopores composed of different rocks and minerals are markedly different. Under the same conditions, oil flow is fastest in organic pores, followed by quartz pores, and it is slowest in calcite pores. It was revealed that the physical mechanism of this phenomenon is related to a fluid-solid interaction force and a surface friction coefficient. Santos et al. (2018) used MD simulation to study the behavior of CO2 and n-alkanes confined in calcite nanopores. Their results showed that CO_2 can effectively displace the alkanes adsorbed on a calcite surface, and that the amount of calcium ions determines the CO₂ adsorbed on the pore surface. In addition, the CO₂ content, pore size, temperature, and the length of *n*-alkanes are the key parameters that affect the competitive adsorption of CO2 and alkanes on calcite surfaces. Jin et al. (2017) carried out a series of experiments for the comprehensive characterization of rock fluid and CO₂ extraction using samples from the Bakken shale. High-pressure mercury tests revealed that the Bakken shale has an average pore throat radius of 3.5 nm, creating high capillary pressures in these pores that increase the difficulty of fluid flow through the rock. Under reservoir conditions, CO₂ could extract 15%~65% of the hydrocarbons from 11 mm diameter Bakken shale samples within 24 hours. Fang et al. (2019) comprehensively discussed the mechanisms of CO₂ extraction of hydrocarbons from shale oil reservoirs through MD simulations. Their results showed that the inlet effect caused by a decrease in the adsorption amount of CO₂ and the inhibition of continuous oil extraction due to the destruction of dissolution gradient are two key factors driving the extraction process. Yan et al. (2017) used MD simulation to study the dynamic process of oil droplets passing through nanopore throats in a water-containing environment. They found that the oil droplets need to overcome great resistance when passing through the nanopore throats, which is caused by the deformation of oil droplets, an interaction between oil and pores, and the Jamin effect. In addition, they explored the promoting effect of CO₂ on the transport process of oil droplets in nanopore throats and analyzed the activation mechanism of CO₂ from three aspects: expansion of oil droplets, interaction between oil and pores, and change in the interfacial tension at an oil-water interface.

The density of supercritical CO_2 (sc CO_2) is close to that of a liquid, and it has extremely high solubility in organic solutes. At the same time, the viscosity of scCO₂ is low and its diffusion coefficient is about 100 times that of a liquid, so it has high mass transfer capacity. The diffusion of scCO₂ into the oil phase can expand the crude oil, reducing its viscosity and improving its mobility. CO2 can easily reach the supercritical state of critical temperature 34.1 °C and critical pressure 7.38 MPa, which reduces the difficulty of CO₂ flooding construction (Alfarge et al., 2017). Liu et al. (2017) studied the adsorption and migration behavior of $scCO_2$ and dodecane in inorganic shale nanopores under scCO₂ injection at different rates through non-equilibrium molecular dynamics simulation. Hydrogen bonds easily form between scCO₂ and hydroxyl groups, and scCO₂ preferentially organizes into layered structures on the pore surface after injection. Due to the competitive adsorption between scCO₂ and dodecane, the dodecane originally adsorbed on the pore surface is stripped off, leaving more fluid oil in the pores and increasing oil production. Meanwhile, a miscible zone formed between $scCO_2$ and dodecane plays an important role in the displacement process. Wang et al. (2016a) simulated the static properties and flow behaviors of octane and scCO₂ confined in slit carbonaceous organic nanopores. Their results indicated that scCO₂ is preferentially adsorbed on matrix surfaces over octane and methane, and that the velocity distribution in the slits is piston-like under a pressure gradient, which is significantly different from a parabolic profile in inorganic nanopores. Xue et al. (2022) studied the process of $scCO_2$ dissolution in kerogen on SiO₂ surfaces and the flow rate of decane under gas flooding via MD simulation. It was found that scCO₂ can effectively dissolve in kerogen adsorbed on

Fig. 1. The molecular structures of different materials used in the simulation.

shale surfaces, and the interaction between kerogen and shale surfaces after dissolution is greatly reduced; thus, kerogen can be easily extracted from oil shale. The dissolution capacity of $scCO_2$ increases effectively with increasing pressure up to a critical value (about 50 MPa).

In general, the effect of CO_2 in a reservoir environment is the overall result of the interaction of various systems. For reservoirs characterized by a complex environment, to further improve the recovery of crude oil, it is necessary to clarify the basic principle of oil and gas interaction at the microscale. Breakthroughs in the traditional reservoir theoretical analysis methods and the exploration of new means suitable for the microscopic mechanisms of CO2-EOR in shale/tight reservoirs are the promising directions for theoretical research at micro/nano-scale. To this end, the improvement of MD simulation is expected to make great contributions. In addition, clarifying the action law of CO₂ with shale oil at the confined nanospace and the elaboration of relevant theories and simulation methods of CO2-EOR for shale oil can provide basic theoretical support for rapid breakthroughs in shale oil development technology. Thus far, most scholars have chosen one kind of alkane as the simulated oil to study the flow of shale oil and the displacement characteristics of CO₂ in nanopores, while comparisons between different components in actual shale oils are lacking. Furthermore, the visualized interaction mechanisms between CO₂ and alkanes in molecular perspective need to be investigated. This paper focuses on elucidating the micro-replacement mechanisms of scCO₂ for shale oil in nanopores; *n*-alkanes, including nC_7 , nC_{18} and nC_{25} , are selected as the crude oil and simulated using the MD method. The results intuitively present the stripping process of CO₂ for alkane molecules from the rock surface, providing a theoretical basis for the application of CO₂ for shale oil recovery.

2. Molecular dynamics simulation method

CO₂ is selected to simulate the MD processes of injected gas at the nano-scale in a shale reservoir. The COMPASS II force field has significant advantages in studying the interaction between organic and inorganic molecules and can fully cover the temperature and pressure conditions of the reservoir due to its wide range of temperature and pressure adaptation (Guo et al., 2022). Therefore, this study is carried out by Materials Studio (MS) software (version 2020) and the COMPASS II force field is used as the foundation of a MD force field system. Hydrophilic SiO₂ is taken as the basic mineral molecule to construct an α -SiO₂ surface and simulate a rock wall. To compare the interactions between different alkanes and CO₂, three kinds of *n*-alkanes (*n*C₇, *n*C₁₈, and *n*C₂₅) are set as the simulated crude oil. Considering that resins and asphaltenes are also important components of crude oil, nC_{25} can be used to compare the occurrence and replacement characteristics between light and heavy components. The specific molecular configurations are shown in Fig. 1.

2.1 Rock system

The intrinsic α -SiO₂ in MS is selected as the basis to construct a certain thickness of quartz surface. In a reservoir environment, under the influence of natural mineral water, a rock wall will be charged. Therefore, hydrogenation is carried out on the α -SiO₂ surface to construct a hydroxylated rock surface. The adsorption effect of Coulomb force is added to the interaction with crude oil or injected molecules.

2.2 Oil system

A certain number of *n*-alkane molecules (the specific number depends on lattice volume and density) are constructed on the surface of α -SiO₂, and the oil film molecules are kept in contact with the rock wall. Then, dynamic simulation is carried out for 0.2 ns. Finally, the alkanes with stable distributions on the surface of α -SiO₂ are obtained (i.e., the occurrence characteristics of crude oil).

2.3 Basic parameters

In the construction of different alkane- α -SiO₂ systems, the main simulation parameters include the size of the system, the number of alkanes and the system environment. Due to the varying properties of alkanes, the density and number of molecules are different when a system is constructed with the same volume. In this paper, the temperature of the system is set as 323.15 K, and NVT ensemble is selected as the basic system setting. The pressure conditions are set by the system density. The densities of nC_7 , nC_{18} , and nC_{25} , and CO_2 in the nanospace are 0.63, 0.78, 0.88, and 0.78 g/cm³, respectively. The molecular numbers of nC_7 , nC_{18} , and nC_{25} , and CO_2 are 270, 135, 108, and 2,600, respectively. The size of α -SiO₂ rock surface is $59.4 \times 58.9 \times 12.6$ Å. During the process of CO₂ replacing oil, to eliminate the effect of the periodic boundary in the z direction of the system, an extra vacuum layer of 29.6 Å is set on the top layer, so that a stable initial CO₂-oil-rock system is constructed. Below the vacuum layer, a CO₂ layer of 5.2 Å with a high density of 1.5 g/cm³ is set to prevent CO₂ from escaping.

After the establishment of the basic model, 10 ps dynamic simulations of the system are carried out to ensure energy stability. Then, MD simulations are performed for 0.2 ns with a step size of 1.0 fs. The track and dynamic recording steps are 200. The density cannot be directly calculated in MS but can be obtained by relative concentration distribution provided

Fig. 2. Occurrence state (left) and vertical density distribution characteristics (right) of alkanes on the surface of α -SiO₂.

by the Concentration Profile function in the Forcite module of MS. The calculation principle is briefly explained below.

The definition of dimensionless concentration (C_r) in a coordinate direction in a system is:

$$C_r = \frac{C_s}{C_b} \tag{1}$$

where C_s and C_b refer to the number densities of a component in a small slab and a box (bulk), respectively; namely, the concentrations are:

$$C_s = \frac{n_s}{V_s} \tag{2}$$

$$C_b = \frac{n_b}{V_b} \tag{3}$$

where n represents the number of molecules; V is the volume of a certain unit.

The density along a coordinate direction (ρ_s) can be converted with the use of bulk density (ρ_b) as follows:

$$\rho_s = C_r \times \rho_b \tag{4}$$

3. Results and discussion

3.1 Occurrence characteristics of different alkanes on the α -SiO₂ surface

After 0.2 ns of MD simulation, the occurrence characteristics of alkanes (nC_7 , nC_{18} , and nC_{25}) on the surface of α -SiO₂ are shown in Fig. 2. The vertical distribution of oil molecule density is selected to compare the distribution characteristics of different alkane molecules on the surface of α -SiO₂.

Different from the multi-layer oil film of octane (C₈) adsorbed on silica silt (Wang et al., 2016b), nC_7 , nC_{18} , and

Fig. 3. Radial density changes of nC_7 on α -SiO₂ surface.

Fig. 4. Radial density changes of nC_{18} on α -SiO₂ surface.

 nC_{25} present the occurrence characteristics of single oil film. Fig. 2(a) depicts the occurrence state of nC_7 after 0.2 ns of dynamic simulation; there is an obvious peak at 17.5 Å from the outermost layer to the surface of α -SiO₂, reaching 0.82 g/cm³, which indicates that nC_7 molecules exist in the inner layer of α -SiO₂ in the form of an oil film that is characterized by a single molecular layer, while the alkane molecules of the outer layer cannot form a dense and continuous oil film distribution state. This is because the nC_7 molecules themselves are relatively active and have strong free movement ability. While being affected by a rock surface, they can still exhibit violent movement under the influence of the outer boundary (Huang et al., 2024). The occurrence states of nC_{18} molecules on the surface of α -SiO₂ (Fig. 2(b)) show that as the carbon number of alkane increases, the thickness of the oil film does not continue to rise. The oil film density reaches 0.95 g/cm³ at 16.4 Å from the α -SiO₂ surface. After the formation of a strongly adsorbed oil film, it significantly weakens the attraction effect of SiO_2 on the alkanes in the outer layer. At the same time, nC_{18} has a higher molecular weight, which requires a stronger force to affect the motion state of nC_{18} . As a result, the nC_{18} molecules present the state of a thin and single-layer oil film. The occurrence states of alkane molecules on the surface of α -SiO₂ show that the oil film increases from nC_7 to nC_{18} , while the increase in oil film thickness from nC_{18} to nC_{25} is not significant. From the vertical density distribution of nC_{25} in Fig. 2(c), it can be determined that the density of nC_{25} is

Fig. 5. Radial density changes of nC_{25} on α -SiO₂ surface.

Fig. 6. Comparison of MSD of different alkane molecules.

0.98 g/cm³ at the distance of 17.3 Å. However, due to the large molecular size of nC_{25} , the density distribution does not become narrower.

In order to clarify the process of forming such an occurrence state of alkanes, the dynamic curves of radial density changes (Figs. 3-5) and the mean square displacement (MSD) curves (Fig. 6) of different alkanes molecules were compared. It can be seen from Fig. 3 that for nC_7 molecules with a smaller molecular weight, it is easy to form a thin oil film layer; they are rapidly adsorbed on the surface of α -SiO₂. Subsequently, they gradually migrate inwards with further adsorption on the α -SiO₂ surface. For nC_{18} and nC_{25} with higher molecular weights, the formation of a stable oil film is significantly different from that for nC_7 . As can be seen from Fig. 4, when nC_{18} molecules contact the α -SiO₂ surface, the characteristics of the oil film also appear immediately; however, the density of the initial oil film is relatively small. With an increase in the alkane molecular weight, the occurrence characteristics of the oil film presented by nC_{25} are similar to those for nC_{18} (Fig. 5), but the formation time of a stable oil film is obviously different.

Based on the molecular motion processes on the surface of alkane- α -SiO₂, it can be found that alkanes with both large and small molecular weight show the characteristics of an oil film. Specifically, *n*C₇ with a lower carbon number and other alkanes with a carbon number > 18 are single-layer oil films, which results from an insufficient acting force. In addition,

Fig. 7. MD simulation for the stripping characteristics of CO₂ for oil on α -SiO₂ surface, (a) nC_7 , (b) nC_{18} , and (c) nC_{25} .

alkanes with larger molecular weight usually have a longer molecular chain. Alkanes in the innermost position near the surface of α -SiO₂ suffice to present a flat oil film state. The molecules in the outer layer do not contact with the α -SiO₂ surface directly, and they are difficult to spread as an oil film. From the MSD of different alkanes in Fig. 6, it can be found that the free motion ability of nC_7 alkanes is the strongest. For alkanes with large molecular weight above nC_{18} , the free motion ability decreases rapidly.

3.2 Replacement characteristics of CO_2 for oil on α -SiO₂ surface

From the molecular motion trajectories of CO₂-alkanes- α -SiO₂ surface systems in Fig. 7, it can be established that the replacement effect of CO₂ for light alkanes is obviously better than that for heavy alkanes. Meanwhile, the dispersion states of light alkanes and heavy alkanes after replacement are also very different.

As illustrated in Fig. 7(a), CO₂ can rapidly move towards the rock wall through intermolecular gaps between nC_7 molecules. At about 0.4 ns, a considerable number of CO₂ molecules have already been adsorbed on the rock surface. At the same time, the system is fully stretched when it is mixed with CO₂ and the dispersion becomes stronger. The free movement ability of nC_7 molecules is also strengthened. At 0.8 ns, CO₂ completely strips nC_7 molecules from the rock surface, and then it is further mixed fully with nC_7 until the system becomes homogeneous. CO₂ shows miscible characteristics with the nC_7 oil phase, which improves the movement ability of alkane molecules and enlarges the oil phase. Therefore, CO₂ molecules can strongly promote the movement of nC_7 molecules and the development of nC_7 .

The detected occurrence states of alkanes on the rock surface have confirmed that nC_{18} and nC_{25} alkanes exhibit the characteristics of a single layer of an oil film, and the molecules themselves have weak motion ability. From Figs.

Fig. 8. Radial density distribution change of CO_2 and alkanes on α -SiO₂ surface.

7(b) and 7(c), it can be seen that CO₂ can also achieve effective stripping of the nC_{18} and nC_{25} systems. With an increase in the chain length of alkane molecules, it is more difficult for CO₂ to pass through them (Dong et al., 2023b). This is because the aggregation ability of the alkanes themselves will be strengthened with an increase in the carbon number, resulting in a gradual decrease in the intermolecular gaps between the nC_{18} and nC_{25} systems. Therefore, CO₂ will be more prone to strip nC_{18} , followed by nC_{25} . However, the characteristics displayed are significantly different from those of nC_7 . After the removal of nC_{18} and heavier alkanes, the oil phase system is more inclined to aggregate into a clump, and no obvious miscibility with CO₂ can be observed.

In order to further compare the strip processes and char-

acteristics of CO₂ for different alkanes, the CO₂ and alkane density distributions are illustrated in Fig. 8. The simulation reveals that the oil film of nC_7 alkanes on the rock surface is gradually stripped and destroyed. The peak density of alkanes decreases gradually before 0.4 ns, and the density peak characteristics disappear completely after 0.6 ns. The nC_7 system mainly migrates to a radial range of $40 \sim 100$ Å, and the oil phase distribution range is the largest. Correspondingly, the normal density distribution of CO₂ shows a trend opposite to that for nC_7 . CO₂ molecules gradually pass through the nC_7 system and contact the rock wall, eventually occupying the entire rock surface and effectively replacing the alkanes.

The density distributions of nC_{18} and nC_{25} show obvious differences from that of nC_7 . The density peak of nC_{18} disap-

Fig. 9. Centroid variation of alkanes in CO_2 -alkanes- α -SiO₂ systems.

Fig. 10. Centroid variation of CO_2 in CO_2 -alkanes- α -SiO₂ systems.

pears at about 0.4 ns, while that of nC_{25} ceases to be obvious at about 0.8 ns. Meanwhile, the stripped alkane system does not show the good dispersion characteristics of nC_7 . The densities of nC_{18} and nC_{25} systems after stripping are concentrated in the range of 40~80 Å, and the alkane system is more inclined to aggregate into a clump, consistent with the distribution characteristics of the oil phase shown in Figs. 7(b) and 7(c). The dispersion ability of the whole alkane system is weak and so as the overall movement ability, which is also the essential reason for the poor fluidity of heavy oil with high molecular weights.

Figs. 9 and 10 present the centroid variations of alkanes and CO_2 in different CO_2 -alkane- α -SiO_2 systems. The centroid variations of a light alkane change more rapidly than those of a heavy alkane, and the displacement ranges are larger, which further intuitively shows that the replacement effect of CO_2 is better for light alkanes than for heavy alkanes (Huang et al., 2024).

3.3 MD mechanism analysis of CO₂ replacing oil

In order to understand the kinetic mechanisms of CO_2 replacing oil molecules from a rock surface, the nC_7 system is taken as an example and its replacement process is analyzed in detail. By studying the process of molecular motion and the

Fig. 11. Stage division of CO₂ stripping of oil molecules from α -SiO₂ surface.

Fig. 12. Diffusion movement of CO_2 in oil phase (alkane system).

relative motion trajectories of CO_2 and nC_7 molecules, the replacement process of the oil film on the surface of α -SiO₂ can be divided into four typical stages and a supplementary stage, as shown in Fig. 11.

3.3.1 CO₂ diffusion stage

At this stage, the diffusion and dissolution capacities of CO_2 play a dominant role, and the relative displacements of CO_2 and alkane molecules are the most drastic changes. In the initial state, CO_2 and alkanes occupy their respective phase spaces with obvious phase interfaces. However, as the restriction of molecular movement is lifted and the simulation begins, the contact interface between CO_2 and nC_7 changes from the original flat to a rough one and the interface is fused together (Fig. 12), which is comparable to the descriptions by Wang et al. (2022b). The outermost alkane molecules stretch first and CO_2 can pass through the gaps between alkane molecules depending on its diffusion and dissolution ability in the oil phase. The CO_2 content in the oil phase gradually increases and the stretching effect of alkane molecules is

Fig. 13. Competitive adsorption effect between CO₂ and nC_7 on α -SiO₂ surface.

more significant, which corresponds to the expansion effect of CO_2 in the oil phase. From the microscopic perspective, CO_2 not only increases the volume of the oil phase but also enlarges the interspace between alkane molecules, forming the advantageous diffusion channels of CO_2 (Wang et al., 2022a).

3.3.2 Competitive adsorption stage

When CO₂ passes through the alkane molecules (oil film), it comes into contact with the innermost SiO2 wall. The mass of CO₂ molecules is much smaller than that of the alkane molecules, and it is more significantly affected by the hydroxyl group on the surface of α -SiO₂. Previous studies have proven that the modified hydrogen bond between CO₂ and α -SiO₂ can promote the adsorption of CO₂ molecules on the quartz surface (Qin et al., 2008; Sui et al., 2024), which is in agreement with the simulation illustrated in Fig. 13. CO₂ shows a stronger adsorption effect on the rock surface compared with alkane molecules, with the molecular motion process entering the stage of competitive adsorption (Fig. 13). The effect of SiO_2 molecules in the innermost layer on alkane molecules is initially strong and binding, and CO₂ is dominated by competitive adsorption. Subsequently, the SiO₂ adsorption sites formerly occupied by alkane molecules are grabbed away, which causes CO2 to continuously displace the innermost alkane molecules on the surface of α -SiO₂. Finally, the alkanes are gradually replaced by CO₂ on the surface of α -SiO₂. According to the change of centroid displacement, as shown in Fig. 11, the change trend of CO_2 and alkane displacement in this stage is from abrupt to slow. This is because the number of competitive adsorption sites gradually lessens with an increase in the adsorption amount, and the adsorption amount of CO₂ on the surface of α -SiO₂ has a limit.

3.3.3 Oil film displacement stage

As presented in Fig. 14, when CO_2 successfully enters the inner oil film and occupies the adsorption site on the surface

Fig. 14. CO₂ strips oil film on α -SiO₂ surface.

of α -SiO₂, the binding force on alkane molecules becomes smaller and thus their movement becomes freer. In this process, the alkane molecules will move farther away from the α -SiO₂ surface and in the opposite direction of CO₂. Finally, the alkanes, or oil films, are completely pushed away from the α -SiO₂ surface by the action of CO₂ molecules.

3.3.4 CO₂-alkanes miscible phase

For the nC_7 alkane with a low carbon number, there is a fourth phase of movement between CO₂ and alkanes, that is, the miscible phase, as shown in Fig. 15(a). Most of the CO₂ is mixed with the low-carbon alkane molecules and the interface between the oil phase and the CO₂ phase gradually disappears. The mobility of the mixed phase increases and the viscosity of the macroscopic system will be significantly reduced. However, even though heavy alkane molecules can be replaced by CO₂ through competitive adsorption, they still remain in clumps or thick layers, which are difficult to mix with CO₂ and become more dispersed (Dong et al., 2023b; Huang et al., 2024), as shown in Fig. 15(b).

4. Conclusions

In this paper, molecular dynamics simulations are performed to study the occurrence characteristics of different alkanes on a α -SiO₂ surface, and the process of CO₂ replacing crude oil is simulated to explore the EOR mechanisms of CO₂ for shale oil from the micro perspective, to provide a theoretical reference for the application of CO₂ for enhanced shale oil recovery. Some conclusions can be drawn as follows:

- 1) Various alkanes occur in the state of a single-layer oil film on the surface of α -SiO₂. CO₂ injection can achieve the effective replacement of different alkanes on the surface of α -SiO₂, and the stripping time extends with an increase in the carbon number.
- 2) Through the alkane molecular gaps, CO₂ passes through the alkane molecular system and reaches the rock surface to achieve effective stripping of the oil films of different alkane molecules. CO₂ is much easier to mix with the stripped oil molecules and displace them from the rock

(b) *n*C₂₅

Fig. 15. Mixing process of CO_2 with stripped alkanes.

surface when the carbon number is small.

3) The process of stripping alkanes on a α -SiO₂ surface by CO₂ can be mainly divided into four stages. First, CO₂ mixes with crude oil under diffusion and dissolution mechanisms. Next, the alkane molecules on the surface of α -SiO₂ are stripped by CO₂ under a competitive adsorption mechanism to achieve a substitution of alkane molecules. During the third stage, after CO₂ has filled up the space on the rock surface, CO₂ is further enriched and thickened on the rock surface and displaces the entire alkane system. For light alkanes, there is a fourth miscible stage, in which CO₂ is mixed with alkane molecules to form a homogeneous system to improve the flow capacity of the oil phase. However, once heavy alkanes have been displaced, it is difficult for CO₂ to mix with them.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 42130803), the National Key Basic R&D Program (No. 2022YFF0801200), the State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (No. PRP/open-2216), and the Knowledge Innovation Program of Wuhan-Shuguang.

Conflict of interest

The authors declare no competing interest.

References

- Alafnan, S. Carbon dioxide and methane sequestration in organic-rich shales: Nanoscale insights into adsorption and transport mechanisms. Journal of Energy Resources Technology, 2022, 144(7): 073010.
- Alfarge, D., Wei, M., Bai, B. Factors affecting CO₂-EOR in shale-oil reservoirs: Numerical simulation study and pilot tests. Energy & Fuels, 2017, 31(8): 8462-8480.
- Cui, F., Jin, X., Liu, H., et al. Molecular modeling on Gulong shale oil and wettability of reservoir matrix. Capillarity, 2022, 5(4): 65-74.
- Dong, X., Xu, W., Liu, H., et al. Molecular insight into the oil displacement mechanism of CO₂ flooding in the nanopores of shale oil reservoir. Petroleum Science, 2023a, 20: 3516-3529.
- Dong, X., Xu, W., Liu, H., et al. On the replacement behavior of CO₂ in nanopores of shale oil reservoirs: Insights from wettability tests and molecular dynamics simulations. Geoenergy Science and Engineering, 2023b, 223: 211528.
- Fang, T., Zhang, Y., Ma, R., et al. Oil extraction mechanism in CO₂ flooding from rough surface: Molecular dynamics simulation. Applied Surface Science, 2019, 494(15): 80-86.
- Feng, Q., Xu, S., Xing, X., et al. Advances and challenges in shale oil development: A critical review. Advances in Geo-Energy Research, 2020, 4(4): 406-418.
- Gou, Q., Xu, S., Chen, Z. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: A case study of the Silurian Longmaxi

Open Access This article is distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Formation shale in the Fuling area, Sichuan Basin, China. Fuel, 2019, 253(1): 167-179.

- Guo, H., Wang, Z., Wang, B., et al. Molecular dynamics simulations of oil recovery from dolomite slit nanopores enhanced by CO_2 and N_2 injection. Advances in Geo-Energy Research, 2022, 6(4): 306-313.
- Huang, T., Cheng, L., Cao, R., et al. Molecular simulation of the dynamic distribution of complex oil components in shale nanopores during CO₂-EOR. Chemical Engineering Journal, 2024, 479: 147743.
- Jin, L., Hawthorne, S., Sorensen, J., et al. Advancing CO₂ enhanced oil recovery and storage in unconventional oil play-experimental studies on Bakken Shales. Applied Energy, 2017, 208: 171-183.
- Jin, Z., Firoozabadi, A. Methane and carbon dioxide adsorption in clay-like slit pores by Monte Carlo simulations. Fluid Phase Equilibria, 2013, 360: 456-465.
- Liu, B., Wang, C., Zhang, J., et al. Displacement mechanism of oil in shale inorganic nanopores by supercritical carbon dioxide from molecular dynamics simulations. Energy & Fuels, 2017, 31: 738-746.
- Michael, G., Vello, K., Phil, D. Opportunities for using anthropogenic CO_2 for enhanced oil recovery and CO_2 storage. Energy and Fuels, 2013, 27(8): 4183-4189.
- Pathak, M., Huang, H., Meakin, P., et al. Molecular investigation of the interactions of carbon dioxide and methane with kerogen: Application in enhanced shale gas recovery. Journal of Natural Gas Science and Engineering, 2018, 51: 1-8.
- Qin, Y., Yang, X., Zhu, Y., et al. Molecular dynamics simulation of interaction between supercritical CO₂ fluid and modified silica surfaces. Journal of Physical Chemistry C, 2008, 112(33): 12815-12824.
- Santos, M., Franco, L., Castier, M., et al. Molecular dynamics simulation of n-alkanes and CO₂ confined by calcite nanopores. Energy & Fuels, 2018, 32(2): 1934-1941.
- Sheng, J. Critical review of field EOR projects in shale and tight reservoirs. Journal of Petroleum Science and Engineering, 2017, 159: 654-665.
- Sui, H., Zhang, F., Zhang L., et al. Competitive sorption of CO₂/CH₄ and CO₂ capture on modified silica surfaces: A

molecular simulation. Science of The Total Environment, 2024, 908: 168356.

- Sun, S., Liang, S., Liu, Y., et al. A review on shale oil and gas characteristics and molecular dynamics simulation for the fluid behavior in shale pore. Journal of Molecular Liquids, 2023, 376: 121507.
- Wang, H., Su, Y., Wang, W., et al. CO₂-oil diffusion, adsorption and miscible flow in nanoporous media from porescale perspectives. Chemical Engineering Journal, 2022a, 450: 137957.
- Wang, H., Wang, X., Jin, X., et al. Molecular dynamics simulation of diffusion of shale oils in montmorillonite. The Journal of Physical Chemistry C, 2016a, 120(16): 8986-8991.
- Wang, R., Bi, S., Guo, Z., et al. Molecular insight into replacement dynamics of CO₂ enhanced oil recovery in nanopores. Chemical Engineering Journal, 2022b, 440: 135796.
- Wang, S., Feng, Q., Javadpour F., et al. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. International Journal of Coal Geology, 2015, 147-148: 9-24.
- Wang, S., Javadpour, F., Feng, Q. Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel, 2016b, 171: 74-86.
- Wang, S., Yao, X., Feng, Q., et al. Molecular insights into carbon dioxide enhanced multi-component shale gas recovery and its sequestration in realistic kerogen. Chemical Engineering Journal, 2021, 425: 130292.
- Wan, Y., Jia, C., Lv, W., et al. Recovery mechanisms and formation influencing factors of miscible CO₂ huff-n-puff processes in shale oil reservoirs: A systematic review. Advances in Geo-Energy Research, 2024, 11(2): 88-102.
- Xue, C., Ji, D., Cheng, D., et al. Adsorption behaviors of different components of shale oil in quartz slits studied by molecular simulation. ACS Omega, 2022, 7(45): 41189-41200.
- Yan, Y., Dong, Z., Zhang, Y., et al. CO₂ activating hydrocarbon transport across nanopore throat: Insights from molecular dynamics simulation. Physical Chemistry Chemical Physics, 2017, 19(45): 30439-30444.