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ON DIFFERENCES OF PERFECT POWERS AND PRIME

POWERS

PEDRO-JOSÉ CAZORLA GARCÍA

Abstract. Given a prime number q and a squarefree integer C1, we develop a
method to explicitly determine the tuples (y, n, α) for which the difference yn−
qα has squarefree part equal to C1. Our techniques include the combination of
the local information provided by Galois representations of Frey–Hellegouarch
curves with the effective resolution of Thue–Mahler equations, as well as the
use of improved lower bounds for q−adic and complex logarithms. As an
application of this methodology, we will completely resolve the case when
1 ≤ C1 ≤ 20 and 2 ≤ q < 25.

1. Introduction

1.1. Historical background. A very famous conjecture by Catalan [15], stated
in 1844, asserts that the only non-zero consecutive integer perfect powers are 8
and 9. In terms of Diophantine equations, this is equivalent to claiming that the
Diophantine equation

(1) yn − xm = 1, x, y, n,m ∈ Z, x, y > 0, n,m ≥ 2,

only has (x, y, n,m) = (2, 3, 2, 3) as a solution. Mihăilescu [32] proved Catalan’s
conjecture in 2004, using an argument based on the theory of cyclotomic fields and
Galois modules.

Even prior to Mihăilescu’s proof of Catalan’s conjecture, many researchers con-
sidered generalisations of (1). For instance, Pillai [40] conjectured that, for any
value of c > 0, the Diophantine equation

(2) yn − xm = c, x, y, n,m ∈ Z, x, y > 0, n,m ≥ 2,

has only finitely many solutions provided that (n,m) 6= (2, 2). To date, Pillai’s
conjecture remains an open problem, and, to the best of our knowledge, there are
no results unless at least one of x, y, n or m is fixed.

If both x = a > 0 and y = b > 0 are fixed, Bennett [6] showed that there are
at most two solutions to (2) provided that a, b ≥ 2. This result built upon work
by Pillai himself ([39]) and Herschfeld [23], and has since been generalised by Scott
and Styer [42] to allow for x and y to be negative.
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If neither x nor y is fixed, much of the existing work is linked to the study of the
Lebesgue–Nagell equation

(3) x2 +D = yn,

where D > 0 is a fixed integer. We note that (3) corresponds to the case m = 2 in
(2). In addition, we set c = D for historical reasons. We refer the reader to [26,
Section 3] for a detailed exposition on the history of the Lebesgue–Nagell equation
and its generalisations.

The Lebesgue–Nagell equation has been an active research topic since its first
appearance in a paper by Lebesgue [27] in 1850. Indeeed, we highlight the contri-
butions of Nagell [34, 35], Cohn [17, 18], Mignotte and de Weger [30] and Bennett
and Skinner [4], which allowed for a complete resolution of (3) for D in the range
1 ≤ D ≤ 100 for all but 19 values.

Amongst the techniques used by these researchers, two will be especially relevant
for our work: the theorem on primitive divisors of Lucas–Lehmer sequences by Bilu,
Hanrot and Voutier [10] and the modular approach based on Galois representa-
tions of Frey–Hellegouarch curves and modular forms, developed by Wiles, Breuil,
Conrad, Diamond and Taylor [12, 48, 49].

The resolution of (3) in the range 1 ≤ D ≤ 100 was finally completed by
Bugeaud, Mignotte and Siksek [14], who dealt with the outstanding 19 cases by
using an approach combining the aforementioned modular methodology with lower
bounds on linear forms in complex logarithms, based upon Baker’s theory [1, 2, 3].

Very recently, the development of a new Thue–Mahler equation solver by Gherga
and Siksek [20] has allowed Bennett and Siksek to improve on this combined
methodology and study two cases of (3) which we find particularly interesting.
In [8], they consider the equation

x2 + 2α23α35α57α711α11 = yn, x, y > 0, αi ≥ 0, n ≥ 3,

to be solved for x, y, n, α2, α3, α5, α7 and α11. Note that the resolution of this
equation completely determines which integers are differences of a perfect power
and a square, while being furthermore supported only on the primes 2, 3, 5, 7 and
11. With a similar set of techniques, in [7] the same authors study the Diophantine
equation

(4) x2 + qα = yn, x, y > 0, α > 0, n ≥ 3,

where 2 ≤ q < 100 is a fixed prime number. The resolution of this equation
completely determines which squares can be written as the difference of a perfect
power and a power of q.

Finally, we note that the existing literature on generalisations of the Lebesgue–
Nagell equation of the form

(5) C1x
2 + C2 = yn, x, y > 0, n ≥ 3,

where C1 6= 1 is scarce. The first relevant result in this case is due to Patel [37],
who studied (5) for fixed integers 1 ≤ C1 ≤ 10 and 1 ≤ C2 ≤ 80, subject to the
additional constraint that C1C2 6≡ 7 (mod 8). Her methods were similar to those
in [18] and thus relied on the primitive divisor theorem.

In work in progress, the author and Patel [16] removed the restriction C1C2 6≡ 7
(mod 8) and achieved a complete resolution of (5) for all values of C1 and C2 in
the range 1 ≤ C1 ≤ 20 and 1 ≤ C2 ≤ 28. If C1C2 ≡ 7 (mod 8), the primitive
divisor theorem is no longer applicable. In these instances, the authors followed
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an approach combining the modular methodology with bounds coming from the
theory of linear forms in logarithms.

1.2. The main result. Our work in this paper extends [7] by considering a gene-
ralisation of (4) in the following manner. Given a positive integer C, we can write
it as C = C1(C

′)2, where C1 is squarefree, and consider the following Diophantine
equation:

(6) C1x
2 + qα = yn, x, y > 0, α > 0, n ≥ 3,

where C1 is a squarefree integer and q is a prime number, both fixed. We note that,
when compared to (2), (6) corresponds to the case x = q and m = α. We remark
that, at the expense of fixing x = q, we can consider all values of c with squarefree
part C1 simultaneously.

Equation (6) will be the main object of study of the present paper. We achieve
a complete resolution of (6) in the range 1 ≤ C1 ≤ 20 and 2 ≤ q < 25. This is the
main result of the paper and can be concisely stated as follows.

Theorem 1. Let C1, q be integers with 1 ≤ C1 ≤ 20 and 2 ≤ q < 25, with C1

squarefree and q prime. Then, all integer solutions (x, y, α, n) to the equation:

(7) C1x
2 + qα = yn, gcd(C1x, q, y) = 1, x, y > 0, α > 0, n ≥ 3,

can be obtained from Tables 1 and 2.

We note that we can assume that either n = 4 or n = p is an odd prime in
(7), and so Tables 1 and 2 will only include these solutions. Solutions to (7) with
composite n can then be easily read from those tables. Finally, we note that all
solutions with C1 = 1 were previously found in [7], but we include them here for
completeness.

If n = 3 or n = 4, the explicit resolution of (6) can be reduced to the deter-
mination of S−integral points on certain elliptic curves. If n ≥ 5 and y is odd,
we may adapt the techniques developed in [37], which make use of the theorem on
primitive divisors of Lehmer sequences, to bound n. For each outstanding value of
n, we can then reduce the resolution of (6) to solving a finite number of Thue or
Thue–Mahler equations.

After that, we need to deal with the much harder case of (6) where y is even and
n ≥ 5. In this situation, the primitive divisor theorem is no longer applicable, and
we will employ an approach combining the resolution of Thue–Mahler equations
with the local information provided by the modular method, as well as bounds on
n coming from the results of Bugaud and Laurent [13] on lower bounds for linear
forms in q−adic logarithms and from the newly improved lower bounds on linear
forms in complex logarithms, developed by Mignotte and Voutier ([31]).

1.3. Comparison with previously existing literature. We now highlight the
most relevant innovations in this paper with regards to the previously existing
literature. In the case where y is odd, we adapt the methodology in [37] to the case
where C2 = qα, while also introducing several computational improvements. In
many cases, and as we shall see in Section 3, this allows us to bypass the resolution
of Thue–Mahler equations completely, with very relevant computational savings.

In order to obtain a bound for the exponent n in (7), we develop two methods
which are successful in some situations where classical modular method techniques
(e.g. Proposition 6.1) fail. These methods are based on similar techniques in work
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in progress by the author and Patel [16]. Firstly, we define a new Frey–Hellegouarch
curve as the quadratic twist of our original curve by an integer ℓ | C1, and use it
to employ a multi-Frey approach. We present this in Section 6.3. Secondly, given
a prime number ℓ, we use basic Galois theory to determine conditions under which
the reduction of the Frey–Hellegouarch curve will have full 2−torsion over Fℓ. In
Section 6.4, we explain how to exploit this additional structure to obtain a bound
on n.

In Section 7.2, we explain a new way to combine the local information provided
by the modular method with Thue–Mahler equations to prove the non-existence of
solutions to (6). This is extremely useful in situations where Kraus’s method (see
Proposition 7.2) fails and where the explicit resolution of Thue–Mahler equations
is computationally unfeasible.

Finally, if the modular methodology is unsuccessful in bounding n, we use the
newly-improved lower bounds for linear forms in complex logarithms in [31] to
bound n. Compared to previous applications of linear forms in logarithms to similar
Diophantine equations (e.g. [14, 7, 8]), our bounds are around 50% smaller, giving
a substantial saving in computation time. This is presented in Section 8.

1.4. Structure of the paper. The outline of this paper is as follows. In Section
2, we will find all solutions of (7) with n = 3 and n = 4 by reducing the problem
to that of finding S−integral points on elliptic curves. In Section 3, we find all
solutions of (7) with y odd in the range 1 ≤ C1 ≤ 20 and 2 ≤ q < 25 by applying
results derived from the theorem on primitive divisors of Lucas-Lehmer sequences
([10]) and by refining the Thue–Mahler solver developed in [20]. In Section 4, we
explain how to reduce (7) with y even to a Thue–Mahler equation and we solve the
cases n = 5 and n = 7. In Section 5, we introduce the modular method which we
will use in the following two sections to prove that there are almost no remaining
solutions. In Section 6, we present four techniques involving the modular method
that we may use to bound the exponent n in (7) for some values of C1 and q. Then,
in Section 7, we will develop some methodology to show that (7) has no solutions
with y even for a fixed value of n ≥ 11. In Section 8, we will use the new estimates
for linear forms in complex logarithms in [31] in order to bound n and show that
all solutions to (7) have been found in previous sections. Finally, in Section 9 we
will compile all the previous results to prove Theorem 1.

All the code that we have used to perform computations in this paper is publicly
available in https://github.com/PJCazorla/Differences-between-perfect-and-prime-powers.

Acknowledgements The author would like to thank Gareth Jones and Martin
Orr for comments on a draft version of the paper, and Adela Gherga and Samir
Siksek for useful discussions.

2. Small exponents: n = 3 and n = 4

In this section, let S = {q}. We shall explain how to solve (7) for n = 3 and
n = 4 by reducing the problem to that of finding S−integral points on certain
elliptic curves.

https://github.com/PJCazorla/Differences-between-perfect-and-prime-powers
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C1 q x y α n

1 2 5 3 1 3
1 2 7 3 5 4
1 2 11 5 2 3
1 3 10 7 5 3
1 3 46 13 4 3
1 7 1 2 1 3
1 7 3 2 1 4
1 7 13 8 3 3
1 7 24 5 2 4
1 7 181 32 1 3
1 7 524 65 2 3
1 7 5 2 1 5
1 7 181 8 1 5
1 7 11 2 1 7
1 11 2 5 2 3
1 11 4 3 1 3
1 11 58 15 1 3
1 11 9324 443 3 3
1 13 70 17 1 3
1 17 8 3 1 4
1 19 18 7 1 3
1 19 22434 55 1 5
1 23 2 3 1 3
1 23 588 71 3 3
1 23 6083 78 3 4
1 23 3 2 1 5
1 23 45 2 1 11
2 3 7 5 3 3
2 3 25 11 4 3
2 3 146 35 5 3
2 3 21395 971 8 3
2 5 1 3 2 3
2 5 13 7 1 3
2 5 134 33 2 3
2 7 4 3 2 4
2 7 19 9 1 3
2 7 128060 3201 4 3
2 13 41 15 1 3
2 13 68 21 1 3
2 13 804 109 3 3

C1 q x y α n

2 13 75090 2797 9 3
2 17 56 9 2 4
2 19 2 3 1 3
2 19 33 13 1 3
2 19 2981 261 3 3
2 19 1429 21 1 5
2 23 10 9 2 3
2 23 84 11 2 4
2 23 122 31 1 3
3 2 21 11 3 3
3 5 1 2 1 3
3 5 13 8 1 3
3 5 840211 12842 7 3
3 5 3 2 1 5
3 5 1 2 3 7
3 13 1 2 1 4
3 13 9 4 1 4
3 13 51 10 3 4
3 13 245 82 5 3
3 13 4471 88 1 4
3 17 6 5 1 3
3 23 208 19 2 4
5 2 43 21 4 3
5 3 1 2 1 3
5 3 2596 323 7 3
5 3 1 2 3 5
5 3 5 2 1 7
5 3 19 2 5 11
5 7 2 3 1 3
5 11 1 2 1 4
5 11 7 4 1 4
5 11 57 26 3 3
5 19 3 4 1 3
5 19 14423 1014 5 3
5 23 8 7 1 3
6 11 19 7 4 5
6 17 3 7 2 3
6 17 45 23 1 3
6 17 3084 385 2 3
6 19 51 25 1 3

Table 1. First part of solutions to (7) with n prime or n = 4,
1 ≤ C1 ≤ 20 and 2 ≤ q < 25, with C1 squarefree, q prime, x, y > 0,
α > 0 and gcd(C1x, q, y) = 1.
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C1 q x y α n

6 23 4 5 2 4
6 23 105378 4057 6 3
6 23 843570 16223 3 3
7 3 1 2 2 4
7 3 5 4 4 4
7 3 38 31 9 3
7 3 430 109 6 3
7 5 1 2 2 5
7 5 17 2 2 11
7 11 1 2 2 7
7 13 4 5 1 3
7 13 7 8 2 3
7 17 21 20 3 3
10 3 1 13 7 3
10 3 71 37 5 3
10 11 474 131 3 3
10 11 646 161 2 3
10 17 1 3 1 3
10 17 48 113 5 3
11 2 1 3 4 3
11 2 85 43 5 3
11 3 2 5 4 3
11 5 1 2 1 4
11 5 8 9 2 3
11 5 19 8 3 4
11 5 19 16 3 3
11 5 59 14 3 4
11 7 1696 75 2 4
11 13 23 18 1 3
11 13 93 46 3 3
11 17 288 97 2 3
11 23 5644 705 2 3
13 2 3 5 3 3
13 2 67 45 15 3
13 3 1 2 1 4
13 3 1 4 5 4
13 3 71 16 1 4
13 5 6668 833 4 3
13 7 342 115 3 3
13 11 31 24 3 3

C1 q x y α n

13 11 3 2 1 7
13 17 60 19 4 4
13 19 42 31 3 3
13 19 1 2 1 5
13 23 12 7 2 4
13 23 1032 61 2 4
14 5 2 3 2 4
14 11 6 5 2 4
14 13 1 3 1 3
14 13 902 225 2 3
14 19 4 3 1 5
15 7 1 4 2 3
15 7 136 23 4 4
15 7 33 4 2 7
15 11 3 4 2 4
15 13 2597 466 4 3
15 13 5124 733 3 3
15 17 1 2 1 5
15 17 7 4 2 5
15 23 103 76 4 3
17 2 1 3 6 4
17 2 9 7 10 4
17 2 231 31 14 4
17 3 8 11 5 3
17 7 1375 318 5 3
17 13 2 3 1 4
17 13 6 5 1 4
17 23 25 22 1 3
19 2 1 3 3 3
19 2 63 43 12 3
19 2 4095 683 9 3
19 2 76539 4931 33 3
19 3 28 25 6 3
19 5 2 3 1 4
19 5 91 54 3 3
19 7 2 5 2 3
19 7 16 17 2 3
19 13 468200376 1608937 6 3
19 13 1 2 1 5

Table 2. Second part of solutions to (7) with n prime or n = 4,
1 ≤ C1 ≤ 20 and 2 ≤ q < 25, with C1 squarefree, q prime, x, y > 0,
α > 0 and gcd(C1x, q, y) = 1.
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Let (x, y, α, n) be a solution to (7) with n = 3 and let us write α = 6k + i, with
k ≥ 0 and i ∈ {0, 1, . . . , 5}. Let X = C1y/q

2k and Y = C2
1x/q

3k. Then, it follows
that (X,Y ) is an S−integral point on the elliptic curve

EC1,q,i : Y
2 = X3 − C3

1q
i.

Similarly, if (x, y, α, n) is a solution to (7) with n = 4, we write α = 4l + j with
l ≥ 0 and j ∈ {0, 1, 2, 3}. Let X = C1y

2/q2l and Y = C2
1xy/q

3l. Then, (X,Y ) is
an S−integral point on the elliptic curve

FC1,q,j : Y
2 = X3 − C2

1q
jX.

For each of these two cases, we may determine all S−integral points by using
the algorithm presented in [38], based on lower bounds for linear forms in elliptic
logarithms and upper bounds on the size of S-integral points of elliptic curves.
We shall use the implementation of the algorithm on the computer algebra system
Magma [11] in order to retrieve all solutions (x, y, α, n) where x, y > 0, α > 0,
n = 3, 4 and gcd(C1x, q, y) = 1. This algorithm is successful in all but two cases,
corresponding to the pairs (C1, q) = (7, 23) and (C1, q) = (19, 23) and the elliptic
curves

E7,23,5 : Y 2 = X3 − 2207665649,

and

E19,23,5 : Y 2 = X3 − 44146876637.

In both cases, the Magma subroutine was able to determine that the curves had
rank one but was unable to find a generator for the Mordell-Weil group. We can
find such an element by computing Heegner points on the curves, following the
algorithm of Gross and Zagier [21]. We succeed in both cases and proceed to find
the S−integral points in the same manner as in the rest of the situations.

In this way, we obtain 164 solutions to (7) with n = 3 or n = 4, all of which are
recorded in Tables 1 and 2.

3. The case where y is odd

In this section, we will solve Equation (7) under the assumption that y is odd.
Our main tool to bound the exponent n in (7) is Theorem 1 in [37], which is based
upon the theorem of Bilu, Hanrot and Voutier on the existence of primitive divisor
of Lucas-Lehmer sequences ([10]). Then, we shall improve upon the computational
methodology in [37] to reduce the resolution of (7) with y odd to a finite number
of Thue and Thue–Mahler equations.

We can solve the former with the Magma in-built Thue solver and the latter with
the Thue–Mahler solver developed in [20]. This will allow us to prove the following
Proposition, which completely solves (7) if y is odd in the range 1 ≤ C1 ≤ 20 and
2 ≤ q < 25.

Proposition 3.1. Let (x, y, α, n) be a solution to (7) with 1 ≤ C1 ≤ 20 squarefree,
2 ≤ q < 25 prime, n ≥ 5, x > 0 and y odd. Then,

(C1, q, x, y, α, n) ∈ {(1, 19, 22434, 55, 1, 5), (2, 19, 1429, 21, 1, 5),
(6, 11, 19, 7, 4, 5), (14, 19, 4, 3, 1, 5)}

and all of this solutions are included in Tables 1 and 2.
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Given the results in Section 2, we will assume that n = p ≥ 5 is a prime. Then,
we can bound p by using the following result, which is an extension of Theorem
1 in [37], originally stated in [16]. We include the proof of that result here for
convenience.

Theorem 2. Let C1 be a positive squarefree integer and C2 a positive integer.
Write C1C2 = cd2 where c is squarefree. Let p be an odd prime for which the
equation

C1x
2 + C2 = yp, x, y > 0, gcd(C1x

2, C2, y
p) = 1,

has a solution (x, y), with either C1C2 6≡ 7 (mod 8) or C1C2 ≡ 7 (mod 8) and y is
odd. Then either,

(i) p ≤ 5, or
(ii) p = 7 and y = 3, 5 or 9, or
(iii) p divides the class number of Q(

√−c), or
(iv) p |

(

ℓ−
(−c

ℓ

))

, where ℓ is some prime ℓ | d and ℓ ∤ 2c.

Proof. If C1C2 6≡ 7 (mod 8), the result follows by [37, Theorem 1]. Otherwise, we
have by assumption that C1C2 ≡ 7 (mod 8) and y is odd.

In this situation, we can apply the primitive divisor by Bilu, Hanrot and Voutier
(BHV) in an identical manner to the proof of Theorem 1 in [37], as the key assump-
tion there is precisely that y is odd. �

We may then apply Theorem 2 to (7), proving the following corollary.

Corollary 3.2. Let C1 > 0 be a squarefree integer and q a prime number. Suppose
that (x, y, α, n) is a solution to (7) with n = p a prime and y odd. Then, either:

(a) p ≤ 5, or
(b) p = 7 and y = 3, 5 or 9, or
(c) α is odd and p divides the class number of Q(

√−C1q), or
(d) α is even and p divides the class number of Q(

√−C1), or

(e) α is even, q 6= 2 and p |
(

q −
(

−C1

q

))

.

Proof. Conditions (i) and (ii) in Theorem 2 are identical to conditions (a) and (b)
in the statement of the corollary, so suppose that none of the two hold. First, let us
assume that α = 2k + 1 with k ≥ 0 an integer. Then, in the notation of Theorem
2, it follows that C2 = qα and that

(8) c = C1q, d = qk, k ≥ 0.

In addition, the only prime ℓ | d is ℓ = q, which also divides 2c. Consequently,
condition (iii) on Theorem 2 necessarily holds and we get condition (c) in this
corollary.

Suppose now that α = 2k with k > 0 an integer. Then, we have that C2 = qα

and that

(9) c = C1, d = qk, k > 0,

and the only prime ℓ | d, ℓ ∤ 2c is ℓ = q, provided that q 6= 2. Then, conditions (iii)
and (iv) in Theorem 2 give rise to conditions (d) and (e), finishing the proof of the
corollary.

�
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We now explain how to adapt the computational methodology in Section 6 of
[37] to our case. First, let us treat the case where p does not satisfy (c) or (d) in
Corollary 3.2. This case is summarised in the following lemma.

Lemma 3.3. Suppose that (x, y, α, n) is a solution to (7) with n = p ≥ 5 prime
and y odd. Let c, d be as in (8) if α = 2k+1 for some k ≥ 0 and as in (9) if α = 2k
for some k > 0. Suppose furthermore that p does not divide the class number of
Q(

√−c), and let us define G(U, V ) ∈ Z[U, V ] by the following expression:

(10) G(U, V ) =
(U + V

√−c)p − (U − V
√−c)p

2
√−c

.

Then, y satisfies

(11) y =
r2 + cs2

C1
if − c 6≡ 1 (mod 4),

or

(12) y =
r2 + cs2

4C1
if − c ≡ 1 (mod 4).

and (r, s) satisfy the following non-reduced Thue–Mahler equation:

G(r, s) = C
(p−1)/2
1 qk, if − c 6≡ 1 (mod 4),

or

G(r, s) = 2pC
(p−1)/2
1 qk, if− c ≡ 1 (mod 4).

In addition, we have that s ∈ Sc,q, where the set Sc,q is defined by:

Sc,q =































{±1,±qk}, if − c 6≡ 1 (mod 4), q ∤ p,

{±1,±qk−1,±qk}, if − c 6≡ 1 (mod 4), q | p,
{±1,±2,±qk,±2 · qk}, if − c ≡ 1 (mod 4), q ∤ 2p,

{±1,±2,±qk−1,±2 · qk−1,±qk,±2 · qk}, if − c ≡ 1 (mod 4), q | p, q 6= 2,

{±1,±2, . . . ,±2(p−3)/2,±2(p−1)/2,±2k+1}, if − c ≡ 1 (mod 4), q = 2.

Proof. Since, by assumption, p does not divide the class number of Q(
√−c), this

lands into case I in [37] and, as shown there, there exist integers r, s satisfying (12)
or (11), depending on whether −c ≡ 1 (mod 4) or not. In order to find r and s, we
distinguish two cases. If −c 6≡ 1 (mod 4), we have, again by [37], that s | qk and r
satisfies the following equation:

(13) 0 = fs(r) =
(r + s

√−c)p − (r − s
√−c)p

2s
√−c

− C
(p−1)/2
1 qk

s
.

Similarly, if −c ≡ 1 (mod 4), we have that s | 2qk and r satisfies:

(14) 0 = fs(r) =
(r + s

√−c)p − (r − s
√−c)p

2s
√−c

− 2pC
(p−1)/2
1 qk

s
.

Multiplying both equalities by s, we obtain the non-reduced Thue–Mahler equations
present in the statement of the Lemma.

Now, let us find the expressions for Sc,q. Suppose first that q ∤ 2p. Then,
applying the binomial theorem yields that

(15)
(r + s

√−c)p − (r − s
√−c)p

2s
√−c

= prp−1 + s2H(r, s),
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for certain polynomial H(r, s) ∈ Z[r, s]. Suppose for contradiction that q | s and
that qk ∤ s. Then, q | s2H(r, s) and either

q | C
(p−1)/2
1 qk

s
if − c 6≡ 1 (mod 4)

or

q | 2
pC

(p−1)/2
1 qk

s
if − c ≡ 1 (mod 4).

These expressions, together with (13), (14) and (15), yield that q | prp−1. Since
q ∤ p, it follows that q | gcd(r, s). By (11) and (12), along with the fact that
C1 is squarefree, we have that q | y, which is a contradiction with the fact that
gcd(q, y) = 1.

Consequently, either q ∤ s or qk | s. Since s | qk for −c 6≡ 1 (mod 4) and s | 2qk
for −c ≡ 1 (mod 4), we get the expressions for Sc,q in the statement of the lemma.

If q | p and q 6= 2, we follow an identical argument to show that either q ∤ s or
qk−1 | s. Finally, if q = 2, the same reasoning is valid if −c 6≡ 1 (mod 4). If −c ≡ 1
(mod 4), we may adjust it to prove that either 2(p+1)/2 ∤ s or 2k+1 | s. This gives
the expressions for Sc,q presented above, thereby concluding the proof. �

Now, we shall explain how to solve the non-reduced Thue–Mahler equation in
each of the cases. First, we note that the expression for G(U, V ) in (10) can be
rewritten as:

G(U, V ) = V · F (U, V ),

where F (U, V ) ∈ Z[U, V ] has degree p− 1. It is sufficient to solve the equation:

(16) F (U, V ) =
C

(p−1)/2
1 qk

s
, if− c 6≡ 1 (mod 4),

or

(17) F (U, V ) =
2pC

(p−1)/2
1 qk

s
, if− c ≡ 1 (mod 4),

for each value of s in Sc,q. If s = ±qk−1,±2 ·qk−1,±qk,±2 ·qk, (16) and (17) reduce
to Thue equations, since the right-hand-side of those identities no longer depends
on k. We may solve these Thue equations with the Magma in-built Thue solver,
which is based upon lower bounds on linear forms on elliptic logarithms. Given a
solution (U, V ) of the relevant Thue equation, it is then elementary to see if there
are any values of k for which V = s for our particular choice of s.

We emphasise that, in general, it is much more efficient computationally to
solve Thue equations rather than Thue–Mahler equations, so this approach gives a
significant improvement.

Suppose now that s = ±1,±2 (or s = ±1,±2, . . . ,±2(p−1)/2 in the case q = 2).
Then, the right-hand side of (16) and (17) does depend on k, so the two expressions
are now Thue–Mahler equations. As mentioned above, solving this is, in general,
very expensive computationally, so we present a further trick that may allow us to
bypass the solution of certain Thue–Mahler equations.

Indeed, let us define f(U) = F (U, s) ∈ Z[U ] for our fixed value of s. If the
polynomial f(U) does not have roots in Zq , this means that there exists a constant
k0 ≥ 1 for which the congruence equation

F (U, s) ≡ 0 (mod qk)
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does not have a solution for all k ≥ k0. It then follows that all solutions to (16) or
(17) satisfy that k < k0 and finding solutions for (16) and (17) amounts to finding
roots of polynomials.

If f(U) has roots in Zq, this trick is no longer possible, so we solve the Thue–
Mahler equation with the tools developed in [20]. Given a solution (U, V ) to the
Thue–Mahler equation, it is then elementary to check whether V = s for our fixed
value of s.

Remark 3. Looking at Lemma 3.3, it seems that we have a substantial amount
of information for s. One could ask if we could somehow use this information to
simplify the computation if we need to solve a Thue–Mahler equation.

Unfortunately, this is apparently not the case, and it seems that we need to solve
the Thue–Mahler equation disregarding our partial knowledge of s and then check
if the solution (U, V ) satisfies V = s. We would like to thank Adela Gherga for a
very useful discussion on the subject.

The previous approach deals with alternatives (i), (ii) and (v) in Corollary 3.2, so
let us consider alternatives (iii) and (iv). In these cases, p divides the class number
of Q(

√−c), and we can adapt the computational methodology outlined in Case II

of Section 6 in [37].
Note that, since we have that d = qk, we do not obtain Thue equations as in

[37], but Thue–Mahler equations. Indeed, we get p− 1 Thue–Mahler equations of
degree p, of the following shape.

(18) G2(U, V ) = a · qk,
where G2(U, V ) ∈ Z[U, V ] is a homogeneous polynomial of degree p, a ∈ Z and k is
such that α = 2k or α = 2k+1. Once this equation is solved, there is an associated
expression of the form

(19) F2(U, V ) = C1 · a · x,
where F2(U, V ) ∈ Z[U, V ] and U, V and a are the same numbers are in (18). This
allows us to recover the value of x in (7).

Note that, as opposed to the case considered in Corollary 3.2, there is no pos-
sibility of avoiding the resolution of Thue–Mahler equations, since we do not have
any information on the value of s. This is why this case is much more difficult in
general.

Note that we need to consider both solutions of (18) where (U, V ) are coprime
but also those where they are not coprime. In order to solve the first situation, we
simply use the Thue–Mahler solver developed in [20], which requires U and V to
be coprime.

In the second situation, we need to consider all divisors d | a such that dp|a.
Then, we solve the equation:

G2(U
′, V ′) =

a

dp
· qk,

with the Thue–Mahler solver in [20] and assuming that U ′, V ′ are coprime. We can
then recover the original solution (U, V ) = (dU ′, dV ′), and find the corresponding
value of x by (19).

Finally, we note that the Thue–Mahler solver in [20] requires the polynomial
G2(U, V ) in (18) to be irreducible. If this is not the case, we can factorise it as a
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product of irreducible coprime factors.

G2(U, V ) = a0g1(U, V ) . . . gr(U, V ).

We may assume, by replacing the value of a in (18) by a/a0, that a0 = 1. Then, it
is sufficient to solve the family of Thue equations:

gi(U, V ) = d,

where d|a and gcd(a/d, d) = 1. This is a consequence of unique factorisation and
simplifies the resolution of the problem significantly, since we only have to deal
with Thue equations, as opposed to Thue–Mahler equations. We emphasise that,
even if it is not extremely common that G2 is reducible, it does occur sometimes
in practice so we have to account for this possibility.

With all these computational techniques, we are finally able to prove Proposition
3.1.

Proof. (of Proposition 3.1) There are 101 pairs (C1, q) in the range 1 ≤ C1 ≤ 20
and 2 ≤ q ≤ 25 with C1 squarefree, q prime and gcd(C1, q) = 1. Note that, for each
pair, we have to consider separately the cases where α is odd and where α is even.

Of these 202 cases, we have that p divides the class number of Q(
√−c) for

precisely 10, and so we land in cases (c) or (d) of Corollary 3.2. We have to solve
4 Thue–Mahler equations of degree 5 for nine of those cases and 6 Thue–Mahler
equations of degree 7 for one , giving a total of 9 · 4 + 1 · 6 = 42 Thue–Mahler
equations to consider.

For the remaining 192 pairs, we are able to use the local arguments outlined
after the proof of Lemma 3.3 to avoid solving Thue–Mahler equations for 172 of
them. The other 20 give rise to a total of 54 Thue–Mahler equations, totalling 96
Thue–Mahler equations amongst all pairs.

We proceed to solve all of them with the code associated to [20]. It is relevant to
note that the majority of CPU time is spent solving the 42 Thue–Mahler equations
where p divides the class number of Q(

√−c) since, on these cases, we have to
account for the possibility that (U, V ) are not coprime, which forces the resolution
of additional Thue–Mahler equations.

After resolving all the equations, we recover only the four solutions in the state-
ment of the Proposition, and all of them are included in Tables 1 and 2. �

4. The case where y is even and p = 5 or p = 7: reduction to

Thue–Mahler equations

After the work in Sections 2 and 3, we are left with the case of (7) where y is
even and n = p ≥ 5 is a prime number. This case is considerably harder because
we may no longer use the theorem of Bilu, Hanrot and Voutier [10] on primitive
divisors of Lucas-Lehmer sequences, as in Section 3.

We note that, if y is even, a simple modulo 8 argument on (7) allows us to prove
that C1q

α ≡ 7 (mod 8) and, consequently, either α is odd and (C1, q) is one of the
following pairs:

(C1, q) =(1, 7), (1, 23), (3, 5), (3, 13), (5, 3), (5, 11), (5, 19), (7, 17), (11, 5), (11, 13),

(20)

(13, 3), (13, 11), (13, 19), (15, 17), (17, 7), (17, 23), (19, 5), (19, 13),
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or α is even and (C1, q) is one of the following pairs:

(C1, q) =(7, 3), (7, 5), (7, 11), (7, 13), (7, 17), (7, 19), (7, 23)(21)

(15, 7), (15, 11), (15, 13), (15, 17), (15, 19), (15, 23).

and these are the pairs that we shall consider for the rest of the paper. Even though
the pairs (1, 7) and (1, 23) were solved in [7], our methodology applies to these cases
and we will recover the same results.

We shall solve (7) with y even and p ≥ 11 by using an approach combining the
modular method, presented in Section 5, with upper bounds on p coming from the
theory of linear forms in complex logarithms, that we shall exploit in Section 8.
The success of this methodology has been shown in the following articles, amongst
many others: [7], [8], [14].

This leaves only the cases p = 5 and p = 7, which we treat now by explaining how
to reduce (7) to a Thue–Mahler equation. This will allow us to prove the following
Lemma, which completely solves (7) in the range 1 ≤ C1 ≤ 20 and 3 ≤ q < 25 if y
is even and p = 5 or p = 7.

Lemma 4.1. Let C1, q be integers with 1 ≤ C1 ≤ 20 and 3 ≤ q < 25, with
C1 squarefree and q prime. Then, all positive integer solutions (x, y, α, p) to the
equation:

(22) C1x
2 + qα = yp, gcd(C1x, q, y) = 1, x, y, α > 0, y even , p = 5, 7.

are given by the following tuples:

(C1, q, x, y, α, p) = (1, 7, 5, 2, 1, 5), (1, 7, 181, 8, 1, 5), (1, 7, 11, 2, 1, 7), (1, 23, 3, 2, 1, 5),

(3, 5, 3, 2, 1, 5), (3, 5, 1, 2, 3, 7), (5, 3, 1, 2, 3, 5), (5, 3, 5, 2, 1, 7),

(7, 5, 1, 2, 2, 5), (7, 11, 1, 2, 2, 7), (13, 11, 3, 2, 1, 7), (13, 19, 1, 2, 1, 5),

(15, 7, 33, 4, 2, 4), (15, 17, 1, 2, 1, 5), (15, 17, 7, 4, 2, 5), (19, 13, 1, 2, 1, 5).

All of these tuples are included in Tables 1 and 2.

Proof. We let c and d be defined as in (8) if α = 2k + 1 and as in (9) if α = 2k.
Let K = Q(

√−c), OK denote its ring of integers, Cl(K) its class group and hK its
class number.

We note that, for all pairs in (20) (if α is odd) and (21) (if α is even), we have
that −c ≡ 1 (mod 4), so that

OK = Z

[

1 +
√−c

2

]

.

Multiplying (22) by C1 and dividing by 4, we obtain the following ideal factorisation
in OK :

(23)

(

C1x+ qk
√−c

2

)(

C1x− qk
√−c

2

)

OK =

(

C1y
p

4

)

OK .

Since gcd(C1x, y) = 1, we see that the only prime ideals dividing both ideals on
the left-hand side of (23) are those dividing C1. Consequently, we see that

(24)

(

C1x+ qk
√−c

2

)

OK = q · pp−2
2 · Ap,

where q is the product of all prime ideals over C1, p2 is one of the two prime
ideals over 2 and A is an ideal of norm y/2.
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Let {b1, . . . , bhK
} be a set of representatives for Cl(K) which are integral ideals.

Then, it follows that Abi is principal for precisely one value of i = 1, . . . , hK . For
such an i, we let β ∈ OK be a generator of Abi.

If we define B = q · pp−2
2 , (24) yields that Bb

−p
i is a principal fractional ideal,

say generated by γ ∈ K. Therefore,
(

C1x+ qk
√−c

2

)

OK = (γβp)OK ,

and, since the units of OK are ±1 for all cases under consideration, we have that,
after possibly replacing β with −β, (24) is equivalent to

(25) C1x+ qk
√
−c = 2γβp,

We emphasise that we may compute γ explicitly, while we cannot do the same
with β. However, since β ∈ OK , we may write

β = U + V · 1 +
√−c

2

for some integers U, V . By equating the imaginary parts in (25) and clearing de-
nominators, we get the following expression:

(26) a · qk = F (U, V ),

where a ∈ Z and F ∈ Z[U, V ] is a homogeneous polynomial of degree p, so that
(26) is a Thue–Mahler equation in the variables U, V of degree p. If this equation
is resolved, we may recover the solution x simply by equating the real values of the
expression (25), giving rise to an expression of the form:

(27) bx = G(U, V ),

for some b ∈ Z and certain homogeneous polynomial G ∈ Z[U, V ] of degree p.
We get one Thue–Mahler equation for each of the pairs in (20) and (21) and

each exponent p = 5 or p = 7. This gives a total of 62 Thue–Mahler equations to
consider. With the help of Magma and the Thue–Mahler solver developed in [20],
we solve all of them and recover the solutions via (27). �

Remark 4. In principle, the previous argument would work for arbitrary p and so,
in theory, we could reduce (7) to the resolution of Thue–Mahler equations.

However, solving Thue–Mahler equations of degree p ≥ 11 is an extremely com-
putationally intensive process, and it is practically impossible to carry out if p ≥ 17.
Even so, it is important to emphasise that the same argument applies for p ≥ 11
and we will use it, in combination with the modular method, in Section 7.2.

5. The case where y is even and p > 7: the modular method

Our main tool to study (7) when y is even and p ≥ 11 will be the modular method
for Diophantine equations. An excellent exposition on the modular method and its
applications can be found in [45].

Suppose that (x, y, α, p) is a putative solution to (7) with p ≥ 11 prime and
x, y, α > 0, with y even. Then, we can associate the following Frey–Hellegouarch
curve to it:
(28)

Fx,α : Y 2+XY = X3+
C1x− 1

4
X2+

C1y
p

64
X = X3+

C1x− 1

4
X2+

C2
1x

2 + C1q
α

64
X.
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This Frey–Hellegouarch curve is obtained by applying the recipes of Bennett and
Skinner [4], which build upon the work of Wiles, Breuil, Conrad, Diamond and
Taylor [12, 48, 49] on modularity of elliptic curves, on Ribet’s level lowering theorem
[41], and on Mazur’s theorem [29]. The recipes of Bennett and Skinner are also
reproduced in [45, Section 14.1].

Let f be a weight 2 newform. Then, following [45], we shall employ the notation
Fx,α ∼p f to mean

ρp(Fx,α) ∼= ρp(f),

where ρp(Fx,α) and ρp(f) are the mod−p Galois representations attached to Fx,α

and f , respectively. Then, by [45, Theorem 13], we have that either 0 < α < p
and y = 1 (which would correspond to the case of the curve Fx,α having complex
multiplication) or Fx,α ∼p f where f is a weight 2 newform of level

(29) N =

{

2qC2
1 if p ∤ α,

2C2
1 if p | α.

It is straightforward to check that there are no solutions to (7) with y = 1, so from
now onwards we may assume that Fx,α ∼p f .

For any prime number ℓ, we define aℓ(F ) = ℓ+1−#F (Fℓ). Also, we let f have
a normalised cuspidal q−expansion given by:

(30) f = q +
∞
∑

n=2

cnq
n,

where cn belong to some number field Kf , with ring of integers OKf
. Then, a

standard consequence of the fact that Fx,α ∼p f (see [25] and Propositions 5.1 and
5.2 of [45]) is that there is a prime ideal p of OKf

with p | p and such that for all
primes ℓ, we have that

(31)

{

aℓ(F ) ≡ cℓ (mod p) if ℓ 6= p and ℓ ∤ Ny,

cℓ ≡ ±(ℓ+ 1) (mod p) if ℓ 6= 2, p and ℓ | y.
Here, the level N is given by (29) and, in both cases, the assumption that ℓ 6= p
can be removed if the newform is rational, that is, if Kf = Q. For each pair (C1, q)
in (20) (if α is odd) and (21) (if α is even), we may use Magma to compute the
conjugacy classes of rational and irrational newforms of weight 2 and level N that
we need to consider.

Then, our aim in Sections 6 and 7 will be to exploit the local information pro-
vided by (31) in order to prove the following two Propositions. Note that both
propositions together cover all pairs in (20) and (21).

Proposition 5.1. Let C1, q, α and p be positive integers with C1 squarefree, q and
p prime numbers and q ≥ 3. Suppose that one of the following alternatives hold:

(i) p | α, or
(ii) α is odd and (C1, q) is one of the following pairs:
(32)
(C1, q) = (5, 19), (7, 17), (11, 13), (13, 19), (15, 17), (17, 7), (17, 23), (19, 5), (19, 13),

or,
(iii) α is even and (C1, q) is one of the following pairs:

(33) (C1, q) = (7, 17), (7, 19), (15, 13), (15, 19), (15, 23).
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Then, there are no solutions (x, y, α, p) to (7) with y even and p ≥ 11.

Proposition 5.2. Let C1, q and α be positive integers with C1 squarefree and q ≥ 3
prime. Suppose that either α is odd and (C1, q) is one of the following pairs:

(34) (C1, q) = (1, 7), (1, 23), (3, 5), (3, 13), (5, 3), (5, 11), (11, 5), (13, 3), (13, 11),

or α is even and (C1, q) is one of the following pairs:

(35) (C1, q) = (7, 3), (7, 5), (7, 11), (7, 13), (7, 23), (15, 7), (15, 11), (15, 17).

Then, define N0(C1, q) as follows:

(36) N0(C1, q) =















































































































































7.234157 · 107 if (C1, q) = (1, 7),

1.514725 · 108 if (C1, q) = (1, 23),

3.476178 · 107 if (C1, q) = (3, 5),

1.243438 · 108 if (C1, q) = (3, 13),

3.476178 · 107 if (C1, q) = (5, 3),

8.334595 · 107 if (C1, q) = (5, 11),

7.234157 · 107 if (C1, q) = (7, 3),

7.083124 · 107 if (C1, q) = (7, 5),

7.083124 · 107 if (C1, q) = (7, 11),

7.236925 · 107 if (C1, q) = (7, 13),

7.083124 · 107 if (C1, q) = (7, 23),

8.334595 · 107 if (C1, q) = (11, 5),

1.273969 · 108 if (C1, q) = (13, 3),

3.499196 · 108 if (C1, q) = (13, 11),

3.472013 · 107 if (C1, q) = (15, 7),

3.472013 · 107 if (C1, q) = (15, 11),

3.547538 · 107 if (C1, q) = (15, 17),

Then, the only solutions to (7) with y even and 11 ≤ p ≤ N0(C1, q) are given by
the following tuples:

(37) (C1, q, x, y, α, p) = (1, 23, 45, 2, 1, 11), (5, 3, 19, 2, 5, 11), (7, 5, 17, 2, 2, 11),

and they are included in Tables 1 and 2.

Remark 5. In Section 8, we will prove that, in fact, p < N0(C1, q) for each of
the cases covered in Proposition 5.2. This, in combination with Propositions 5.1
and 5.2, along with our work in previous sections, is enough to finish the proof of
Theorem 1.

6. Bounding the exponent p

In this section, we use the modular method to try to attain a sharp bound for
the exponent p in (7). We succeed precisely when p | α or if (C1, q) is one of the
pairs in (32) (if α is odd) or in (33) (if α is even). In this situation, we avoid
a significantly worse bound coming from linear forms in complex logarithms, so
there is a very significant computational improvement. We emphasise that the four
techniques that we present are used to obtain a sharp bound for the exponent p for
at least one pair (C1, q).
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6.1. A preliminary modular bound. The first method is quite standard and
was originally applied by Serre [43, pp. 203–204]. The version that we present here
is an adaptation from that of Bennett and Skinner [4, Proposition 4.3], which is
also [45, Proposition 9.1]. This technique exploits the local information provided by
(31), along with the fact that the Frey–Hellegouarch curve (28) has a Q−rational
point of order 2, in order to obtain a bound on p.

Proposition 6.1. Suppose that (x, y, α, p) is a solution to (7) with x, y > 0, y even
and n = p ≥ 11 prime. Let f be a newform of level N , where N is given in (29),
with field of coefficients Kf . Let Fx,α be the Frey–Hellegouarch curve in (28) and
suppose that Fx,α ∼p f . Then, for any prime number ℓ ∤ N , we define

B′
ℓ(f) = NormKf/Q

(

(ℓ+ 1)2 − c2ℓ
)

·
∏

|a|<2
√
ℓ

2|a

NormKf/Q(a− cℓ).

and

Bℓ(f) =

{

B′
ℓ(f) if f is rational.

ℓB′
ℓ(f) otherwise.

Then, p | Bℓ(f).

Remark 6. It is well-known in the literature (see, for example, the considerations
after Proposition 9.1 in [45]) that Proposition 6.1 will succeed in bounding the
exponent p if either f is irrational or if f is rational and, via the Modularity
Theorem [49], corresponds to an elliptic curve E which is not isogenous to an
elliptic curve with a Q−rational point of order 2.

If f is irrational, this is true because cℓ 6∈ Q for infinitely many values of ℓ.
Therefore, there exists a prime number ℓ such that Bℓ(f) 6= 0 and we can always
bound p. If f is rational and the corresponding elliptic curve E is not isogenous to
an elliptic curve with a Q−rational point of order 2, we have by [44, IV.6] that the
set

{ℓ prime : 2 | cℓ(E)}

is finite. Therefore, we can always find a prime number ℓ for which Bℓ(f) 6= 0 and
once more we can bound the exponent p.

Consequently, we shall assume for the remainder of the section that f is a rational
newform with corresponding elliptic curve E, and we will write Fx,α ∼p E to mean
Fx,α ∼p f .

6.2. An image of inertia argument. We shall try to disprove Fx,α ∼p E by
showing that the corresponding Galois representations have different images for
some inertia subgroup of Gal

(

Q/Q
)

. This approach was originally used in [4] and
has been used extensively since (see for example [9] and [33]). We shall use the
following proposition, which is Proposition 4.4 in [4].

Proposition 6.2. (Bennett and Skinner, [4]) Let ℓ ≥ 3 be a prime, Fx,α be the
Frey–Hellegouarch curve (28) and E be an elliptic curve such that Fx,α ∼p E.
Then, the denominator of the j−invariant j(E) is not divisible by any prime ℓ 6= p
dividing C1.
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6.3. Studying quadratic twists. In this section, we will prove that certain qua-
dratic twists of the Frey–Hellegouarch curve Fx,α are, again, Frey–Hellegouarch
curves. Then, we will use the two Frey–Hellegouarch curves together to try to
bound the exponent p. The following Proposition goes in this direction and is
similar to [16, Proposition 6.3].

Proposition 6.3. Suppose that (x, y, α, p) is a solution to (7) with y even and
p ≥ 17 prime. Also, let d be an integer dividing C1 with d ≡ 1 (mod 4). Then,

if we denote by F
(d)
x,α the quadratic twist of the Frey–Hellegouarch curve (28) by d,

there exists a newform f ′ of level N , where N is given by (29), with

F (d)
x,α ∼p f ′.

Proof. By combining standard facts about quadratic twists (see [46]) with a careful

application of Tate’s algorithm (see [19]), we may find that the elliptic curve F
(d)
x,α

has an integral model and conductor given by N ′ = 2C2
1qRad2(y) if p ∤ α or

N ′ = 2C2
1 Rad2(y) if p | α. Here, Rad2(y) denotes the product of all odd primes

dividing y.
Since p ≥ 17, a result of Mazur [29] implies that the mod-p Galois representation

attached to F
(d)
x,α will be irreducible if j

F
(d)
x,α

6∈ Z[1/2]. This is elementary to check

and so we conclude that ρp(F
(d)
x,α) is irreducible.

Then, Ribet’s Level Lowering Theorem [41] yields the existence of a newform f ′

of level N such that

ρp(F
(d)
x,α)

∼= ρp(f
′),

which is precisely the definition of F
(d)
x,α ∼p f ′. �

Remark 7. Let us assume that Fx,α ∼p E. Then, Proposition 6.3 will give a sharp

bound on the exponent p provided that E(d) has a conductor different from N .
This is due to the fact that

F (d)
x,α ∼p E(d),

since the corresponding mod−p Galois representations are

(38) ρp(Fx,α)⊗
(

d

.

)

and ρp(E)⊗
(

d

.

)

,

where (d/.) denotes the Legendre character. The two Galois representations above
are isomorphic because Fx,α ∼p E and, consequently, ρp(Fx,α) ∼= ρp(E). Then,
Proposition 6.3 yields that

F (d)
x,α ∼p f ′,

or, equivalently,

(39) ρp(Fx,α)⊗
(

d

.

)

∼= ρp(f
′)

Combining (38) and (39), we get that

ρp(E)⊗
(

d

.

)

∼= ρp(f
′).

which amounts to the fact that

(40) E(d) ∼p f ′.
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If the conductor of E(d) is different to the level of f ′, there will be a prime number
ℓ with aℓ(E

(d))− cℓ(f
′) 6= 0. In this instance, we can always bound p by using (40)

together with the congruence conditions (31).

6.4. Using Galois theory. In this section, we aim to use Galois theory to refine
the technique in Proposition 6.1. Note that, in that proposition, the condition
2 | a in the computation of B′

ℓ(f) appears merely due to the fact that Fx,α(Q)
has a point of order 2 and, consequently, 2 | #Fx,α(Fℓ) for all finite fields Fℓ.
We will use Galois theory to determine conditions for primes ℓ which guarantee
that 4 | #Fx,α(Fℓ) and, therefore, the condition 2 | a in Proposition 6.1 can be
strengthened to 4 | a. This is the application of the following proposition, which
originally appeared as [16, Proposition 6.4] with a more complicated proof.

Proposition 6.4. Let E be an elliptic curve defined over Q with discriminant ∆,
and let ℓ be a prime of good reduction for E. Furthermore, assume that E has
at least one Q−rational point of order 2. Then, the reduced curve E(Fℓ) has full
2-torsion, if, and only if its discriminant ∆ is a square mod ℓ.

Proof. Since the curve E has a Q−rational point of order 2, we may assume that
it has a model of the following form:

E : y2 = f(x) = xg(x),

for some polynomials f, g ∈ Z[x] of degree 3 and 2 respectively. Since isomorphisms
between short Weierstrass models of elliptic curves change the discriminant by a
square factor (see Chapter 3 of [46]), it is sufficient to prove the claim for curves in
this model. In addition, we can check by direct computation that the discriminant
∆ of E and the discriminant ∆g of the polynomial g(x) differ only by a square
factor.

Let α ∈ Fℓ be an element with α2 ≡ ∆g (mod ℓ) and let K be the splitting field
of g(x). Since g is a quadratic polynomial, we have that

K = Fℓ(α)

which means that the polynomial g(x) will split completely in Fℓ if, and only if,
the discriminant ∆ is a square modulo ℓ. Since roots of g(x) correspond to the
remaining 2−torsion elements of E(Fℓ), we conclude the proof.

�

Remark 8. As stated in the beginning of this section, we will try to compute
the quantity Bℓ(f) in Proposition 6.1 for primes ℓ for which the discriminant of
the Frey–Hellegouarch curve is a square modulo ℓ. By [45, Theorem 16(a)], this
discriminant is given by:

∆Fx,α
= −2−12 · C3

1 · qα · y2n,
and, therefore, it is clearly sufficient to check whether −C1q or −C1 are squares
modulo ℓ, depending on whether α is odd or even. For these primes, we have
that 4 | #Fx,α(Fℓ) by Proposition 6.4 and we can replace the condition 2 | a in
Proposition 6.1 with the stronger condition 4 | a.
6.5. Applying the techniques. Let us apply the four techniques presented in
this section in order to achieve a bound on p. The following lemma, that we will
need to prove Propositions 5.1 and 5.2, records our findings.
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(C1, q) Level No. newforms 6.1 6.2 6.3 6.4 Remaining

Rat. Irrat. Rat. Irrat.
(1, 7) 14 1 0 1 0 1 1 1 1
(1, 23) 46 1 0 1 0 0 0 0 0
(3, 5) 90 3 0 3 0 2 2 2 2
(3, 13) 234 5 0 3 0 2 2 2 2
(5, 3) 150 3 0 3 0 2 2 2 2
(5, 11) 550 13 1 2 0 2 2 2 2
(5, 19) 950 5 9 0 0 0 0 0 0
(7, 17) 1666 14 13 6 0 1 0 0 0
(11, 5) 1210 13 9 2 0 2 2 2 2
(11, 13) 3146 16 21 0 0 0 0 0 0
(13, 3) 1014 7 8 3 0 2 2 2 2
(13, 11) 3718 20 23 2 0 2 2 2 2
(13, 19) 6422 10 34 1 0 0 0 0 0
(15, 17) 7650 68 26 23 0 5 4 0 0
(17, 7) 4046 20 21 8 0 3 2 0 0
(17, 23) 13294 12 42 6 0 3 2 0 0
(19, 5) 3610 9 27 0 0 0 0 0 0
(19, 13) 9386 14 42 1 0 0 0 0 0

Table 3. Number of conjugacy classes of newforms for each pair
(C1, q) where p ∤ α, α is odd and p can be sharply bounded with
each technique.

(C1, q) Level No. newforms 6.1 6.2 6.3 6.4 Remaining

Rat. Irrat. Rat. Irrat.
(7, 3) 294 7 0 3 0 2 2 2 2
(7, 5) 490 11 2 3 0 2 2 2 2
(7, 11) 1078 13 11 5 0 2 2 2 2
(7, 13) 1274 15 8 3 0 2 2 2 2
(7, 17) 1666 14 13 6 0 1 0 0 0
(7, 19) 1862 11 13 0 0 0 0 0 0
(7, 23) 2254 7 21 7 0 3 2 2 2
(15, 7) 3150 44 2 24 0 9 8 4 4
(15, 11) 4950 47 15 20 0 8 4 4 4
(15, 13) 5850 55 17 25 0 2 0 0 0
(15, 17) 7650 68 26 23 0 5 4 4 4
(15, 19) 8550 39 37 26 0 2 0 0 0
(15, 23) 10350 49 44 23 0 1 0 0 0

Table 4. Number of conjugacy classes of newforms for each pair
(C1, q) where p ∤ α, α is even and p can be sharply bounded with
each technique.

Lemma 6.5. Let C1 and q be integers with C1 squarefree and q prime. Suppose
that (x, y, α, p) is a solution to (7) with x, y > 0, y even and p ≥ 11 prime. Then,
the following is true:
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C1 Level No. newforms 6.1 6.2 6.3 6.4 Remaining

Rat. Irrat. Rat. Irrat.
1 2 0 0 0 0 0 0 0 0
3 18 0 0 0 0 0 0 0 0
5 50 2 0 0 0 0 0 0 0
7 98 1 1 1 0 0 0 0 0
11 242 2 4 0 0 0 0 0 0
13 338 6 2 0 0 0 0 0 0
15 450 1 0 1 0 0 0 0 0
17 578 1 8 1 0 0 0 0 0
19 722 6 8 0 0 0 0 0 0
Table 5. Number of conjugacy classes of newforms for each value
of C1 where p | α and p can be sharply bounded with each tech-
nique.

(i) If p | α, then p ≤ 19.
(ii) If p ∤ α, α is odd and (C1, q) is one of the pairs in (32), then p ≤ 19.
(iii) If p ∤ α, α is even and (C1, q) is one of the pairs in (33), then p ≤ 47.
(iv) If p ∤ α, α is odd and (C1, q) is one of the pairs in (34), then either p ≤ 19 or

Fx,α ∼p EC1,q, for some EC1,q whose Cremona reference is recorded in Table
6.

(v) If p ∤ α, α is even and (C1, q) is one of the pairs in (35), then either p ≤ 47 or
Fx,α ∼p EC1,q, for some EC1,q whose Cremona reference is recorded in Table
7.

Proof. First, let us assume that p ∤ α. We then apply the four techniques outlined
in this section to all pairs in (20), assuming that α is odd, and to all pairs in (21),
assuming that α is even. Results can be seen in Tables 3 and 4 respectively, where
we record the number of conjugacy classes of newforms for which a sharp bound
was not attained after the application of each technique, as well as the number of
conjugacy classes of newforms which we were not able to bound. Note that the
pairs in (32) and (33) are precisely those for which a sharp bound is attained, while
we were unable to bound p using the modular method alone for the pairs in (34)
and (35).

All four techniques were applied one after the other, and so the latter methods
were only used if the former were unsuccessful. If one of the techniques were
ommitted, at least one of the pairs in (32) or in (33) would be unboundable, and
we would then have to appeal to bounds coming from linear forms in logarithms,
which entail more intensive and unnecessary computations.

In all situations, an application of the presented methodology yields that p ≤ 19
for pairs in (32) and that p ≤ 47 for pairs in (33). For the pairs in (34) and (35), we
see in Tables 3 and 4 that there are at most four newforms which are unboundable.
For any other newform, the methods outlined successfully yield the same bounds
as above. By Remark 6, these remaining newforms are necessarily rational.

Consequently, we may conclude that, for all pairs in (34), either p ≤ 19 or
Fx,α ∼p EC1,q, where the Cremona reference of EC1,q is given in Table 6. Similarly,
we have that, for all pairs in (35), either p ≤ 47 or Fx,α ∼p EC1,q, where the Cre-
mona reference of EC1,q is given in Table 7. We note that, by Proposition 6.3, all
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the elliptic curves in Tables 6 and 7 are quadratic twists of each other by some d | C1.

Finally, we treat the case p | α. The expression in (29) does not depend on q,
so we may try to bound p irrespective of the value of q and α. We apply the four
techniques described in this section and record all results in Table 5. We obtain
that p ≤ 19 in all cases.

�

(C1, q) EC1,q

(1, 7) 14a1
(1, 23) 46a1
(3, 5) 90a1 or 90b1
(3, 13) 234b1 or 234c1
(5, 3) 150a1 or 150b1
(5, 11) 550g1 or 550l1
(11, 5) 1210a1 or 1210h1
(13, 3) 1014c1 or 1014g1
(13, 11) 3718c1 or 3718r1

Table 6. Cremona references for the possible elliptic curves EC1,q

for which Fx,α ∼p EC1,q in the case where α is odd.

(C1, q) EC1,q

(7, 3) 294f1 or 294g1
(7, 5) 490g1 or 490j1
(7, 11) 1078l1 or 1078m1
(7, 13) 1274j1 or 1274m1
(7, 23) 2254d1 or 2254e1
(15, 7) 3150e1, 3150i1, 3150z1 or 3150bd1
(15, 11) 4950e1, 4950g1, 4950bb1, 4950bc1
(15, 17) 7650h1, 7650i1, 7650bo1 or 7650bp1

Table 7. Cremona references for the possible elliptic curves EC1,q

for which Fx,α ∼p EC1,q in the case where α is even.

7. Solving for specific exponents

In this section, we will develop techniques that prove that there are no solutions
to (7) with y even for a fixed exponent p. Then, we will apply these techniques in
combination with the results in Lemma 6.5 to finish the proof of Propositions 5.1
and 5.2.

Note that, in principle, we could simply solve a degree p Thue–Mahler equation,
as explained in Section 4. However, as we have discussed, this gets very computa-
tionally intensive and completely impractical for p ≥ 17.

This is why we will present three techniques that exploit the local information
provided by the modular method to prove that there are no solutions to (7) for
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a specific exponent p, which are more computationally efficient. Throughout this
section, we let p denote a fixed prime exponent.

7.1. A modification of Kraus’s method. The technique that we present here
is a combination of the symplectic method, due to Halberstadt and Kraus (Lemme
1.6 of [22]), along with a different idea by Kraus [24], and is inspired by the method
called “Predicting exponents of constants” in [45]. Before presenting the technique,
let us prove an auxiliary Lemma, which gives more detail on the structure of the
reduction of the Frey–Hellegouarch curve (28) over Fℓ.

Lemma 7.1. Let (x, y, α, p) be a solution to (7) with y even and p ≥ 11 prime,
and let ℓ be a prime number satisfying the following conditions.

• ℓ = 2mp+ 1 for some integer m > 0.
• ℓ ∤ 2qC1y.

Also, let β be the unique integer in {0, 1, . . . , 2p−1} satisfying that β ≡ α (mod 2p).
Then, there exists a number ω ∈ {0, 1, . . . , ℓ− 1} satisfying

(C1ω
2 + qβ)2m ≡ 1 (mod ℓ),

such that the reduction of the Frey–Hellegouarch curve Fx,α over Fℓ is either iso-
morphic to the curve

Fω,β/Fℓ : Y
2 +XY = X3 +

C1ω − 1

4
X2 +

C2
1ω

2 + C1q
β

64
X,

or a quadratic twist of it by q (mod ℓ).

Proof. Let us write α = 2pu+β for certain integers u ≥ 0 and β ∈ {0, 1, . . . , 2p−1}.
Then, and since ℓ 6= q, we have that qpu 6≡ 0 (mod ℓ), and so we may define
ω = x/qpu (mod ℓ). Then, we see that

yp = C1x
2 + qα ≡ q2pu(C1ω

2 + qβ) (mod ℓ).

From this, we have that

(41) C1ω
2 + qβ ≡

(

y

q2u

)p

(mod ℓ),

and, since ℓ ∤ y, it follows that
y

q2u
6≡ 0 (mod ℓ),

and so (C1ω
2 + qβ)2m ≡ 1 (mod ℓ) by Fermat’s Little Theorem. Now, let F

(1/qpu)
x,α

denote the quadratic twist of the Frey–Hellegouarch curve Fx,α by 1/qpu. Then, a
standard formula on quadratic twists (see [46]) yields that

F (1/qpu)
x,α : Y 2 +XY = X3 +

C1x/q
pu − 1

4
X2 +

C1y
p/q2pu

64
X.

Now, over Fℓ, the definition of ω, together with (41), give that

F (1/qpu)
x,α

∼= Y 2 +XY = X3 +
C1ω − 1

4
X2 +

C2
1ω

2 + C1q
β

64
X,

which is precisely the expression of Fω,β .

If either q is a square modulo ℓ or u is even, then Fx,α
∼= F

(1/qpu)
x,α

∼= Fω,β over
Fℓ. Otherwise, Fx,α is a quadratic twist of Fω,β by q (mod ℓ), as we wanted to
show. �
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We remark that in Lemma 7.1, the value of β only depends on p and not on ℓ.
This is why, in the following Proposition, we shall use different ℓ to show that no
β can exist and, consequently, that there are no solutions to (7). This will allow us
to rule out most exponents p ≤ 1000.

Proposition 7.2. Let (x, y, p, α) be a solution to (7) with y even and p ≥ 11.
Suppose furthermore that Fx,α ∼p f for some newform f with coefficients cn as in
(30) and field of coefficients Kf , with ring of integers OKf

. If Kf = Q, we denote
by E the minimal model of the elliptic curve associated to f via the Modularity
Theorem [49], and we denote the discriminant of E by ∆(E).

Let ℓ be a prime number satisfying the following conditions:

• ℓ = 2mp+ 1 for some integer m > 0.
• ℓ ∤ 2qC1.
• Either NKf/Q(c

2
ℓ − 4) 6≡ 0 (mod p) or −C1q

s is not a square modulo ℓ,
where s is defined as the unique integer in {0, 1} satisfying that s ≡ α
(mod 2).

Then, let us define the following sets:
(42)

A′ =















{

a ∈ {1, . . . , p− 1} |
(

−3aν2(∆(E))νq(∆(E))
p

)

= 1
}

if Kf = Q and p ∤ α.

{0} if p | α.
{0, . . . , p− 1} if Kf 6= Q.

(43)
A = {β ∈ {0, . . . , 2p−1} | β ≡ a (mod p) for some a ∈ A′ and β ≡ α (mod 2)},
and the following sets which depend on the prime ℓ:

(44) Xℓ = {(ω, β) ∈ {0, . . . , ℓ− 1} ×A | (C1ω
2 + qβ)2m ≡ 1 (mod ℓ)},

(45) Yℓ = {(ω, β) ∈ Xℓ | NK/Q(aℓ(Fω,β)
2 − c2ℓ) ≡ 0 (mod p)}

(46) Zℓ = {β ∈ {0, . . . , 2p− 1} | (ω, β) ∈ Yℓ for some ω ∈ {0, . . . , ℓ− 1}}.
Then, we have that:

α (mod 2p) ∈
⋂

ℓ

Zℓ,

where the intersection is over all prime numbers ℓ satisfying the conditions outlined
in this Proposition. In particular, if

⋂

ℓ

Zℓ = ∅,

it follows that there are no solutions (x, y, p, α) to (7).

Proof. Firstly, we need to show that α (mod 2p) ∈ A. This follows directly by
definition except in the case where Kf = Q and p ∤ α. In this situation, we need
to apply the symplectic method, as presented in Section 12 of [45] and based on
Lemma 1.6 in [22].

In order to apply it, we need the minimal discriminant of the Frey–Hellegouarch
curve Fx,α, which may be computed using Tate’s algorithm (see [19]), and is

∆(Fx,α) = −2−12 · C3
1q

αy2p.
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Since p ∤ α, the conductor of Fx,α is 2C2
1qRad2(y), so the primes 2 and q have

multiplicative reduction and thus the symplectic method yields that

ν2(∆(E))νq(∆(E))

(2pν2(y)− 12)α

is congruent to a square modulo p. From this, it is immediate to conclude that α
(mod p) ∈ A′ and, therefore, that α (mod 2p) ∈ A.

Now, let ℓ be a prime with the conditions stated in the Proposition. Suppose
first that ℓ | y. Then, by (31), we have that

c2ℓ ≡ (ℓ+ 1)2 ≡ 4 (mod p),

for some ideal p of OKf
over p. Here, we used the fact that ℓ = 2mp+ 1. This is a

contradiction with the third condition on ℓ.
Consequently, we have that ℓ ∤ y. Then, we can use Lemma 7.1 to conclude that

Fx,α is isomorphic, over Fℓ, to certain quadratic twist of Fω,β for some (ω, β) ∈ Xℓ

satisfying that β ≡ α (mod 2p).
Since quadratic twists change aℓ by a factor of ±1, it follows that cℓ ≡ ±aℓ(Fω,β)

(mod p) for some prime ideal p of OKf
with p | p, so in particular, we have that

NKf/Q(aℓ(Fω,β)
2 − c2ℓ ) ≡ 0 (mod p),

and, consequently,
α (mod 2p) ∈ Zℓ,

just like we wanted to show. �

Remark 9. Note that, if q is a square modulo ℓ, Lemma 7.1 actually yields that
Fx,α

∼= Fω,β over Fℓ, so that the set Yℓ in (45) can be replaced by

(47) Yℓ = {(ω, β) ∈ Xℓ | NKf/Q(aℓ(Fω,β)− cℓ) ≡ 0 (mod p)},
which can be stronger in certain cases. We shall exploit this in the upcoming
Section.

Remark 10. Note that we showed in Lemma 6.5 that either p ≤ 47 or f is rational
and corresponds to an elliptic curve E with a point of order 2. Since the compu-
tational complexity of this method increases with p, we shall present a shortcut
for the latter case and bigger values of p, which, in many cases, will allow us to
completely bypass the computation of aℓ(Fω,β). This is inspired by a similar trick
in Lemma 14.3 of [7].

If p > 47, we may assume that Fx,α ∼p E for certain elliptic curve E. Since
both E and Fx,α have a point of order 2, we have that:

aℓ(Fx,α) ≡ aℓ(E) (mod 2).

Now, combining this with the fact that Fx,α ∼p E and Lemma 7.1, we have that

(48) aℓ(Fω,β) ≡ ±aℓ(E) (mod 2p).

On the other hand, the Hasse bounds (see [46]) yield that:

|aℓ(Fω,β)∓ aℓ(E)|< 4
√
ℓ,

and, if we furthermore assume that p2 > 4ℓ, then (48) implies that aℓ(Fω,β) =
±aℓ(E). In turn, this means that either:

#Fω,β(Fℓ) = #E(Fℓ),
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or

#Fω,β(Fℓ) = 2ℓ+ 2−#E(Fℓ).

To check whether any of these two equalities hold for a pair (ω, β), we pick a
random point Q ∈ Fω,β(Fℓ) and check whether either #E(Fℓ) · Q = 0 or (2ℓ +
2 −#E(Fℓ)) · Q = 0. If the pair (ω, β) does not pass this test, we do not need to
compute aℓ(Fω,β).

7.2. Combining the modular method with Thue–Mahler equations. The
methodology presented in Proposition 7.2 is successful for the majority of values of
p ≤ 1000. However, it occassionally fails for some values of p which are too large
to solve with the Thue–Mahler approach explained in Section 4. Consequently,
we present another method that combines the local information from the modular
method with Thue–Mahler equations.

Suppose that (x, y, p, α) is a solution to (7) with y even and p ≥ 11. Then, let
us write α = 2k or α = 2k+1, depending on whether α is even or odd. Then, (26)
and (27) yield the following system of equations.

(49)

{

aqk = F (U, V )

bx = G(U, V )
,

for certain a, b ∈ Z and F,G ∈ Z[U, V ] which are homogeneous polynomials of
degree p. Let us define v′(α) as the unique integer in {0, . . . , p− 1} satisfying that

(50) v′(α) ≡
{

α/2 (mod p) if α is even.

(α− 1)/2 (mod p) if α is odd.

It follows that v′(α) is the unique integer in {0, . . . , p−1} congruent to k modulo p,
so we may write k = pu+ v′ for certain u ≥ 0. Now, if we divide the two equations
in (49) by qpu and exploit the fact that both F and G are homogeneous polynomials
of degree p, we obtain

(51)

{

aqv
′

= F (U/qu, V/qu)

bx/qpu = G(U/qu, V/qu).

Now, let ℓ be a prime number satisfying the following conditions:

• ℓ = 2mp+ 1 for some integer m > 0.
• ℓ ∤ 2qC1.

We note that these are the first two conditions presented in Proposition 7.2. Since
we excluded the third condition, we now have to take into account the possibility
that ℓ | y. Let A′ and A be given by (42) and (43). Then, we define the following
set.

X ′
ℓ = {(ω, β) ∈ {0, . . . , ℓ− 1} ×A | C1ω

2 + qβ ≡ 0 (mod ℓ)}.
Let Xℓ be defined as in (44), Yℓ as in (47) if q is a square modulo ℓ and as in (45)
otherwise. Finally, we let Zℓ be defined by (46) with Yℓ replaced by Yℓ∪X ′

ℓ . Then,
a quick adaptation of our proofs of Lemma 7.1 and Proposition 7.2 show that:

(x/qpu (mod ℓ), α (mod 2p)) ∈ Yℓ ∪ X ′
ℓ .

Consequently, if we reduce (51) modulo ℓ, we find that there exists a pair (ω, β) ∈
Yℓ∪X ′

ℓ such that the following system of congruence equations has a solution (Ũ , Ṽ )
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over F2
ℓ :

(52) Sω,β :

{

F (Ũ , Ṽ ) ≡ aqv (mod ℓ),

G(Ũ , Ṽ ) ≡ bω (mod ℓ).

where v = v′(β) as defined in (50). Then, we can define the following set:

Wℓ = {β ∈ Zℓ | there exists ω with (ω, β) ∈ Yℓ ∪ X ′
ℓ

and Sω,β as in (52) has solutions over F2
ℓ .}

Our work here shows that, for any solution (x, y, p, α) to (7) with y even and p ≥ 11,
it follows that

α (mod 2p) ∈
⋂

ℓ

Wℓ,

where the intersection is over all primes ℓ satisfying the conditions outlined above.
Consequently, if

⋂

ℓ

Wℓ = ∅,

it follows that (7) has no solutions (x, y, p, α). This, as we shall see in Section 7.4,
allows us to cover many cases of p which were not amenable to Proposition 7.2.

While it seems that it would be sufficient to work only with primes ℓ satisfying
the three conditions in Proposition 7.2, we found that allowing ℓ | y often gave
better results. The same is true about extending the definition of Yℓ to that in
(47), which allows us to cover more cases than the original definition in (45).

7.3. A method for bigger exponents. The combination of the two previous
techniques is very successful in ruling out the existence of solutions for relatively
small exponents (p < 1000). Unfortunately, it is very computationally expensive
for bigger exponents and is completely unfeasible1 for p > 105, which justifies the
need for a new methodology, which we present here. This section is a modification
of Lemmas 15.5 and 15.6 in [7], and is essentially a refinement of Proposition 7.2
over number fields.

For this, we recover some notation from Section 4. Suppose that (x, y, α, p) is
a solution to (7) with y even. Let c be given as in (8), if α is odd, or by (9), if α
is even, and let K = Q(

√−c), with corresponding ring of integers OK , class group
Cl(K) and class number hK . We recall that, by (24), we have that

(53)

(

C1x+ qk
√−c

2

)

OK = q · pp−2
2 · Ap,

where q is the product of all prime ideals over C1, p2 is one of the two prime ideals
over 2 and A is some ideal of norm y/2.

At this point, it is important to remark that, for all values of C1 and q under
consideration, the group Cl(K) is cyclic and generated by the class of p2. Similarly,
because p > 1000, we certainly have that p ∤ hK in all cases. These are key
ingredients in the proof of the following Lemma, which transforms (53) into an
expression about elements in K.

1To illustrate this, we note that an application of the previous two techniques to prove the
non-existence of solutions to (7) where C1 = 3, q = 5, p = 1, 000, 033 and y is even takes over 107
minutes on a 3 GHz Intel Xeon E5-2623 processor.
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Lemma 7.3. Keeping notation as above, assume that p > 1000. Let j be the unique
integer in {0, 1, . . . , hK − 1} satisfying

qp
j
2 = ωOK

for certain ω ∈ OK . Let i be the unique integer in {0, 1, . . . , hK − 1} satisfying

pi ≡ −2− j (mod hK).

Define δ ∈ OK to be such that phK

2 = δOK and n∗ by the expression

n∗ =
−2− j − pi

hK
.

Then,

(54)
C1x+ qk

√−c

2
= ωγpδn

∗

,

for some element γ ∈ OK of norm 2iy.

Proof. Note that we may rewrite (53) as

(55)

(

C1x+ qk
√−c

2

)

OK = qp−2
2 Bp,

where B is some ideal of norm y. Since, as mentioned prior to the statement of
this Lemma, p2 is a generator for Cl(K), it follows that there are unique integers
i, j ∈ {0, . . . , hK − 1} satisfying

(56) Bpi2 = γOK and qp
j
2 = ωOK .

for some γ, ω ∈ OK . Note that since B has norm y and p2 has norm 2, we have that
N(γ) = 2iy. Then, it follows from (55) and (56) that p−2−j−pi

2 is principal. Now,
because p2 is a generator of Cl(K), we have that hK | −2−j−pi, and, consequently,
j ≡ −2−pi (mod hK), and so i is the unique integer in {0, 1, . . . , hK−1} satisfying
pi ≡ −2− j (mod hK). We may then rewrite (55) as follows.

C1x+ qk
√−c

2
OK = (qpj2)(p

i
2B)pp−2−j−pi

2 ,

and then (54) follows by definition of δ, ω, γ and n∗. �

With the previous Lemma, we are finally able to present a method to prove that
there are no solutions to (7) for a given prime p, which is furthermore computa-
tionally feasible.

Proposition 7.4. Let (x, y, p, α) be a solution to (7) with y even and p > 1000,
and let ω, δ and n∗ be given as in Lemma 7.3. Denote by E = EC1,q the curve given
in Table 6 if α is odd or in Table 7 if α is even. Consider a prime number ℓ ∤ 2C1q
satisfying the following conditions:

(I) ℓ = 2mp+ 1 for some integer m > 0.
(II)

(−c
ℓ

)

= 1, so that the prime ℓ is split in K = Q(
√−c).

(III) aℓ(E)2 6≡ 4 (mod p).

Then, let L be one of the two prime ideals over ℓ in OK , and let FL = OK/L ∼= Fℓ

denote the residue field. Let g be a generator of F∗
L, define h = gp and let β and θ

be given by

β ≡ δ

δ
(mod L) and θ ≡ ω

ω
(mod L).
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We then define the following set:

Xℓ,p = {θ · βn∗ · hj | j = 0, 1, . . . , 2m− 1} \ {1}.
For τ ∈ Xℓ,p, define the following elliptic curve defined over FL

∼= Fℓ:

Eτ : Y 2 = X(X + 1)(X + τ).

Finally, let Zℓ,p be the set defined by

Zℓ,p = {τ ∈ Xℓ,p | aL(Eτ )
2 ≡ aℓ(E)2 (mod p)}.

Then, Zℓ,p 6= ∅.
Proof. Remember that Fx,α ∼p E, where Fx,α is the Frey–Hellegouarch curve given
in (28). First, we will show that ℓ ∤ y. Suppose otherwise. Then, the congruence
conditions (31) yield that

aℓ(E) ≡ ±(ℓ+ 1) (mod p).

If we combine this with condition (I) on ℓ, we get that

aℓ(E) ≡ ±2 (mod p),

which is a contradiction with condition (III). Consequently, ℓ ∤ y. Thus, the con-
gruence conditions (31) imply that aℓ(Fx,α) ≡ aℓ(E) (mod p). Note that, apart
from the model in 28, Fx,α also has the following model:

Fx,α : Y 2 = X

(

X2 +
C1x

4
X +

C1y
p

64

)

,

which can be rewritten over K as

(57) Fx,α : Y 2 = X

(

X +
C1x+ qk

√−c

8

)(

X +
C1x− qk

√−c

8

)

.

By Lemma 7.3, we have that:

C1x− qk
√−c

C1x+ qk
√−c

=
ω · δn

∗

· γp

ω · δn∗ · γp
=

(

ω

ω

)(

δ

δ

)n∗
(

γ

γ

)p

≡ θ · βn∗ · hj (mod L)

for some j = 0, 1, . . . , 2m− 1. Note that θ · βn∗ · hj 6≡ 1 (mod L) since, if this were
the case, we would have that L | (2qk√−c)OK , which is a contradiction with the
fact that ℓ ∤ 2C1q. Therefore, it follows that

C1x− qk
√−c

C1x+ qk
√−c

(mod L) ∈ Xℓ,p.

Combining this with (57), we may see that, over FL, Fx,α is a quadratic twist of
Eτ for certain τ ∈ Xℓ,p. Thus,

aL(Eτ )
2 ≡ aℓ(E)2 (mod p)

for some τ ∈ Xℓ,p and it readily follows that the set Zℓ,p is non-empty.
�

Remark 11. In order to show that (7) has no solution for a fixed value of p, it is
therefore sufficient to prove that Zℓ,p = ∅ for some prime ℓ satisfying conditions
(I), (II) and (III) in 7.4.

Note that, in principle, the proof of Proposition 7.4 does not require p > 1000 to
work. However, we have found that this technique is often unsuccessful in practice
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for smaller values of p, forcing us to use the sieving methods developed in Sections
7.1 and 7.2.

7.4. Finishing the proof of Propositions 5.1 and 5.2. With the techniques
that we have developed in this section, we can finish the proof of Propositions 5.1
and 5.2.

Proof. (of Proposition 5.1) By Lemma 6.5, it is sufficient to consider the range
11 ≤ p ≤ 19 for cases (i) and (ii) in the Proposition and the range 11 ≤ p ≤ 47
for case (iii). We apply the techniques developed in Sections 7.1 and 7.2 for each
value of p in the corresponding ranges. This successfully proves that there are no
solutions in all cases but two, corresponding to the tuples

(C1, q, p) = (11, 13, 11), (19, 5, 11),

α odd and p ∤ α. Consequently, we need to solve two Thue–Mahler equations of
degree 11, as in Section 4. Once more, we employ the Thue–Mahler solver developed
in [20] and recover no solutions to (7), finishing the proof of the Proposition. �

Proof. (of Proposition 5.2) By Lemma 6.5, for all pairs in (34), corresponding to
α odd, we have that either p ≤ 19 or Fx,α ∼p EC1,q for the curves EC1,q given in
Table 6. We deal with the first case identically as in the proof of Proposition 5.1.
For the second case, we employ the methodology presented in Sections 7.1 and 7.2
for 11 ≤ p < 1000 and Proposition 7.4 for 1000 < p < N0(C1, q). We performed the
computation on a 3 GHz Intel Xeon E5-2623 and the necessary times are recorded
on Table 8. This method is successful in all but two cases, corresponding to the
tuples

(C1, q, p) = (1, 23, 11), (5, 3, 11).

The resolution of the corresponding Thue–Mahler equations gives rise to the fol-
lowing solutions:

(C1, q, x, y, α, p) = (1, 23, 1, 5, 1, 11), (5, 3, 19, 2, 5, 11).

Similarly, if α is even, Lemma 6.5 yields that, for all pairs in (35), either p ≤ 47 or
Fx,α ∼p EC1,q for the curves EC1,q in Table 7. We follow the same computational
approach, where the CPU times on the same processor as above are recorded in
Table 9. We succeed in all cases except two, corresponding to the pairs

(C1, q, p) = (7, 5, 11), (7, 23, 11),

and whose corresponding Thue–Mahler equations gives rise only to the solution

(C1, q, x, y, α, p) = (7, 5, 17, 2, 2, 11).

Since the three solutions that we recovered are precisely those in (37), we conclude
the proof of the Proposition. �

8. Linear forms in logarithms

After proving Propositions 5.1 and 5.2, our aim in this section is to prove that,
for pairs in (34) and (35), we have that p < N0(C1, q), therefore completing the
proof of Theorem 1. This is the content of Proposition 8.1, which will be the main
result in this section.

Throughout this section, and by Proposition 5.2, we shall assume that p > 3 ·107
in all cases.
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(C1, q) CPU time needed to get to N0(C1, q)

(1, 7) 22.96 hours
(1, 23) 54.26 hours
(3, 5) 10.47 hours
(3, 13) 43.55 hours
(5, 3) 13.51 hours
(5, 11) 32.89 hours
(11, 5) 33.65 hours
(13, 3) 51.60 hours
(13, 11) 168.55 hours

Table 8. Required time to prove that there are no solutions for
11 ≤ p < N(C1, q) for α odd.

(C1, q) CPU time needed to get to N0(C1, q)

(7, 3) 27.37 hours
(7, 5) 27.13 hours
(7, 11) 27.35 hours
(7, 13) 26.95 hours
(7, 23) 22.36 hours
(15, 7) 14.02 hours
(15, 11) 13.87 hours
(15, 17) 13.87 hours

Table 9. Required time to prove that there are no solutions for
11 ≤ p < N(C1, q) for α even.

Proposition 8.1. Let (C1, q) be one of the pairs in (34), if α is odd, or in (35), if
α is even and let (x, y, p, α) be a solution to (7) with y even. Then, p < N0(C1, q),
where N0(C1, q) is given in (36).

In order to prove this, we will need to use the new estimates on lower bounds
on linear forms in three complex logarithms available in [31], as well as estimates
on linear forms in q-adic logarithms, following [7]. Before that, we shall build upon
our work in Section 7.3 to prove the following lemma.

Lemma 8.2. Let (x, y, α, p) be a solution to (7) with y even and p > 3 · 107. Let
c,K,OK, hK and p2 be given as in Section 7.3, and define s to be the smallest
positive integer such that the ideal p2s2 is principal, say generated by δ ∈ OK . Then,

(

C1x− qk
√−c

C1x+ qk
√−c

)s

= β · γp,

for some γ ∈ K and β ∈ K given by

(58) β =
δ

δ
.

Proof. By (55), we have that
(

C1x+ qk
√−c

2

)

OK = qp−2
2 Bp,
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where q is the product of all prime ideals over C1 and B is some ideal of norm y.
Then, we see that

(

C1x− qk
√−c

C1x+ qk
√−c

)

OK =

(

p2

p2

)2 (
B

B

)p

,

so that, by definition of β, we have that

(59)

(

C1x− qk
√−c

C1x+ qk
√−c

)s

OK = βOK ·
(

B

B

)sp

.

It readily follows that the fractional ideal
(

B

B

)sp

is principal. However, since p > 3 · 107, p does not divide the class number hK for
any of the cases under consideration. Consequently, the ideal

(

B

B

)s

is principal, say generated by γ ∈ K. This, combined with (59), shows that:
(

C1x− qk
√−c

C1x+ qk
√−c

)s

= ±βγp,

since the units of OK are ±1. Replacing γ by −γ if necessary, this finishes the
proof. �

Remark 12. As we mentioned immediately before Lemma 7.3 in Section 7.3, p2 is
a generator for Cl(K), so either s = hK (if hK is odd) or s = hK/2.

In order to obtain a bound for the exponent p, we need a lower bound for y,
which is given in the following Lemma. Its proof is identical to [7, Lemma 6.1], so
we omit it.

Lemma 8.3. Let (x, y, α, p) be a solution to (7), with y even and where y is not a
power of 2. Then, we have that

y > 4p− 4
√

2p+ 2.

We note that we can safely assume that y is not a power of 2. This is because, if
y = 2m, then the Frey–Hellegouarch curve Fx,α given in (28) has conductor equal
to 2C2

1q and minimal discriminant given by ∆ = −22pm−12 · C3
1q and so we can

determine m simply by inspecting Cremona’s tables ([19]) for the corresponding
conductor. All these solutions were previously obtained in Sections 4 and 7.

8.1. Linear forms in q-adic logarithms. In order to obtain an upper bound
for p using the tools in [31], we previously need an upper bound for α. For this,
we need to appeal to upper bounds on linear forms in q-adic logarithms, as in the
following lemma.

Lemma 8.4. Let (x, y, p, α) be a solution to (7) with y even, p > 3 · 107 and
α = 2k or α = 2k + 1. Also, let s and K = Q(

√−c) be defined as in Lemma 8.2.
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In the notation of Theorem 10 in [7], let f be the residual degree of the extension
Qq(−c)/Qq, and let D = [Qq(−c) : Qq]/f . Finally, let A2 be given by:

log(A2) = max

{

s log(2),
log(q)

D

}

.

Then, we have that

k ≤ 48qs

log4(q)

qf − 1

q − 1
D2 log(A2)max{log(p) + log(log(q))

− log(D log(A2)) + 0.401, 5 log(q)}2 log(y).
Proof. By Lemma 8.2, we have that

(

C1x− qk
√−c

C1x+ qk
√−c

)s

− 1 = βγp − 1.

Now, we may rewrite the left-hand side of this equality as

(60)

(

C1x− qk
√−c

C1x+ qk
√−c

)s

− 1 =

( −2qk
√−c

C1x+ qk
√−c

) s−1
∑

i=0

(

C1x− qk
√−c

C1x+ qk
√−c

)i

.

We note that, by (58), β ∈ K satisfies ββ = 1 and is supported only on primes
above 2, while the proof of Lemma 8.2 shows that γ is supported only on primes
above y. Since y is even and gcd(q, y) = 1, it follows that νq(β) = νq(γ) = 0. Then,

multiplying (60) by β and using the fact that gcd(C1x, q) = 1 yields that

νq(γ
p − β) ≥ k,

and it is therefore sufficient to obtain an upper bound for νq(γ
p − β). For this

purpose, we shall use Theorem 10 in [7], which is due to Bugeaud and Laurent and
was originally presented in [13]. In the notation of this result, we let

α1 = γ, α2 = β, b1 = p, b2 = 1.

By Lemma 13.2 of [14], we can compute the absolute logarithmic heights of γ and

β and see that

h(γ) =
s

2
log(y) and h(β) = s log(2),

and, consequently, in the notation of Theorem 10 in [14], we may select the appro-
piate parameters as follows.

log(A1) = max

{

h(γ),
log(q)

D

}

=
s

2
log(y),

by the lower bounds on y given in Lemma 8.3. Similarly,

log(A2) = max

{

h(β),
log(q)

D

}

= max

{

s log(2),
log(q)

D

}

,

which is precisely the expression for log(A2) given in the statement of this Lemma.
Then, an application of Theorem 10 in [7] yields that

(61) νq(γ
p − β) ≤ 12qs

log4(q)

qf − 1

q − 1
D4 log(A2)

max

{

log(b′) + log(log(q)) + 0.4,
10

D
log(q)

}2

log(y).
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where b′ is given by

b′ =
p

D log(A2)
+

2

Ds log(y)
.

Note that the lower bound on y given by Lemma 8.3, combined with the fact that
p > 3 · 107, give that:

b′ ≤ 1.001

D log(A2)
p,

and hence

log(b′) ≤ log(p)− log(D log(A2)) + log(1.001) ≤ log(p)− log(D log(A2)) + 0.001.

If D = 2, combining this with (61) directly gives the desired result. If D = 1, the
result follows from the observation that

max {log(b′) + log(log(q)) + 0.4, 10 log(q)}2 ≤
4max {log(b′) + log(log(q)) + 0.4, 5 log(q)}2 .

�

An immediate application of this Lemma is the following Corollary, which gives
a lower bound for yp in terms of c, q and k. We will need this in Section 8.2 to
bound p.

Corollary 8.5. Suppose that (x, y, α, p) is a solution to (7) where y is even and
p > 3 · 107. Let c = C1q if α = 2k + 1 and c = C1 if α = 2k. Then

yp > 100cq2k.

Proof. Suppose for contradiction that yp ≤ 100cq2k. Then, taking logarithms yields
that

p log(y) ≤ log(100) + log(c) + 2k log(q) ≤ 2 log(10) + log(C1) + (2k + 1) log(q),

because c ≤ C1q. Then, by Lemma 8.4, we have that

p ≤ 2 log(10)

log(y)
+

log(C1)

log(y)
+

log(q)

log(y)
+

96qs

log3(q)

qf − 1

q − 1
D2 log(A2)·

max{log(p) + log(log(q)) − log(D log(A2)) + 0.401, 5 log(q)}2 log(y)
Using the lower bounds for y given in Lemma 8.3, we show that, for all the pairs in
(34) and (35), p ≤ 107. This is a contradiction with the assumption that p > 3 ·107,
and so yp > 100cq2k. �

8.2. Linear forms in complex logarithms. Before applying the results on lower
bounds on linear forms on three complex logarithms available in [31], we need to
define the linear forms in logarithms that we shall be considering and find an upper
bound for it. Using Lemma 8.2, we may do so now. Let ∆2 be given by

(62) ∆2 = s log

(

C1x− qk
√−c

C1x+ qk
√−c

)

= p log(ε1γ) + log(ε2β) + jπi,

where we consider the principal branches of the logarithm and ε2 ∈ {±1} is chosen
such that |log(ε2β)|< π/2, ε1 ∈ {±1} is chosen such that log(ε1γ) and log(ε2β)
have opposite signs and j is such that the quantity |∆2| is minimal. With this, we
are able to prove the following Lemma.
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Lemma 8.6. Let (x, y, p, α) be a solution to (7), with y even and p > 3 ·107. Then,
either:

• α is odd and

log(|∆2|) ≤



































































−0.49p log(y) + 385.38 log(y) + 1.79 if (C1, q) = (1, 7),

−0.48p log(y) + 1264.35 log(y) + 3.48 if (C1, q) = (1, 23),

−0.49p log(y) + 486 log(y) + 2.17 if (C1, q) = (3, 5),

−0.49p log(y) + 718.20 log(y) + 3.34 if (C1, q) = (3, 13),

−0.49p log(y) + 784.34 log(y) + 2.17 if (C1, q) = (5, 3),

−0.49p log(y) + 670 log(y) + 3.51 if (C1, q) = (5, 11),

−0.49p log(y) + 469.25 log(y) + 3.51 if (C1, q) = (11, 5),

−0.48p log(y) + 272.28 log(y) + 3.34 if (C1, q) = (13, 3),

−0.47p log(y) + 1003.74 log(y) + 4.91 if (C1, q) = (13, 11),

• or α is even and

log(|∆2|) ≤



























































−0.49p log(y) + 3900.88 log(y) + 1.79 if (C1, q) = (7, 3),

−0.49p log(y) + 1458 log(y) + 1.79 if (C1, q) = (7, 5),

−0.49p log(y) + 182.46 log(y) + 1.79 if (C1, q) = (7, 11),

−0.48p log(y) + 2613.88 log(y) + 1.79 if (C1, q) = (7, 13),

−0.49p log(y) + 223.36 log(y) + 1.79 if (C1, q) = (7, 23),

−0.49p log(y) + 1541.51 log(y) + 2.165 if (C1, q) = (15, 7),

−0.49p log(y) + 364.92 log(y) + 2.165 if (C1, q) = (15, 11),

−0.48p log(y) + 2189.48 log(y) + 2.165 if (C1, q) = (15, 17),

Proof. Let us begin by defining ∆′ and ∆ by the following expressions.

∆′ =
C1x− qk

√−c

C1x+ qk
√−c

, ∆ = log (∆′) .

We note that

|∆′ − 1|=
∣

∣

∣

∣

C1x− qk
√−c

C1x+ qk
√−c

− 1

∣

∣

∣

∣

=
2qk

√
c

|C1x+ qk
√−c| =

2qk
√
c

yp/2
.

By Corollary 8.5, we have that yp/2 > 10qk
√
c and, consequently,

|∆′ − 1| < 1

5
.

Then, applying Lemma B.2 in [47] gives that

|∆|= |log(∆′)|≤ −10 log

(

4

5

)

qk
√
c

yp/2
.

If we then take logarithms and replace c by its definition in (8) if α is odd and by
its definition in (9) if α is even, it follows that

log(|∆|) ≤
{

0.81 +
(

k + 1
2

)

log(q) + 1
2 log(C1)− p

2 log(y) if α is odd.

0.81 + k log(q) + 1
2 log(C1)− p

2 log(y) if α is even.

Now, the definition of ∆2 in (62) gives that log(|∆2|) = log(s)+ log(∆). The result
then follows for each case by considering the upper bound for k given in Lemma
8.4, as well as the appropiate values for C1, q, f , D, s and A2. �
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The final ingredient that we will need before finishing the proof of Proposition
8.1 is an upper bound for |j|. This follows from the definition of ∆2 and is the
content of the following Lemma.

Lemma 8.7. Suppose that (x, y, α, p) is a solution to (7) with y even and p > 3·107,
and let ∆2 be as in (62). Then,

|j|≤ p.

Proof. By definition of ∆2, along with the triangle inequality, we have that

|j|π ≤ |∆2|+|p log(ε1γ) + log(ε2β)|<
π

2
+ pπ =

(

p+
1

2

)

π,

where the last inequality follows because |∆2|≤ π/2 and due to the fact that log(ε1γ)
and log(ε2β) have opposite signs. From here, it readily follows that |j|≤ p. �

With this, we are finally able to apply the techniques in [31] in order to finish
the proof of Proposition 8.1.

Proof. (of Proposition 8.1) We will use the publicly available PARI/GP [36] code
associated to [31], which will allow us to find an upper bound for p.

We note that this code makes use of Matveev’s theorem (Theorem 2.1 in [31],
originally presented in [28]), in order to obtain an initial upper bound for p. Then,
it exploits the improved lower bounds for linear forms in three logarithms given in
Theorem 4.1 of [31] to iteratively improve upon this upper bound of p, obtaining
the final values of N0(C1, q) given in (36). The correctness of this computation can
be checked with the PARI/GP code available in the GitHub repository.

The following are the necessary input parameters which are common for all
(C1, q), in the notation of Theorem 4.1 in [31]:

b1 = p, b2 = 1, b3 = j, α1 = ε1γ, α2 = ε2β, α3 = −1.

D =
Q[α1, α2, α3]

R[α1, α2, α3]
=

2

2
= 1.

As shown in the proof of Lemma 8.4, the heights of the αi, which we also need for
this computation, are given by

h(α1) =
s

2
log(y), h(α2) = s log(2), h(α3) = 0.

Also, |j|≤ p by Lemma 8.7 and log(|∆2|) is bounded above by the quantities in
Lemma 8.6. Finally, in the notation of Matveev’s theorem (Theorem 2.1 in [31]),
we also have:

D = χ = 2.

With this, we perform three iterations of the code for each pair (C1, q). For the
interested reader, we remark that the parameters L,m, χ and ρ obtained in each
iteration (see Section 5.2 of [31]), as well as the estimate on p after each iteration,
are recorded on Table 10 for α odd and in Table 11 for α even. This finishes the
proof of the Proposition.

�

Remark 13. We note that the improved lower bounds available in [31] allow for
a much better bound than that present in previous literature. For comparison,
our values for N0(1, 7) and N0(1, 23) are between 50% and 70% smaller than the
corresponding values in Proposition 15.2 of [8], allowing for a much more efficient
computation.
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(C1, q) L m ρ χ Upper bound on p

(1, 7) 115 12.50 5.80 0.044 2.089874 · 108
(1, 7) 75 14.60 5.30 0.080 7.979286 · 107
(1, 7) 72 13.60 5.40 0.080 7.234157 · 107
(1, 23) 106 9.00 7.40 0.072 4.524352 · 108
(1, 23) 67 9.80 6.90 0.100 1.663534 · 108
(1, 23) 63 9.75 7.00 0.102 1.514725 · 108
(3, 5) 102 16.50 6.20 0.076 1.151876 · 108
(3, 5) 61 16.40 6.10 0.100 3.915560 · 107
(3, 5) 57 17.45 6.00 0.102 3.476178 · 107
(3, 13) 118 9.00 6.60 0.052 3.641642 · 108
(3, 13) 74 11.60 5.90 0.080 1.372399 · 108
(3, 13) 65 11.95 6.20 0.080 1.243438 · 108
(5, 3) 102 16.50 6.20 0.076 1.151876 · 108
(5, 3) 61 16.40 6.10 0.100 3.915560 · 107
(5, 3) 57 17.45 6.00 0.102 3.476178 · 107
(5, 11) 102 10.50 7.20 0.072 2.659731 · 108
(5, 11) 67 11.00 6.50 0.094 9.270785 · 107
(5, 11) 62 10.30 6.80 0.098 8.334595 · 107
(11, 5) 102 10.50 7.20 0.072 2.659731 · 108
(11, 5) 67 11.00 6.50 0.094 9.270785 · 107
(11, 5) 62 10.30 6.80 0.098 8.334595 · 107
(13, 3) 118 9.00 6.60 0.052 3.71751 · 108
(13, 3) 67 11.00 6.50 0.08 1.40676 · 108
(13, 3) 68 11.95 6.00 0.080 1.273969 · 108
(13, 11) 112 7.00 8.00 0.074 1.020209 · 109
(13, 11) 65 8.00 7.90 0.108 3.816492 · 108
(13, 11) 65 7.55 7.80 0.110 3.499196 · 108

Table 10. Parameters obtained in each iteration of the code as-
sociated to [31] for α odd.

9. Conclusions

We compile all the work in previous sections to finish the proof of Theorem 1.

Proof. (of Theorem 1) After Sections 2, 3 and 4, we are left with the case of (7)
where y is even and p ≥ 11 is prime. Then, Propositions 5.1, 5.2 and 8.1 show that
the only solutions with p ≥ 11 are those corresponding to the tuples in (37). All of
the solutions are in Tables 1 and 2, thereby finishing the proof. �

In theory, there would be no reason to restrict our analysis to 1 ≤ C1 ≤ 20 and
2 ≤ q < 25. However, we remark that there are some solutions to (7) with C1 = 21
and exponent p = 17, such as the following

21 · 792 + 111 = 217.
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(C1, q) L m ρ χ Upper bound on p

(7, 3) 115 12.50 5.80 0.044 2.089874 · 108
(7, 3) 74 14.60 5.30 0.08 7.979286 · 107
(7, 3) 72 13.60 5.40 0.08 7.234157 · 107
(7, 5) 116 13.25 5.65 0.044 2.087874 · 108
(7, 5) 78 14.00 5.20 0.056 7.828204 · 107
(7, 5) 75 14.50 5.10 0.056 7.083124 · 107
(7, 11) 116 13.25 5.65 0.044 2.087874 · 108
(7, 11) 78 14.00 5.20 0.056 7.828204 · 107
(7, 11) 75 14.50 5.10 0.056 7.083124 · 107
(7, 13) 116 13.25 5.65 0.044 2.131371 · 108
(7, 13) 74 14.75 5.30 0.056 8.011225 · 107
(7, 13) 70 14.10 5.40 0.056 7.236925 · 107
(7, 23) 116 13.25 5.65 0.044 2.087874 · 108
(7, 23) 78 14.00 5.20 0.056 7.828204 · 107
(7, 23) 75 14.50 5.10 0.056 7.083124 · 107
(15, 7) 109 14.75 6.15 0.076 1.149974 · 108
(15, 7) 61 15.00 6.30 0.100 3.913906 · 107
(15, 7) 56 16.50 6.20 0.104 3.472013 · 107
(15, 11) 109 14.75 6.15 0.076 1.149974 · 108
(15, 11) 61 15.00 6.30 0.100 3.913906 · 107
(15, 11) 56 16.50 6.20 0.104 3.472013 · 107
(15, 17) 103 15.50 6.30 0.076 1.177119 · 108
(15, 17) 60 16.25 6.20 0.100 4.007117 · 107
(15, 17) 58 16.10 6.10 0.102 3.547538 · 107

Table 11. Parameters obtained in each iteration of the code as-
sociated to [31] for α even.

The same is true for the following value of q that we would need to consider if we
were to extend the ranges (q = 29), since the following identity holds

3 · 2092 + 291 = 217.

Since there is a solution in both cases, all the techniques that we have developed in
Section 7 would fail, forcing us to solve a Thue–Mahler equation of degree p = 17.

As of now, and without significant computational improvements, this is impo-
ssible to do. Therefore, extending the solution of (7) to bigger ranges is probably
impossible unless significantly new techniques are introduced.
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ings Skr., 13:65–82, 1923.

https://homepages.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/index.html
https://arxiv.org/abs/2207.14492
https://arxiv.org/abs/2205.08899
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