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Non-conservation of the valley density and its implications for the observation of the
valley Hall effect

Alexander Kazantsev,1, ∗ Amelia Mills,1 Eoin O’Neill,1 Hao Sun,2 Giovanni Vignale,2 and Alessandro Principi1, †

1Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
2The Institute for Functional Intelligent Materials (I-FIM),

National University of Singapore, 4 Science Drive 2, Singapore 117544

We show that the conservation of the valley density in multi-valley and time-reversal-invariant
insulators is broken in an unexpected way by the electric field that drives the valley Hall effect.
This implies that fully-gapped insulators can support a valley Hall current in the bulk and yet show
no valley density accumulation on the edges. Thus, the valley Hall effect cannot be observed in
such systems. If the system is not fully gapped then valley density accumulation at the edges is
possible and can result in a net generation of valley density. The accumulation has no contribution
from undergap states and can be expressed as a Fermi surface average, for which we derive an
explicit formula. We demonstrate the theory by calculating the valley density accumulations in an
archetypical valley-Hall insulator: a gapped graphene nanoribbon. Surprisingly, we discover that a
net valley density polarization is dynamically generated for some types of edge terminations.

Introduction—The valley Hall effect (VHE) in non-
topological systems has recently stirred considerable con-
troversy [1–9]. When the band structure features two
valleys with a non-vanishing distribution of Berry cur-
vature, electrons skew in the direction orthogonal to the
applied electric field, even in the absence of magnetic
field. However, since the system is not topological, elec-
trons originating from one valley skew in the opposite
direction of those from the other valley giving rise to a
zero (charge) Hall current but to a finite valley Hall cur-
rent jv(r, t). This is defined as the difference between
charge currents of electrons originating in opposite val-
leys. When this current hits the edge of the system,
a valley density nv(r, t) (or, more physically, a density
of orbital magnetic moment [10]), is expected to accu-
mulate at its boundaries. This assumes that the valley
density obeys a standard continuity equation [5, 6]. This
seems a reasonable assumption: the two valleys are well-
separated in momentum space, up to the point that they
could ideally be taken as completely disconnected.

Some authors [1, 6] went further and claimed that even
a fully-gapped non-topological insulator such as graphene
aligned with hexagonal boron nitride (hBN) [3, 4] can ex-
hibit nonlocal charge transport mediated by transverse
undergap valley currents flowing in the bulk of the ma-
terial. The authors of Ref. [6] argued that, at finite tem-
perature, the valley-density accumulation could drive a
“squeezed edge current” (parallel to the edges) in appar-
ent agreement with experimental observations [2]. How-
ever, other authors [7–9] found from microscopic cal-
culations that there is no valley density accumulation
and no edge current in the simple graphene/hBN model.
They proposed that the observed nonlocal resistances
are caused by substrate-induced edge states crossing the
Fermi level [7] or by substrate-induced valley-dependent
scattering [9]. In the case of a fully gapped insulator
this leaves us with the following puzzle: on one hand,
the electric field drives a finite dissipationless valley Hall

current in the bulk; on the other hand, time reversal
symmetry implies that a valley density accumulation—
a time-reversal-odd quantity—cannot appear in response
to an electric field, unless there is dissipation, which is
impossible if there are no states at the Fermi level. So
where did the valley current go?

In this paper we solve the puzzle by observing that
the valley density does not satisfy the conventional con-
tinuity equation when an electric field is present. This
includes the field applied in order to drive the valley Hall
current. The reason is that the electric field breaks the
conservation of crystal momentum and therefore of valley
number, which depends explicitly on crystal momentum.
As a result, the bulk valley current is internally short-
circuited as electrons flow from one valley to the other
(and thus switch the sign of the Berry curvature) under
the action of the very same electric field that drives the
valley Hall current in the first instance. The process is
schematically illustrated in Fig. 1.

Our results have profound implications for the observa-
tion of the VHE [11]. In a fully gapped time-reversal in-
variant insulator the undergap valley current is incapable
of producing a valley density accumulation on the edge.
This makes observing the VHE impossible in such sys-
tems, unless, e.g., the valley degeneracy is lifted (see, for
example, Refs. [12–14]) or carriers are selectively injected
into a single valley via circularly polarized light [15]. In
these cases, however, an anomalous Hall effect “in dis-
guise” is measured. This also means that the non-local
resistance detection in Refs. [1, 16–19] must have been
caused by partially occupied bands or edge states.

In metallic systems, which support a Fermi surface, our
predictions for the valley density accumulation are quite
different from those of the conventional theory which
treats the entire bulk valley Hall current as the source
of the accumulation. In particular, the value of the ac-
cumulation depends on the form of the electronic wave
functions near the edge. The length over which it occurs
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FIG. 1. Cyclic flow of the Bloch wave vector under the action
of an electric field in the x direction. In both panels, the valley
charge is −1 in the red regions and +1 in the green regions.
Also shown are the Berry curvature hot spots with positive
value near K and negative value near K′. Panel (a) shows
the flow in a one-dimensional ribbon where the valley charge
is non-conserved (changes sign) when k crosses the origin of
momentum space. At the same time the Berry curvature, and
hence the anomalous velocity also changes sign ensuring the
existence of a steady valley Hall current. In a fully gapped
insulator the flow does not alter the occupation of the states
(i.e., a full band remains full) so there is no change in the
valley density. Panel (b) shows examples of flows in a two-
dimensional periodic system. In both cases the assumption
of time-reversal symmetry rules out the possibility of a valley
density response arising from the magneto-electric polarizabil-
ity of the Bloch states.

is not related to the carrier diffusion length as in, e.g.,
Ref. [5], but reflects the much shorter localization length
of edge states, as observed in some experiments [20], or
the Fermi wavelength of bulk states. Perhaps the most
important result of this study is that the valley density
in the VHE is not simply transported from one edge to
the other: it can be simultaneously generated on both
edges by processes that involve the electric field in the
bulk of the material.

Summary of main ideas—We consider a generic system
in the shape of a strip of finite width which is indefinitely
extended along the x axis. As we show below, the conti-
nuity equation satisfied by the valley density is

∂tnv(y, t) + ∂yj
y
v (y, t) = −e2E(t)

∑

k

S(k)∂kfk(y) , (1)

where the electric field is in the x direction, which is
parallel to the edge, and the valley current is in the y
direction, perpendicular to the edge [21]. The system is
assumed to be macroscopically homogeneous along x so
that the valley density and current depend only on y. The
electronic states (in the absence of the electric field) are
taken to be of the form ψk,n(x, y) = eikxuk,n(x, y)/

√
2π

where k is the x-component of the Bloch wave vector
and n is the band index. The sum over k in Eq. (1)
stands for

∫
dk/(2π). The mixed electronic distribu-

tion fk(y) = a−1
∫ a

0
dx
∑

n fk,n
∣∣uk,n(x, y)

∣∣2 is defined in
terms of the electronic wave functions and the occupa-
tions of the corresponding states fk,n, with the integral

taken over one period a in the x direction. S(k) is a “val-
ley charge” function (odd under time reversal), which is
a smooth periodic function of k in the Brillouin zone. We
assume that the band structure features only two valleys,
thus S(k) assigns number +1 to states around one val-
ley and −1 to states around the other valley. The valley
density operator is n̂v(r) ≡ −(e/2)

∑
j

{
S(k̂j), δ(r− r̂j)

}

where r̂j and k̂j are the position and Bloch momentum
operator (along the edge) of the j-th electron, respec-
tively, and {Â, B̂} ≡

(
ÂB̂+ B̂Â

)
[22]. The valley current

density is ĵv(r) ≡ −(e/4)
∑

j

{
S(k̂j),

{
v̂j , δ(r − r̂j)

}}
,

where v̂j is the velocity operator of the j-th electron.

Because k̂ is a constant of motion, n̂v and ĵv(r) obey
a conventional continuity equation in the absence of the
electric field.
As we show below, in a fully gapped time-reversal in-

variant insulator, in which no edge or bulk state crosses
the Fermi level, and at zero temperature, the right-hand
side of Eq. (1) completely cancels the nearly-quantized
contribution due to the second term on the left hand
side. In this case, therefore, the valley density accumu-
lation vanishes, even though there is a finite valley cur-
rent in the bulk. In all other cases the cancellation is
not exact. The correct equation for the density accu-
mulation in the absence of relaxation processes is then
∂tnv(y, t) = −Qs(y), where the source term

Qs(y) =
e2E

a

∫ a

0

dx
∑

k,n

(∂kfk,n)S(k)
∣∣uk,n(x, y)

∣∣2 , (2)

is a Fermi surface property. Note that Qs(y) cannot be
written, in general, as the divergence of a current. In fact,
this is only possible if its integral over the whole strip
vanishes, which implies that density accumulates at one
edge and depletes at the other [23]. However, if the width
of the strip is macroscopically large, the source term is
localized on the edges. One can then define the “effec-
tive current” Is, obtained by integrating Eq. (2) across
a given edge, that feeds the valley number accumulation
thereat. Since valley density is not conserved, the sum of
the effective currents associated with the two edges does
not have to be zero. Is can be split as Is = Ies + Ibs ,
where Ies = e2E

∑
k,e (∂kfk,e)S(k) is the contribution of

edge states. Here, the sum over e is that over edge states.
The calculation of the contribution of bulk states, Ibs , is
complicated by the fact that the integral over y cannot
be extended to infinity before performing the sum over n
and k: the result would diverge. Nevertheless, a closed
expression can be obtained in terms of the probability
amplitude for Bloch waves to scatter off the edge [see
Eq. (6) below]. Once Is is known, the valley number ac-
cumulation can be estimated as Isτtr, where τtr is the
intra- or inter-valley momentum relaxation time for the
bulk or edge states’ contribution, respectively.
Anomalous continuity equation—We consider a 2D

crystal periodic in the x direction with period a = 1
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and with the edges positioned at y = 0 and y = −W . A
uniform electric field of magnitude E oscillating at fre-
quency ω is applied along the x direction. For the sake
of conciseness, hereafter we set ℏ = 1. Thus the conduc-
tance quantum e2/h is equal to e2/(2π), where e is the
electron charge. From the Kubo formula [24, 25], the y
component of the valley current (averaged over x) is [26]

jyv (y, ω) = iEe2
∑

k,n,n′

∫ y

0

dy′(εk,n − εk,n′)

× S(k)Lk,nn′(ω)Wk,nn′(y′)Ak,n′n, (3)

and the valley density (also averaged over x)

nv(y, ω) = − iEe2

ω + i0

∑

k,n

∂kfk,n S(k)Wk,nn(y)

−Ee2
∑

k,n,n′

S(k)Lk,nn′(ω)Wk,nn′(y)Ak,n′n, (4)

where Lk,nn′(ω) ≡ (fk,n − fk,n′)/(ω + εk,n −
εk,n′ + i0) is the usual Lindhard factor [25],

Wk,nn′(y) ≡
∫ 1

0
dxu†k,n(x, y)uk,n′(x, y), and

Ak,n′n =
∫ 1

0
dx
∫ 0

−W
dy u†k,n′(x, y)i∂kuk,n(x, y) is the

Berry connection. The Fourier transform of Eq. (1)
follows directly [26] from Eqs. (3) and (4):

−iωnv(y, ω) + ∂yj
y
v (y, ω) = −e2E

∑

k

S(k)∂kfk(y). (5)

The vanishing of valley density accumulation—Let us
first assume that the system is a fully gapped time-
reversal invariant insulator. The first term on the right
hand side of Eq. (4) vanishes because ∂kfk,n = 0, since
there are no bands that cross the Fermi level. In [26]
we show that, due to time-reversal symmetry, the second
line on the right hand side of Eq. (4) is proportional to ω,
so the valley density accumulation vanishes in the limit of
static electric field. This result implies that ∂yj

y
v (y) can

be different from zero—as it must necessarily be, since
the valley Hall current is finite in the bulk but vanishes
at the edges—yet this finite divergence does not cause
any density change at the edge or anywhere else. The
resolution of this apparent paradox is provided by the
anomalous term on the right hand side of Eq. (1) which
exactly matches the divergence term on the left-hand side
when the system is gapped. The undergap current does
not produce a density accumulation.

The source of valley density—Let us now consider the
case in which some energy levels cross the Fermi level.
The first term on the right hand side of Eq. (4) causes
the density to grow at a constant rate, leading to a break-
down of linear response theory unless a limiting momen-
tum relaxation mechanism, such as intra- or inter-valley
scattering, is taken into account. The Fermi surface term,
obtained by multiplying Eq. (4) by −iω and taking the

(a) (b)

(c) (d)

FIG. 2. Panel (a) and (c): Gapped graphene nanoribbon
with zig-zag boundaries on both edges and a zig-zag and a
bearded edge (at the top), respectively. Red (blue) discs sig-
nify atoms of the σ = A (σ = B) sublattice, l labels the unit
cells, m the rows in each unit cell. Panel (b) and (d): Band
structures of nanoribbons of panels (a) and (c), respectively,
for N = 20 and ∆ = 0.2t. Non-topological edge states are
depicted by blue lines.

ω → 0 limit, is the “source term” Qs(y) in Eq. (2). As
discussed above, the integral of Qs(y) over y across a sin-
gle edge can be interpreted as an effective current Is that
feeds the density accumulation thereat. Is has contribu-
tions from both edge and bulk states that cross the Fermi
level. The latter give (for the edge at y = 0)

Ibs = −2e2E
∑

λ,k,p>0

∂kf
λ
k,p Im

[
[vλk,p]

†vλk,−pRλ(k, p)

p+ i0

]
, (6)

where momentum integration is restricted to the valley
with valley number +1, p is momentum in the y direc-
tion measured from the valley bottom, vλk,p are envelope
amplitudes of propagating stationary states, labelled by
index λ, Rλ(k, p) is the reflection probability amplitude
(|Rλ(k, p)| = 1) (see [26] for details).

Example: “gapped graphene”—To demonstrate the
main features of the general theory developed above,
we calculate the valley Hall current and the valley den-
sity accumulation rate for a nanoribbon of “gapped
graphene”—a model system that captures some aspects
of monolayer graphene on a gap-inducing hBN substrate.
Lattice sites are labelled with a unit cell number l and a
composite index (m,σ), where m = 1, . . . , N denotes the
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row, while σ = A,B distinguishes the sublattice within
a given row. The y coordinate will be assumed to take
integer values to mark the position within a row and half-
integer values to mark the position in between the rows.
The two sublattices, A and B, have different on-site po-
tentials ±∆. Electrons are assumed to hop only between
nearest neighbors. We neglect spin-orbit interaction and
therefore consider spinless electrons.

For the nanoribbon we consider two terminations: a)
zig-zag boundaries on both edges [Fig. 2(a)] and b) a
zig-zag and a bearded edge [Fig. 2(c)]. These lattice ter-
minations ensure that the valley number is conserved by
the unperturbed Hamiltonian. Each unit cell consists of
N horizontal rows, with two atoms in each row as shown
in Fig. 2(a), except the edge rows, where one atom may
be missing as shown in Fig. 2(c).

The band structures for the two terminations, shown
in Figs. 2(b) and (d), respectively, feature two bands
separated by a gap equal to 2|∆| with minima at k =
±2π/3. These points define the two valleys in the one-
dimensional Brillouin zone. When the lattice is termi-
nated with zig-zag boundaries on both edges, two dis-
persionless bands of edge states [blue lines in Fig. 2(b)]
connect the two valleys and become bulk states for |k| <
2π/3. The upper (lower) band of edge states resides on
the upper (lower) edge in Fig. 2 (a).

Our main results are presented in Fig. 3. For a Fermi
energy in the gap (εF = 0) and at zero temperature, we
find that nv(m, 0) = 0 for either termination, consistent
with the fact that there are no states at the Fermi level.
At the same time jyv (m+1/2, 0) = −Ee2 ·sign(∆)/(2π)+
O(∆/t) for 1 ≤ m ≤ N − 1 as shown in panel (a), blue
line: this is the undergap current associated with the
nearly-quantized Hall conductance (the actual value −0.9
deviates from the ideal quantized value −1 due to the
finite bandwidth of the model) [26].

When the system is doped with electrons (εF = 0.3t),
the current distributions differ dramatically for the two
terminations, as shown by the red lines in Figs. 3 (a)
and (b). In the case of the double zig-zag termination
the current shows a linear variation across the ribbon (red
line in (a)), changing sign about the center of the ribbon.
This behavior is completely at odds with our intuition,
which would lead us to expect an approximately constant
current in the bulk, but not entirely unexpected, because
there is no scattering and electrons propagate ballisti-
cally. Of greater physical interest, however, is the valley
density accumulation rate which is shown in Fig. 3 (c).
There is a significant cancellation between −∂yjyv (green
line) and the non-conservation term (black line) at the
edges. The sum of the two results in a density accumu-
lation rate which displays oscillations (red dots) on the
scale of half the Fermi wavelength and two spikes of equal
signs at the edges. These are the result of interference
between the electronic waves incident on and reflected off
the edge. The fact that the accumulation rate does not

(a) (b)

(c) (d)

FIG. 3. Panel (a): Gapped graphene nanoribbon with zig-
zag edges: the blue dashed line shows the valley Hall current
as a function of position at Fermi energy εF = 0 and the red
solid line shows the same quantity at εF = 0.3t Panel (b):
Same as in (a) for a nanoribbon with one edge zig-zag and
the other bearded. Panel (c): The green line shows the valley
density accumulation rate contributed by the valley Hall cur-
rent in the doped nanoribbon with zig-zag edges. The black
line shows the contribution of the non-conservation term, and
the red dotted line is the sum of the two, i.e., the total accu-
mulation rate. Panel (d): Same as in (c) for the nanoribbon
with one zig-zag and one bearded edge. In all plots N = 100,
∆ = 0.1t. In plots (c) and (d) εF = 0.3t.

integrate to zero is the result of the anomaly on the right-
hand side of Eq. (5): valley number is pumped from one
valley into the other via a partially filled band of edge
states connecting the two (upper blue line in Fig. 2 (b)).
This opens the way to an intriguing possibility of gener-
ating a net valley density polarization by purely electri-
cal means, as opposed to the standard optical methods.
Notice, however, that the form of valley density accu-
mulation rate cannot be predicted from the valley Hall
current alone and depends on the boundary conditions.

The zig-zag+bearded termination presents us with a
more familiar scenario. Panel (b) of Fig. 3 shows that the
valley Hall current is approximately constant (−0.55 in
units of e2E/(2π) at εF = 0.3t) in the bulk. At the same
time the valley density accumulation rate, presented in
panel (d) has spikes of opposite signs on the two edges.
This suggests a more conventional picture of valley den-
sity being transported from one edge to the other. The
reason for the overall valley number conservation is, in
contrast to the previous example, absence of any partially
filled bands that would connect the two valleys.

Conclusion—The modified continuity equation (1) al-
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lows us to explain how a non-vanishing undergap val-
ley current can coexist with a vanishing valley density
accumulation in a fully gapped non-topological time-
reversal-invariant system with perfectly degenerate val-
leys. Any valley density accumulation requires the exis-
tence of states at the Fermi level and furthermore it is
a dissipative process which requires a scattering mecha-
nism to reach a steady state. We have provided closed
expressions for calculating valley density accumulation
rates on the edges of a two-dimensional material and we
have applied them to the gapped graphene model: these
formulas show that the connection between bulk currents
and measurable edge accumulations is much more com-
plex than previously suspected. This, in particular, leads
us to surmise that any physical system in which evidence
of the VHE has been found either by Kerr rotation mi-
croscopy [11] or by non-local resistance measurements
[1, 16–19] cannot be a true insulator but must have par-
tially populated bulk or edge states.
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Supplemental Material

Everywhere below ℏ = 1.

I. THE SETUP

We consider a 2D system periodic in the x direction
and of finite width W in the y direction. We will take
the period in the x direction to be equal to one. We divide
the system into unit cells, labelled by index l. We assume
that the periodic direction is chosen such that the valley
index remains a good quantum number, i.e., edges are
chosen to be parallel to the separation between the val-
leys in momentum space (one of the edges will be taken to
be at y = 0 and the other at y = −W ). The Bloch eigen-

states are denoted as ψk,n(x, y) = uk,n(x, y)e
ikx/

√
2π,

where k is the wavevector in the x direction and n is
the band index. To take account of the spin-orbit in-
teraction, we will assume that both ψk,n and uk,n are
two-dimensional spinors. We apply the electric field of
magnitude E in the direction parallel to the edges (i.e.,
the x direction), i.e., the Hamiltonian is perturbed by a
potential term eEx̂, where −e is the electron charge and
x̂ the position operator.

For graphene nanoribbon with zig-zag and bearded
edges (which preserve the valley number), the role of
coordinates (x, y) is played by unit cell number l and
combined index (m,σ), where m = 1 . . . N denotes the
two-atom horizontal row in each unit cell and σ the atom
(A or B) within it (see Fig. 1 (a), (c) in the main text).
Note that a row may miss an atom of either sublattice, as
in Fig. 1 (c), where it misses an A atom in row 1 of each
unit cell. Everywhere below when displaying the results
for densities and currents in the nanoribbon, the position
on the y axis will only be resolved down to the row num-
ber m. Therefore, the y coordinate will be replaced by a
discrete index that will take integer values marking the
position in a certain row and half-integer values marking
the position (half-way) between the rows.

II. POSITION OPERATOR IN BLOCH STATE
BASIS

The derivation of the position operator representation
in the Bloch state basis here follows closely Ref. [1]. Con-
sider a wavepacket χ(x, y) that is a superposition of Bloch
eigenstates with coefficients χk,n

χ(x, y) =
∑

n

∫
dkχk,nψk,n(x, y). (1)

The application of the position operator x̂ to χ(x, y) gives

x̂χ(x, y) =
∑

n

∫
dk χk,n xψk,n(x, y)

=
∑

n

∫
dkχk,n

(
− i∂kψk,n(x, y)

+ ieikx∂kuk,n(x, y)/
√
2π
)
. (2)

We integrate by parts in the first term, while discard-
ing the boundary contribution. Furthermore, we expand
i∂kuk,n in the series of functions uk,n so that

i∂kuk,n(x, y) =
∑

n′

uk,n′(x, y)Ak,n′n, (3)

with Ak,n′n =
∫ 1

0
dx
∫ 0

−W
dy u†k,n′(x, y)i∂kuk,n(x, y). As

a result, we obtain (lightening the notation by suppress-
ing x and y dependence)

x̂χ =
∑

n

∫
dk
[
(i∂kχk,n)ψk,n + χk,nAk,n′nψk,n′

]

=
∑

nn′

∫
dkdk′ ψk′,n′ xk′n′;kn χk,n, (4)

where

xk′n′;kn = −i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n. (5)

III. VALLEY NUMBER AND VALLEY HALL
CURRENT OPERATORS

Here everything refers to just one electron, the gener-
alization to many electrons is trivial. The operator that
gives valley density at position x = (x, y) has the form

n̂v(x, y) = −e
2

{
n̂(x, y), S(k̂)

}
, (6)

where n̂(x, y) = |x, y⟩⟨x, y| is the particle density oper-
ator at position (x, y) (with any spin polarization) and
the curly brackets stand for an anticommutator.
Note that the particle density operator satisfies the

continuity equation

∂tn̂(x, y, t) +∇ĵ(x, y, t) = 0, (7)

with a particle number current

ĵ(x, y) =
1

2

{
v̂, n(x, y)

}
, (8)

where v̂ is the velocity operator. Operator S(k̂), on the
other hand, is a constant of motion. Therefore, taking
the time derivative of Eq. (6) at time t, we obtain

∂tn̂v(x, y, t) +∇ĵv(x, y, t) = 0, (9)
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where

ĵv(x, y) = −e
2

{
ĵ(x, y), S(k̂)

}

= −e
4

{
{v̂, n̂(x, y)}, S(k̂)

}
. (10)

Note also that n̂(x, y) = δ(x−r̂), where r̂ is the electron’s
position operator.

IV. KUBO FORMULA FOR VALLEY NUMBER
AND VALLEY HALL CURRENT

The Kubo formula [2, 3] allows one to calculate the
change in the ensemble average of an observable caused
by a perturbation to first order in its strength. If the
Hamiltonian is perturbed by an operator B̂ exp(−iωt)
then, long after the perturbation was turned on, the en-
semble average of the observable Â will be oscillating at
the frequency ω with the amplitude

A(ω) =
∑

αβ

fα − fβ
ω + εα − εβ + i0

AαβBβα. (11)

Here, α and β label eigenstates of the unperturbed
Hamiltonian, whose eigenvalues are εα and εβ , respec-
tively. Furthermore, Aαβ and Bβα are matrix elements

of operators Â and B̂ between eigenstates α and β, while
fα,β = (exp[(εα,β−εF)/(kBT )]+1)−1 are the occupation
numbers of such states.

For the nanoribbon, the unperturbed stationary states
are labelled by the value of (quasi)momentum k and by
the band index n. In the case of a harmonic electric field
applied parallel to the edge, B̂ = eEx̂. Using Eq. (5),
the matrix elements of the perturbation are then given
by the equation

Bk′n′;kn = eExk′n′;kn

= eE
(
− i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n

)
.

(12)

The role of observable Â is played by either n̂v(x, y) or

ĵv(x, y), depending on the response function under con-
sideration. Matrix elements of operator n̂v(x, y) between
stationary states are

[n̂v(x, y)]kn;k′n′ = −e
2
⟨k, n|

{
n̂(x, y), S(k̂)

}
|k′, n′⟩

= −e
2

(
S(k) + S(k′)

)
⟨k, n|n̂(x, y)|k′, n′⟩

= − e

4π

(
S(k) + S(k′)

)
e−i(k−k′)x

× u†k,n(x, y)uk′,n′(x, y), (13)

where we have used the fact that, by definition, n̂(x, y) =
|x, y⟩⟨x, y| and ⟨x, y|k, n⟩ = ψk,n(x, y). For k = k′,
Eq. (13) becomes

[n̂v(x, y)]kn;kn′ = − e

2π
u†k,n(x, y)uk,n′(x, y)S(k). (14)

Matrix elements of operator ĵv(x, y) are given by

[ĵv(x, y)]kn;k′n′ = −e
2

(
S(k) + S(k′)

)
[ĵ(x, y)]kn;k′n′ .

(15)

At k′ = k we obtain

[ĵv(x, y)]kn;kn′ = −eS(k)[ĵ(x, y)]kn;kn′ . (16)

Note that due to Eq. (7) the following identity is true

∇⟨k, n|ĵ(x, y)|k, n′⟩ = −i⟨k, n|[Ĥ, n̂(x, y)]|k, n′⟩
= i(εk,n′ − εk,n)⟨k, n|n̂(x, y)|k, n′⟩.

(17)

Plugging into this equation n̂(x, y) = |x, y⟩⟨x, y| and

ψk,n(x, y) = uk,n(x, y)/
√
2π will give

∇[ĵ(x, y)]
kn,kn′ =

i(εk,n′ − εk,n)

2π
u†k,n(x, y)uk,n′(x, y).

(18)

Let us integrate this equation along the length of one
unit cell and using the periodicity of [j(x, y)]kn,kn′ in the
x direction discard the boundary terms. The result will
be

∂y

∫ 1

0

dx
[
ĵy(x, y)

]
kn,kn′

=
i(εk,n′ − εk,n)

2π

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y).

(19)

Now using the fact that ĵy must vanish at the boundary
of the strip at y = 0, we can integrate this equation with
respect to y to obtain

∫ 1

0

dx
[
ĵy(x, y)

]
kn,kn′ =

i(εk,n′ − εk,n)

2π

∫ y

0

dy′
∫ 1

0

dx′

× u†k,n(x
′, y′)uk,n′(x′, y′).

(20)

From Eqs. (16) and (20) we can now obtain that

∫ 1

0

dx
[
ĵyv (x, y)

]
kn,kn′ = − ieS(k)

2π

(
εk,n′ − εk,n

) ∫ y

0

dy′
∫ 1

0

dx′ u†k,n(x
′, y′)uk,n′(x′, y′). (21)
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In calculating the linear response, we will average over the length of the unit cell in the x direction, so that Eq. (21)
will turn out to be useful. The linear response formula for the valley Hall current, averaged over the length of the
unit cell, has the form

jyv (y, ω) = eE

∫ 1

0

dx
∑

nn′

∫
dkdk′

(fk,n − fk′,n′)

ω + εk,n − εk′,n′ + i0
[jyv (x, y)]kn;k′n′(−i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n).(22)

Integrating by parts the first term in the round brackets and then evaluating the integral with respect to k′ will give

jyv (y, ω) =
ieE

ω + i0

∫ 1

0

dx
∑

n

∫
dk ∂kfk,n [j

y
v (x, y)]kn;kn

+ eE

∫ 1

0

dx
∑

nn′

∫
dk

fk,n − fk,n′

ω + εk,n − εk,n′ + i0
[jyv (x, y)]kn;kn′Ak,n′n. (23)

The first term vanishes because the unit cell average
∫ 1

0
dx [jyv (x, y)]kn,kn in that term vanishes, see Eq. (21) at n = n′.

Plugging Eq. (21) into the second line, we obtain

jyv (y, ω) = ie2E

∫ y

0

dy′
∑

nn′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0

∫ 1

0

dx′ u†k,n(x
′, y′)uk,n′(x′, y′)S(k)Ak,n′n, (24)

which gives Eq. (3) of the main text. Next, let us calculate the valley number response. According to Eq. (11), it is
given by the equation, averaged across the length of the unit cell,

nv(y, ω) = eE

∫ 1

0

dx
∑

nn′

∫
dkdk′

fk,n − fk′,n′

ω + εk,n − εk′,n′ + i0
[nv(x, y)]kn,k′n′(−i∂kδ(k − k′)δnn′ + δ(k − k′)Ak,n′n). (25)

Integrating by parts the first term in the round brackets and using Eq. (14), we obtain

nv(y, ω) = − ie2E

ω + i0

∑

n

∫
dk

2π
∂kfk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n(x, y)

− e2E
∑

nn′

∫
dk

2π

fk,n − fk,n′

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n, (26)

which is Eq. (4) in the main text. In the limit of zero
frequency, if there is a partially filled band such that
∂kfk,n does not vanish, the first term gives the dominant
contribution. One can demonstrate that if the system is
gapped and time-reversal symmetry is not broken, the
second term on the right-hand side of Eq. (26) is of or-
der O(ω) and, therefore, vanishes. This fact, which is
demonstrated in Sect. VIII below, was used in the main
text to discard its contribution to the valley density ac-
cumulation.

V. THE VALLEY DENSITY RESPONSE IS
GAUGE INVARIANT

Let us demonstrate in this section that the valley den-
sity response, Eq. (4) in the main text, is gauge invariant.
The first line of Eq. (4) is obviously gauge invariant so
let us turn to the second line. This is proportional to

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

×
∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n.(27)

Let us change phases of all the stationary states as
follows

uk,n(x, y) → e−iϕk,nuk,n(x, y). (28)

After this the Berry connection Ak,n′n changes as
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Ak,n′n →
∫ 1

0

dx

∫ 0

−W

dy u†k,n′(x, y)
(
i∂kuk,n(x, y)

)
ei(ϕk,n′−ϕk,n)

+

∫ 1

0

dx

∫ 0

−W

dy u†k,n′(x, y)uk,n(x, y)(∂kϕk,n)e
i(ϕk,n′−ϕk,n). (29)

Using the normalization condition this can be rewritten as

Ak,n′n → Ak,n′ne
i(ϕk,n′−ϕk,n) + δn,n′(∂kϕk,n). (30)

Let us now plug the modified states (28) into Eq. (27). This will result in the following change

P (ω + i0) →
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)ei(ϕk,n−ϕk,n′ )

×
(
Ak,n′ne

i(ϕk,n′−ϕk,n) + δn,n′(∂kϕk,n)
)
. (31)

The second term in the round brackets multiplies fk,n − fk,n′ and disappears. The phases in the rest of the equation
cancel each other. Therefore, P (ω + i0) will not change, which means that it is gauge invariant.

VI. PROOF OF THE CONTINUITY EQUATION

In this section we demonstrate the validity of Eq. (1)
in the main text. Let us multiply Eq. (26) by −iω. By

representing ω as ω = ω+ εk,n− εk,n′ − (εk,n− εk,n′), we
can rewrite the result as

−iωnv(y, ω) = − Ee2
∑

n

∫
dk

2π
∂kfk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n(x, y)

+ iEe2
∑

nn′

∫
dk

2π
(fk,n − fk,n′)S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n

− iEe2
∑

nn′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (32)

Let us work on the sum in the second line of this equation,

I(y) ≡
∑

nn′

∫
dk

2π
(fk,n − fk,n′)S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (33)

Let us divide this sum in two across the minus sign and relabel n to n′ and vica versa in the second sum. The result
reads

I(y) =
∑

nn′

∫
dk

2π
fk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n −
∑

nn′

∫
dk

2π
fk,nS(k)

∫ 1

0

dxu†k,n′(x, y)uk,n(x, y)Ak,nn′ .

(34)

Now let us plug into this equation the definition for Ak,nn′

Ak,nn′ ≡
∫ 1

0

dx′
∫ 0

−W

dy′ u†k,n(x
′, y′)

(
i∂kuk,n′(x′, y′)

)
= −

∫ 1

0

dx′
∫ 0

−W

dy′
(
i∂ku

†
k,n(x

′, y′)
)
uk,n′(x′, y′). (35)

The result will read

I(y) =
∑

nn′

∫ 1

0

dx

∫ 1

0

dx′
∫ 0

−W

dy′
∫

dk

2π
fk,nS(k)u

†
k,n(x, y)uk,n′(x, y)u†k,n′(x

′, y′)
(
i∂kuk,n(x

′, y′)
)

+
∑

nn′

∫ 1

0

dx

∫ 1

0

dx′
∫ 0

−W

dy′
∫

dk

2π
fk,nS(k)u

†
k,n′(x, y)uk,n(x, y)

(
i∂ku

†
k,n(x

′, y′)
)
uk,n′(x′, y′). (36)
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Let us first perform summation over n′ by using the completeness relation

∑

n′

uk,n′(x, y)u†k,n′(x
′, y′) = 12

∑

l

δ(y − y′)δ(x− x′ − l), (37)

where 12 is the identity operator in the spin space, and then perform integration over x′ and y′. This will lead to

I(y) =
∑

n

∫
dk

2π
fk,nS(k)

∫ 1

0

dxu†k,n(x, y)
(
i∂kuk,n(x, y)

)
+
∑

n

∫
dk

2π
fk,nS(k)

∫ 1

0

dx
(
i∂ku

†
k,n(x, y)

)
uk,n(x, y).

(38)

Joining the two sums together we obtain

I(y) =
∑

n

∫ 1

0

dx

∫
dk

2π
fk,nS(k)i∂k

(
u†k,n(x, y)uk,n(x, y)

)
. (39)

Plugging this into Eq. (32), we obtain

−iωnv(y, ω) = − Ee2
∑

n

∫
dk

2π
∂kfk,nS(k)

∫ 1

0

dxu†k,n(x, y)uk,n(x, y)

− Ee2
∑

n

∫
dk

2π
fk,nS(k)

∫ 1

0

dx ∂k

(
u†k,n(x, y)uk,n(x, y)

)

− iEe2
∑

n,n′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (40)

We combine the first two lines to obtain

−iωnv(y, ω) = − Ee2
∑

n

∫
dk

2π

∫ 1

0

dx ∂k

(
fk,nu

†
k,n(x, y)uk,n(x, y)

)
S(k)

− iEe2
∑

n,n′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (41)

From Eq. (24), the divergence of the current is obtained to be

∂yj
y
v (y, ω) = iEe2

∑

nn′

∫
dk

2π

(fk,n − fk,n′)(εk,n − εk,n′)

ω + εk,n − εk,n′ + i0
S(k)

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n, (42)

which is the term on the second line of Eq. (41). Combining Eq. (41) and (42), we obtain Eq. (1) in the main text.

VII. LIGHTNING SPEED DERIVATION OF
THE CONTINUITY EQUATION

The continuity equation derived in the previous sec-
tion can be easily derived using Heisenberg equations of
motion. Everywhere below operators are given in the
Heisenberg picture. The equation of motion for the val-
ley density has the form

∂tn̂v(r, t) = i
[
Ĥ(t) + eE(t)x̂(t), n̂v(r, t)

]
. (43)

Recall that in the absence of the electric field valley den-
sity satisfies a continuity equation, i.e.,

i
[
Ĥ(t), n̂v(r, t)

]
= −∇ĵv(r, t), (44)

with the current defined as in Eq. (10). Now using defi-
nition (6) and the fact that

[x̂, S(k̂)] = iS′(k̂), (45)

where the prime indicates a derivative, one can obtain

[x̂(t), n̂v(r, t)
]
= − ie

2

{
S′(k̂(t)

)
, n̂(r, t)

}
. (46)

Thus the equation of motion for the valley density has
the form

∂tn̂v(r, t) +∇ĵv(r, t) =
e2E(t)

2

{
S′(k̂(t)

)
, n̂(r, t)

}
.

(47)
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Replacing all the operators in this equation with their
many-body versions and then calculating the ensemble
average to first order in E will give Eq. (1) in the main
text.

VIII. TIME REVERSAL SYMMETRY IMPLIES
NO STATIC VALLEY POLARIZATION

Consider Eq. (4) in the main text and take the second
line from that equation. It is proportional to

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n. (48)

Assume presence of time-reversal symmetry which acts on the electron’s wavefunction as

Tψ(x, y) = −iσyψ∗(x, y). (49)

For the Bloch states this implies that

(−iσy)u∗k,n(x, y) = αk,nu−k,ñ(x, y), (50)

or

u∗k,n(x, y) = αk,niσyu−k,ñ(x, y), (51)

where ñ labels another stationary state which satisfies εk,n = ε−k,ñ and αk,n is a possible phase factor. Plugging
Eq. (51) into the connection Ak,n′n in Eq. (48), we obtain

Ak,n′n = i

∫ 1

0

dx

∫ 0

−W

dy ut−k,ñ′(x, y)
(
∂ku

∗
−k,ñ(x, y)

)
αk,n′α∗

k,n

+ i

∫ 1

0

dx

∫ 0

−W

dy αk,n′

(
∂kα

∗
k,n

)
ut−k,ñ′(x, y)u∗−k,ñ(x, y), (52)

where superscript t stands for ‘transposed’. Interchanging the electron wavefunctions in the bilinear products and
using the normalization condition, this equation can be rewritten as

Ak,n′n = i

∫ 1

0

dx

∫ 0

−W

dy u†−k,ñ(x, y)
(
− ∂ku−k,ñ′(x, y)

)
αk,n′α∗

k,n + iαk,n

(
∂kα

∗
k,n

)
δn,n′

= A−k,ññ′αk,n′α∗
k,n + iαk,n

(
∂kα

∗
k,n

)
δn,n′ . (53)

Analogously,

u†k,n(x, y)uk,n′(x, y) = αk,nα
∗
k,n′u

†
−k,ñ′(x, y)u−k,ñ(x, y). (54)

Let us now substitute Eqs. (53) and (54) into Eq. (48). We obtain

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

ω + εk,n − εk,n′ + i0

∫ 1

0

dxu†−k,ñ′(x, y)u−k,ñ(x, y)αk,nα
∗
k,n′

×
(
A−k,ññ′αk,n′α∗

k,n + iαk,n

(
∂kα

∗
k,n

)
δn,n′

)
. (55)

The term in the round brackets proportional to δn,n′ gives a vanishing contribution to the sum and overall all the
phases disappear. Let us also take into account that εk,n = ε−k,ñ, εk,n′ = ε−k,ñ′ and, consequently, fk,n = f−k,ñ and
fk,n′ = f−k,ñ′ . Let us make use of these identities to make the summand only depend on ñ and ñ′ and then also note
that summation over n and n′ is the same as summation over ñ and ñ′. Changing the summation variables from the
former to the latter and then relabelling these back to n and n′, we obtain

P (ω + i0) =
∑

n,n′

∫
dk

2π
S(k)

f−k,n − f−k,n′

ω + ε−k,n − ε−k,n′ + i0

∫ 1

0

dxu†−k,n′(x, y)u−k,n(x, y)A−k,nn′ . (56)
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Changing the integration variable from k to −k, relabelling the summation indices from n to n′ and vice versa, and
using the fact that S(−k) = −S(k), we obtain

P (ω + i0) = −
∑

n,n′

∫
dk

2π
S(k)

fk,n − fk,n′

−ω + εk,n − εk,n′ − i0

∫ 1

0

dxu†k,n(x, y)uk,n′(x, y)Ak,n′n = −P (−ω − i0). (57)

If the system is fully gapped, at small frequency the i0 prescription is irrelevant and can be neglected so that Eq. (57)
implies that P (ω) = −P (−ω), which means that the second line of Eq. (4) is of order O(ω) and can be neglected at
zero frequency.

IX. VALLEY HALL CURRENT AT VANISHING
FREQUENCY

At vanishing frequency, the following relation holds
(compare Eqs. (24) and (33)):

jyv (y, 0) = ie2E

∫ y

0

dy′ I(y′). (58)

Plugging the result (39) into this equation, we obtain

jyv (y, 0) = −e2E
∫ y

0

dy′
∫ 1

0

dx′
∑

n

∫
dk

2π
fk,nS(k)

× ∂k

(
u†k,n(x

′, y′)uk,n(x
′, y′)

)
. (59)

X. EFFECTIVE VALLEY CURRENT

Let us try to evaluate the integral

Qs(y) = e2E
∑

n

∫
dk

2π

(
∂kfk,n

)
S(k)

×
∫ 1

0

dxu†k,n(x, y)uk,n(x, y) (60)

in the thermodynamic limit, i.e., for the ribbon width
W → ∞. Assume that the chemical potential is in the
conduction or valence band. Due to the factor ∂kfk,n the
integral over k and sum over n are restricted to the Fermi
surface which consists of two disjoints parts, one in each
valley. Due to time reversal symmetry the two parts give
equal contributions to the integral, so we can calculate
just one and multiply the result by two, i.e.,

Qs(y) = 2e2E
∑

n

∫

S(k)=1

dk

2π

(
∂kfk,n

)

×
∫ 1

0

dxu†k,n(x, y)uk,n(x, y). (61)

Everything from now on refers to the valley with valley
number +1. Assuming that in the sum over n and in-
tegral over k we never go too far away from the bottom
of the valley, we can use the envelope wave function de-
scription for the stationary states. Suppose energy eigen-
states for a system without boundaries are described by

a set of multicomponent valence (conduction) band en-
velope amplitudes vλk,p with energies ελ(k, p), where p is
the component of momentum along y measured from the
bottom of the valley and λ is a discrete label counting
the stationary states. Now let us introduce the bound-
aries at y = 0 and y = −W . Assume that the scattering
off the boundaries does not mix eigenstates with different
values of λ and that ελ(k,−p) = ελ(k,+p). Then the va-
lence (conduction) band envelope wave-functions for the
system with boundaries will have the form

uλk,m(y) = Nλ(k, pm)
(
vλk,pm

eipmy

+Rλ(k, pm)vλk,−pm
e−ipmy

)
, (62)

which is nothing but a sum of an incident and a reflected
wave. Here Rλ(k, p) is the probability amplitude for scat-
tering off the boundary at y = 0, momenta pm take dis-
crete positive values (labelled by m), with the distance
between them approaching π/W as W → ∞, and an
overall factor Nλ(k, pm) is chosen such that

∫ 0

−W

dy [uλk,m]†(y)uλk,m(y) = 1. (63)

Note that at large W

|Nλ(k, p)|2 =
1

2W
+O

(
1

W 2

)
. (64)

In terms of the envelope wave-functions the expression
for Qs(y) takes the form

Qs(y)

= 2e2E
∑

m,λ

∫

S(k)=1

dk

2π

(
∂kf

λ
k,m

)
[uλk,m]†(y)uλk,m(y),

(65)

Plugging Eq. (62) into this equation, we obtain

Qs(y) = 4e2E
∑

m,λ

∫

S(k)=1

dk

2π

(
∂kf

λ
k,m

)

×
(
1 +Re

(
[vλk,pm

]†vλk,−pm
Rλ(k, pm)e−2ipmy

))
,

(66)



8

where we used the normalization condition |vλk,p|2 = 1

and the fact that |Rλ(k, p)| = 1. Let us consider values
of y such that |y| ≪W , which means that we are keeping
very close to the edge at y = 0. In this case each term in
the sum over m is not much different from the next one
and we can exchange the sum over m for an integral with
respect to p. More precisely, to evaluate the sum over m
we can use the Euler–Maclaurin formula, which will give
us an expansion in powers of 1/W and the leading-order
term is obtained by simply exchanging the sum over m
for an integral over m. This in turn can be exchanged for
an integral over p via p = πm/W . Taking into account
Eq. (64), this will lead to

Qs(y) = 4e2E
∑

λ

∫

p>0

dp

2π

∫

S(k)=1

dk

2π

(
∂kf

λ
k,p

)

×
(
1 +Re

(
[vλk,p]

†vλk,−pRλ(k, p)e
−2ipy

))
,(67)

where we neglected the terms of order O(1/W ). Con-
tribution of the first term in the outer round brackets
in the second line to the integral is equal to zero as
fλk,p = θ(εF − ελ(k, p)) vanishes at the values of k far
enough from the bottom of the valley. Therefore we are
left with

Qs(y) = 4e2E
∑

λ

∫

p>0

dp

2π

∫

S(k)=1

dk

2π

(
∂kf

λ
k,p

)

×Re
(
[vλk,p]

†vλk,−pRλ(k, p)e
−2ipy

)
.(68)

By Riemann–Lebesgue lemma, Qs(y) → 0 (up to terms
of order O(1/W ) that we discarded) as y → ∞. Because
integration in Eq. (68) is restricted to the Fermi surface,
it is clear that Qs(y) oscillates in space at a wavelength
corresponding to double the Fermi momentum. We can
now introduce an “effective current” feeding valley num-
ber accumulation at the edge

Ibs =

0∫

−∞

dy Qs(y)

= −2e2E
∑

λ

∫

S(k)=1

dk

2π

∫

p>0

dp

2π

(
∂kf

λ
k,p

)

× Im

[
1

p+ i0
[vλk,p]

†vλk,−pRλ(k, p)

]
.(69)

XI. GRAPHENE NANORIBBON.
DESCRIPTION OF THE STATIONARY STATES

In this section and the next we prove analytically that
in the completely gapped state the valley Hall current
for a graphene nanoribbon with zig-zag edges is non-zero
and quantized. The treatment here closely follows that
of Ref. [4]. Because the spin-orbit coupling in graphene

is small, we will neglect it completely. In this case spin
polarization is a good quantum number and its only effect
is the introduction of a degeneracy factor of 2 in all linear
response formulae. We will avoid that by considering a
spinless electron from now on. For a spinful electron the
results given here will have to be multiplied by a factor
of 2.
As promised in Section I, the pair of coordinates (x, y)

will be replaced by unit cell number l and combined index
(m,σ), where m = 1 . . . N and σ = A,B. Integrals over
x′ and y′ within the unit cell will be replaced as follows

∫ 1

0

dx′
∫ y

0

dy′ → −
m∑

m′=1

∑

σ=A,B

. (70)

Furthermore, in these expressions, the current that flows
between rows m and m+1 is denoted as jyv (m+1/2, ω).
The tight binding Hamiltonian for graphene nanorib-

bon with zig-zag edges in second quantized form reads

Ĥ = −t
∑

l

[ N∑

m=1

â†l (m)b̂l(m) +
N−1∑

m=1

â†l (m+ 1)b̂l(m)

+
∑

m∈even

â†l (m)b̂l−1(m)

+
∑

m∈odd

â†l (m)b̂l+1(m) + h.c.

]

+∆
∑

l

N∑

m=1

[
â†l (m)âl(m)− b̂†l (m)b̂l(m)

]
, (71)

where t is the nearest neighbour hopping parameter and

âl(m) and b̂l(m) destroy an electron on sublattice A or
B, respectively, in a two-atom row m of unit cell l. They
satisfy the usual anticommutation relations

{âl(m), â†l′(m
′)} = {b̂l(m), b̂†l′(m

′)} = δll′δmm′ . (72)

We introduce the Fourier-transformed operators α̂k(m)

and β̂k(m) from the relations

âl(m) =

∫
dk√
2π
α̂k(m)eikxl,m,A , (73)

b̂l(m) =

∫
dk√
2π
β̂k(m)eikxl,m,B , (74)

where xl,m,A and xl,m,B are the positions of the atoms of
the A and B sublattices in the direction along the ribbon
and k takes values in the interval (−π, π]. The Fourier-
transformed creation and annihilation operators satisfy
the anticommutation relations

{α̂k(m), α̂†
k′(m

′)} = {β̂k(m), β̂†
k′(m

′)}
= δ(k − k′)δmm′ . (75)

In terms of Fourier transformed creation and annihilation
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operators, the Hamiltonian reads

Ĥ =

∫
dk

[
− t

N∑

m=1

α̂†
k(m)β̂k(m)gk + h.c.

−t
N−1∑

m=1

α̂†
k(m+ 1)β̂k(m) + h.c.

+ ∆

N∑

m=1

(
α̂†
k(m)α̂k(m)− β̂†

k(m)β̂k(m)
)]
,(76)

where gk = 2 cos(k/2). From now on, we will set t = 1.
The one-particle eigenstates of the Hamiltonian are Bloch
states ψk,n(l,m, σ) = uk,n(m,σ) exp (ikxl,m,σ)/

√
2π. As

is customary, we will combine the amplitudes uk,n(m,σ)
for σ = A,B into a sublattice pseudospinor uk,n(m) =
(uk,n(m,A), uk,n(m,B))t. For bulk states, this takes the
form

ukps(m) = Nkps

(
(εkps +∆) sin

[
p(N + 1−m)

]

(−1)j
√
ε2kps −∆2 sin(pm)

)
,

(77)

where εkps = s
√
∆2 + g2k + 2gk cos(p) + 1 and the role of

the band index n is played by the combination ps, with
s = ± and p ∈ (0, π) the solution of the equation

pN + arccos

(
1 + gk cos p√

g2k + 2gk cos p+ 1

)
= πj. (78)

In Eqs. (77)–(78), j = 1, 2, . . . , N for gk > N/(N + 1)
and j = 1, 2, . . . , N − 1 for gk < N/(N + 1).

In Eq. (77) the normalization constant equals

Nkps =

[
(εkps +∆)εkps

×
(
N − sin(pN) cos

[
p(N + 1)

]

sin(p)

)]−1/2

.

(79)

We note that, for gk < N/(N +1), apart from the states
described by Eqs. (77)–(78), there is also an edge state

ukes

= Nkes(−1)m
(
(εkes +∆) sinh

[
(N + 1−m)ηk

]

−
√
ε2kes −∆2 sinh(ηkm)

)
,

(80)

where εkes = s
√

∆2 + g2k − 2gk cosh(ηk) + 1, with s = ±,
and ηk > 0 is the solution of the equation

e2ηk(N+1) =
gk − eηk

gk − e−ηk
. (81)

The role of the band index n here is played by the com-
bination es, where e stands for ‘edge’ and s is described

above. The normalization factor equals

Nkes =

[
εkes(εkes +∆)

×
(
cosh

[
(N + 1)ηk

]
sinh(Nηk)

sinh(ηk)
−N

)]−1/2

.

(82)

XII. CURRENT IS QUANTIZED FOR THE
TOTALLY GAPPED GRAPHENE NANORIBBON

Let us calculate the valley Hall current for the totally
gapped graphene nanoribbon with zig-zag edges in the
limit of vanishing frequency. Using Eq. (59) (and ne-
glecting spin) we obtain

jyv (m+ 1/2, 0) = e2E
∑

n

∫
dk

2π
fk,n S(k)

×
m∑

m′=1

∂k(u
†
k,n(m

′)uk,n(m
′)), (83)

where n stands for either ps or es, as explained in
Sect. XI. Note that explicit summation over σ here is
replaced by matrix multiplication of the hermitian conju-
gate of a pseudospinor with itself. When the chemical po-
tential is in the gap, fkps = fkes and equals 1 for s = −1
and 0 for s = +1. For the evaluation of the integral with
respect to k note that for any n holds uk,n = u−k,n and
we can take S(k) equal to 1 for 0 < k < π and −1 for
−π < k < 0. Thus keeping only the occupied states in
the sum over n and evaluating the integral with respect
to k, we obtain

jyv (m+ 1/2, 0) =
e2E

π

m∑

m′=1

(∑

p

u†kp−(m
′)ukp−(m

′)

+ u†ke−(m
′)uke−(m

′)

)∣∣∣∣
k=π

k=0

. (84)

The states uk,n form a complete set, therefore

∑

p

(
ukp+(m

′)u†kp+(m
′) + ukp−(m

′)u†kp−(m
′)

)

+ uke+(m
′)u†ke+(m

′) + uke−(m
′)u†ke−(m

′) = 12,

(85)

where 12 is the 2 × 2 identity matrix in the sublattice
space. Using the explicit form of the wavefunctions [see
Eq. (77)] one can find that

u†kp−(m
′)ukp−(m

′)− u†kp+(m
′)ukp+(m

′)

=
2∆

εkp−
· sin

[
p(N + 1− 2m′)

]
sin
[
p(N + 1)

]

N − sin(pN) cos
[
p(N + 1)

]
/ sin(p)

.

(86)

Using Eqs. (85) and (86) one can rewrite the sum in the
round brackets in Eq. (84) in the form



10

∑

p

u†kp−(m
′)ukp−(m

′) + u†ke−(m
′)uke−(m

′) = 1 +
1

2

(
u†ke−(m

′)uke−(m
′)− u†ke+(m

′)uke+(m
′)
)

+
∑

p

∆

εkp−
· sin

[
p(N + 1− 2m′)

]
sin
[
p(N + 1)

]

N − sin(pN) cos
[
p(N + 1)

]
/ sin(p)

. (87)

Plugging this into Eq. (84) and taking into account the fact that there are no edge states at k = 0 we obtain

jyv (m+ 1/2, 0) =

m∑

m′=1

e2E

2π

(
u†πe−(m

′)uπe−(m
′)− u†πe+(m

′)uπe+(m
′)
)

+
e2E

π

∑

p

∆

εkp−
· sin(pm) sin

[
p(N −m)

]
sin
[
p(N + 1)

]
/ sin(p)

N − sin(pN) cos
[
p(N + 1)

]
/ sin(p)

∣∣∣∣
k=π

k=0

. (88)

Let us estimate the sum over p in Eq. (88). Since by
Eq. (78), the factors

sin
[
p(N + 1)

]

sin(p)
=

(−1)j√
g2k + 2gk cos(p) + 1

, (89)

sin(pN)

sin(p)
=

(−1)j−1gk√
g2k + 2gk cos(p) + 1

, (90)

remain of order O(N0) at k = 0 or k = π, one can see
that each term in the sum in the second line of Eq. (88) is
of order ∆/N . In making this estimate we also took into
account that εkp− is of order one [in units of t] at k = 0
and k = π. Therefore the whole sum over p in Eq. (88)
is of order ∆. Hence the current density response equals
(restoring the hopping parameter t)

jyv (m+ 1/2, 0) =
m∑

m′=1

e2E

2π

(
u†πe−(m

′)uπe−(m
′)

− u†πe+(m
′)uπe+(m

′)

)
+O(∆/t). (91)

For edge states, as k approaches π, gk → 0 while ηk
approaches positive infinity as ηk ∝ − ln(gk). In this
limit εkes → s|∆| and the probability distribution for
the edge states has the form

u†πes(m
′)uπes(m

′) =
1

2

([
1 + s · sign(∆)

]
δm′,1

+
[
1− s · sign(∆)

]
δm′,N

)
. (92)

Plugging this into Eq. (91), for 1 ≤ m ≤ N −1 we obtain

jyv (m+ 1/2, 0) = −e
2E

2π
sign(∆) +O(∆/t). (93)

Let us also, for future reference, quote here the result
for the divergence of the current, div jyv (m, 0) = jyv (m −
1/2, 0)− jyv (m+1/2, 0), which follows from this equation

div jyv (m, 0) =
e2E

2π
sign(∆)(δm,1 − δm,N ) +O(∆/t).

(94)

XIII. QUALITATIVE EXPLANATION OF THE
VALLEY HALL CURRENT PROFILE FOR
DIFFERENT BOUNDARY CONDITIONS

Throughout this section we assume that the Fermi level
lies in the conduction band and takes a value in the in-
terval |∆| < εF < t. Let us first consider the zig-zag
nanoribbon. Expression for the current, Eq. (83), can
be written in an alternative form as jyv (m + 1/2, 0) =
Ee2(2π)−1

[
T (m + 1/2) + G(m + 1/2)

]
, where for 1 ≤

m ≤ N − 1

T (m+ 1/2)

=
∑

n

m∑

m′=1

∫
dkS(k)∂k

(
fk,nu

†
k,n(m

′)uk,n(m
′)
)

(95)

and

G(m+ 1/2)

= −
∑

n

m∑

m′=1

∫
dkS(k)(∂kfk,n)u

†
k,n(m

′)uk,n(m
′)

(96)

and we set T (1/2) = G(1/2) = T (N + 1/2) = G(N +
1/2) = 0. Let us consider T first. Consider div T (m) =
T (m−1/2)−T (m+1/2), which is given by the equation

div T (m) = −
∑

n

∫
dkS(k)∂k

(
fk,nu

†
k,n(m)uk,n(m)

)
.

(97)

The integral with respect to k can be easily calculated to
produce

div T (m) = −2
∑

n

fk,nu
†
k,n(m)uk,n(m)

∣∣∣
k=π

k=0
, (98)

where a factor of 2 appeared because the contribution of
the left valley to the integral equals the contribution of
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the right valley, so we left only the latter and multiplied it
by two. Plugging in the occupation numbers, we obtain

div T (m) = − 2u†πe+(m)uπe+(m)

− 2

(∑

p

u†kp−(m)ukp−(m)

+ u†ke−(m)uke−(m)

)∣∣∣∣
k=π

k=0

. (99)

The sum in the second and third lines on the right hand
side of this equation (including the factor of −2) has al-
ready been calculated in the previous section, compare
Eq. (84). It is given by whatever multiplies e2E/(2π) in
Eq. (94). The term in the first line is the contribution of
the upper band of edge states, which has appeared be-
cause we raised the Fermi energy and this band became
occupied. So, using Eq. (92) and Eq. (94), we obtain
(ignoring terms of order O(∆/t))

div T (m) = −δm,1 − δm,N . (100)

Note that div T changes extremely fast on the boundaries
(it goes from −1 to zero on the scale of one inter-atomic
distance) and does not change at all inside the ribbon.
This can be traced back to the fact that ultimately the
spatial behavior of T (m) is governed by the localized edge
states (see Eq. (91) and Eq. (99)).

Consider now divG(m), which is given by the equation

divG(m) =
∑

n

∫
dkS(k)(∂kfk,n)u

†
k,n(m)uk,n(m).

(101)

Let us point out that divG(m), as opposed to div T (m),
changes slowly in space, because its behavior is gov-
erned by the states on the Fermi surface. Therefore it
varies significantly on the length scale defined by the
inverse Fermi momentum (

√
ε2F −∆2)−1 ≫ 1 for εF

close enough to the bottom of the conduction band.
Therefore the roughest (but only the roughest) estimate
of divG(m) can be given by just the spatial average
⟨divG(m)⟩sp = (1/N)

∑
m divG(m). This is not zero.

Indeed, using
∑

m u†k,n(m)uk,n(m) = 1 we obtain

⟨divG(m)⟩sp =
1

N

∑

n

∫
dkS(k)(∂kfk,n), (102)

which is non-zero because of the left-mover–right-mover
imbalance in each valley. Indeed, using fk,n = θ(εF −
εk,n) we obtain

∑

n

∂kfk,n = −
∑

i

δ(k − ki)sign(vi), (103)

where the sum runs over all values of k at which the
Fermi level crosses an energy band and vi is the group
velocity of the band crossed at a point ki. Because there

is one more right-mover than there are left-movers in the
left valley and one more left-mover than there are right-
movers in the right valley, see Fig. 1(b) (the upper blue
line) in the main text, we obtain

⟨divG(m)⟩sp =
2

N
. (104)

To get jyv (m + 1/2, 0) we need to integrate (i.e., sum
over m) Eq. (100) and Eq. (104) with the boundary
conditions that the current vanishes outside the ribbon.
It is not difficult to observe that Eq. (100) determines the
one-sided limiting values of the current on the boundaries
as approached from within the ribbon and Eq. (104) its
overall slope as a function of position. It then follows
that the current jyv (m+1/2, 0) is approximately equal to
Ee2/(2π) at m = 1, to −Ee2/(2π) at m = N − 1 and
those two values are connected roughly by a straight line
with the slope −[e2E/(2π)](2/N).
Now let us briefly discuss the case of the nanoribbon

with a bearded edge. Because there is only one band of
edge states whose occupation number does not change as
we raise εF, we see that div T does not change compared
to the undoped case. This means that the values of the
current on the boundaries will stay roughly the same as in
the undoped case. Next, because there is no left-mover–
right-mover imbalance in the valleys, the overall average
slope will be zero. This very rough analysis is confirmed
by the numerical results, see Fig. 2 (a), (b) in the main
text.

XIV. VALLEY HALL CURRENT AS
FUNCTION OF THE FERMI ENERGY

In this section we provide numerical results for the
valley Hall current as a function of the Fermi energy in
graphene nanoribbon with one edge zigzag and the other

FIG. 1. Valley Hall current as a function of the Fermi energy
in graphene nanoribbon with one edge zig-zag and the other
bearded. The value is taken in the middle of the ribbon, the
width N = 100, ∆ = 0.1t.
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bearded, see Fig. 1. In an infinite system this is predicted
to be fixed and quantized when the chemical potential is
in the band gap and to go down to zero as −∆/|εF| (in
units of e2E/(2π)) for |εF| > |∆|. For the nanoribbon
the behavior of the curve is a bit different, see Fig. 1. It
is indeed fixed and quantized (up to corrections of order
O(∆/t)) when the Fermi energy is in the gap but outside

the gap it does not conform to the ∆/|εF| law and set-
tles on a value of around ±1/2 for high enough hole or
electron doping.
At εF = −|∆| the valley Hall current has a disconti-

nuity due to all the edge states suddenly changing their
occupation numbers. The oscillations below εF = −|∆|
are a finite size effect due to small values of the Fermi
momentum.
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