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ABSTRACT

PROTOTYPING A 3D RECONSTRUCTION OF FLY PHOTORECEPTORS: FROM
TRADITIONAL COMPUTER VISION TECHNIQUES TO 3D VISUALIZATION

May 2023

Kunal Jain, B.Tech., National Institute of Technology, Hamirpur
M.S., University of Massachusetts Boston

Directed by Professor Daniel Haehn

The Drosophila fruit fly is a well-established model organism for studying vision and neural
perception. In this research, we focused on segmenting and analyzing photoreceptor cells in
the Drosophila retina, specifically rhabdomeres. To facilitate our study, we acquired a
comprehensive 3D dataset of Drosophila retina EM images and developed an automated
segmentation pipeline using computer vision techniques. We evaluated the performance of
our pipeline using automated metrics on Wild Type CS 1 and Nina D1 Mutant Drosophila
datasets and prototyped a 3D model of segmented cells. The generated segmentation masks
and 3D models of photoreceptor cells contribute to a better understanding of Drosophila
vision and neural perception, and may have implications for further studies in developmental
biology, and neurobiology.
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CHAPTER 1

INTRODUCTION

Drosophila, or fruit flies, have compound eyes composed of many tiny facets called

ommatidia, which are the main visual structure of an insect and are responsible for mosaic

vision. Each ommatidium is divided into two parts: a light-gathering part consisting of a

cornea and crystalline cones, and a light-detecting part.

In humans, the retina contains photoreceptor cells called rods and cones, while in

Drosophila, the photoreceptor cells are called rhabdomeres. Rhabdomeres contain pigments

that absorb light and trigger a neural response. The structure of rhabdomeres in Drosophila

forms a polygon pattern in open structure and fuses in the center in close structure, with

flies typically having a hexagonal open rhabdomere structure. Drosophila has a neuronal

superposition eye (Langen et al., 2015), as shown on in figure 1c on page 3; the

rhabdomeres of one ommatidium point at different points in space, but the red highlighted
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ones in neighboring ommatidia point at the same point.

Both Drosophila and humans have a neural pathway that sends visual information to the

brain for processing. In Drosophila, this pathway involves lamina neurons, which are

connected to the photoreceptors and send information about the visual scene to higher brain

centers. In humans, the optic nerve carries information from the retina to the brain.

While Drosophila eyes do not have a complex structure like the human eye's iris and pupil

for focusing, they do have mechanisms for adjusting the sensitivity of their photoreceptor

cells to different levels of light. Drosophila eyes are smaller and simpler than human eyes,

but they are still valuable for studying the principles of vision and the neural basis of

perception due to their relatively simple nervous system and genetic tractability.

The study of 3D models of Drosophila photoreceptors can provide valuable insights into the

structure and function of these cells and their role in vision. Drosophila, or fruit flies, are

widely used as model organisms in the field of neurobiology and have been extensively

studied due to their relatively simple nervous system and genetic tractability.

One of the key benefits of studying the 3D model of Drosophila photoreceptors is gaining a

better understanding of their structure and function. The 3D model can reveal the intricate

details of the shape, organization, and arrangement of photoreceptor cells in the eye. By

visualizing the photoreceptors in three dimensions, researchers can study their morphology,

such as the shape and size of the cells, the distribution of pigments, and the arrangement of

cellular components. This information can help researchers decipher how these cells are
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specialized for their role in vision and how they interact with each other to process visual

information.

Figure 1: Diagrams of eye and retinal organization of the Fruit Fly Drosophila
(https://doi.org/10.1371/journal.pbio.0060115.g001)

Furthermore, the 3D model of Drosophila photoreceptors can provide insights into the

neural connectivity of these cells. Photoreceptors are just one part of the visual pathway in

Drosophila, and their signals are processed by downstream neurons, such as lamina

neurons, before being transmitted to higher brain centers. By visualizing the connections

between photoreceptors and other neurons in the visual pathway, researchers can gain a

better understanding of the neural circuitry involved in vision in Drosophila. This can help

uncover the complex network of interactions between different types of neurons and how

3
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they work together to process visual information.

Moreover, studying the 3D model of Drosophila photoreceptors can also shed light on the

effects of genetics and environment on these cells. Fruit flies are widely used in genetic

studies due to their well-characterized genome and the availability of various genetic tools.

By comparing the 3D models of photoreceptors from different genetic backgrounds,

researchers can investigate the effects of specific genes on the structure and function of

these cells. Additionally, the 3D models can be used to study how environmental factors,

such as light exposure or temperature, may impact the morphology and organization of

photoreceptor cells.

1.1 IMAGE SEGMENTATION

In computer vision, an image is a digital representation of a visual scene or object. It is

typically composed of pixels, which are tiny dots that contain information about color,

intensity, and other visual attributes. Images can be captured from various sources, such as

cameras or generated by computer graphics.
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Figure 2: A widely used image of Abraham Lincoln represented as a matrix of pixels(left),
pixels with intensity values(center), and matrix of pixel intensities(right)

(https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html)

Image segmentation enables machines to understand and interpret the contents of an image

at a more detailed level. It has applications in a wide range of fields, such as medical

imaging, autonomous driving, robotics, and video surveillance, among others

Image segmentation is the process of dividing an image into meaningful and visually

distinct regions or segments. The goal is to identify and isolate different objects or regions

of interest within an image. These segments can be used for further analysis, such as object

recognition, object tracking, or image understanding..

Image segmentation is widely used in medical imaging, such as in CT scans, MRIs, and

ultrasound images. By segmenting the image, doctors can identify and isolate specific

regions of interest, such as tumors, blood vessels, or organs, which can aid in diagnosis,
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treatment planning, and monitoring. Image segmentation plays a crucial role in object

recognition, where the goal is to identify and localize objects within an image. By

segmenting an image into different parts or regions, it becomes easier to identify and

differentiate different objects within the image,

Using traditional computer vision techniques or training a CNN are popular ways of

achieving image segmentation, and the choice of technique depends on the specific

application and the properties of the image being segmented. Traditional computer vision

techniques and convolutional neural networks (CNNs) have different strengths and

weaknesses when it comes to image segmentation.

Traditional computer vision techniques, such as thresholding, edge detection, and region

growing, are relatively simple and computationally efficient, making them useful for many

applications. They can work well for images with simple or well-defined objects or regions,

and they are often easy to interpret and understand. However, they may not be as effective

for complex or ambiguous images, where the segmentation boundaries are unclear, or where

objects overlap or have similar textures or colors.

CNNs, on the other hand, are much more powerful and flexible than traditional computer

vision techniques. They can learn complex patterns and relationships in the data, making

them better suited for tasks such as image segmentation. CNNs can also handle noisy or

ambiguous images and can adapt to a wide range of data distributions, making them more

generalizable across different domains. However, CNNs require large amounts of labeled
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data and significant computational resources for training, and they may not be as

interpretable or transparent as traditional computer vision techniques.

Figure 3: Coin-labeled image segmentation using various approaches
(https://doi.org/10.1007/s41095-019-0151-2)
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1.2 TRADITIONAL COMPUTER VISION

Traditional computer vision techniques refer to methods and algorithms that process and

analyze images using mathematical operations and statistics without the use of machine

learning. Some examples of traditional computer vision techniques used for image

processing and analysis:

1. Thresholding: This technique involves selecting a threshold value to segment an

image into binary regions based on the intensity of pixels. It is often used to extract

objects of interest from the background or to separate objects with different

intensities.

Figure 4: Example of binarization for two thresholds.
(https://vincmazet.github.io/bip/segmentation/histogram.html)

2. Edge detection: This technique involves finding the boundaries of objects in an image

by detecting sudden changes in intensity. Edge detection is used for feature extraction
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and object recognition.

Figure 5: Example of edge detection using canny edge detector
(http://vision.cs.arizona.edu/nvs/research/image_analysis/edge.html)

3. Morphological operations: This technique involves using mathematical operations to

manipulate and analyze the shape and structure of objects in an image. It is often used

for tasks such as noise removal and object segmentation.

Figure 6: Example showing morphological operations applied on an image
(https://buffml.com/morphological-operations/)
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CHAPTER 2

EXISTING RELATED WORK

The Drosophila visual system is a well-studied model system in neuroscience due to the

high degree of genetic conservation between flies and mammals and the relatively simple

and well-defined structure of the fly visual system.

Photoreceptors are sensory neurons that detect light and transform it into electrical signals,

which then get transmitted to the brain. Rhabdomeres are small, light-sensitive structures

that extend from the photoreceptor cell membrane and contain specialized proteins called

opsins.

In some insects, such as flies, compound eyes have two categories of photoreceptors and

rhabdomeres that differ in morphology and location. The outer or peripheral category

consists of photoreceptors R1 to R6 and their rhabdomeres, which are large, cylindrical and

take up most of the ommatidial facet. The inner or central category consists of

photoreceptors R7 and R8 and their rhabdomeres, which are small, and located in the center

of the ommatidium. Photoreceptors R7 and R8 are arranged in tandem and so a
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cross-section only shows one photoreceptor.

Figure 7: Structure and arrangement of rhabdomeres from Drosophila photoreceptor cells.
EM Image of a cross section through photoreceptor cells(left), and light microscopic

fluorescence image of an ommatidial cross section (Schopf et al., 2019)

When seen under electron microscope, the compound eye of Drosophila is made up of

about 800 ommatidia. Each ommatidium has its own lens that can be seen on the surface of

the eye, and this lens focuses light onto the photoreceptor cells beneath it. Each

ommatidium contains eight photoreceptor neurons that are located under the lens. These

photoreceptors have specialized structures called rhabdomeres, which are loaded with

Rhodopsin proteins that detect photons. The rhabdomeres of the 'outer' photoreceptors

(R1-R6) span the entire length of the ommatidium and are arranged in a trapezoid shape. On
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the other hand, the rhabdomeres of the 'inner' photoreceptors (R7 and R8) are located above

each other, with R7 being farther from the lens compared to R8, and they share a common

light path facing the same point in space. The rhabdomere of the 'inner' photoreceptors is

positioned in the center of the trapezoid formed by the 'outer' photoreceptors (Rister et al.,

2013)

Figure 8: (A)Scanning electron microscope image of Drosophila head. (B) Schematic side
view of an ommatidium. (C) Schematic of a section through an ommatidium at the level
indicated by the dashed line in B. (D) Image corresponding to schematic in C showing
R1-R6 photoreceptors in green and R8 photoreceptors in red. (Rister et al., 2013)

It is seen that Vitamin A deprivation affects Drosophila photoreceptor structure and

Rhodopsin expression (Dewett et al., 2021). Since vitamin A is essential for the formation

of visual pigments, the absence of vitamin A leads to a complete lack of visual pigments in

the rhabdomere membranes. This absence of visual pigments in the rhabdomeres of the fly
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causes severe defects in the size and structure of the rhabdomeres.

In normal or Vitamin A replete fly eyes, the visual pigments in the rhabdomeres are

responsible for detecting and responding to light, allowing the flies to see and perceive their

visual environment. However, in a Vitamin A deprived fly eye, the absence of visual

pigments due to the lack of vitamin A results in impaired visual function and severe

abnormalities in the size and shape of the rhabdomeres.

Figure 9: Vitamin A replete wild-type adult eye on left and Vitamin A deprived mutant fly
eye on the right. The photoreceptors in Vitamin A deprived fly are very small in shape and

size as compared to that of Vitamin A replete fly. (Dewett et al., 2021)
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CHAPTER 3

DATA EXPLORATION AND VISUALIZATION

In this thesis research we used the flyEM photoreceptor datasets we received from

researchers at Indiana University. Researchers at Indiana University have used serial

block-face electron microscopy to image the photoreceptors of Drosophila. These images

provide detailed information about the structure and organization of photoreceptors at the

cellular level, including their shape, size, and ultrastructure. The electron microscope used

in SBF-EM employs a focused electron beam to create images of samples at high resolution

and can be used to visualize the ultrastructure of cells and tissues in three dimensions. It is

possible to use electron microscopy to image photoreceptors, the cells in the eye that detect

light and play a crucial role in vision, in a variety of organisms, including flies. The goal of

using serial block-face EM technique is to obtain a 3D nanoscale ultrastructure so that the

data can be analyzed in 3D rather than in isolated sections(He et al., 2018).
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It is evident from the dataset that the photoreceptors are organized into a regular, hexagonal

array. These hexagonal structures are called the rhabdomeres and these are the specialized

input regions in Drosophila. Along with photoreceptors, images also contain numerous

organelles, including mitochondria, endoplasmic reticulum, and Golgi apparatus, which are

involved in various cellular processes such as energy production and protein synthesis.

Figure 10: An image from flyEM dataset showing rhabdomeres structures. The image is
from the Wild Type CS1 Overview Dataset
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We received EM image datasets for four types of Drosophila. For each fly type, we have an

overview tileset and data tileset. Data tileset has multiple stacks with different voxel offsets.

All datasets have a very high resolution of 6144 px X 4096 px with Overview tileset of wild

type CS 2 being an exception, which has a resolution of 3072 px X 2048 px. The voxel size

of each dataset is 10 X 10 X 40 nm3. In total the datasets take up 1038 GBs on disk.

All datasets are available on https://mpsych.org/rister/ where we have deployed it using

Google’s Neuroglancer software.

Figure 11: All datasets are deployed on https://mpsych.org/rister
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Fly type Dataset Resolution Number
of slices

Dataset
size

Wild Type CS 1

VSOverviewTileSet 6144 X 4096 862 43.4 GB

VSDataTileSet1 6144 X 4096 3444 173.5 GB

VSDataTileSet2 6144 X 4096 862 43.4 GB

Wild Type CS 2

VSOverviewTileSet 3072 X 2048 1268 16 GB

NewData1 6144 X 4096 1268 63.8 GB

NewData2 6144 X 4096 1268 63.8 GB

NewData3 6144 X 4096 1268 63.8 GB

Nina D1
MUTANT

VSOverviewTileSet 6144 X 4096 2168 109.2 GB

VSDataTileSet1 6144 X 4096 4 1.2 GB

VSDataTileSet2 6144 X 4096 2168 327.1 GB

MPSDel
VSOverviewTileSet 6144 X 4096 1600 80.5GB

VSDataTileSet 6144 X 4096 1600 322.3 GB

Total 1308 GB

Table 1: Table displaying information about all the datasets received from Indiana
university. The received datasets are of four different types of Drosophila. Each dataset has
Overview tileset and Data tilesite. All datasets have 6144 X 4096 pixel resolution with the
exception of Wild Type CS 2 Overview tileset which has resolution of 3072 X 2048 pixels
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3.1. DATASET CONVERSION FOR NEUROGLANCERWEB VISUALIZATION

The conversion of given raw data into neuroglancer-compatible data consists of 4 steps -

1. Copying the images from the input folder into a temporary folder for safe conversion

and not tampering with the original data

2. Converting the copied image files, which are in TIFF format, into JPEG using the

Imagemagick tool

3. Read the info from .info of the image file to generate Neuroglancer JSON File.

18



4. After reading the required data from .info files, we align the data with the standard

Neuroglancer JSON format before starting the conversion.

The Neuroglancer JSON file includes information about the volume data, such as the file

format and location of the data, the dimensions and resolution of the volume, and any

additional metadata associated with the data. It also includes information about how the data

should be displayed and interacted with in Neuroglancer, such as the default views and

layers and any custom annotations or labels that will be added to the data.
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Figure 12: Neuroglancer json file format

The Neuroglancer JSON file helps to load and display the volume data in Neuroglancer.

Neuroglancer allows users to view and explore the data in three dimensions and to interact

with and annotate the data using Neuroglancer's various tools and features.

The Neuroglancer script then reads the images and JSON files and converts them into a

neuroglancer readable stack. A Neuroglancer stack is a collection of volumetric data that

users can visualize and interact with in Neuroglancer. Neuroglancer supports several

different data formats, including the Multiscale Volume Format (MVF), specifically

designed for efficient visualization and exploration of large volumetric data sets. To convert
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our data into an MVF stack that Neuroglancer can read, we use the Neuroglancer

Precomputed Python library. This library provides tools for creating and manipulating MVF

stacks, as well as tools for visualizing the data in Neuroglancer.

Figure 13: Code to run the neuroglancer conversion script

The Multiscale Volume Format (MVF) is a file format developed specifically for efficient

visualization and exploration of large volumetric data sets in Neuroglancer. MVF files are

typically used to store and transfer volumetric data too large to be stored in memory or

transmitted over the network simultaneously. MVF files consist of a hierarchy of scale

levels, each representing a progressively downsampled data version. The highest scale level

represents the full resolution of the data, while the lower scale levels represent progressively

lower resolutions. Neuroglancer can access and visualize the data in an MVF file by loading

only the scale levels needed to display the data at the desired resolution.

Figure 14: MVF files generated after a successful conversion
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CHAPTER 4

TRADITIONAL COMPUTER VISION TECHNIQUE PIPELINE

Traditional computer vision techniques seek to equip computers with the ability to interpret,

analyze, and understand images much like humans do. This involves the use of a range of

techniques for tasks such as segmentation, object detection, and feature extraction from

images. Images themselves are stored as an array of numerical values, with each number

representing the color intensity value at a specific pixel. Through various manipulations of

these arrays, computer vision techniques can extract meaningful information from images.

For segmenting photoreceptors from the fly retina EM image, we started with preprocessing

the data to segment photoreceptor cells in the fly EM images. Depending on the quality of

the images, we applied various preprocessing techniques. The preprocessing techniques

gave us both good and bad results for segmentation. To get a concrete outcome of how

accurate the pipeline, we calculated the accuracy of the created mask. We then saved the
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most accurate mask and finally determined if the mask is good based on the number of

ommatidia present in the mask.

The source code of the pipeline follows the Model View Controller design pattern, and we

use jupyter notebooks as drivers for the pipeline. The model represents the segmentation

logic and the view represents the logic for display and saving of various image plots. All

techniques used in the pipeline are encapsulated in functions present in the utility function

file. Finally the controller acts as an intermediary between the driver notebook and the

model and the view component.

Figure 15: The code for segmentation pipeline structured as an MVC model.
Before running the pipeline, we need to set up logging, directory paths, and few dataset

dependent variables.
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Figure 16: Code snippet for setting up files. data_dir contains all raw files from the dataset.
save_dir is a directory where all output images are saved. The crop of the original image is
saved in crop_path. A comparison plot comparing original image, intermediate image and
segmented mask image is saved in compare_labeled_plot_path. A comparison plot of
original image and segmented mask image is saved in compare_polt_path. The final

segmented mask is saved in binary_mask_path.

Figure 17: Code snippet for setting up image parameters. Since one ommatidium contains
seven rhabdomeres, NUM_RHABDOMERE is set as seven. THRESHOLD_BRACKET is
set for varying threshold values. Other parameters are dataset dependent and are chosen

carefully for both Wild Type CS 1 Overview dataset and Nina D1 Mutant Overview dataset
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Once the environment is set up we then run all the raw images that we have through the

pipeline. The steps of the pipeline are as follows -

1. Load file from the image file path - To load an image from a given file path we used

the imread function of the mahotas python library. The imread function loads an

image as a numpy array.

Figure 18: Code to load one image from the dataset. The above image is loaded from Wild
Type CS 1 Overview dataset. The image resolution is 6144 X 4096 pixels

2. Normalize and crop image - Image normalization is a technique used to adjust the

pixel values of an image so that they fall within a specific range. This can help to

improve the performance of image processing algorithms by reducing the effects of
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lighting and contrast variations. We used MinMax normalization in the pipeline. In

MinMax normalization, the minimum and maximum pixel values of the image are

determined, and the pixel values are scaled to fall between a specified minimum and

maximum value. Once we have normalized the image, we then crop the image as per

the size mentioned before starting the pipeline. We performed center cropping on the

image, in which the center region of the image is cropped and saved for further

processing. We achieved cropping using numpy array slicing.

Figure 19: Code snippet for cropping of image. The original image is first normalized
and then cropped to the resolution of 512 X 512 pixels.
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Figure 20: Code snippet of crop_image function. The function crops images from the
center, irrespective of input image resolution.

3. Smoothen Image - A Gaussian filter is a filter commonly used to smooth out an

image and reduce noise. It works by applying a Gaussian distribution to the values in

the image, which effectively blurs the image and reduces the high-frequency

components. A Gaussian filter is applied to an image by convolving the image with a

2D Gaussian kernel. This involves sliding the kernel over the image and computing

the weighted sum of the pixel values in the kernel window at each location. The

resulting value is the filtered value for the center pixel of the kernel window. We used

the gaussian_filter function from mahotas library to smoothen the image.
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Figure 21: The cropped image is smoothed by applying the gaussian filter

4. Optimum Threshold Pipeline - The Optimum Threshold Pipeline (OTP) is a

component in which we loop the image through the pipeline with varying threshold

values. Since the images in our dataset had different levels of contrast, choosing one

static threshold did not give best segmentation results for the image. We set the mean

value of the smoothened image as the default threshold value. We add and subtract

fourty from the mean value, and keep these as limits of the threshold value loop. Then

for each threshold, we apply region labeling and create a binary mask of the image.

We finally check the accuracy of the mask and check if it satisfies the least pixel

count required in a good mask, as per the earlier set up parameters. We keep track of
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the best threshold value along the loop. The computer vision techniques used in the

OTP component are -

a. Thresholding - Thresholding involves converting a grayscale or color image

into a binary image. The basic idea behind thresholding is to set all pixel

values above a certain threshold value to one and all pixel values below the

threshold value to zero. To achieve thresholding in python, we set all pixel

values in the image array that are greater than or equal to the threshold value

to 0, effectively converting pixels to black.

Figure 22: Thresholding applied on the smoothened image. The smoothed image is
used as input and then thresholding is applied on the image. The threshold value in

this figure is 83
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b. Region labeling and size based filtering - Region labeling is a technique to

identify and label contiguous regions in an image with similar properties. It

assigns a unique label to each region and groups together pixels with the same

label. This helps in finding connected components, such as photoreceptors in

fly retina EM images. Size-based filtering is used to remove small regions or

objects from an image or isolate the largest objects. The image is labeled

using region labeling, and the labeled image is used to measure region sizes.

Regions are then removed based on size requirements.

Figure 23: Thresholded image after applying size filtering. The regions
smaller than min_region_size and bigger than max_region_size are removed

in size filtering operation
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c. Closing - Closing is a morphological operation that is used to fill in small

holes and gaps in an image while preserving the overall shape and size of the

objects in the image. It is a dilation followed by an erosion operation, where

the dilation expands the objects in the image and the erosion shrinks them

back, resulting in the filling of small gaps between the objects. The closing

operation is useful for smoothing out the boundaries of objects in an image

and for removing small noise or speckles from the image.

d. Mask Accuracy Calculator(MAC) - We calculate the accuracy of the mask by

finding the possible number of rhabdomeres(circular/elliptical in shape) and

dividing it with the number of regions present in the mask. The assumption

used for calculating the accuracy as above is that a perfect mask image should

only have rhabdomeres and no other regions. To find the circular/elliptical

structures, we first get three properties for all the regions - area, perimeter and

bounding box. We get these properties using the measure.regionprops function

from the skimage python library. We then calculate circularity and squareness

of each region in the image. Since the rhabdomeres are neither perfectly

circular nor their bounded box is a perfect square, we keep the limits of both

circularity and squareness as 0.4 to 2. If a region satisfies both circularity and

squareness, then we count it as a rhabdomere. Finally we compare the number

of rhabdomeres found with the number regions present to calculate the
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accuracy.

Figure 24: Flow chart explaining the Mask Accuracy Calculator(MAC) Component. First
region labeling is performed on a binary mask to identify all regions. Then for each region,
circularity and squareness is calculated. If both circularity and squareness is between 0.4 and
2 then the region is counted as a rhabdomere. Accuracy is calculated by dividing the number

of rhabdomeres by the total number of regions in the binary image.
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Figure 25: Code for checking accuracy of a binary image. The code performs the steps shown
in flowchart figure 24.
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5. With the best threshold value that we got from OTP, we processed the initial

smoothened image. We first filter filter pixel values according to the best threshold

value. Then region labeling and size filtering is done to remove smaller or larger

regions based on the dataset. Finally closing of holes is done on the image, and a

binary mask is created for the image.

Figure 26: Processing original image with the best threshold received from OTP. Code
snippet shows the steps performed once the optimum threshold is calculated.

6. Our pipeline saves all the plots in the directories we set up before running the

pipeline. Comparison plots with the circular and square labeled data is saved for all

images in the dataset.
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Figure 27: Pipeline results displayed for one image from Wild Type CS 1 dataset. 512 X 512
crop of original image on left. Intermediate image in middle. Plot shows regions which are

both circular and enclosed in square bounded boxes are labeled in blue color. Final
segmentation mask on the right.

7. Since one ommatidium consists of 7 rhabdomeres, an approximate number of

ommatidia present in the mask is calculated by dividing the number of rhabdomeres

by seven.
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Figure 28: Code snippet showing condition for good or bad mask. If the number of
ommatidia and number of pixels in the segmentation mask exceed the minimum required

number then the segmentation mask is deemed as good.

8. Finally we count the number of pixel values in the binary mask. We use the two

parameters - number of ommatidia and number of pixel values - to judge whether the

mask is good or not. The threshold value of both the parameters are set before the

pipeline is run, while setting up the pipeline environment. The binary mask and a

comparison plot of binary mask and original image is saved at the directory path.
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Figure 29: A side-by-side comparison of 512 X 512 cropped Wild Type CS 1 Overview
dataset image on left and its segmentation mask on the right in the top row. Same comparison

for Nina D1 Mutant Overview in the bottom row.
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Figure 30: Flow chart explaining complete segmentation pipeline. Image is loaded from the
dataset. Normalization and cropping operation is applied on the image. The image is then
smoothed using the gaussian filter. Then for the range of threshold in threshold bracket,

OTP is run to find the optimum threshold for segmentation. Once the optimum threshold is
found, a binary mask for the image is generated using the optimum threshold value.
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CHAPTER 5

EVALUATION

We evaluated the above pipeline on two datasets -

1. Wild type CS 1 Overview tileset - Vitamin A replete fly

2. Nina D1 mutant overview tileset - Vitamin A deprived mutant fly

We subjected 300 images of fly retina EM images from both the datasets to the

segmentation pipeline, which produced a binary mask, if the segmentation was found good.

We defined a few parameters to fine tune the pipeline. The values of each parameter was

chosen as per the features of the dataset. Following are the parameters that we set along

with the chosen values for each parameter -

1. CROP_SIZE - We set the crop size for both the dataset as (512, 512). The small crop

size is computationally efficient as it is easier to apply image processing techniques

on small image arrays.
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2. MIN_REGION_SIZE and MAX_REGION_SIZE - The minimum and maximum size

of the region are kept and rest regions are removed when performing size filtering.

The value of MIN_REGION_SIZE for the Nina D1 Mutant dataset having (512, 512)

crop size is set to 150 and MAX_REGION_SIZE is set to 750. This means that once

regions are labeled, we remove any region that has size smaller than 150 and bigger

than 750. The same values for Wild Type CS 1 dataset having (52, 512) crop size are

750 and 750000 respectively.

3. LEAST_PIXEL_COUNT - This is the least number of pixels that should be present

in the binary mask. This value helps in judging whether the mask is good or not. For

both the datasets, we found that the LEAST_PIXEL_COUNT as 20000 works well.

4. LEAST_OMMATIDIA_COUNT - The least number of ommatidia present in the

binary mask. Since the resolution of both the datasets was different, we found that

(512, 512) crops of the Wild Type CS 1 should at least have one ommatidia and that

of Nina D1 Mutant should have at least six ommatidia.

Although the datasets are large with the Wild Type CS 1 having 861 slices and Nina D1

Mutant having 2164 slices, we ran the pipeline on 300 images from both the datasets. A

small number was chosen to make pipeline processing computationally faster. All images

are randomly spread over all the slices of the dataset.
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As the pipeline runs, we also log relevant information like the best threshold value for the

image, accuracy of the mask, possible number of rhabdomeres in the image, and number of

good and bad masks to name a few.

Figure 31: A screenshot of logs generated on successful run of the pipeline on 300 images
from Nina D1 Mutant Overview dataset. The logs are extensive and show all relevant

information for both good and bad segmentation mask images.

We got following results from the pipeline -

Dataset Total Images Good mask Bad mask

Wild Type CS 1 300 162 138

Nina D1 Mutant 300 257 43

Table 2: A table showing results of the pipeline run on 300 images from both Wild Type CS
1 Overview dataset and Nina D1 Mutant Overview dataset.
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Figure 32: Pipeline results displayed for one image from the Nina D1 Mutant dataset in top
row. 512 X 512 crop of original image on left. Intermediate image in middle. Plot shows
regions which are both circular and enclosed in square bounded boxes are labeled in blue

color. Final segmentation mask on the right. Same plots are shown for a one image from the
Wild Type CS 1 dataset in bottom row. Although the segmentation pipeline results look

good, the masks generated for the Nina D1 Mutant dataset are not the best and contain noise
around the circular rhabdomere structures. The pipeline is not able to perform at its best due
to varying contrast levels and multiple artifacts in the dataset images. The smaller size of

rhabdomere in the Nina D1 dataset indicates Vitamin A deficiency in the mutant.
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Figure 33: Pipeline from Figure 28, shown with images for different steps. The image
shown is an image taken from the Wild Type CS 1 Overview dataset.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The segmentation pipeline results indicate that traditional computer vision techniques are

useful in image segmentation. Traditional methods, such as thresholding, region growing,

and morphological operations, are easy to interpret, computationally efficient, and effective

for images with simple or well-defined objects or regions. With correct threshold values and

appropriate region size filtering we were able to achieve good segmentation results for both

Wild Type CS 1 and Nina D1 Mutant Overview tileset datasets. By counting the

approximate number of rhabdomeres and the total number of foreground pixels present in

the segmentation mask, we created a metric to identify if the generated mask is good or not.

Also, it is evident from the segmentation mask of Nina D1 Mutant that it is Vitamin A

deprived fly as there is no visual pigment in the rhabdomeres which causes severe

rhabdomere size defects as compared to that of Wild Type CS 1 fly.
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However, seeing the results it is quite evident that the effectiveness of traditional computer

vision techniques is limited when dealing with images that have multiple artifacts such as

noise, uneven illumination, and background variations. Thresholding, edge detection, and

region growing may not be effective in processing these images due to variations in

background intensity and size filtering challenges. To find the most optimum threshold, we

had to loop through multiple threshold values and check accuracy for every threshold value.

Even after finding the most optimum threshold, the resulting masks still contain small

noises around the circular rhabdomere structures.

Due to various artifacts in the dataset, a more robust approach for segmentation could be

one which uses Convolutional Neural Network(CNN) and deep learning models to predict

the region of interest in the image. CNNs are more powerful and flexible, capable of

learning complex patterns and relationships in the data, and handling noisy or ambiguous

images. They have performed well on tasks involving image segmentation, especially when

dealing with complex or ambiguous images. The U-Net CNN architecture is one such

model which is suitable for image segmentation where image features, noise, and contrast

ratios are not uniform. It can handle ambiguous images and adapt to a wide range of data

distributions, making them more generalizable across different domains. However, training

U-Net models requires large amounts of labeled data and significant computational

resources. They may also be less interpretable or transparent than traditional computer

vision techniques.
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Figure 34: 3D reconstruction of drosophila photoreceptors constructed using the binary
mask obtained from the computer vision pipeline

The research thesis also aims to develop a prototype for image segmentation of Drosophila

photoreceptors in all fly EM datasets received from Indian University. Once we have all the

segmentation masks, we can use them to reconstruct and visualize hexagonal rhabdomeres
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in 3D and study the biological structure of fly photoreceptors in detail. 3D reconstruction of

Drosophila photoreceptors usually involves using computer algorithms to combine the

segmentation masks into a single 3D model. The 3D model can provide detailed

information about the shape and structure of the cells, which can be useful for

understanding their function and role in the nervous system.

All the data and source codes are available on GitHub:

https://github.com/jainkhere/flyem
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Scikit image processing - Region properties
(https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_regionprops.html)

Google Neuroglancer - WebGL based viewer for volumetric data
(https://github.com/google/neuroglancer)

Neuroglancer volumes - 3D image volumes on neuroglancer
(https://github.com/google/neuroglancer/blob/master/src/neuroglancer/datasource/precompu
ted/volume.md)

Neuroglancer scripts - Conversion of 3D volume into neuroglancer format
(https://github.com/HumanBrainProject/neuroglancer-scripts/blob/master/docs/script-usage.
rst)

Neuroglancer python integration - Running neuroglancer scripts in python
(https://pypi.org/project/neuroglancer/)

Numpy Python (https://numpy.org/doc/stable/)

Geeks for geeks - Computer Vision techniques
(https://www.geeksforgeeks.org/computer-vision-introduction/)

Mahotas documentation
(https://buildmedia.readthedocs.org/media/pdf/mahotas/release-1.0/mahotas.pdf)

Introduction to Computer vision (https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html)
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