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Kurzfassung

Interaktionen zwischen drei nicht mischbaren Phasen, einschließlich inkompressibler viskoelastischer

Strukturen und Fluide, sind Gegenstand von zahlreichen naturwissenschaftlichen Untersuchungen.

Die Komplexität vieler Szenarien dieser Art hat verschiedene Forschungsanstrengungen im Bereich

des wissenschaftlichen Rechnens motiviert. Diese Arbeit präsentiert neuartige numerische Ansätze für

zwei spezifische Konstellationen im Rahmen von ternären Fluid-Struktur-Interaktionen. Eine Reihe

konkreter Anwendungen demonstriert das Potenzial dieser Ansätze. Zunächst wird ein Phasenfeld-

modell entwickelt, das die Interaktion zwischen einem Fluid und einem viskoelastischen Festkörper

beschreibt. Diesem Zweck dient ein Navier-Stokes-Cahn-Hilliard System in Kombination mit einem

hyperelastischen Neo-Hooke-Modell. Darauf folgt die Implementierung einer ALE Methode (arbitrary

Lagrangian-Eulerian) zur Simulation der Eindrückung des Festkörpers im Kontext einer Rasterkraft-

mikroskopie, wodurch schließlich physikalische Parameter vorhergesagt werden können. Im zweiten

Ansatz geht es um die Wechselwirkung zwischen einem zweiphasigen Fluid und einem viskoelasti-

schen Festkörper, wobei Fluid und Festkörper in getrennten Gebieten definiert sind. Beide Teilgebiete

sind an einer gemeinsamen Grenzfläche ausgerichtet. Das zuvor eingeführte Phasenfeldmodell wird

zur Darstellung des Fluids verwendet. Eine ALE Methode dient zur Bewegung des Gitters, wobei sich

die Grenzfläche zwischen Fluid und Festkörper mit der Strömungsgeschwindigkeit bewegt. In allen

Teilgebieten wird ein einheitliches System gelöst, das sowohl die Massen- und Impulsbilanz als auch

das Kräftegleichgewicht an der Fluid-Festkörper-Grenzfläche umfasst. Der Fokus liegt in der Folge

auf Simulationen von statischer und dynamischer Benetzung weicher Oberflächen. Von besonderem

Interesse ist dabei eine Kontaktlinie, die sich über ein Substrat mit oszillierendem Stick-Slip-Verhalten

bewegt. Diese Arbeit kombiniert die Vorteile von Phasenfeld- und ALE Methoden für aussagekräftige

Simulationen und betont die Validität und numerische Stabilität aller Ansätze.
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Abstract

Interactions between three immiscible phases, including incompressible viscoelastic structures and

fluids, form standard constellations for countless scenarios in natural science. The complexity of many

such scenarios has motivated various research efforts in scientific computing. This work presents novel

numerical approaches for two specific of these ternary fluid-structure interaction constellations. The

potential of these approaches is demonstrated by diverse applications. First, a phase field model is

developed describing the interaction between a fluid and a viscoelastic solid. For this purpose, a Navier-

Stokes-Cahn-Hilliard system is considered together with a hyperelastic neo-Hookean model. Based on

this, an arbitrary Lagrangian-Eulerian (ALE) method is implemented to simulate the indentation of

the solid material in the context of atomic force microscopy, capable of predicting physical parameters.

Next, the second approach is developed to describe the interaction between a two-phase fluid and a

viscoelastic solid, where fluid and solid are defined on separate domains but aligned at the interface

between them. The previously introduced phase field model is used to represent the fluid and an ALE

method is used for the motion of the grid, where the fluid-solid interface moves with flow velocity. A

unified system is solved in all subdomains, which includes both the balance of mass and momentum

and the balance of forces at the fluid-solid interface. Simulations of static and dynamic soft wetting

are subsequently presented, in particular a contact line moving over a substrate with oscillating stick-

slip behavior. This work combines the advantages of phase field and ALE methods for meaningful

simulations and emphasizes validity and numerical stability in all approaches.
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1

Chapter 1

Introduction

1.1 Motivation

The interaction between fluid flows and structures is the subject of versatile studies, as it is widespread

both in nature and in man-made technical constructions. Fluid-structure interaction (short: FSI) is a

term used whenever a solid structure interacts with an internal or surrounding fluid. In this context,

the term “structure” is quite general and can be physically distinguished from a continually deforming

fluid by stronger bonds between the atoms of the material. Of particular interest are deformations of

the structure caused by the flowing fluid, which in turn provide feedback in the flow. Such interactions

are observed, for example, between airplane flights and the air flowing around them, between a pump

and the air inside it, or between deformable blood vessels and the blood flowing through them. To

study such scenarios, many modeling approaches have been developed in the past that involve two

phases: exactly one fluid and exactly one structure. Most of the time, however, nature is more complex.

If only a third phase is allowed in a model, a much wider range of applications opens up. For example,

one could now study the interaction between platelets, blood plasma and blood vessels. Moreover,

one could model scenarios with three states of matter (liquid, solid, gaseous), which is always the case

when, for example, a drop of liquid sits on a deformable solid surface surrounded by air (soft wetting).

Of course, ternary FSI is a broad field and encompasses a rich variety of different problems. A more

specific model assumption motivated by natural scenarios, which is also made in this thesis, is a solid

structure with bulk viscoelasticity. To stay with the examples above: Blood cells and biological cells

in general are commonly assumed to be viscoelastic bodies, and in the field of soft wetting one is

often interested in (visco-)elastic substrates that are easily deformable by capillary forces, see e.g. [1].

When talking about mathematical and numerical methods to simulate such ternary FSI scenarios, one

should first address the interaction of a single fluid phase with a single viscoelastic structure phase.

This alone may be a significant challenge due to material-specific differences of the phases involved.

Then, given a ternary FSI problem, one faces the challenge of finding an appropriate extended method
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for modeling and discretization. This thesis addresses these challenges by providing different methods,

each of which is flexibly extensible and capable of handling a variety of ternary FSI scenarios.

In ternary FSI problems, up to three types of free boundaries can appear between each two phases. In

general, for the classification of numerical representation strategies, the literature often distinguishes

between so-called interface capturing and interface tracking methods. Interface capturing methods

(particularly phase field approaches [2]) use an implicit description of the free boundary and are

often well suited for describing its evolution in complex dynamics. Phase field approaches generally

provide a physically sound description of multi-phase flows and allow arbitrary topological changes

of the (diffuse) free boundaries (see e.g. [3]). Since these are decisive advantages for the applications

considered here, a phase field approach is used throughout this thesis. On the other hand, interface

tracking methods explicitly describe the free boundary and offer different advantages. An important

representative is the arbitrary Lagrangian-Eulerian (short: ALE) method [4], which is used in this

thesis. In contrast to the phase field method, the ALE method gives not a diffuse but a sharp (grid)

representation of the free boundary, which itself is usually moved with the flow velocity. An arbitrary

grid motion can be defined in the bulk domains, mostly aimed at achieving numerical stability. The

ALE method is fast and efficient, although limited to simple geometries. To exploit the advantages of

both approaches and solve ternary FSI problems, combinations of phase field and ALE methods are

used in this thesis.

1.2 Overview of this thesis

Chapter 2 explains basic aspects of the main components in this work. The starting point is a sharp

interface model for incompressible, isothermal two-phase flows with immiscible fluids, as presented in

Sec. 2.1. This is followed by the formulation of a phase field model for two-phase flows in Sec. 2.2.

The phase field model considered here has already been discussed in [5, 6] and is a basis of all

further approaches in this thesis. For a deeper understanding of this model, Sec. 2.2 provides a

step-by-step derivation that couples an evolution equation for the diffuse interface with momentum

and mass conservation of the flow. There, energetic arguments, thermodynamic consistency, and the

approximation to the sharp interface limit are discussed. This section concludes with the summarized

system of equations in Sec. 2.2.6. As soft wetting plays a significant role in this thesis, Sec. 2.3 provides

some basics on this, including in particular a discussion of the contact angle condition used later.

Furthermore, to address the numerical representation of free boundaries, the introductory chapter

closes in Sec. 2.4 with a brief outline of the advanced strategies needed later to simulate ternary FSI

problems.

Next, Chapter 3 turns to a phase field model for binary FSI based on the author’s paper [7]. This

extension of the basic model from Sec. 2.2 allows one of the phases to be modeled as a viscoelastic

structure, with a choice of Kelvin-Voigt or Maxwell viscoelasticity. The evolution of the elastic strain is



1.2. OVERVIEW OF THIS THESIS 3

described by an Oldroyd-B-like equation and neo-Hookean hyperelasticity is assumed, which is known

to give accurate results even for strains up to the order of 100% [8]. The model is thermodynamically

consistent and convergent towards the sharp interface limit. The chapter concludes with several

simulation results to illustrate the method’s potential. Even though only FSI scenarios were simulated,

the model can be easily adapted to simulate any combination between purely viscous, viscoelastic and

purely elastic materials. A specific model extension is presented in Chapter 4 and was published by

the author in [9]. The idea is that by solving two evolution equations for elastic strain, a composite

viscoelastic material is modeled, consisting of both a Maxwell and a Kelvin-Voigt component. Another

special feature is the numerical representation of a specific ternary FSI problem: the indentation of

a rigid spherical indenter in air into the viscoelastic material, simulating atomic force microscopy

(AFM) experiments. The numerical strategy includes a combination of ALE and phase field methods.

This chapter finally provides extensive applications that illustrate how the simulations help to probe

viscoelastic parameters of biological cells and certain synthetic materials.

Lastly, Chapter 5 presents a comprehensive study published by the author in [10] and [11], offering

simulations motivated by soft wetting phenomena. This time, the solid is modeled as a viscoelastic

Kelvin-Voigt material with linear elastic contribution. In addition, a two-phase fluid represented by a

phase field is defined in a separate domain. Capillary forces originating from surface tensions between

all phases involved are included in the model. Together with suitable coupling conditions at the fluid-

solid interface, Sec. 5.2.3 yields a unified model that is discretized and solved in a monolithic manner.

Again, the numerical strategy consists of an individual combination of ALE and phase field methods.

Validity and time step stability are discussed in Sec. 5.4. The subsequent numerical tests encompass

scenarios such as the stationary state of droplets interacting with viscoelastic substrates and liquid

interfaces surfing over viscoelastic substrates. The chapter concludes with a detailed investigation of

stick-slip contact line motion in Sec. 5.5, with the simulations providing new physical insights into

this hitherto poorly understood phenomenon.
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Chapter 2

Basic aspects

As mentioned before, this thesis aims to model various types of three-phase problems. All of these

models will use a classical phase field approach for two-phase flow [5, 6], which will be developed in

Sections 2.1 and 2.2. Note that, in particular, no ternary phase field model is considered here, as was

done e.g. in [12]. In order to represent the third phase, additional approaches will be introduced later.

In the following argumentation, the underlying phase field approach is developed step by step, starting

with the sharp interface model. Moreover, Sections 2.3 and 2.4 summarize aspects of soft wetting and

domain representation methods that are essential for this thesis.

2.1 Sharp interface model for two-phase flow

Figure 2.1: Illustration of the 2D setup.

This thesis basically considers incompressible, isothermal flows of immiscible fluids. With this in mind,

a fundamental model for two-phase flow is introduced in this section. Let the considered domain

Ω ⊆ Rd be divided into two fluid domains Ω0 and Ω1, as illustrated in Fig. 2.1 for two dimensions.

The interface between the subdomains is denoted by Γ, such that Γ = Ω0 ∩ Ω1 and Ω = Ω0 ∪ Ω1 ∪ Γ.

A common velocity field v : Ω → Rd, continuous over Γ, indicates movements in both domains.

Let dt denote the time derivative. Conservation of momentum and mass yield the governing equations
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for two-phase flow:

ρi (dtv+ v · ∇v)−∇ ·
(
ηi
(
∇v+∇vT

))
+∇p = F in Ωi, i=0,1 , (2.1)

∇ · v = 0 in Ωi, i=0,1 , (2.2)

where ρi and ηi denote density and (dynamic) viscosity in Ωi, respectively. Furthermore, p and F

denote pressure and body force defined in Ω, respectively. Density and viscosity are assumed to be

constant in the respective subdomains. As a representative, the density can therefore be defined

in the form ρ : Ω → R, ρ = ρ0χ0 + ρ1(1 − χ0) with constant ρ0, ρ1 and a characteristic function

χ0 : Ω → {0, 1} being 1 in Ω0 and 0 else.

In this section, neither initial conditions nor specific boundary conditions for v and p on ∂Ω will

be defined. Instead, it should only be specified that the outer boundary points stay at their initial

positions for all times, which is essentially the case for later applications in this thesis. In contrast,

the subdomains Ω0 and Ω1 are time-dependent and the movement is implicitly determined by the

interface Γ. The latter is assumed to move with the flow velocity according to dtΓ = v|Γ. An interface

considered in this way is often referred to in the literature as a free boundary. Accordingly, ρ, η and

χ also depend on time. It should be noted that all model applications in this thesis consider free

boundaries that are advected with the hydrodynamic flow.

Furthermore, the following jump conditions across Γ hold:

JvKΓ = 0 (2.3)

J−pI+ η
(
∇v+∇vT

)
KΓ · n = −σκn+∇Γσ (2.4)

with I, σ, κ, n and ∇Γ denoting the identity matrix, the surface tension, the total curvature, the

normal vector to Γ pointing into Ω1 and the surface gradient, respectively. Moreover, JfKΓ = f0 − f1

denotes the jump of a funtion f across Γ. Thus Eq. (2.3) describes the continuity of the velocity field

in Ω. Eq. (2.4) is the interfacial force balance including a possible surface tension force. The term σκn

is responsible for a force that smoothes out regions of strong curvature and minimizes the surface area.

Note that the total curvature is positive for a sphere of Ω0. The term ∇Γσ, also known as Marangoni

force, describes the contribution of a surface tension gradient and consequently vanishes for constant

σ. Given that σ is a quantity defined in the whole domain Ω, the Marangoni term can be calculated

by ∇Γσ = P∇σ with projection matrix P = I− n⊗ n, where ⊗ denotes the dyadic product.

It should be noted that thermodynamic consistency of this system has already been proven, see
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e.g. [13]. This means in particular that the total energy of the system,

Etotal =

∫
Ω

ρ

2
|v|2 dx︸ ︷︷ ︸

kinetic energy

+

∫
Γ
σ dx︸ ︷︷ ︸

surface tension
energy

, (2.5)

is non-increasing in time.

Remark. The free boundary does not necessarily have to be a single closed curve, as exemplified

in Fig. 2.1. Instead, depending on the considered problem, it can take a variety of further shapes. In

particular, the free boundary can have a non-empty intersection Γ ∩ ∂Ω ̸= ∅ with the outer boundary

of the domain. The latter case is of special interest in the context of (soft) wetting, see Sec. 2.3.

In the following section, a diffuse phase field interface is considered instead of a sharp interface Γ.

In this approach the total energy will need to be adjusted, which necessitates a re-examination of

thermodynamic consistency.

2.2 Derivation of a phase field model for two-phase flow

As introduced in the last section, this thesis considers problems with free boundaries. Various strategies

are available to represent the bulk regions and the free boundaries mathematically. Of course, each

of these strategies has its advantages and disadvantages, and the demands of the specific problem

decide which variant should be chosen. Since problems with three bulk regions will be considered in

this thesis, there will ultimately also be up to three different types of free boundaries, each separating

two bulk regions from each other. As discussed later in Sec. 2.4, a combination of two different

representation methods will be useful.

At this point, the phase field approach is first introduced as one of these two methods and the

simplified assumption of two bulk regions is retained. In the following, the basic idea and motivation

of the approach are outlined as a first step. Afterwards, the total energy Eϕ
total of the system will be

developed, which will be shown to converge to the sharp interface energy Etotal (Eq.(2.5)) for decreasing

interface thickness. A mathematical formulation of the phase field function will be presented within

this step. Finally, thermodynamic consistency of the system will be investigated, resulting in a phase

field model for two-phase flow.

2.2.1 Background and motivation

In general, a phase field is a function that can be used to distinguish between several fluid phases. A

two-phase setting similar to that in Sec. 2.1 is considered again here, but without dividing Ω into two

subdomains. The phase field is typically defined as a function ϕ : Ω → R that takes distinct values in
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each of the phases, with a smooth transition across the interface. In this chapter, ϕ is chosen to take

0 in one phase and 1 in the other. As indicated in Fig. 2.2, one desirably obtains narrow interface

regions with rapid phase transitions. The diffuse interface has a finite thickness, and a level set may

be considered as its discrete location, e.g. {x ∈ Ω | ϕ(x) = 0.5}.

Figure 2.2: Principle of a phase field. Top: The color code indicates the phase field function with
ϕ = 1 in the black region and ϕ = 0 in the white region. Bottom: Plot of ϕ over the horizontal line
in the top image, illustrating the smooth but rapid transition across the diffuse phase field interface.

The use of such an auxiliary function has many benefits, that enable a multitude of applications in

physics, biology or materials science. As will be shown in this thesis, the phase field model provides

a physically sound method that can be used to describe systems whose dynamics are governed by

both small-scale interfacial forces and macro-scale bulk forces. Furthermore, a phase field interface

represented in a computational grid is not linked to individual grid points or edges. Consequently, it

can undergo grid-independent topological changes. Moreover, in mathematical models, stress terms

can be easily restricted to single phases or to the interface region, e.g. by multiplication with the

phase field or a norm of its gradient. As a beneficial side effect, a phase field function supports clear

visualization of simulation results using phase dependent color scales. In fact, the use of phase field

models in various branches of natural science continues to grow to this day (see e.g. [3, 14]).

2.2.2 Total energy

In the following sections, a typical procedure for deriving a common phase field model for two-phase

flow will be summarized. For more in-depth details on the arguments used here, see [15].

The change from a sharp to a diffuse interface is accompanied by a change in the interfacial contribution

to the total energy of the system. Thus Eq. (2.5) has to be reformulated as

Eϕ
total = Eϕ +

∫
Ω

ρ

2
|v|2 dx︸ ︷︷ ︸

kinetic energy

(2.6)

with Eϕ denoting the contribution of the diffuse interface which is yet to be determined. Note that
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since the phase field approach allows mixing of the two phases in the narrow interface region, the

velocity field v is now defined as the volume-averaged velocity of this mixture. More on this will be

explained in Sec. 2.2.5 (see also [5]).

According to the requirements for the phase field function described in Sec. 2.2.1, the definition of Eϕ

should take into account that the diffuse interface region should be thin as compared to the domain

size. More generally, it is intended to penalize mixing of the phases. Another physically meaningful

requirement is the penalization of phase transitions, which tends to reduce the interface level set.

This fits with the assumption that enlarging the interface without external forces is energetically

unfavorable.

A common choice that conforms to these conditions is the Ginzburg-Landau energy, defined by

Eϕ
GL :=

∫
Ω

ϵ

2
|∇ϕ|2 + 1

ϵ
W (ϕ) dx (2.7)

with a constant ϵ > 0 referred to as interface thickness. Obviously, the first term of the integrand

penalizes phase transitions. The second term gives a free energy density with a function W (ϕ), which

should be chosen to penalize mixing of the phases. A typical choice is a polynomial of degree four

with local minima at ϕ = 0 and ϕ = 1. Such a polynomial is also referred to as double well potential

and provides the information that phase separation is energetically favorable. Note that Eq. (2.7) is

not yet a definition for Eϕ. Ultimately, one wants to define Eϕ such that it converges to the sharp

interface energy (second part in Eq. (2.5)) for ϵ→ 0. It remains to be clarified to what extent Eϕ
GL is

convergent in this sense. In Sec. 2.2.4 it will finally turn out that Eϕ
GL achieves the desired convergence

behavior by multiplying with a certain constant scaling factor.

2.2.3 Energy minimizer and phase field profile

In order to be able to derive a concrete phase field model for two-phase flow, the total energy Eq. (2.6)

must first be specified. For this purpose, a minimizer for the Ginzburg-Landau energy Eq. (2.7) is

determined in the following. This procedure subsequently yields both a formulation of the phase field

function in a one-dimensional case and a total energy that converges to the sharp interface energy

Eq. (2.5) for ϵ→ 0. As a first step, a stationary profile of the phase field is determined in the present

subsection. The obtained mathematical description of the phase field can later be used to construct

initial conditions for concrete time-dependent problems. As a second step, the convergence of the

energy is covered in Sec. 2.2.4. The arguments used in these two steps can also be found in [16].

Finding a minimizer for Eϕ
GL means finding an expression for ϕ with δEϕ

GL(ϕ) / δϕ = 0 in the sense of
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a variational derivative. The first variation can be calculated by

δEϕ
GL (ϕ) =

d

dλ
Eϕ

GL (ϕ+ λf)
∣∣
λ=0

=
d

dλ

∫
Ω

1

ϵ
W (ϕ+ λf) +

ϵ

2
|∇ (ϕ+ λf) |2 dx

∣∣
λ=0

=

∫
Ω

1

ϵ
W ′ (ϕ+ λf) f + ϵ∇ (ϕ+ λf) · ∇f dx

∣∣
λ=0

=
ibp

∫
Ω

(
1

ϵ
W ′ (ϕ+ λf)− ϵ∆(ϕ+ λf)

)
f dx

∣∣
λ=0

=

∫
Ω

(
1

ϵ
W ′ (ϕ)− ϵ∆ϕ

)
f dx (2.8)

with an arbitrary function f such that Eϕ
GL is uniquely defined on ϕ+λf for sufficiently small λ. Note

that integration by parts (ibp) was used in this calculation, where the occurring boundary integral

contains the term nΩ ·∇ϕ with nΩ denoting the outer normal to the domain boundary ∂Ω. This term

is set to zero here, which means that in case of contact, the diffuse interface always takes a contact

angle of 90° at the outer boundary of the domain. Different contact angles can occur due to a wall

free energy, see [17] and Sec. 2.3.

As a consequence of the calculation above, the variational derivative reads

δEϕ
GL[ϕ]

δϕ
=

1

ϵ
W ′(ϕ)− ϵ∆ϕ . (2.9)

For simplification, a special case with dimension d = 1 and domain Ω = R is considered in the follow-

ing. Setting the variational derivative (2.9) to zero, together with appropriate boundary conditions,

eventually leads to a specific energy minimizing profile for ϕ. The boundary conditions are chosen as

(a) lim
x→−∞

ϕ (x) = 0, (b) ϕ (0) = 0.5, (c) lim
x→∞

ϕ (x) = 1, (d) lim
x→±∞

ϕ′ (x) = 0. (2.10)

Moreover, the double well potential is set to

W (ϕ) = kϕ2 (1− ϕ)2 (2.11)

with a constant k > 0. In order to calculate the minimizer, the variational derivative is multiplied by
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ϕ′(x) and integrated from −∞ to x:∫ x

−∞

[
1

ϵ
W ′ (ϕ (x∗))

]
ϕ′ (x∗)−

[
ϵϕ′′ (x∗)

]
ϕ′ (x∗) dx∗ = 0

=⇒
∫ x

−∞

1

ϵ

d

dx∗
[W (ϕ (x∗))]− ϵ

2

d

dx∗

[
ϕ′ (x∗)2

]
dx∗ = 0

=⇒ 1

ϵ
W (ϕ (x∗))

∣∣x
−∞ − ϵ

2
ϕ′ (x∗)2

∣∣x
−∞ = 0

=⇒ 1

ϵ
W (ϕ (x))− ϵ

2
ϕ′ (x)2 = 0 , (2.12)

where the definition ofW (ϕ) and Eqs. 2.10 (a) and (d) were used in the last implication step. Eq. (2.12)

is referred to as equipartition of energy and states that both energy components in Eq. (2.7)

contribute equally to the total energy of the system. Note that it can also be shown for higher

dimensions that energy minimizers for Eq. (2.7) yield equipartition of energy, i.e.

1

ϵ
W (ϕ)− ϵ

2
|∇ϕ|2 = 0 . (2.13)

Eq. (2.12) implies the ordinary differential equation

ϕ′(x) =

√
2k

ϵ
ϕ (1− ϕ) (2.14)

whose analytical solution is

ϕ∗(x) =
exp (

√
2k x/ϵ)

exp (
√
2k x/ϵ) + C

(2.15)

with a constant C. This constant can be calculated by Eq. (2.10) (b) as C = 1. Hence, Eq. (2.15) can

be reformulated as

ϕ∗(x) =
1

2
+

1

2
tanh

( √
k

ϵ
√
2
x

)
(2.16)

using the definition of the hyperbolic tangent function. Such a function perfectly describes the smooth

transition between the two phases at the interface, as shown in the left part of Fig. 2.3. The parameters

k and ϵ control the order of magnitude of the transition region. Note that since there is no unique

definition of the interface thickness, it cannot generally be equated with ϵ. However, one may e.g.

define the interface region as {x ∈ R | 0.1 < ϕ∗(x) < 0.9}. Consequently, for a typical choice of k = 1

the interface region has the width

ϕ-1∗ (0.9)− ϕ-1∗ (0.1) = ϵ
√
2 ln 9 ≈ 3.1ϵ . (2.17)
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An interface thickness defined in this way is therefore proportional to ϵ. Moreover, Eq. (2.17) suggests

that ϵ approximately describes the order of magnitude of the transition region. In this thesis, ϵ is

therefore referred to as interface thickness.

The result of this simple example is representative for more complex settings in higher dimensions.

If the phase field is viewed along a line perpendicular to the interface, it will locally take a shape

comparable to the hyperbolic tangent profile obtained here. However, prescribing boundary condi-

tions for ϕ(x), ϕ′(x) with x ∈ Rd, d > 1 and complex interface shapes might lead to complicated

mathematical derivations. A typical simple approach is the formulation of a signed distance func-

tion D± : Ω ⊂ Rd → R that describes the desired initial phase field interface [18]. This allows the

boundary conditions Eq. (2.10) to be used again, replacing x by D±. The derivation then analogously

leads to the (scaled) hyperbolic tangent function Eq. (2.16). Consequently, Eq. (2.16) can be used

as a universal description of the phase field profile for higher dimensions and a multitude of interface

shapes.

Note that other value ranges of the phase field function can also be considered. A typical choice is

ϕ ≈ 1 and ϕ ≈ −1 in the bulk regions, together with the double well potential W (ϕ) = k
(
1− ϕ2

)2
.

This yields

ϕ∗(x) =
exp (2

√
2k x/ϵ)− 1

exp (2
√
2k x/ϵ) + 1

= tanh

(√
2k

ϵ
x

)
. (2.18)

Figure 2.3: Graphs with double well potential Eq. (2.11) and parameter k = 1. Left: Tangent
hyperbolic profile Eq. (2.16) with ϵ = 1e−5. The highlighted part of the x-axis indicates the interface
thickness, which is proportional to ϵ. It corresponds to the chosen phase field range 0.1 < ϕ∗ < 0.9.
Right: Energy density in Eq. (2.20).
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2.2.4 Approximation to the sharp interface energy

The arguments in this subsection are consistent with those in [16]. Both the minimizer determined

above and the equipartition of energy can now be entered in Eq. (2.7) to calculate the energy in the

1D example:

E∗ := Eϕ
GL [ϕ∗] =

∫ ∞

−∞

ϵ

2
|ϕ′(x)|2 + 1

ϵ
W (ϕ(x)) dx (2.19)

=
(2.12)

ϵ

∫ ∞

−∞
|ϕ′(x)|2 dx (2.20)

= ϵ

∫ 1

0
|ϕ′| dϕ (2.21)

=
(2.14)

ϵ
√
2k

ϵ

∫ 1

0
ϕ (1− ϕ) dϕ (2.22)

=

√
k

3
√
2
. (2.23)

An advantageous property is the independence of E∗ from epsilon. The energy only depends on the

choice of the double well potential, for which Eq. (2.11) was used in the above calculation. For the

case W (ϕ) = k
(
1− ϕ2

)2
it follows E∗ =

4
3

√
2k.

The energy density is close to zero except in a vicinity of the interface. Moreover, in the passage to

the limit ϵ→ 0 this vicinity becomes narrower and the value at the interface increases. For the double

well potential Eq. 2.11 this is illustrated in the right part of Fig. 2.3. The interface thickness ϵ was

chosen there according to an order of magnitude that is typical for later applications in this thesis (in

m).

With appropriate scaling of the energy density, the convergence of the following terms to the Dirac

delta function δΓ can now be concluded:

1

E∗

(
1

ϵ
W (ϕ) +

ϵ

2
|∇ϕ|2

)
→
ϵ→0

δΓ (2.24)

ϵ

E∗
|∇ϕ|2 →

ϵ→0
δΓ (2.25)

2

ϵE∗
W (ϕ)→

ϵ→0
δΓ (2.26)

|∇ϕ| →
ϵ→0

δΓ. (2.27)

The left-hand side of (2.27) is a commonly used prefactor for terms to be restricted to the interface

region, even in 2D and 3D (see [19]).

Furthermore, as a generalization of (2.24) it was shown in [20] for higher dimensions that minimization

of the diffuse interface energy (2.7) corresponds to a minimization of the sharp interface area in the
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limit ϵ→ 0, i.e.

1

E∗
Eϕ

GL →
ϵ→0

∫
Γ
1 dΓ , (2.28)

where the interface is defined by Γ = {x ∈ Rd|ϕ(x) = 0} ∩ {x ∈ Rd|ϕ(x) = 1} for ϕ ∈ {0, 1} almost

everywhere. Note here that the phase field in the limit ϵ→ 0 no longer has a smooth transition region,

but a jump at the interface. This can be easily seen from the 1D profile Eq. (2.16):

lim
ϵ→0

ϕ∗(x) =


1 x > 0

0.5 x = 0

0 x < 0 .

Finally, the previously unknown energy contribution Eϕ given in Eq. (2.6) can now be formulated as

Eϕ =
σ

E∗
Eϕ

GL =

∫
Ω

σ

E∗

(
1

ϵ
W (ϕ) +

ϵ

2
|∇ϕ|2

)
dx (2.29)

with constant surface tension σ. Accordingly, the total energy of the system reads

Eϕ
total =

∫
Ω

ρ

2
|v|2︸ ︷︷ ︸

kinetic energy

+
σ

E∗

(
1

ϵ
W (ϕ) +

ϵ

2
|∇ϕ|2

)
︸ ︷︷ ︸

diffuse interface energy

dx . (2.30)

Inserting the surface tension σ at this point ensures the convergence of the total energy against the

sharp interface energy (2.5),

Eϕ
total →ϵ→0

Etotal , (2.31)

which follows with (2.28).

Note that in many places in the remainder of this thesis, a scaled version of surface tension will be

referred to as follows:

σ̃ =
σ

E∗
. (2.32)

2.2.5 Thermodynamic consistency

This subsection is the final step in the derivation of the phase field model for two-phase flow. To be

consistent with thermodynamics, the total energy Eϕ
total given in the previous subsection should not

increase in time. For an investigation to this end, the time derivative of the energy is calculated in

the following. This calculation uses an evolution equation for the phase field, which is formulated in a
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first preparatory step. For an in-depth discussion on the argumentation in this subsection, see [5, 6].

Evolution of the phase field

A condition is now introduced that describes the desired time-dependent behavior of the phase field.

This condition is intended to ensure phase separation in the manner described earlier. It is also

intended to prevent, for example, a bubble with ϕ ≈ 1 from shrinking and eventually disappearing,

which would result in ϕ ≈ 0 everywhere in the domain. More generally, the phase field should be

described as a conserved quantity.

For these reasons, let ϕ = ϕ (x, t) with x ∈ Ω now be a space- and time-dependent function whose

evolution obeys

dtϕ+ v · ∇ϕ+∇ · j = 0 in Ω (2.33)

with a yet unspecified flux j. Note that the material time derivative dt +v · ∇ was chosen here, which

couples the phase field to the hydrodynamic flow velocity. Eq. (2.33) states that ϕ is a conserved

quantity in Ω, where the flux describes the way that this quantity flows. The flux ultimately determines

how the phase field is distributed over the domain. The choice for common diffusion would be j = D∇ϕ,
which yields the diffusion equation dtϕ + v · ∇ϕ = −D∆ϕ for a constant diffusion parameter D > 0

(also referred to as Fick’s law). However, this would contradict the requirement to avoid mixing

the two phases. An expression for the flux must therefore be found that provides the desired phase

separation. The calculation in this subsection will eventually lead to a thermodynamically consistent

choice of the flux.

System of equations to be specified

The facts discussed so far can be organized in the following way. The system of equations

∂• (ρ(ϕ)v)−∇ ·
(
η(ϕ)

(
∇v+∇vT

))
+∇p = F (conservation of momentum) (2.34)

∇ · v = 0 (incompressibility) (2.35)

∂•ϕ+∇ · j = 0 (conservation of ϕ) (2.36)

holds in Ω, where the material derivative dt+v ·∇ is replaced with ∂•. The force F and the flux j are

yet unknown quantities. Equations (2.34) - (2.36) are used below in the calculation of the energy time

derivative. Thus F and j will appear in the resulting formulation of dtE
ϕ
total. Finally, an appropriate

choice for F and j can be found given the condition

dtE
ϕ
total = dt

(∫
Ω

ρ(ϕ)

2
|v|2 + σ

E∗

(
1

ϵ
W (ϕ) +

ϵ

2
|∇ϕ|2

)
dx

)
≤ 0, (2.37)

that ensures a non-increasing energy.
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Density and viscosity are now phase-dependent quantities that may be interpolated e.g. by

η (ϕ) = ϕη1 + (1− ϕ)η0 ,

ρ (ϕ) = ϕρ1︸︷︷︸
=: ρ̃1(ϕ)

+ (1− ϕ)ρ0︸ ︷︷ ︸
=: ρ̃0(ϕ)

,

where ρ1, ρ0, η1 and η0 denote the (non-negative) constant values in the respective phases. ρ̃i(ϕ)

denotes the portion of the density field associated with phase i. The interpolations will later be

adjusted in the extended models presented in this thesis.

Note that Eqs. (2.34) and (2.35) differ from those in the sharp interface approach in Sec. 2.1. In

particular, Ω is not divided into two subdomains, and Ωi is approximated by the domain where

ϕ ≈ i. Partial mixing of the macroscopically immiscible fluids occurs in the thin interfacial region.

As indicated by the density interpolation above, there is no constant density field in either phase, in

contrast to the sharp interface model. For the latter, the incompressibility condition applies in each

of the two phases, i.e. ∇ · v = 0 in Ωi for i = 0, 1. In the present case of partial mixing, however, the

mass conservation equation dtρ̃i +∇ · (ρ̃ivi) = 0 is assumed for the material represented by phase i.

Here, the term ρ̃ivi describes the mass flux of this material with a corresponding flow velocity vi,

see [5, 6, 21] for more details on the theory of mixture flows. According to [5], v is assumed to be a

volume-averaged velocity for this two-phase mixture, which implies the incompressibility condition

Eq. (2.35) in the whole domain Ω. It can be defined as v = c0v0+c1v1, where the factors c0, c1 denote

volume fractions with c0 + c1 = 1. Here, the volume fractions are set to c0 = ρ̃0(ϕ)/ρ0 = 1 − ϕ and

c1 = ρ̃1(ϕ)/ρ1 = ϕ. Note that ρi represents the constant density of phase i in the unmixed state, i.e.

in the sharp interface limit. The incompressibility condition can now be inferred by

∇ · v =

1∑
i=0

1

ρi
∇ · (ρ̃ivi) =

1∑
i=0

1

ρi
(−dtρ̃i) = −dt

1∑
i=0

ρ̃i
ρi

= −dt 1 = 0 .

Remark. Conservation of mass of this non-constant density system is given by Eqs. (2.35) and

(2.36), where the validity of both equations implies the reformulated versions

∂•ρ (ϕ) +∇ ·
(
ρ′(ϕ)j

)
= 0 ,

dtρ(ϕ) +∇ ·
(
ρ(ϕ)v+ ρ′(ϕ)j

)
= 0 ,

see [5] for details. Note that because of the above interpolation of the density, ρ′(ϕ) = ρ1 − ρ0 applies

here. In the case of constant density, mass conservation is already given by ∇ · v = 0.
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Computation of force and flux

The computation of force and flux is based on [7]. In this calculation, conditions (2.34) - (2.36) are

inserted. Finally, a choice of F and j that satisfies condition (2.37) is made. The following identities

will be useful:

∇v :
(
∇v +∇vT

)
=

1

2

∣∣∇v +∇vT
∣∣2 (2.38)

∂•ρ(ϕ) = ρ′(ϕ)∂•ϕ (2.39)

∂•
(
ρ(ϕ)

2
|v|2

)
=

1

2
∂• (ρ(ϕ)) |v|2 + ∂• (v) · ρ(ϕ)v

= ∂• (ρ(ϕ)v) · v − |v|2

2
∂•ρ(ϕ) (2.40)

∂• (|∇ϕ|) = 1

|∇ϕ|
(∇ϕ · ∇(dtϕ) + (v⊗∇ϕ) : ∇∇ϕ) , (2.41)

where | · | in (2.38) denotes the Frobenius norm and : in (2.41) the Frobenius inner product. In

the following computation of the energy time derivative dtE
ϕ
total, occuring boundary integrals will

be neglected that arise from integration by parts, as appropriate boundary conditions are assumed.

Furthermore, a closed system is assumed, i.e. the domain Ω moves with the flow field, which holds in

particular if v · nΩ = 0 at the outer boundary ∂Ω (nΩ denoting the outer normal). This assumption

simplifies the calculations since material derivatives will appear under the integral. As a first step,

the time derivative of the kinetic energy is determined:

dt

∫
Ω

ρ(ϕ)

2
|v|2 dx =

(2.40)

∫
Ω
∂•(ρ(ϕ)v) · v − |v|2

2
∂•ρ(ϕ) dx

=
(2.34)

∫
Ω

(
F+∇ ·

(
η(ϕ)

(
∇v +∇vT

))
−∇p

)
· v − |v|2

2
∂•ρ(ϕ) dx

=

∫
Ω
F · v − η(ϕ)

(
∇v +∇vT

)
: ∇v + p∇ · v − |v|2

2
∂•ρ(ϕ) dx

=

∫
Ω
−η(ϕ)

2

∣∣∇v +∇vT
∣∣2 + F · v +

|v|2

2
ρ′(ϕ)∇ · j dx , (2.42)

where Eqs. (2.35), (2.36), (2.38) and (2.39) were used in the last step. Regarding the occuring boundary

integrals, either no flow across the boundaries, v|∂Ω = 0, or no force, i.e.

(
η(ϕ)

(
∇v +∇vT

)
− pI

)
· nΩ = 0
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was assumed here. The next step is the time derivative of the diffuse interface energy:

dtE
ϕ =

σ

E∗

∫
Ω
∂•
(
ϵ

2
|∇ϕ|2 + 1

ϵ
W (ϕ)

)
dx

=
(2.41)

σ

E∗

∫
Ω
ϵ∇ϕ · ∇(dtϕ)− ϵ(v · ∇ϕ)∆ϕ− ϵ∇ϕ · ∇v · ∇ϕ+

1

ϵ
W ′(ϕ)∂•ϕ dx

=
σ

E∗

∫
Ω

(
ϵ∇ϕ · ∇∂•ϕ− ϵ∇ϕ · ∇v · ∇ϕ+

1

ϵ
W ′(ϕ)∂•ϕ

)
dx

=
σ

E∗

∫
Ω

(
−ϵ∆ϕ+

1

ϵ
W ′(ϕ)

)
∂•ϕ+ v · (∇ · (ϵ∇ϕ⊗∇ϕ)) dx

=
(2.36)

∫
Ω
−δE

ϕ

δϕ
∇ · j+ v · (∇ · (ϵσ̃∇ϕ⊗∇ϕ)) dx , (2.43)

where δEϕ/δϕ = σ̃ (−ϵ∆ϕ+W ′(ϕ)/ϵ) with σ̃ = σ/E∗ denotes the (scaled) variational derivative of

the interfacial energy, see Eq. (2.9). The term δEϕ/δϕ is also referred to as chemical potential. Note

that the boundary condition nΩ · ∇ϕ = 0 on ∂Ω was used here, which effectively leads to a contact

angle of 90° at the outer boundary of the domain. A more general contact angle condition is discussed

in Sec. 2.3.

Summing up the calculated expressions, the time derivative of Eϕ
total reads

dtE
ϕ
total =

∫
Ω
−η(ϕ)

2

∣∣∇v +∇vT
∣∣2 + F · v +

|v|2

2
ρ′(ϕ)∇ · j (2.44)

−δE
ϕ

δϕ
∇ · j+ v · (∇ · (ϵσ̃∇ϕ⊗∇ϕ)) dx

Furthermore, two terms in (2.44) can be reformulated applying integration by parts and using that

ρ′(ϕ) is constant:∫
Ω

|v|2

2
ρ′(ϕ)∇ · j =

∫
Ω
−ρ′(ϕ)v · (∇v · j) =

∫
Ω
ρ′(ϕ)v · ∇ · (v ⊗ j) dx ,∫

Ω
−δE

ϕ

δϕ
∇ · j dx =

∫
Ω
j · ∇

(
δEϕ

δϕ

)
dx ,

where no flux j · nΩ = 0 at the outer boundary of the domain is assumed.

This finally yields the total energy time derivative

dtE
ϕ
total =

∫
Ω
−η(ϕ)

2

∣∣∇v +∇vT
∣∣2 + j · ∇

(
δEϕ

δϕ

)
(2.45)

+ v ·
[
F+ ρ′(ϕ)∇ · (v⊗ j) + ϵσ̃∇ · (∇ϕ⊗∇ϕ)

]
dx .
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Hence, choosing

F = −ρ′(ϕ)∇ · (v ⊗ j)− ϵσ̃∇ · (∇ϕ⊗∇ϕ) (2.46)

j = −m(ϕ)∇
(
δEϕ

δϕ

)
(2.47)

for some mobility function m(ϕ) > 0 leads to non-increasing energy,

dtE
ϕ
total = −

∫
Ω

η(ϕ)

2

∣∣∇v +∇vT
∣∣2 + 1

m(ϕ)
|j|2 dx ≤ 0. (2.48)

2.2.6 Navier-Stokes-Cahn-Hilliard model

The latter subsections allow for the formulation of a thermodynamically consistent diffuse interface

model for incompressible two-phase flow with constant surface tension and phase-dependent density

and viscosity. The momentum conservation equation is referred to as Navier-Stokes equation, and the

conservation of the phase field as Cahn-Hilliard equation. The governing system of equations reads

∂• (ρ(ϕ)v)− ρ′(ϕ)∇ · (v⊗m(ϕ)∇q)

−∇ ·
(
η(ϕ)

(
∇v+∇vT

))
+∇p = −σ̃ϵ∇ · (∇ϕ⊗∇ϕ) (2.49)

∇ · v = 0 (2.50)

∂•ϕ = ∇ · (m(ϕ)∇q) (2.51)

σ̃

(
1

ϵ
W ′(ϕ)− ϵ∆ϕ

)
= q , (2.52)

with constant ρ′(ϕ), constant σ̃ = σ/E∗, and q = δEϕ/δϕ denoting the chemical potential. The

mobility m(ϕ) > 0 can be chosen arbitrarily. However, a thoughtless choice, while maintaining ther-

modynamic consistency, could render the phase field unusable and prevent this diffuse interface model

from converging to the sharp interface model. The mobility should be small enough that the phase

field is primarily advected with the hydrodynamic flow, and big enough that the phase field takes

a tangent hyperbolic profile with the desired interface thickness. These limits depend strongly on

space and time scales, and in practice are often determined by trial and error. Moreover, this model

converges to the sharp interface model in Sec. 2.1 only by choosing certain mobilities. For example,

for m =M0 constant, the model would not converge. In this case, minimization of the diffuse interface

energy would be dominant for ϵ → 0, whereby the interface strives for spherical shapes independent

of the surrounding flow. Consequently the phase field would not primarily be advected with the
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hydrodynamic flow for small ϵ. According to [7, 5], common choices that ensure convergence are

m(ϕ) = ϵM0 and (2.53)

m(ϕ) =M0 [ϕ(1− ϕ)]+ , (2.54)

where [·]+ denotes the positive part of the quantity in brackets. Note that the values of ϕ can slightly

exceed the interval [0, 1], since in general the phase field does not satisfy a maximum principle. In

this thesis, the choice of mobility corresponds to Eq. (2.53). In particular, no ϕ - dependent mobility

is considered.

For completeness, the boundary conditions at the solid boundary ∂Ω are repeated here:

v = 0 (no flow across the boundary), (2.55)

nΩ · ∇q = 0 (no flux), (2.56)

nΩ · ∇ϕ = 0 (contact angle 90°). (2.57)

Moreover, in practical applications one often defines an initial condition on ϕ = ϕ(x, t) according to

ϕ(x, 0) = ϕ∗(D±(x)) (2.58)

with a tangent hyperbolic function ϕ∗ and a signed distance function D± that describes the desired

initial interface, see Eq. (2.16) or (2.18).

2.3 Soft wetting

2.3.1 Background

In the following, basic information about wetting is briefly introduced, which has already been exten-

sively described in the available literature, see e.g. [22, 23].

Everywhere in nature we encounter three-phase constellations in which a gas, a liquid and a solid

material come together. A typical example is a liquid droplet surrounded by air, sitting on a solid

surface and forming a three-phase contact line. A balance between adhesive and cohesive forces

determines to what extent the droplet connects to the surface. The term wetting generally refers to

the ability of a liquid to be in contact with a solid. It is not limited to liquid-gas but also includes

immiscible liquid-liquid constellations, e.g. an interface between water and oil coming into contact

with glass. Wetting phenomena are highly multiscale in terms of space and time. While the contact

line region may be in nanoscale or even smaller, droplets itself are typically in the millimeter range.

And the time scale on which a liquid droplet typically assumes its steady state when it touches a solid

surface is tiny compared to the characteristic time scale of many macroscopic processes, such as a
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droplet rolling over a sloping surface.

A distinction is made between the two limit cases non-wetting and complete wetting. Staying with

the droplet perspective, non-wetting can be illustrated by water-repellent surfaces on which a droplet

rolls off. For example, the leaves of the lotus flower have almost non-wetting properties and are the

namesake of the lotus effect [24]. Note, however, that even lotus leaves do not exhibit non-wetting in a

strict sense. Due to very weak adhesion forces, a tiny fraction of the water droplet surface is in contact

with the leaf. A typical illustration of complete wetting is automotive paint. There, a droplet should

not roll off the surface, but rather spread out completely over the surface. The extent of wetting is

influenced by the surface energies. The smaller the energy of the solid-liquid interface in relation to

the solid-ambient interface, the more likely a droplet tends to wet the surface completely in order to

minimize the energy.

A common relation between the surface energies and the contact angle of a droplet on a flat, rigid

surface is Young’s equation, which is frequently used in the literature. Another commonly used relation

is Neumann’s law, which holds for three liquid phases. Both cases can be found in Fig. 2.4. Note

that the second equation of Neumann’s law for β = 180° reduces to Young’s equation. Neumann’s

law applies under the conditions that the three angles add up to 360° and that one surface tension

value (in N/m) must not be greater than the sum of the other two.

While the contact angle relations of these two cases are well known, things get more complicated when

droplets come into contact with soft elastic solids. This case is referred to as soft wetting in this thesis.

Compared to the wetting of rigid surfaces, the understanding of the dynamic processes involved in soft

wetting is not as mature and is currently the subject of intensive research, see [25] for a review. The

transition from a rigid substrate (infinite elasticity) to a fluid phase (zero elasticity) with a soft-elastic

substrate in between is discussed in [23], considering the validity of Young’s equation and Neumann’s

law. Formally, the elastocapillary length

ℓ = σ/G (2.59)

with surface tension σ and elastic (shear) modulus G is important here. In [23] it was suggested that

the transition from Young’s equation to Neumann’s law occurs when the elastocapillary length is of

the order of molecular interactions. From the latter work, it can be concluded that the contact angle

is approximately described by Neumann’s law (or a variation of it) if ℓ is sufficiently larger than the

molecular scale. This results from the fact that capillary forces, compared to elastic forces, can prevail

locally at the contact line and deform the elastic substrate according to the surface tensions involved.

In this respect, the term “soft wetting” may also be defined for materials that are soft enough such

that the elastocapillary length is sufficiently large, taking into account typical surface tension values

(e.g. of water or oil). The elastocapillary length itself gives a characteristic length scale within which

the substrate is deformed.
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In Chapter 5 of this thesis, soft wetting scenarios are simulated in which the phase field interface takes

a certain angle with a boundary part of the computational domain (cf. Fig. 2.4). The parameters are

chosen such that ℓ is several orders of magnitude larger than the molecular scale. It turns out that

the results fit well with Neumann’s law. It is important to ensure that the interface thickness ϵ as

a parameter of the phase field model does not conflict with the physically motivated elastocapillary

length. Therefore, ϵ is chosen sufficiently smaller than ℓ in later settings, which ensures the correct

formation of the contact angle.

Young's equation: Neumann's law:

Figure 2.4: Binary fluid modeling a droplet in contact to a boundary part S. The color indicates
the phase field ϕ. The symbols of the (constant) surface tension parameters are positioned at the
associated places: σ is the surface tension of the phase field interface and σi is that of the subset of S
in contact with the phase described by ϕ = i (for i = 0, 1). In addition, common relations are stated
that predict stationary three-phase contact angles, the formation of which depends only on surface
tension. Left: Rigid boundary ∂Ω. Right: Deformable bottom boundary S ⊂ ∂Ω.

2.3.2 Deformable boundary and contact angle condition

In the following, a typical wetting scenario is illustrated by a rectangular domain whose bottom

boundary S ⊂ ∂Ω represents a substrate wetted by a droplet, see Fig. 2.4. The result of this

subsection is a contact angle condition for the model from Sec. 2.2.6, describing the contact angle

of the intersection of the phase field interface with S. This condition is valid for both a rigid and a

deformable bottom boundary.

So far in this chapter, a closed system with rigid boundary ∂Ω has been considered. Here, v = 0 is

assumed on the rigid boundary part ∂Ω \ S, while the part S is either also rigid or deforms with a

non-zero flow velocity. Note that in the latter case the zero flow condition (2.55) does not apply on

S. In both cases, Ω is still a closed system, and the calculation of the energy time derivative dtE
ϕ
total

in Sec. 2.2.5 can be used here.

To be more specific, the following boundary integrals result from integration by parts in the calculation
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in Sec. 2.2.5 :∫
S
(v⊗ nS) :

(
−pI+ η(ϕ)

(
∇v+∇vT

))
dS (from kinetic energy Eq. (2.42)) , (2.60)

σ̃ϵ

∫
S
(nS · ∇ϕ) ∂•ϕ− v · ((∇ϕ⊗∇ϕ) · nS) dS (from diffuse interface energy Eq. (2.43)) , (2.61)

with nS = nΩ|S denoting the outer surface normal to S. The first occuring boundary integral (2.60)

can be neglected if S is assumed rigid, i.e. v|S = 0. Furthermore, in contrast to the previous section, the

boundary integral (2.61) is non-zero this time since the restriction to a 90° contact angle (nΩ ·∇ϕ = 0)

should be removed on S. This holds regardless of whether S is deformable or not. The 90° contact angle
condition should only remain on ∂Ω \ S. Note that in the calculation in Sec. 2.2.5 further boundary

integrals occured including the term j ·nΩ, all of which are neglected here due to the assumed no-flux

condition.

Moreover, note that in case of a deformable boundary part S, the deformation is influenced by a

surface tension force, which contributes to the formation of the contact angle. The second integrand

term in (2.61) gives rise to this force. Additionally, a surface tension of S should be introduced. This

can be realized by the wall energy contribution in a general form,

ES =

∫
S
σS(ϕ) dS ,

with some interpolation σS(0) = σ0 and σS(1) = σ1, where σ0 and σ1 denote constant surface tension

parameters belonging to the respective phases (see Fig. 2.4). The specification of σS(ϕ) will be derived

in the next subsection. The time derivative can be calculated by

dtES =

∫
S
(σS(ϕ)κnS −∇SσS(ϕ)) · v+ σ′S(ϕ)∂

•ϕ dS , (2.62)

with κ and ∇S denoting the total curvature of S and the surface gradient with respect to S, respec-

tively. In case of deformability, the first two (velocity-dependent) integrand terms in Eq. (2.62) give

rise to a force acting on S, comparable to Eq. (2.4). Note that the term total curvature is occasionally

also referred to in the literature as mean curvature, which in both cases refers to the sum of the

principal curvatures of the surface under consideration [26]. It can also be equated to κ = ∇S · nS ,

where ∇S · denotes the surface divergence with respect to S.

Adding up a first part of the terms from (2.60)-(2.62) yields an additional contribution to the energy

time derivative on S, namely

v ·
(
−pnS + η

(
∇v+∇vT

)
· nS −∇SσS + σSκnS − σ̃ϵ (∇ϕ⊗∇ϕ)nS

)
. (2.63)

This contribution vanishes for rigid boundaries due to v|S = 0. To maintain the thermodynamic
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consistency of the system, it is sufficient to set (2.63) to zero. Therefore, in contrast to the model in

Sec. 2.2.6, the change to a deformable boundary part S necessitates the replacement of the no-flow

condition (2.55) on S by

SΩ · nS −∇SσS + σSκnS = 0 (2.64)

with the bulk stress contribution SΩ := −pI+ η
(
∇v+∇vT

)
− σ̃ϵ∇ϕ⊗∇ϕ, whose divergence appears

in the momentum equation (2.49).

The remaining boundary terms, namely the third term in Eq. (2.62) together with the first term in

Eq. (2.61) lead to the condition

∂•ϕ
(
σ̃ϵnS · ∇ϕ+ σ′S(ϕ)

)
≤ 0 on S (2.65)

in terms of thermodynamic consistency. This justifies the dynamic contact angle condition

∂•ϕ = −ν
(
σ̃ϵnS · ∇ϕ+ σ′S(ϕ)

)
on S (2.66)

with a relaxation parameter ν > 0. The limit ν → ∞ yields the static contact angle condition

σ̃ϵnS · ∇ϕ = −σ′S(ϕ) on S . (2.67)

Note that this replaces the boundary condition (2.57) to remove the 90° contact angle limitation.

The setting considered here will be extended in Chapter 5. There, the phase field approach will be con-

nected to an ALE approach, modeling a two-phase fluid Ωf in contact to a deformable, (visco-)elastic

solid substrate ΩS with a sharp free boundary Γ = Ωf ∩ ΩS in between (see also Sec. 2.4 for a brief

overview of this method). As will be demonstrated, the simulated droplets in Chapter 5 reach an

equilibrium state. In the absence of elasticity, the stationary angles are determined by the surface

tension values, which is ensured by the above contact angle conditions.

Remark. Note that the static contact angle condition can also be derived from the constrained mini-

mization problem

σ̃

∫
Ω

ϵ

2
|∇ϕ|2 + 1

ϵ
W (ϕ) dx+

∫
S
σS(ϕ) dS → min

such that

∫
Ω
ϕ dx = const.

in the stationary case, i.e. v = 0 and dtϕ = 0, see [27] for details.
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2.3.3 Wall energy specification

Rigid boundary

In the following, a specification of the wall energy density σS(ϕ) is obtained for the case of a flat, rigid

bottom boundary S.

A desirable property for the wetting scenarios here is that each level set of the phase field intersects

the rigid boundary with the same angle. This can be formulated by

nS · ∇ϕ
|∇ϕ|

= cos θ . (2.68)

In addition, Young’s equation from Fig. 2.4 should apply. These two assumptions are consistent

with the static contact angle condition Eq. (2.67), see [27, 28] for details. With this information, a

formulation of σ′S(ϕ) can first be determined:

σ′S(ϕ) =
(2.67)

− σ̃ϵnS · ∇ϕ =
(2.68)

σ̃ϵ|∇ϕ|σ1 − σ0
σ

=
(2.13),(2.11)

σ̃ϵ

√
2k

ϵ
ϕ(1− ϕ)

σ1 − σ0

σ̃(
√
k/(3

√
2))

= 6ϕ(1− ϕ)(σ1 − σ0) ,

where the equipartition of energy Eq. (2.13) is used. Note that the scaling of the physical surface

tension σ is chosen as described in Sec. 2.2, i.e. σ = E∗σ̃ with E∗ =
√
k/
(
3
√
2
)
and double well

parameter k. The above result leads to the definition of the wall energy density as

σS(ϕ) = (σ1 − σ0)(3ϕ
2 − 2ϕ3) + σ0 , (2.69)

and therefore the conditions σS(0) = σ0 and σS(1) = σ1 are fulfilled. For further details on the wall

energy contribution see e.g. [29, 30].

Deformable Boundary

As opposed to a rigid boundary, the normal nS on a deforming boundary part S varies in space and

time which introduces additional numerical challenges and errors. In the present model as well as

in recent soft wetting approaches [28, 31, 32] the three-phase contact line singularity is regularized

by a phase field interface and therefore not exactly represented. Consequently, in contrast to a rigid

boundary, the calculation of nS depends on both the grid accuracy at the contact line and the diffuse

interface thickness. This affects the contact angle conditions Eqs. (2.66) and (2.67). These challenges

raise the question of whether Neumann’s law (Fig. 2.4) can be confirmed by numerical simulations,

and if so, with what accuracy. Moreover, it should generally be considered to what extent the bulk
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elasticity of deformable substrates contributes to the stationary contact angle.

In fact, the universality of Neumann’s law for the wetting of soft-elastic substrates has already been

confirmed numerically. A strategy presented in [33], called goal-adaptive finite-element method, applies

a localized force with a remarkably fine grid resolution in the vicinity of the contact line singularity.

The results suggest that the force balance at the contact line, i.e. the formation of the stationary

contact angle, is governed solely by the values of surface tension (here: σ, σ1 and σ0). In particular,

an influence of bulk elasticity on the stationary angle could be excluded in the latter work.

It should be noted here that in the phase field approaches in [28, 31] and in this thesis, Neumann’s

law does not appear directly in the governing equations of the models. In all these works the static

contact angle condition Eq. 2.67 is implemented, which corresponds to Young’s equation (see [27,

28]). Furthermore, the grid resolution at the contact line is significantly finer in the goal-adaptive

finite-element method [33] than in the aforementioned phase field approaches. Nevertheless, these

phase field approaches are capable of providing convincingly good agreement of numerical results

with Neumann’s law as long as the substrate is not elastic. In Sec. 5.4.3, this is demonstrated by

simulations of droplets on a fluid substrate. Note further that Neumann’s law can be interpreted as

a generalization of Young’s equation for three deformable interfaces, which can be proven by setting

β = π in the second equation (right part in Fig. 2.4).

This thesis follows the approach in [28] and uses the contact angle condition (2.67) together with an

appropriate wall energy density (here (2.69)) for both rigid and deformable boundaries.

2.4 Numerical representation of free boundaries

This section briefly outlines the way ternary fluid-structure interaction problems are numerically rep-

resented in this thesis.

When it comes to the numerical representation of a free boundary on a computational grid, one can

distinguish between an implicit and an explicit description of the boundary. Implicit descriptions use

an additional (scalar) function. In Sec. 2.2 the phase field model was introduced as such a method.

The phase field function assigns a scalar value to each grid point of a computational domain. As

discussed in Sec. 2.2, the exact position of the free boundary can then be described e.g. as a level set

with ϕ = 0.5, while the bulk phases are represented by ϕ ≈ 1 and ϕ ≈ 0. The diffuse interface can

thus be simulated moving freely on a rigid (Eulerian) grid, allowing for topological changes such as

droplet merging or droplet splitting. However, this decisive advantage may be accompanied by losses

of efficiency if a high resolution of the grid at the free boundary makes numerical calculations more

expensive.

Further examples of methods with implicit description of the free boundary are the level-set method

[34] or the volume-of-fluid method [35].
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Figure 2.5: Schemes of phase field -ALE settings used in this thesis. The images each show a section
of an exemplary computational grid. The phase field is denoted by ϕ, and Γ denotes a sharp boundary
whose grid points are considered to be material points. Left: Setting in Chapter 4. Right: Setting
in Chapter 5, where Ωf and ΩS denote seperate domains (fluid and solid) that are aligned at Γ.

An explicit description can be given, for example, by identification of the free boundary with grid

points of the computational domain, which are modeled as material points and thus move with flow

velocity. This yields a sharp representation of the free boundary. A common choice is the ALE

method (arbitrary Lagrangian-Eulerian) [4], which will also be used in this thesis. A typical setting is

illustrated in Fig. 2.1: A computational domain Ω with rigid boundary ∂Ω is considered, within which

the free boundary Γ moves with flow velocity. The grid points on ∂Ω correspond to the Eulerian view,

those on the free boundary Γ to the Lagrangian view. The bulk phases Ω1 and Ω0 are seperated from

each other but aligned on Γ. In order to keep a proper shape of the grid in the bulk phases, the grid

motion can there be defined as a harmonic extension of the boundary motion.

Another example of an explicit description of free boundaries is the immersed-boundary method [36].

Such methods are fast and efficient in general, but limited to simple geometries, since numerical grids

are usually not allowed to be distorted arbitrarily for stability reasons.

In this thesis, combinations of the phase field approach and the ALE method are used to describe the

(up to three different types of) free boundaries that move between each two adjacent bulk phases. The

first of two different settings contains the contact between two solids and a fluid. One of the solids is

represented by the numerical grid and moved with the ALE method, the other one is described together

with the fluid by a phase field. It is important to emphasize here that the phase field approach can be

used not only to describe interfaces between two fluids, but also to describe the interface between a

fluid and an elastic solid. A corresponding model is developed in Chapter 3. The first phase field -ALE

setting is exemplarily shown in the left part of Fig. 2.5. This illustration is oriented to Chapter 4,

where one of the solids is represented as a hole in the numerical grid.

In the second setting, the three phases consist of a two-phase fluid, represented by a phase field, and

an elastic solid. The fluid domain Ωf and the elastic solid domain ΩS are separated from each other,
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but aligned at the sharp interface Γ, see the right part of Fig. 2.5. The sharp interface is moved with

the ALE method. As discussed in Chapter 5, a wide variety of soft wetting scenarios can be simulated

with this phase field -ALE setting.
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Chapter 3

Development of a phase field model for

fluid-structure interaction (FSI)

This chapter introduces a phase field model for binary fluid–structure interaction (FSI). It is an exten-

sion of the phase field model for two-phase flows presented in Sec. 2.2 with the additional contribution

of a phase-dependent elasticity. The model developed in the present chapter forms the basis for the

application in Chapter 4. The content presented here was previously published by the author in

Mokbel et al. [7] with minor variations in notation and structure. Further background details on the

mathematical model can also be found in [5].

At the beginning of the chapter, an introduction to modeling approaches for FSI problems is given, in

particular clarifying the advantages of the present method and its differences from the popular ALE

method. Sec. 3.2 starts by recapitulating the sharp-interface equations for FSI, where the momentum

and mass balance equations are identical to those previously introduced in Sec. 2.1. The equations

are extended to a phase field formulation with phase-dependent elastic stress in Sec. 3.3. The model

is based on a thermodynamically consistent derivation (Sec. 3.4), which relates to the arguments in

Sec. 2.2.5. Subsequently, an axisymmetric formulation of the problem is introduced, described in

Sec. 3.5 including the corresponding time discretization. Numerical tests are presented in Sec. 3.6.

Special focus is put on a comparison to the ALE reference solution of an elastic cell traversing a

cylindrical channel. After this validation, the potential of the method is demonstrated in Sec. 3.7, by

simulating

(i) a solid object moving through a fluidic channel without grid remeshing,

(ii) FSI with strong surface energy, i.e. surface tension forces,

(iii) contact dynamics of a bouncing ball, and

(iv) adhesion of an elastic object to a rigid wall.
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The chapter closes with conclusions on the applicability of the method in Sec. 3.8.

3.1 Introduction

In fluid-structure interaction (FSI) problems, a solid structure interacts with an internal or surrounding

fluid. Such problems arise in many scientific and engineering applications, for example in aeroelasticity,

sedimentation, biological fluids and biomechanics, see [37] for a review. Yet the modeling of FSI

problems is mathematically challenging due to the fundamental differences of the involved materials:

a continually deforming (i.e. flowing) fluid, as opposed to a structurally rigid solid whose atoms are

tightly bound to each other.

Most modeling approaches deal with this discrepancy by introducing two different coordinate sys-

tems and two numerical meshes for the two materials. The most popular approach is the arbitrary

Lagrangian-Eulerian (ALE) method [4] in which the computational domain is subdivided into a fluid

domain Ωf and a structure domain ΩS (cf. Sec. 2.4). The (elastic) structure is described there in

the Lagrangian coordinate system, with deformations captured in a displacement vector field. On the

contrary, the fluid domain is described in an Eulerian coordinate system and the variable of interest

is the velocity field. Both meshes are aligned at the fluid-solid interface which is typically moved with

the calculated velocity. While this methodology provides a sound mathematical description and leads

to a very accurate domain representation, it also comes with limitations on the evolution of the solid

structure, which breaks down for large deformations or large translational and rotational movements.

Hence, even simple scenarios like an elastic body moving through a viscous fluid may become im-

possible to simulate, since technically advanced (re-)triangulation methods and clever interpolations

are needed. This has led to the development of alternative modeling approaches in recent years, in

particular fully Eulerian formulations [38] and interface capturing methods.

As mentionend in Sec. 2.4, interface capturing methods implicitly describe the interface between two

domains by an additional field variable. Most popular interface capturing methods are the level-

set [34], volume-of-fluid [39], and phase field method, see Sec. 2.2. Only a few years ago numerical

schemes were developed to describe fluid-structure interactions in level-set methods [40, 41, 42] and

volume-of-fluid methods [35].

Phase field methods offer some distinct advantages over other interface capturing methods, depending

on the application of interest. For example, they can intrinsically include mass conservation and

transport stabilization and allow for fully discrete energy stable schemes, see e.g. [43, 44], for two-

phase flows. Furthermore, these methods offer a simple mechanism to couple the multi-phase system

to additional physical processes, for example on the interface or in the bulk phases, see for examples

[45, 46, 47]. In case of a non-negligible surface energy, phase field methods allow for a monolithic

coupling of interface advection and flow equations, which can prevent time step restrictions due to

stiff interfacial forces [48].
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While phase field methods are state-of-the-art for multi-phase flow problems, there is only a sparse

supply of phase field models for FSI, see e.g. [49]. This might be due to the fact, that the interface in

phase field methods is diffuse with a finite thickness, making it harder to combine the solid and the

fluid material in a consistent way.

This chapter presents an improved phase field method for fluid-structure interaction along with an-

alytical and numerical validation. Physically, the method describes the interaction of a viscous fluid

with a viscoelastic solid, including surface tension at the interface in between. In particular, this

method can distinguish between three types of solids: purely elastic materials, viscoelastic Maxwell

materials, and viscoelastic Kelvin-Voigt materials. The method is capable to handle very large defor-

mations as well as topological changes like contact of the solid to a wall. It is based on a fully Eulerian

description of the velocity field in both, the fluid and the elastic domain. Viscous and elastic stresses

in the Navier–Stokes equations are restricted to the corresponding domains by multiplication with

their characteristic functions. The solid is described as a hyperelastic neo-Hookean material and the

elastic stress is obtained by solving an additional Oldroyd-B-like equation. Thermodynamically con-

sistent forces are derived by energy variation. Convergence of the derived equations to the traditional

sharp interface formulation of fluid–structure interaction was shown by matched asymptotic analysis

in Mokbel et al. [7], which will not be repeated in this chapter. The model is evaluated in a challenging

benchmark scenario of an elastic body traversing a fluid channel. A comparison to reference values

from arbitrary Lagrangian-Eulerian (ALE) simulations shows very good agreement. Among the dis-

tinct advantages of this method is the avoidance of re-triangulations and the stable inclusion of surface

tension. Furthermore, contact dynamics can be simply included into the model, as demonstrated by

simulating a ball bouncing off a wall. This scenario can be extended to include adhesion of the ball.

Although only simulations of fluid-structure interaction problems are presented in this chapter, the

model is capable of simulating any combination of viscous fluids, viscoelastic structures, and elastic

structures.

It should also be emphasized here that the list of advantages of the present approach has only recently

been extended by further studies proving the existence of weak solutions for such a system in two

dimensions, see [50], where the authors refer to Mokbel et al. [7].

3.2 Sharp interface model for FSI

In preparation for the formulation of the phase field model, this section first presents the sharp interface

equations for FSI. This is an extension of the model in Sec. 2.1, which is written down again here for

completeness.

Let the computational domain Ω ⊆ Rd be divided into a fluid domain and a solid domain. To be

consistent with the phase field model in Mokbel et al. [7], these domains are called Ω−1(fluid) and

Ω1(solid) in this chapter, in contrast to the notation in Chapter 2. A common velocity field v : Ω → Rd
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is introduced to indicate movements of the fluid and the solid material. Further, the material derivative

is denoted by ∂• = dt+v ·∇. Throughout this chapter, incompressible elastic materials are considered,

i.e. the Poisson ratio is 1/2. Balance laws for momentum and mass yield the evolution equations

∂•(ρiv) = ∇ · Si + F in Ωi (3.1)

∇ · v = 0 in Ωi (3.2)

for i = −1, 1, where v, F, ρi and Si denote velocity, body force defined in Ω, density in Ωi and stress

in Ωi, respectively. Note that the ρi are both assumed to be constant in space and time.

To describe the elastic stress in the Eulerian framework, the left Cauchy-Green strain tensor B is

introduced. This strain tensor is typically calculated from the deformation gradient tensor F, as

B = FFT . In the present phase field approach, there will be no access to the initial coordinates of a

material point to calculate F. Instead, we use the identity ∂•F = ∇vTF (see e.g. [51]) from which one

can easily compute the following evolution equation for B,

∂•B−∇vT · B− B · ∇v = 0 in Ω1. (3.3)

Note that a row-wise nabla operator is used here, i.e. (B · ∇v)ij = Bik∂kvj . The left-hand side

is also known as the upper-convected Maxwell time derivative that rotates and stretches with the

deformation. The initial condition for Eq. (3.3) is given by the strain in the undeformed configuration

B = I, where I is the identity matrix. The corresponding elastic stress for a hyperelastic neo-Hookean

material is given by G(B − I), where G is the shear modulus. In a fluid, the elastic stress vanishes

since there is no strain, i.e.

B = I in Ω−1 (3.4)

for all times. The total phase-dependent stress is then given by the elastic stress plus the fluid stress

already introduced in Sec. 2.1,

Si = Gi(B− I)− pI+ ηi(∇v +∇vT ) , (3.5)

where p denotes the pressure defined in Ω, and the constants Gi and ηi denote the shear modulus and

the viscosity of the respective phase. In particular G−1 = 0 in a purely viscous fluid, and η1 = 0 if

the elastic solid has no additional viscosity.

Finally, two jump conditions are specified at the fluid-solid interface Γ,

JvKΓ = 0, JSKΓ · n = −σκn, (3.6)

where JfKΓ = f−1 − f1 denotes the jump in f across the interface and n is the normal pointing into
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Ω1. The first condition is the continuity of the velocity. The second condition is the interfacial force

balance including a possible surface tension force at the fluid-solid interface with surface tension σ and

total curvature κ. Note that in this chapter a constant surface tension is assumed and consequently

the Marangoni term ∇Γσ mentioned in Sec. 2.1 is omitted in the second of the above conditions.

3.3 Phase field modeling

The phase field model presented in the following is an extension of the corresponding model in Sec. 2.2.

To adopt the notation from Mokbel et al. [7], let ϕ denote a phase field that distinguishes between

the fluid domain (ϕ ≈ −1) and the solid domain (ϕ ≈ 1) within a computational domain Ω. Hence

the subdomain Ωi in the sharp interface approach is now approximated by the domain where ϕ ≈ i.

Since the phase field approach allows mixing of the two domains in the (narrow) interface region, the

velocity field is now defined to be the volume-averaged velocity of this mixture, see Sec. 2.2.5 and

[5] for details. The density is chosen as a linear combination of the (constant) densities in the two

phases: ρ(ϕ) = ρ1(1+ϕ)/2+ ρ−1(1−ϕ)/2. Balance laws for mass and momentum yield the evolution

equations for phase field and velocity:

∂•ϕ = −∇ · j in Ω (3.7)

∂•(ρ(ϕ)v) = ∇ · S(ϕ) + F in Ω (3.8)

∇ · v = 0 in Ω (3.9)

where the stress depends now on the phase field. The force F and the flux j are specified later to meet

the requirement of non-increasing energy.

To obtain an equation for the diffuse elastic strain tensor, Eqs. (3.4) and (3.3) need to be combined.

A typical approach in phase field modeling is to multiply an equation with a characteristic function

of its domain (here: Ω−1 or Ω1) and to extend the domain then to the larger computational domain

(here: Ω), see [52]. A similar approach is followed here, i.e. Eq. (3.4) is multiplied with a function

α(ϕ) and Eq. (3.3) with a function λ(ϕ). By adding both results, the common equation for the diffuse

elastic strain tensor is obtained as

λ(ϕ)
(
∂•B−∇vT · B− B · ∇v

)
+ α(ϕ)(B− I) = 0. (3.10)

For α = 0 the equation reduces to the strain evolution for an elastic solid Eq. (3.3), while for λ = 0 it

reduces to the strain description of a fluid, i.e. Eq. (3.4). In case α = 1, Eq. (3.10) is also known as

Oldroyd-B equation. This equation is used to describe Maxwell-type viscoelasticity with λ being the

relaxation time controlling the dissipation of elastic stress. The above generalization of the Oldroyd-B

equation to arbitrary α leads to the relaxation time λ/α. Note that this ratio is the only free (spatially

varying) parameter of Eq. (3.10), but the introduction of α effectively allows to choose this ratio equal
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to infinity in some region of the computational domain by setting α = 0 there.

The total phase-dependent stress is then given by

S(ϕ) = G(ϕ)(B− I)− pI+ η(ϕ)(∇v +∇vT ) (3.11)

where η(ϕ) is the viscosity and G(ϕ) is the shear modulus of the respective phase. Note that both v

and p are not assumed to be phase-dependent quantities. For all the phase-dependent quantities, the

following linear interpolations are used:

G(ϕ) = G1(1 + ϕ)/2 +G−1(1− ϕ)/2

η(ϕ) = η1(1 + ϕ)/2 + η−1(1− ϕ)/2

λ(ϕ) = λ1(1 + ϕ)/2 + λ−1(1− ϕ)/2

α(ϕ) = α1(1 + ϕ)/2 + α−1(1− ϕ)/2 .

Note that in practice it is often additionally required that G(ϕ) = G1 for ϕ > 1 and G(ϕ) = G−1

for ϕ < −1 to limit G to physically reasonable values. The reason is that the phase field does not

satisfy a maximum principle, i.e. its values can slightly exceed the interval [−1, 1], which may lead

to unphysical values especially for large differences between G1 and G−1. The same applies to the

remaining interpolated quantities.

Modeling the interaction of an elastic solid (ϕ = 1) with a fluid (ϕ = −1) is now possible by inserting

the given physical parameters for the elastic shear modulus G1, the fluid viscosity η−1 and setting

G−1 = η1 = α1 = λ−1 = 0. It remains to specify α−1 and λ1 which can be interpreted to control the

relaxation time in the diffuse interface region where a mixture of fluid and elastic phase is present.

Note that due to the structure of Eq. (3.10) the only free parameter here is the ratio λ1/α−1, which can

also be thought of as an interface relaxation time. Obviously, this time has to be scaled somehow with

the characteristic time scale T of the considered problem, which suggests to simply use λ1/α−1 = T ,

for example by setting α−1 = 1, λ1 = T . This parameter choice will also be numerically tested in

Sec. 5.4.

An overview of the parameters can be found in Tab. 3.1. Note that also viscoelastic material phases

can be modeled. For Kelvin-Voigt viscoelasticity it suffices to add a viscosity inside of the elastic

material. For Maxwell viscoelasticity one chooses α1 = 1 and just prescribes the Maxwell relaxation

time for λ1. Hence, any combination of two phases, be it viscous, viscoelastic or solid, can be modeled

by choosing the parameters as given in Tab. 3.1.



3.4. ENERGY DISSIPATION 35

viscosity shear modulus relax. time corresponding material
η(ϕ) G(ϕ) λ(ϕ) α(ϕ)

∗ 0 0 1 viscous fluid
0 ∗ T 0 elastic solid
∗ ∗ T 0 viscoelastic Kelvin-Voigt
0 ∗ ∗ 1 viscoelastic Maxwell

Table 3.1: Different material laws can be obtained by different choice of parameters. The star symbol
‘∗’ marks parameters that are given by the physical problem itself, T indicates the characteristic time
scale of the given problem. Adapted from Mokbel et al. [7].

3.4 Energy dissipation

To close the system of equations, it remains to specify the flux j and force F to obtain a thermo-

dynamically consistent evolution. The calculation is essentially based on that in Sec. 2.2.5 and this

time is extended to include the elastic contribution. For completeness, some intermediate results from

Sec. 2.2.5 are mentioned again here. The total energy Efsi of the system is now the sum of kinetic,

elastic [53] and diffuse interface energy (cf. Eq. (2.30)), i.e.

Efsi =

∫
Ω

ρ(ϕ)

2
|v|2︸ ︷︷ ︸

Ekin

+
G(ϕ)

2
tr (B− lnB− I)︸ ︷︷ ︸

Eel

+ σ̃

(
ϵ

2
|∇ϕ|2 + 1

ϵ
W (ϕ)

)
︸ ︷︷ ︸

Eϕ

dx. (3.12)

Here, ‘tr(A)’ is the trace of a matrix A, ϵ the interface thickness,W the double-well potential and σ̃ the

(scaled) surface tension, whose scaling depends on the choice of W (cf. Sec. 2.2.4). The double-well

potential is chosen here as W (ϕ) = 1
4(1− ϕ2)2, which leads to σ̃ = 3

2
√
2
· σ.

3.4.1 Energy time derivative

The time evolution of the energy can now be computed using Eqs. (3.7) - (3.11). The intermediate

steps in the computation of the time derivative of both the kinetic energy and the diffuse interface

energy can be found in Sec. 2.2.5. After a brief recapitulation of the computational results for these

two contributions to the energy evolution, the focus in the following is on the inclusion of the elastic

contribution.

At this point it should be noted that the identities Eqs. (2.38) - (2.41) are useful for the computation

of the energy time derivative. As in Sec. 2.2.5, boundary integrals that arise from integration by

parts are neglected here since appropriate boundary conditions are assumed. Also the assumption

of a closed system remains here, i.e. the domain Ω moves with the flow field, which simplifies the

calculations since material derivatives appear under the integral. This can be ensured in particular by

the boundary condition v · nΩ = 0, with nΩ denoting the outer normal to the domain boundary ∂Ω.
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Referring to Eq. (2.42), the time derivative of the kinetic energy reads

dtEkin =

∫
Ω
−η(ϕ)

2

∣∣∇v +∇vT
∣∣2 −G(ϕ)B : ∇v + v · F+

ρ′(ϕ)

2
|v|2∇ · j dx, (3.13)

where either no flow across the outer boundary (v|∂Ω = 0), or no force, i.e.

(
η(ϕ)

(
∇v +∇vT

)
− pI+G(ϕ) (B− I)

)
· nΩ = 0 on ∂Ω ,

was assumed. Note that the term G(ϕ)B in Eq. (3.13) results from the contribution of elastic stress

in Eq. (3.11).

Furthermore, the time derivative of the diffuse interface energy (Eq. (2.43)) reads

dtE
ϕ =

∫
Ω
−δE

ϕ

δϕ
∇ · j+ v · (∇ · (ϵσ̃∇ϕ⊗∇ϕ)) dx , (3.14)

with δEϕ/δϕ := σ̃ (−ϵ∆ϕ+W ′(ϕ)/ϵ) denoting the (scaled) variational derivative of the energy, cf. Eq.

(2.9). Note that the boundary condition nΩ · ∇ϕ = 0 on the outer boundary ∂Ω is used here, which

effectively leads to a contact angle of 90°. Other contact angles can be treated by inclusion of a wall

energy, see Sec. 2.3.2.

As discussed in [53], B ∈ Rd×d is assumed to be a symmetric positive definite matrix (see [54] for a

proof of this property) and therefore the trace of the matrix logarithm lnB can be calculated by

tr (lnB) =
d∑

i=1

ln ξi (3.15)

with the eigenvalues ξi. The time derivative of the elastic energy can be calculated by

dtEel =

∫
Ω
∂•
(
G(ϕ)

2

)
tr (B− lnB− I) +

G(ϕ)

2
∂• tr (B− lnB− I) dx

=
(3.7),(2.39)

∫
Ω
−G

′(ϕ)

2
∇ · j tr (B− lnB− I) +

G(ϕ)

2
tr (∂• (B− lnB)) dx

=

∫
Ω
−G

′(ϕ)

2
∇ · j tr (B− lnB− I) dx+

∫
{λ=0}

G(ϕ)

2
tr
(
(I− B−1)∂•B

)
dx

+

∫
Ω\{λ=0}

G(ϕ)

2
tr
(
(I− B−1)∂•B

)
dx

=
(3.10)

∫
Ω
−G

′(ϕ)

2
∇ · j tr (B− lnB− I) dx

+

∫
Ω\{λ=0}

G(ϕ)

2
tr

((
I− B−1

)(
∇vT · B+ B · ∇v − α(ϕ)

λ(ϕ)
(B− I)

))
dx. (3.16)



3.4. ENERGY DISSIPATION 37

Note that Eq. (3.10) yields the boundedness of the last integrand in the set Ω\{λ = 0} given the

solution is sufficiently smooth. Summing up the three components yields the variation of the total

energy as

dtEfsi =

∫
Ω
−η(ϕ)

2

∣∣∇v +∇vT
∣∣2 −G(ϕ)B : ∇v + v · F+

ρ′(ϕ)

2
|v|2∇ · j (3.17)

− G′(ϕ)

2
∇ · j tr (B− lnB− I)− δEϕ

δϕ
∇ · j+ v · (∇ · (ϵσ̃∇ϕ⊗∇ϕ)) dx

+

∫
Ω\{λ=0}

G(ϕ)

2
tr

((
I− B−1

)(
∇vTB+ B∇v − α(ϕ)

λ(ϕ)
(B− I)

))
dx.

In order to reformulate the trace term in the last line, the symmetry of B and the following properties

can be used:

tr
(
ABA−1

)
= tr (B) for a regular matrix A (3.18)

tr (AB) = A : BT = AT : B (3.19)

tr (∇v) = ∇ · v = 0 , (3.20)

which yields for λ ̸= 0

tr

((
I− B−1

)(
∇vTB+ B∇v − α(ϕ)

λ(ϕ)
(B− I)

))
=

(3.18),(3.19)
2B : ∇v − 2tr (∇v)− α(ϕ)

λ(ϕ)
tr
(
B+ B−1 − 2I

)
=

(3.20)
2B : ∇v − α(ϕ)

λ(ϕ)
tr
(
B+ B−1 − 2I

)
. (3.21)

Note that also the last term of Eq. (3.21) is bounded, which follows from Eq. (3.10) and

|tr(B+ B−1 − 2I)| ≤ C∥B− I∥ (for a constant C > 0)

in a neighborhood of the identity matrix. Moreover, it can be used that∫
{λ=0}

G(ϕ)B : ∇v dx =

∫
{λ=0}

G(ϕ) (B− I) : ∇v+G(ϕ)I : ∇v =
(3.20)

0 , (3.22)

which exploits the relation B = I for λ = 0.



38 3. A PHASE FIELD MODEL FOR FLUID-STRUCTURE INTERACTION

Equations (3.21) and (3.22) lead to a simplified version of (3.17):

dtEfsi =

∫
Ω
−η(ϕ)

2

∣∣∇v +∇vT
∣∣2 + v · F+

ρ′(ϕ)

2
|v|2∇ · j−∇ · jδE

ϕ

δϕ

− G′(ϕ)

2
∇ · j tr (B− lnB− I) + v · (∇ · (ϵσ̃∇ϕ⊗∇ϕ)) dx

−
∫
Ω\{λ=0}

G(ϕ)α(ϕ)

2λ(ϕ)
tr
(
B+ B−1 − 2I

)
dx.

A final step in preparing the formulation of force and flux is the following reformulation of the density

term in (3.17), applying integration by parts twice and using that ρ′(ϕ) is constant:∫
Ω

ρ′(ϕ)

2
|v|2∇ · j =

∫
Ω
−ρ′(ϕ)v · (∇v · j) =

∫
Ω
v · (∇ ·

(
ρ′(ϕ)v ⊗ j

)
) dx.

3.4.2 Force and flux

The argumentation in the previous subsection leads to

dtEfsi =

∫
Ω
−η(ϕ)

2

∣∣∇v +∇vT
∣∣2

+ j · ∇
[
G′(ϕ)

2
tr(B− lnB− I) + σ̃

(
1

ϵ
W ′(ϕ)− ϵ∆ϕ

)]
+ v ·

[
F+∇ · (ρ′(ϕ)v ⊗ j) + ϵσ̃∇ · (∇ϕ⊗∇ϕ)

]
dx

−
∫
Ω\{λ=0}

G(ϕ)α(ϕ)

2λ(ϕ)
tr(B+ B−1 − 2I) dx (3.23)

under appropriate boundary conditions. Note that the last term is non-negative for any given tensor

B and bounded as explained in Sec. 3.4.1. Consequently, the choice

F = −∇ · (ρ′(ϕ)v ⊗ j)− ϵσ̃∇ · (∇ϕ⊗∇ϕ), (3.24)

j = −m(ϕ)∇
[
G′(ϕ)

2
tr(B− lnB− I) + σ̃

(
1

ϵ
W ′(ϕ)− ϵ∆ϕ

)]
(3.25)

for some mobility function m(ϕ) > 0 yields the non-increasing energy

dtEfsi = −
∫
Ω

η(ϕ)

2

∣∣∇v +∇vT
∣∣2 + 1

m(ϕ)
|j|2 dx

−
∫
Ω\{λ=0}

G(ϕ)α(ϕ)

2λ(ϕ)
tr(B+ B−1 − 2I) dx

≤ 0 .
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A comparison with the corresponding model in Chapter 2 shows that the force given by Eq. (3.24)

equals the one given by Eq. (2.46). Moreover, the flux given by Eq. (3.25) is supplemented by an

additional contribution compared to the version in Eq. (2.47).

3.4.3 Governing equations

This subsection summarizes the governing equations for the thermodynamically consistent phase field

model for fluid-structure interaction. As an extension of the model in Sec. 2.2.6, it describes an in-

compressible two-phase flow with constant surface tension and phase-dependent density and viscosity.

A key advantage of the present model is that it can describe any combination of viscous, viscoelastic

and elastic materials by choosing the parameters accordingly, as previously highlighted in Tab. 3.1.

The system of equations reads

∂•(ρ(ϕ)v) +
ρ−1 − ρ1

2
∇ · (v ⊗m(ϕ)∇q) (3.26)

−∇ ·
(
η(ϕ)

(
∇v +∇vT

)
+G(ϕ) (B− I)

)
+∇p = −σ̃ϵ∇ · (∇ϕ⊗∇ϕ) ,

∇ · v = 0, (3.27)

∂•ϕ = ∇ · (m(ϕ)∇q) , (3.28)

G′(ϕ)

2
tr(B− lnB− I) + σ̃

(
1

ϵ
W ′(ϕ)− ϵ∆ϕ

)
= q, (3.29)

λ(ϕ)
(
∂•B−∇vT · B− B · ∇v

)
+ α(ϕ)(B− I) = 0. (3.30)

Note that the (constant) derivative of the density ρ(ϕ) = ρ1(1 + ϕ)/2 + ρ−1(1− ϕ)/2 with respect to

ϕ appears on the left side of Eq. (3.26), cf. Sec. 3.3.

Numerical tests indicate that when the chemical potential q, as defined in Eq. (3.29), is used in

the evolution equation of the phase field, the resulting ϕ does not provide a good description of the

interface layer because of the contributions of the elastic strain. Since the primary purpose of ϕ is

to track the two-phase interface, a simplified version of q is used in the numerical simulations, which

omits the strain-dependent terms,

q =
1

ϵ
W ′(ϕ)− ϵ∆ϕ (3.31)

replacing Eq. (3.29). This amounts to a classical advected Cahn-Hilliard equation for ϕ, which is

now also independent of the surface tension. Note that the resulting system is no longer variational

and does not necessarily decrease the energy. However, this effect tends to be of higher order since,

if Eq. (3.31) is used, away from the interface W ′(ϕ) = ∆ϕ = 0 and near the interface ϕ locally

equilibrates yielding W ′(ϕ) ≈ ϵ2∆ϕ and thus q ≈ 0. Note that, if q = 0, then the total energy is

non-increasing (i.e. dtEfsi ≤ 0), which follows from Eq. (3.23). Numerical results in this chapter and

a comparison with the results of an ALE model will confirm the versatile applicability of this model
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variant.

At this point, the reader is referred to Mokbel et al. [7] where relations of the present phase field model

in the sharp interface limit (i.e. ϵ→ 0) are derived with the aid of formal asymptotic expansions. This

derivation was kindly provided by Helmut Abels as part of the joint work and is outside the scope

of this thesis. Provided that suitable power series expansions exist, the matched asymptotic analysis

shows the convergence of the derived equations to the traditional sharp interface formulation of the

FSI equations.

3.5 Axisymmetric setup and time-discrete equations

In this chapter, numerical tests will be conducted in an axisymmetric setting. The axisymmetric

approach allows 3D simulations using a 2D domain, which reduces computational effort. In prepara-

tion, the following shows a corresponding reformulation of the governing system of equations in the

time-discrete version.

The introduction of axisymmetry is accompanied by the use of cylindrical coordinates. Thereby the

2D meridian domain

Ω2D = {(x0, r)| 0 ≤ x0 ≤ a, 0 ≤ r ≤ b}

represents the 3D domain

Ω = {(x0, x1, x2)| x1=r cos(θ), x2=r sin(θ), (x0, r) ∈ Ω2D, θ ∈ [0, 2π)} ,

see Fig. 3.1 for an illustration. Note that Ω2D defines a rectangular domain with lengths a, b. In

the following, all fields are defined on Ω2D. The velocity field on this domain is defined to consist of

only axial and radial components v = (v0, vr). The gradient, divergence and Laplace operator in the

cylindrical coordinate system are defined by

∇ = (∂x0 , ∂r), ∇̃· =
(
∂x0 ,

1

r
+ ∂r

)
, ∆̃ = ∇̃ · ∇ = ∂x0x0 + ∂rr +

1

r
∂r.

As derivatives in azimuthal (θ-) direction vanish, the strain tensor assumes the form

B :=

B00 B01 0

B10 B11 0

0 0 Bθθ

 .
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Furthermore, the matrices

B2D :=

(
B00 B01

B10 B11

)
, I2D :=

(
1 0

0 1

)

are introduced for a shorter notation.

The density ρ is assumed to be constant. Hence, the corresponding term in Eq. (3.26) can be neglected.

The lower, upper, right, and left boundaries are denoted by Γ1, Γ2, Γ3 and Γ4, respectively. In the

comparison study with ALE simulations of cells flowing through a channel, the computational domain

is moved along with the cell velocity. Therefore, the spatially averaged velocity of the cell, named

vb, is subtracted from the velocity in the advection terms in Eqs. (3.26), (3.28) and (3.30). This

modification helps to reduce the amount of remeshing and also leads to a consistent comparison with

the ALE model which also applied such a co-moving grid.

2D

Figure 3.1: Illustration of the axisymmetric computational domain. The boundary line segments Γ1

to Γ4 circumscribe the rectangular 2D domain Ω2D. The use of axisymmetric terms in the governing
system of equations allows to simulate the flow of an initially spherical object through a cylinder.
Adapted from Mokbel et al. [7].

Time discretization

Time-discrete axisymmetric equations can now be formulated for the setup introduced above. Note

that the governing system of equations here is a specification of (3.26) - (3.30) with additional ax-

isymmetric terms. Let τ denote the time step size for an equidistant time partitioning. Hereafter,

dtf
n =

(
fn − fn−1

)
/τ is considered as the discrete time derivative with a scalar variable f and time

step index n. The following systems in Ω2D are solved at each time step:
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Navier-Stokes system

ρ
(
dtv

n +
(
vn−1 − vb

)
· ∇vn

)
+∇pn − ∇̃ ·

(
ηn−1

(
∇vn + (∇vn)T

))
=
ηn−1

r

(
0

−2
rv

n
r

)
+ ∇̃ ·

(
Gn−1

(
Bn−1
2D − I2D

))
− (Bn−1

θθ − 1)
Gn−1

r

(
0

1

)
− ϵσ̃∇̃ ·

(
∇ϕn ⊗∇ϕn−1

)
(3.32)

∇̃ · vn = 0 (3.33)

where ηn = η(ϕn), Gn = G(ϕn).

Cahn-Hilliard system

The Cahn-Hilliard system is split into two second order equations which are assembled together:

dtϕ
n + (vn − vb) · ∇ϕn−1 − ∇̃ · (m(ϕn−1)∇qn) = 0 (3.34)

qn + ϵ∆̃ϕn − 1

ϵ
W ′(ϕn) = 0. (3.35)

To avoid the nonlinear terms, a Taylor expansion of linear order for W ′(ϕn),

W ′ (ϕn) = (ϕn)3 − ϕn

≈ 3
(
ϕn−1

)2
ϕn − 2

(
ϕn−1

)3 − ϕn , (3.36)

is chosen. Note that the Navier-Stokes and Cahn-Hilliard system are fully coupled here, due to the

appearance of ϕn in (3.32) and vn in (3.34). Consequently, the systems are assembled and solved

monolithically. This coupling is adopted from [48, Sec. 4.1] and relaxes the stiffness of surface tension

forces.

Oldroyd-B system

Based on the calculated solution of the Navier-Stokes and Cahn-Hilliard systems at the current time

step n, the Oldroyd-B system can be solved separately at the same time step:

λ(ϕn)
(
dtBn

2D + (vn − vb)∇Bn
2D −∇vn · Bn−1

2D − Bn−1
2D · (∇vn)T

)
= D

(
∆Bn

2D −∆Bn−1
2D

)
− α(ϕn) (Bn

2D − I) (3.37)

λ(ϕn)

(
dtBn

θθ + (vn − vb)∇Bn
θθ − 2

vnr
r
Bn−1
θθ

)
= D

(
∆Bn

θθ −∆Bn−1
θθ

)
− α(ϕn) (Bn

θθ − I) . (3.38)
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Note that (3.37) - (3.38) express five equations for the five unknowns of the elastic stress tensor, one of

which is redundant due to symmetry of B2D. A small artificial diffusion term has been added to ensure

numerical stability, whereupon natural no-flux boundary conditions emerge. The diffusion parameter

is set to D = 2 · 10−10m2 in the numerical tests in the following section.

3.6 Numerical tests

Numerical tests are indispensable to validate numerical models and to assess their accuracy. Nowadays,

a standard benchmark for fluid-structure interaction is the Turek-Hron channel flow [55, 56], which

induces oscillations of a thin elastic bar attached to a rigid object. Obviously, the phase field model

is not well suited to represent such a thin structure, since the corresponding interface thickness would

be required to be much thinner than the structure itself, resulting in an extremely fine grid and very

high computational costs. Consequently, a different benchmark system is chosen here that serves the

current purpose of testing the phase field model in a practically relevant situation.

In particular, the flow of a deforming solid ball through a fluid-filled channel is considered. This offers

at least two benefits. Firstly, it highlights the ability of interface capturing methods to account for

movements of the solid and fluid domains with respect to each other. Secondly, the test scenario

is based on a physically relevant simulation of biological cells traversing a flow channel. Cells are

approximated as homogeneous incompressible elastic solids surrounded by a cortex with an active

surface tension. While this active tension is neglected in the benchmark stage, it will be added to the

model later to illustrate the opportunity of phase field models to stabilize the stiffness arising between

interface advection and surface forces [48].

Note that many typical modeling approaches consider cells as fluid-filled elastic membranes, see for

example [57]. While the approximation as a membrane is a valid choice for red blood cells whose

bulk is relatively soft, the focus here is on most other animal cell types whose mechanical response is

dominated by the elasticity of the cell bulk. Such cells are also often immersed in a liquid environment

in biological processes as well as in biotechnical applications, for example for ultra-fast identification

of cell mechanical properties [58], which serves as a reference for this benchmark.

3.6.1 Test setup

The benchmark simulations assume an initially spherical solid object, also referred to as a cell, flowing

through a fluid-filled channel. To be consistent with the reference simulations [58], the solid object

and the channel are considered to be axisymmetric. Axisymmetry effectively reduces the problem to

a two-dimensional flow with axisymmetric operators. For this purpose, the corresponding setup of

Sec. 3.5 is used here. Accordingly, Ω2D denotes the computational domain, which is a two-dimensional

rectangle whose lower boundary represents the symmetry axis, see Fig. 3.1 for an illustration. Here,

Ω2D = [0, 40] µm× [0, 10] µm which corresponds to a cylindrical channel of radius 10 µm, see Fig. 3.2
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Figure 3.2: Illustration of the simulated scenario. An initially spherical elastic cell (green) is deformed
by pressure and shear forces as it flows through a fluid-filled cylindrical channel. Streamlines (black)
visualize fluid movement relative to cell velocity. From Mokbel et al. [7].

for an illustration of the benchmark test scenario.

Surface tension forces are neglected at first, since the fluid-structure part of the method is to be

benchmarked. Moreover, the following physical parameters are chosen for the simulations:

η1 = η−1 = 10Pa · s, ρ1 = ρ−1 = 1000
kg

m3
, G−1 = 0.

The shear modulus of the cell, G1, is related to its Young’s modulus E by E = 3G1. Different values

of E are used in the tests. The radius of the initially spherical cell is set to R = 6 µm.

Unless otherwise stated, the standard model parameters are ϵ = 0.0125 µm and constant mobility

m(ϕ) = 10−8 m3s/kg. The characteristic time scale of the considered problem is approximately

T = 1ms. The parameters for the Oldroyd-B equation are chosen accordingly

α1 = 0, α−1 = 1, λ1 = 1ms, λ−1 = 0 ,

as suggested in Tab. 3.1. Note that the only free parameter here is λ1 and the influence of variations

in λ1 will be evaluated later in the numerical tests.

Boundary conditions

The following boundary conditions apply for the velocity:

v = 0 on Γ2 , (3.39)

vr = 0 on Γ1 , (3.40)
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see Fig. 3.1 for the denotations. Equation (3.39) corresponds to a no-slip condition at the channel wall

and (3.40) avoids a radial flow at the symmetry axis. In the case of channel flow, periodic boundary

conditions apply for v on Γ4 and Γ3, as well as the boundary conditions

p = 0 on Γ3 , (3.41)

p = p0 on Γ4 , (3.42)

where p0 > 0 imposes the desired pressure difference between Γ4 and Γ3 driving the flow through the

channel. As for the velocity, periodic boundary conditions are given for all fields but the pressure on Γ3

and Γ4, which effectively leads to a channel of infinite length. No-flux conditions for the Cahn-Hilliard

system are used on the other boundaries.

The initial pressure difference between the channel inlet and outlet is set to p0 = 2500Pa. This

pressure difference is adapted during the simulation such that a constant flow rate of 4e−11m3/s

appears, see [58] for details on the adaption algorithm. Note that in this sense Eq. (3.42) is an initial

boundary condition for the channel inlet, while the zero-pressure condition for the outlet Eq. (3.41)

holds throughout the runtime of a simulation.

Numerical framework

The problem is discretized in the finite element toolbox AMDiS [59, 60] with an adaptive mesh

refinement strategy. Coarsening and refinement of the mesh are controlled by the phase field function

such that the region ϕ ∈ [−0.9, 0.9] is resolved by at least five degrees of freedom across the interface.

Away from the interface the fixed grid size h = 0.625 µm is chosen. P1 finite elements are used for the

pressure and P2 elements for the other variables.

In the numerical tests below, at each time step, a system is solved for approximately 230, 000 degrees

of freedom (in total for all solution variables). In an exemplary case, the computational costs on a

single core amounted to approximately 18 seconds per time step (including the time for remeshing),

referring to Fig. 3.4(a) with ϵ = 2.5e−8m. The duration of the complete simulation depends on the

chosen time step size τ . In the mentioned case, it was set to τ = 5e−7 seconds, and the obtained

duration was about 14 hours.

3.6.2 Benchmark quantity

After being deformed by pressure and shear forces, the solid will assume a stationary shape whereupon

its flow becomes purely translational. We aim in particular to reproduce this state of stationary

deformation. Note that this is a highly challenging problem for a phase field method, since the structure

needs to resist any movement, while the fluid keeps flowing around it and continuous movement takes

place, even in the diffuse interface.
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In order to quantify the stationary deformation, let it be defined by

deformation = 1− circularity = 1− 2
√
Aπ

P
,

where A and P denote the area and the perimeter of the 2D view of the deformed object, measured

by a piecewise linear approximation of the zero-level of ϕ. This definition of a deformation provides

a measure of the deviation of the cell shape from a circle. It has been shown in [58] that it is a

delicate measure that can be uniquely related to the exact elastic modulus of the cell. This quantity is

therefore used here as a main indicator for comparison of the phase field model with the ALE reference

solution.

Reference values for the stationary cell shapes are given in [58] for various cell sizes, flow rates and

elastic moduli. There, an ALE method was employed using a co-moving grid to keep the cell in the

center of the computational domain throughout the simulation. The data in [58] has been shown

to be extremely accurate in terms of spatial and temporal discretization errors and has been widely

used for comparisons to corresponding experiments. The experimental technique, called Real-Time-

Deformability Cytometry (RT-DC), can be used to probe mechanical properties of biological cells

in flow [61]. A validation study with purely elastic spherical particles showed very good agreement

between ALE simulations and experiments.

3.6.3 Simulation results

This section provides a comparison of the phase field method presented in this chapter with the ALE

reference data and performs a parameter study to justify the choice of λ1, ϵ and m, respectively.

Fig. 3.2 illustrates the idea of the actually simulated 3D scenario. It shows a stationary state shape

in the cylinder, together with the streamlines of the flow. Fig. 3.3 presents the cell shape for different

times. The initially spherical cell deforms due to fluid pressure and shear forces until it assumes

a quasi-stationary state. A comparison with the ALE reference shape shows excellent agreement

(Fig. 3.3, right).

Fig. 3.4 shows the corresponding evolution of the cell deformation. Fig. 3.4(a) investigates the de-

pendence of the deformation evolution on the interface width ϵ. The deformation decreases with

decreasing ϵ, and very good agreement with the ALE reference value is already found for the smallest

values of ϵ. However for ϵ→ 0 the deformation seems to converge to a value smaller than the reference

solution. This is not surprising since, according to Sec. 2.2.6, convergence to the sharp interface limit

is achieved only when the constant mobility is decreased proportionally to ϵ (cf. Eq. (2.53)). Note

that the mobility controls the intrinsic Cahn-Hilliard dynamics that aims to reduce the surface and

therefore decreases deformation.

Accordingly, the sensitivity of the results is tested with respect to changes in the mobility in Fig. 3.4(b).
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0 µs 50 µs 100 µs 3000 µs

Figure 3.3: Cell shape at different times with Young’s modulus E = 6kPa and initial cell radius
R = 6 µm, which corresponds to the parameter set discussed in Fig. 3.4. Remarkable changes of the
shape occur within the first 100 µs. The last image compares the stationary shape of the phase field
method with the ALE reference shape (black crosses). Image from Mokbel et al. [7].
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Figure 3.4: Cell deformation in comparison to ALE reference values for varying parameters. Parts
(a)-(c) assume the fixed physical parameters E = 6kPa, R = 6 µm. The standard model parameters
are λ1 = 1ms, ϵ = 1.25·10−8m andm = 10−8m3s/kg. One of these parameters is varied to investigate
the influence of interface thickness ϵ (a), mobility m (b) and interfacial relaxation time λ1 (c). Part
(d) provides stationary deformation values at t = 1.4ms for different cell sizes and elastic moduli.
Lines depict the reference results of the ALE method and marker points represent those of the present
phase field method. Adapted from Mokbel et al. [7].
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As expected, higher mobility leads to a decrease in the steady-state deformation. But the quantitative

effect of the Cahn-Hilliard dynamics is relatively low, as the deformation curve changes only slightly

when the mobility is doubled.

Next, the only free parameter in the Oldroyd-B equation λ1 is varied. It turns out that small variations

of λ1 have almost no influence on the evolution and steady state of the cell shape. To push the model

to its limits, λ1 is varied across several orders of magnitude in Fig. 3.4(c). This leads for very small

λ1 to a continuous increase of the cell deformation without reaching a stationary state. In this case,

the very small value of λ1 results in a very small relaxation time in the diffuse interface region and

hence to a large dissipation of elastic stress there. The drop in elastic stress causes the cell to become

increasingly deformed. On the other hand, when λ1 is very large, a small amount of elastic stress

from the diffuse interface may accumulate in the fluid, leading to increased stiffening of the fluid and

a decrease in cell deformation. It can be concluded that the parameter λ1 has to be carefully chosen

with a good choice being in the range of the problem’s characteristic time scale.

Finally, Fig. 3.4(d) shows that the results of the phase field method are accurate over a range of cell

sizes and elastic moduli. Here, cells of five different sizes were simulated in the range ≈ 77 µm2 to

160 µm2. Five different values for the Young’s modulus between 4.5 kPa and 12 kPa were chosen for

each cell size. As seen in Fig. 3.4(d), the stationary deformation values of the phase field method are

in excellent agreement with the ALE reference values.

3.7 Illustration of the method’s potential

This section provides further simulation studies in order to illustrate the potential of the presented

phase field FSI model. The scenario of a cell in a cylindrical channel is retained here at first, but this

time with the inclusion of surface tension. This demonstrates the model’s capability to simulate elastic

bodies with strong surface tension, as they are common in biological applications. Therefore, three

different values for the surface tension are chosen: σ = 5e−4N/m, σ = 1e−3N/m and σ = 5e−3N/m.

Further parameters are the Young’s modulus E = 3kPa and the cell radius R = 6 µm. Fig. 3.5

shows that the surface tension has a strong influence on the stationary cell shape, which varies from

triangular (σ = 5e−4N/m) to almost circular (σ = 5e−3N/m). The stiff surface tension forces are

treated here with a monolithic coupling of the interface advection and flow equations which relaxes

any related time step restrictions [48, Sec. 4.1].

A next step is the simulation of the inflow and outflow of the cell. Such simulations are of great interest

for biotechnological applications as the dynamics of cell deformation provides additional information

on the cell’s state. The setting includes a realistic computational channel domain with a conical
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Figure 3.5: Comparison of the steady state shapes for varying surface tension: σ = 5e−4N/m (black),
σ = 1e−3N/m (blue dashed), σ = 5e−3N/m (thin red). From Mokbel et al. [7].

inlet/outlet of 45° [61]. The chosen parameter set is:

E = 1.5 kPa, σ = 1e−3N/m, λ1 = 1ms, m = 10−8m3s/kg,

cell radius R = 8 µm, ϵ = 0.1 µm.

As for the cylindrical domain, a pressure difference is implemented between the left and the right

boundary, which induces the flow. Fig. 3.6 shows a cut through the computational domain, the initial

cell position and various cell shapes during the traversal of the channel.

The deformation curve in Fig. 3.6 shows a strong increase of cell deformation (elongation) during

inflow, followed by a drop in deformation as soon as the cell is completely within the cylindrical part

of the channel. The elongated cell almost approaches a stationary shape around t = 2ms, but as it

is already close to the outlet, the stationary state is never reached. Instead the cell starts to become

shorter and wider. This leads to a drop in the deformation, followed by a peak when the cell reaches

a maximum thickness and an oblate shape as it leaves the cylindrical channel. Afterwards, the cell

relaxes back to a sphere.

Note that such simulations are typically challenging for ALE methods as re-triangulations and inter-

polations are needed to reconnect the different grids while they move past each other. The present

phase field model needs neither re-triangulations nor interpolations to simulate this test case.

The final step is to illustrate the capability of the phase field method to deal with contact between

an elastic material and a rigid wall. This is realized by simulating a bouncing elastic ball immersed

in a fluid. The fluid fills a cylindrical column of height 40 µm and radius 10 µm. The ball of radius

R = 6 µm is initially placed in the middle of the column. The parameters for this test are

η1 = 4 µPa · s, η−1 = 10 µPa · s, E = 500Pa, ρ1 = 1000 kg/m3,

ρ−1 = 100 kg/m3, λ1 = 1ms, ϵ = 0.2 µm, m = 2 · 10−9m3s/kg.

A gravity force of magnitude 103m/s2ρ(ϕ) is included to make the ball fall down. A no-slip condition
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Figure 3.6: Simulation of cell inflow/outflow in a modified channel geometry. The length of the
narrow cylindrical channel is 40 µm. Left: Snapshots of cell shapes at t = 0ms, 1.25ms, 1.927ms,
2.595ms, 3.6ms, 5.509ms. Right: Cell deformation over time. From Mokbel et al. [7].

v = 0 is specified at the top and bottom boundary of the liquid column. An additional non-wetting

condition, ϕ = −1, on all domain boundaries ensures that the ball is repelled from the boundaries. A

free-slip condition is imposed at the sides of the column.

Snapshots of the simulation results are shown in Fig. 3.7. The ball and the fluid around it are

accelerated as the ball starts falling in the beginning of the simulation. Around t = 0.18ms the ball

‘touches’ the rigid wall whereupon it is compressed in the direction of motion. After the maximum

compression is reached at around t = 0.2ms, the stored elastic energy is transformed into kinematic

energy and the ball starts jumping upwards. This bouncing up and down is repeated several times,

but quickly damped due to the viscosity of the surrounding fluid, such that the ball assumes a resting

position ‘lying’ on the rigid wall.

Note that no special treatment is needed to realize the contact dynamics here. The only thing is the

non-wetting condition, ϕ = −1, which needs to be imposed at the contact boundary.

Next, the simulation is extended even further by adding adhesion of the ball to the substrate (wall).

Adhesive behavior is not only typical for fluids but also for some solid objects, like biological cells.

Adhesion appears as soon as the surface tension σws between the wall and the solid object is lower

than the fluid-solid surface tension σ. According to the Young’s equation (see Sec. 2.3) the bal-

ance of surface energies leads to the contact angle θ with cos θ = (σwf − σws)/σ, where σwf is the

wall-fluid surface tension. The contact angle can be included by the Neumann boundary condition

n · ∇ϕ = cos θ · (1− ϕ2)/(
√
2ϵ), which can be derived by adding a wall potential to the system energy,

cf. Sec. 2.3.3.

The simulation of the bouncing ball is repeated now with this new boundary condition to model
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t = 0ms t = 0.15ms t = 0.2ms t = 0.26ms t = 0.6ms

Figure 3.7: Simulation snapshots of an elastic ball bouncing off a rigid wall at different times. From
Mokbel et al. [7].

adhesion. The parameters are as before, except for the mobility which is increased by a factor of 40

to overcome the typical stress singularity at the contact line and obtain the correct contact angles,

see [17] for a discussion. Fig. 3.8 shows the corresponding time evolution for three contact angles. For

the smaller contact angles (θ = 45°, 90°) the ball starts to adhere immediately after the first contact

with the wall. Still, the ball is compressed shortly after contact and the elastic energy is released by

lifting the ball up. But this time the ball remains bound to the wall and the oscillations are even more

quickly damped. The ball develops an almost stationary position around t = 0.4ms. In case of the

larger contact angle, θ = 135°, the adhesion is too weak to keep the ball at the wall after first contact,

which leads to the same bouncing as previously observed for the no-contact case.

3.8 Conclusion

This chapter presented the novel phase field model for fluid-structure interaction fromMokbel et al. [7].

The model is based on a monolithic Navier–Stokes equation that solves for the velocity field in both,

the fluid and the elastic domain. Viscous and elastic stresses are restricted to the corresponding do-

mains by multiplication with their characteristic functions. To obtain the elastic stress, an additional

Oldroyd-B-like equation is solved including an interfacial relaxation time. To close the system of

equations, globally thermodynamically consistent forces and fluxes were derived using energy varia-

tion arguments. Matched asymptotic analysis, not presented here but in [7], shows the convergence

of the derived equations to the traditional sharp interface formulation of FSI equations.

Several numerical tests were conducted to validate the applicability and accuracy of the new model. A

challenging benchmark scenario of an elastic cell traversing a fluid channel was employed and results

are compared to reference values from ALE simulations [58]. This resulted in very good agreement

for various cell sizes and elastic moduli. In particular, it was shown that the interface thickness ϵ and

the mobility m are small enough to influence the results only marginally. Results were also shown to

be robust with respect to the introduced interfacial relaxation time.
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The final focus was on highlighting some distinct advantages of the new model as compared to tradi-

tional ALE approaches for FSI. The movement of a solid object through a fluidic channel without grid

re-triangulations was demonstrated. Furthermore, strong surface tension forces were included into

the model, whose stable discretization is one of the advantages of phase field models. At last, it was

shown how easy it is to incorporate contact dynamics into the model by simulating a ball bouncing

off a wall. The argumentation concluded with the simulation of adhesion of an elastic ball to a rigid

wall, a scenario that, to the author’s knowledge, could not be simulated by any other FSI model prior

to the publication of Mokbel et al. [7].

While the simulations were restricted to fluid-structure interaction in this chapter, the model is capable

to simulate any combination of viscous fluids, viscoelastic structures and purely elastic structures.

The proposed phase field model is therefore well suited to tackle a range of complicated multiphysics

problems in the future.

A specific application case using the model is discussed in the context of a ternary FSI problem in the

following chapter.
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contact angle θ = 45°

contact angle θ = 90°

contact angle θ = 135°

t = 0ms t = 0.15ms t = 0.2ms t = 0.26ms t = 0.4ms

Figure 3.8: Simulation snapshots of an adhesive elastic ball bumping into a rigid wall. The adhesive
properties are determined by the involved surface energies through the contact angle θ (see text).
From Mokbel et al. [7].
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Chapter 4

Phase field coupled to a rigid body: A

ternary FSI approach for atomic force

microscopy (AFM)

This chapter presents an application of the model from Chapter 3. In contrast to the two-phase

setting in the latter chapter, the model will now be extended to simulate a ternary FSI scenario. More

precisely, it treats the interaction between a rigid body, a (visco-)elastic solid and a fluid, as illustrated

earlier in the left part of Fig. (2.5). This setup enables simulations of atomic force microscopy (AFM)

experiments [62], which are briefly described in Sec. 4.1.

The content presented here was previously published by the author in [9] as a joint work with Shada

Abuhattum, where an explicit model capable of extracting viscoelastic properties of cells was devel-

oped. For this purpose, numerical simulations were performed together with AFM experiments, the

latter kindly provided by Shada Abuhattum along with the biological insights. These experimental

and biological aspects are also presented in this chapter to demonstrate the potential of the mathemat-

ical model from Chapter 3. The present content differs only slightly from [9] in terms of notation and

structure. However, background information on resources and experimental and statistical methods

are not discussed here, and the reader is referred to [9] in this regard.

The following introduction also includes an overview of the structure in this chapter.

4.1 Introduction

The viscoelastic behavior of soft materials, especially cells and tissues, has been extensively inves-

tigated due to its importance in many biological and physiological processes that take place during

development and even disease [63, 64, 65]. Many techniques are used to quantify the mechanical
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properties of cells, among them micropipette aspiration [66], optical stretching [67], deformability cy-

tometry [61] and atomic force microscopy (AFM)[62]. The AFM, in particular, is still nowadays one

of the most popular methods due to its conformity with various material types and geometries and

the rather simple analysis process of the material properties.

For a typical AFM indentation measurement, a cantilever, with a distinct tip shape, moves towards

the sample with a predefined velocity and indents it until a prescribed force is reached. The cantilever

then moves upwards while detaching from the sample. The deflection and displacement signals of

the cantilever are processed further to extract the mechanical properties of the sample. Generally, a

Hertzian model is fitted to the approach part of the force-indentation curves to quantify the apparent

Young’s modulus [68]. When applying the Hertzian model, several assumptions need to be considered,

such as the material being homogeneous, isotropic and linearly elastic. Cells and tissues, however,

show not only elastic but viscous behavior that is evident from the hysteresis between the approach and

retraction segments of the force-indentation curve. Consequently, assessing this viscoelastic behavior

is imperative for understanding the complex nature of biological matter [69, 70].

A number of studies utilized AFM to measure the viscoelastic properties of cells in both time and

frequency domains, see e.g. [65, 70, 71, 72, 73, 74]. Ideally, to investigate the whole range of the

viscoelastic behavior one needs to probe the material for a long time and observe its response or apply

oscillatory signals and evaluate its phase lag. These approaches require the user to alter the probing

method and add several steps to account for the time-dependent drift or the effect of the hydrodynamic

drag of the surrounding medium. On top of that, in many studies the biological materials were probed

with a linear approach followed by immediate retraction movement [75, 76, 77]. The force-indentation

curves from these studies were used to evaluate the apparent elastic modulus of the probed material

using the standard Hertzian model. However, additional information concerning energy dissipation

can still be extracted from the same curves to evaluate the viscoelasticity of the material.

This chapter proposes a new fitting model to extract the viscoelastic properties of soft materials from

AFM force-indentation curves. Sec. 4.2 starts with the mathematical model, referring to Chapter 3,

and the setup for the present simulations. Afterwards, Sec. 4.3.1 provides a validation of the extended

numerical model. In particular, the effect of viscoelasticity on force-indentation curves is discussed.

As a basis for the construction of the fitting model, a combination of Maxwell and Kelvin-Voigt models

is developed to describe soft materials. Numerical simulations of the indentation of such a material

with a spherical indenter are then performed. It turns out that the proposed Kelvin-Voigt-Maxwell

(KVM) model adequately captures the force-indentation curves of materials with different mechanical

characteristics. Furthermore, the numerical results lead to the proposal of an explicit force-indentation

relation (i.e. the new fitting model), see Sec. 4.3.2. This explicit relation simplifies the association of the

mechanical properties with physically meaningful components and processes. Finally, the developed

model is applied to a number of samples, including poroelastic and viscoelastic hydrogels in Sec. 4.4.1

as well as HeLa cells in two different cell cycle phases, interphase and mitotic, see Sec. 4.4.2. It will
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be demonstrated that the distinct nature of the hydrogels, arising from the different cross-linking

mechanisms, can be described with the fitting model. For the HeLa cells, the mitotic cells have a

higher apparent elasticity and a lower apparent viscosity, implying a stiffer actin cortex and a diluted

cytoplasm protein concentration, when compared with interphase cells. The chapter concludes with a

discussion on the method in Sec. 4.5.

The findings in this chapter demonstrate that the proposed model can reliably extract viscoelastic

properties from conventional force-indentation curves. Moreover, the model is able to assess the

contribution of the different elastic and viscous elements, and thus allows a direct comparison between

the viscoelastic nature of different materials.

4.2 Extension of the phase field model for FSI

The numerical method is based on the phase field model of contact and fluid-structure interaction

problems presented in Chapter 3 and published by the author in [7]. This previous work describes an

efficient method to simulate the interaction between a fluid and a (visco-)elastic phase. A monolithic

Navier-Stokes equation was solved for the velocity field in both, the fluid and the elastic domain. Vis-

cous and elastic forces were restricted to the respective domains via multiplication with characteristic

functions. The elastic stress was obtained by an additional Oldroyd-B-like equation which was coupled

to the Navier-Stokes equation.

4.2.1 Simulated scenario

spherical indenter

viscoelastic half-space

Figure 4.1: Simplified scheme of a spherical indenter moved into a deformable material according to
AFM. R and δ denote indenter radius and indentation depth, respectively. Adapted from [78].

This chapter adopts the last-mentioned fundamental features and extends the model in order to

simulate a three-phase scenario, including the interaction between a viscoelastic phase, a purely viscous

phase and a rigid body. In particular, a numerical model is developed here to simulate the process of

indenting a viscoelastic half-space immersed in a liquid medium with a rigid spherical indenter, see

Fig. 4.1 for an illustration. The thickness of the indented viscoelastic material is chosen sufficiently



58 4. A TERNARY FSI APPROACH FOR ATOMIC FORCE MICROSCOPY

large (relative to the indenter radius) and bottom boundary effects are negligible. Based on the

approach in Chapter 3, the surface of the viscoelastic material is represented by a phase field ϕ.

Generally, in phase field models the surface is not described as sharp, but instead as a diffusive region

with a finite thickness (here ϵ = 25nm). The presence of this diffuse transition region mimics a

coarse-grained description of the irregularity of cell surfaces and leads to a numerically stable contact

algorithm.

In the numerical simulation, the rigid indenter is moved with a prescribed velocity through the liquid

medium towards the viscoelastic material, while the necessary force is constantly computed. This is

detailed in Sec. 4.2.2. Inertial forces are neglected in the present scenario. The viscosity of the liquid

medium is set to the value of water (here: 0.001Pa·s), which gives a negligible force contribution

from liquid drag: According to Stokes law the drag force is ≈ 2.4 · 10−4 nN for a spherical indenter

of radius R = 2.5 µm at a typical velocity of 5 µm/s, which is four orders of magnitude smaller than

the typically measured material resistance. Once the indenter comes into contact with the viscoelastic

body, the material is deformed and the force starts to increase as viscous and elastic forces counteract

the deformation. Once a maximum indentation is reached, the indenter is immediately pulled out of

the material in opposite direction.

Note that the surface tension between liquid and substrate phase is omitted in this chapter.

5
2
5
µ
m

.

20 µm

KV

Figure 4.2: Numerical setup for simulating the indentation of viscoelactic material. Left: Illustration
of the 3D scenario with axisymmetry, and the respective dimensions. The axis of rotation is denoted by
x0, the radial axis by r. Middle: Grid representation of a two-dimensional cross section of the domain
(Ω). The color code indicates the phase field ϕ. The red part with ϕ = 1 represents the viscoelastic
material. The white part with ϕ = −1 represents the liquid medium. Γ denotes the boundary of
the indenter, represented by a moving finite element grid. The right boundary of Ω is the axis of
rotation. Right: Schematic representation of the used neo-Hookean Kelvin-Voigt-Maxwell model.
Springs correspond to elastic components and dashpots to viscous components. Adapted from [9].



4.2. EXTENSION OF THE PHASE FIELD MODEL FOR FSI 59

4.2.2 Mathematical model

As introduced in Sec. 3.5, the considered setup is axisymmetric, thus a 3D scenario can be simulated

on a 2D grid (see left and middle part of Fig. 4.2). The two-dimensional computational domain

is denoted by Ω ⊂ R2 in this chapter. The model comes with a full Eulerian description of the

(common) velocity field v : Ω → R2 in the whole domain. Let v := (v0, vr) denote the axial and the

radial component, referring to the axis of symmetry. Furthermore, let (x0, r) denote the axial and

the radial component of the position of grid points, where x0 = 0 at the bottom boundary (i.e. at

the bottom of the substrate). The boundary conditions vr = 0 on the axis of symmetry (r = 0) and

v0 = 0 at the bottom boundary apply here.

Indenter dynamics

A crucial modification with respect to the setup in Chapter 3 is the inclusion of the rigid indenter

itself. Since it is not necessary to solve any hydrodynamics inside the indenter, the corresponding

phase is simply represented by a spherical hole in the computational domain Ω (see middle part of

Fig. 4.2). On the indenter boundary Γ ⊂ ∂Ω it applies v0 = vI and vr = 0, where vI is the prescribed

(constant) indenter velocity. The motion is realized by a moving finite element grid with velocity

vGrid : Ω → R which describes the movement of grid points in axial direction. Note that the grid

points do not change their radial position in the simulations. Here, a concertina-like movement is

chosen, i.e. vGrid = vI ·min (1, x0/xI), where xI denotes the axial position of the advancing (bottom)

point of the indenter.

As motivated in Sec. 2.4, an ALE approach is used to account for the moving grid. This amounts to

replacing material derivatives ∂• by dt + (v − (vGrid, 0)
T ) · ∇, where dt is the time derivative along a

moving grid point.

The indenter boundary experiences a force which is calculated by

(Fx0 , Fr)
T = 2π

∫
Γ
S · nΓ dΓ ,

where the absolute value of the axial component Fx0 yields the viscoelastic response of the ma-

terial and will be compared to the force F from the (mechanical) models later in this chapter.

The radial component Fr is neglected, as the indenter only moves in axial direction. Furthermore,

S = −pI+ η(ϕ)(∇v +∇vT ) is the stress tensor, nΓ is the normal on Γ pointing outside Ω, p the

pressure and η the (phase-dependent) viscosity. Note that according to Sec. 4.2.1, the viscosity is

set to the value of water in the liquid medium throughout this chapter, while it will be varied in the

viscoelastic half-space. The interpolations of η and further phase-dependent parameters are described

in Sec. 3.3.

It can be summarized that the rigid indenter as a third phase in this model extension is simply modeled
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as a semicircular part Γ ⊂ ∂Ω of the domain boundary, interacting with the other phases by means

of a velocity boundary condition and a defined grid motion. The force Fx0 is calculated at the end of

each simulation time step from the current values for v and p. Further note that in this work adhesion

between the indenter and the elastic substrate is avoided by setting a phase field boundary condition

(here ϕ = −1 on Γ).

Strain evolution

In Chapter 3, the structure could either be modeled as purely elastic, or as a Kelvin-Voigt or Maxwell

material. The choice of the material was made on the basis of certain model parameters (see Table

3.1).

To account for the more complex rheology of many synthetic materials and biological cells, a combined

Kelvin-Voigt-Maxwell model (KVM) is used here. Such a model can be represented by choosing

a specific combination of springs and dashpots (see Fig. 4.2 Right). The involved four material

parameters are (EKV ) elastic Young’s modulus, (η) viscosity, (EM ) an additional Young’s modulus

which relaxes over time and (λM ) viscoelastic relaxation time of the Maxwell component. According

to Chapter 3, both elastic components are modeled by a hyperelastic neo-Hookean material law. The

Kelvin-Voigt and Maxwell stresses contribute to the total stress in parallel. To extend the phase field

FSI model in this respect, two Oldroyd-B-like equations are solved and the model parameters are set

once according to Kelvin-Voigt and once according to Maxwell. This results in two different quantities

that add up to the total elastic stress. In particular, the system now includes two strain tensors

BKV , BM with the corresponding elastic stresses 1
3EKV (ϕ) (BKV − I) and 1

3EM (ϕ) (BM − I) in order

to differentiate between Kelvin-Voigt and Maxwell elasticity. Note here that the incompressibility

assumption is adopted from Chapter 3 and that the elastic parameters are scalar fields that depend

on the phase field ϕ. In the ambient fluid EKV = EM = 0 applies. The strain tensors are calculated

by their evolution equations

λi (ϕ)
(
∂•Bi −∇vT · Bi − Bi · ∇v

)
+ αi (ϕ) (Bi − I) = 0 for i ∈ {KV,M}.

The phase-dependent interpolations from Sec. 3.3 can now be used for λi and αi. Following the nota-

tion there, the parameter choice this time is αKV,1 = 0, αM,1 = 1, λKV,1 = 1 second and λM,1 = λM

seconds, where the latter value is identical to the Maxwell relaxation time introduced in this chapter

(cf. Fig. 4.2 Right). In the ambient fluid, αi,−1 = 1 and λi,−1 = 0 seconds applies for i ∈ {KV,M}.
For further information about these parameters, see Table 3.1.

Finally, the remaining parameters of the model are the constant mobility m = 1e−11m3s/kg, the

interface width ϵ = 2.5e−8m, a fixed grid size of h = 2.5e−6m away from the interface and

h = 7.8125e−8m at the interface. The time step size is τ = 2.5e−5 s. The numerical simulation
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method was implemented in the finite element toolbox AMDiS [59, 60]. For further details and in-

structions to reproduce the simulations in this chapter, see [9].

4.3 Numerical results

4.3.1 Model validation using Hertzian theory

In the following, the simulated force-indentation curves are considered and a comparison is made with

the available Hertzian contact mechanics theory.

Purely hyperelastic material

Figure 4.3: Validation of the numerical model with purely elastic material having different elasticity values:
(a) 600Pa, (b) 2400Pa and (c) 4800Pa. The black continuous line depicts the force-indentation curve retrieved
from the indentation simulation. The pink and green dashed lines correspond to the Hertz and Ding et al.
models described in Eqs. (4.1) and (4.2). Adapted from [9].

To validate the numerical model, a purely hyperelastic material (η = EM = λM = 0) is first simulated,

consisting of a single spring (cf. Fig. 4.2 Right). Due to the lack of viscous components, no hysteresis

is to be expected in the resulting force-indentation curves. Therefore, the focus is on the approach

part of the curves while comparing them with both the Hertz model [68] and the model of Ding et al.

[79]. The force-indentation relations of the latter mentioned models read

F =
4

3

EKV

1− ν2

√
Rδ3 (Hertz model [68]), (4.1)

F =
4

3

EKV

1− ν2

√
Rδ3

(
1− 0.15

δ

R

)
(Ding et al.[79]), (4.2)

where F and δ are the force and the indentation depth, respectively, ν and R are the Poisson’s ratio

of the material and radius of the spherical indenter, respectively. Since incompressible (visco-)elastic

materials are considered here, ν = 0.5 throughout this chapter. In the numerical tests, R = 2.5 µm is
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chosen and the maximum indentation depth is 0.88 µm. Note that the indenter velocity (vI = 5 µm/s

in the simulations) does not affect the force-indentation relation according to models (4.1) and (4.2).

While the Hertz model is valid only for very small (linearly) elastic deformations, the model from

Ding et al. is applicable for a larger range of deformations as it has been derived numerically using a

hyperelastic material law. Both models fitted very well to the simulated data in the range of small

indentations and, as expected, the Ding et al. model fitted the data better in the range of large

indentations, see Fig. 4.3.

The effect of viscoelasticity on force-indentation curves

Indenting a biological material with AFM often exhibits a hysteresis between approach and retraction

curves, which implies the presence of viscoelastic behavior. To account for viscoelasticity, the simplest

two viscoelastic models that can be used are a Kelvin-Voigt solid (spring and dashpot connected

in parallel) and a Maxwell liquid (spring and dashpot connected in series). It is important to note

that when referring, throughout the chapter, to the mechanical model name such as Kelvin-Voigt or

Maxwell model, the intention is the contact model based on that specific mechanical model.

This time, in the simulations, the indenter is moved at the constant velocity vI = 5 µm/s up to the

maximum indentation depth, followed by an instantaneous retraction at velocity -vI . Increasing the

viscosity of the Kelvin-Voigt material led to a higher deviation from the Hertzian curve Eq. (4.2), see

Fig. 4.4(a). Similarly, the indentation curve deviated more from the Hertzian curve with decreasing

the relaxation time λM of the Maxwell material, see Fig. 4.4(b).

Comparing both models, the hysteresis between the approach and retraction curves appeared distinc-

tively different. While the Kelvin-Voigt model shows a hysteresis where the difference between the

curves increases with indentation depth, the Maxwell model shows a hysteresis where the difference

between the curves is the smallest at the largest indentation depth. In addition, a jump, that is

dependent on the viscosity value, can be observed between the approach and retraction curves of the

Kelvin-Voigt model. These distinctive features combined together are present when visually inspecting

an AFM force-indentation curve (see Fig. 4.4(d) for an exemplary experimental curve).

The Kelvin-Voigt model describes successfully the creep compliance of the material and its ability to

regain the original shape after the load is removed. However, it fails in describing the relaxation of a

viscoelastic material. On the other hand, the Maxwell model describes very well the stress relaxation

but fails in describing the creep of the material [80].

Taken together, to capture both the relaxation and the ability of the indented material to regain its

original shape as observed in AFM indentation experiments on soft materials, Kelvin-Voigt (spring

EKV , dashpot η) and Maxwell (spring EM , dashpot λMEM ) materials are connected in parallel (KVM

model) to represent viscoelasticity in the half-space (Fig. 4.4(c)). The force-indentation curves of the

KVM model combine the characteristics of the two simple Kelvin-Voigt and Maxwell models. This is
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Figure 4.4: Force-indentation curves of different viscoelastic materials. For (a)-(c), solid lines represent
simulation results and green dashed lines show the corresponding (modified) Hertz model curves Eq. (4.2). (a)
Kelvin-Voigt material simulated with varying viscosity η values and EKV = 1650Pa. (b) Maxwell material
simulated with varying relaxation time λM values and EM = 1650Pa. (c) Kelvin-Voigt-Maxwell (KVM)
simulated with varying viscosity η values, λM = 0.65 s, EKV = 1650Pa and EM = 1650Pa. For the green
dashed line (Hertz model), the Young’s modulus is set to EKV = 3300Pa. (d) Representative AFM force-
indentation curve of a cell (see [9] for resources). The orange dashed line in the inset highlights the force jump
at the end of the approach and beginning of the retraction curves. This jump resembles the jump seen in (a)
and (c) for the Kelvin-Voigt and KVM models. For all the subfigures, the radius of the indenter is R = 2.5 µm
and the velocity is vI = 5µm/s. Adapted from [9].

specifically observed in the hysteresis as well as the force jump (immediate loss of force) between the

approach and retraction curves, which resemble very well the representative force-indentation curve

of a cell measured by AFM (Fig. 4.4(d)). Also note that the model captures two characteristics of

experimental data which were not reproduced with any other numerical method yet: (i) the onset of a
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force response already slightly before contact and (ii) the negative force as the indenter detaches from

the sample. These contributions stem from the diffuse description of the substrate surface and the

inclusion of the liquid medium which provides a force before contact (to drain fluid out of the contact

region) and a corresponding negative (sinking) force upon detachment.

4.3.2 Explicit relation of force and indentation

This subsection first proposes an explicit relation between force and indentation. Furthermore, a

parameter range is established for which the simulated force-indentation curves fit the proposed model.

Finally, a set of simulation results is presented to demonstrate the validity of the model together with

its ability to describe various viscoelastic material models. For detailed information about the fitting

algorithm used in the following, see [9].

AFM force-indentation curves are typically evaluated by fitting to analytical functions relating the

force to the indentation as shown in Eq. (4.1) and Eq. (4.2). In the Ding et al. model, the effects of

larger indentation were accounted for by multiplying the Hertz model with an additional term, while

maintaining the explicit relation between force and indentation. A similar procedure is now followed

here and the model of Ding et al. is supplemented with terms that take into account the viscoelastic

behavior of the KVM material.

The total force acting on the KVM material is equal to the sum of the forces exerted by each of the

elements connected in parallel, cf. Fig. 4.4(c): Ftotal = F0 + F1 + F2, where F0 is the force exerted

by the spring EKV , F1 is the force exerted by the Maxwell elements EM and λMEM and finally F2 is

the force exerted by the dashpot η. For elastic solids, the force exerted by the spring EKV is linearly

related to the value of the elasticity EKV . In fact, this can be assumed to be the force derived for the

Hertz model or any other model that corrects for larger indentations, such as the Ding et al. model.

This force is denoted by Felastic in the following. Similarly, the force exerted by the Maxwell element

is linearly related to the value of the spring EM , however, combined with an exponential decay due to

the dissipation in the dashpot λMEM . Finally, the force exerted by the dashpot η can be described

as a drag force acting on the segment of the indenter that is in contact with the material. Hence, the

force-indentation relation F (δ) can be described as follows:

F (δ) = Felastic(EKV , δ) + Felastic(EM , δ) · exp
(
−Λ1δ

vIλM

)
+ Λ2δ

Λ3RΛ4ηvI ,

(
0

0

)
(4.3)

where

Felastic(E, δ) =
4

3

E

1− ν2

√
Rδ3

(
1− 0.15

δ

R

)
(4.4)

and EKV , EM , λM and η correspond to the KVM model elements shown in Fig. 4.4(c). vI is the

velocity of the indenter, cf. Sec. 4.2.2.
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The functional form Eq. (4.3) contains four fitting parameters, (Λ1, ...,Λ4), which are determined from

matching this function to simulated force-indentation curves. Note that the condition Λ3 + Λ4 = 1

should hold to maintain the correct dimension. Using simulations for a wide range of parameter values

led to Λ1 = 0.365, Λ2 = 7.25, Λ3 = Λ4 =
1
2 .

(a) (b)

Figure 4.5: Force evolution during the indentation, using parts of the explicit relation Eq. 4.3.
(a) Force evolution of F = Felastic(EKV , δ) +Λ2δ

Λ3RΛ4ηvI , where EKV = 1650Pa and the viscosity η
was varied. (b) Force evolution of F = Felastic(EM , δ) · exp ((−Λ1δ) / (vIλM )), where EM = 1650Pa
and the relaxation time λM was varied. The dashed black lines depict the force-indentation relation
of the Ding et al. model Eq. (4.2) with a Young’s modulus of 1650Pa. For both subfigures, the radius
of the indenter is R = 2.5 µm, the Poisson’s ratio ν = 0.5 and the velocity vI = 5 µm/s.

Force evolution

To illustrate the influence of the terms in Eq. (4.3) on the evolution of the force versus the indentation,

Fig. 4.5 shows in (a) the force evolution of F = Felastic(EKV , δ) + Λ2δ
Λ3RΛ4ηvI and in (b) the force

evolution of F = Felastic(EM , δ)·exp (−Λ1δ
vIλM

). Varying the viscosity η or the relaxation time λM exhibits

the expected approximation to the Hertz curve, similar to the behavior of the curves from simulations

of Kelvin-Voigt and Maxwell materials, cf. Fig. 4.4(a) and (b).

It is important to note that the fitting model is valid for a specific range of ratios between the Maxwell

relaxation time λM and the indentation time tind, see Fig. 4.6. The viscosity η is neglected in this

validity study. If the relaxation time λM is significantly larger than the time tind in which the material

was probed, the effects of EKV and EM become redundant and cannot be distinguished anymore. In

this case the material will be depicted as dominantly elastic with an elastic modulus of EKV + EM .

This is shown by the curve “λM →inf” (dashed black) in Fig. 4.6, which simply represents the relation
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F (δ) = Felastic(EKV + EM , δ) with EKV = EM = 900Pa.

Similarly, if λM is significantly smaller than tind, the material will relax quickly at the onset of indenta-

tion and will be depicted as a pure Kelvin-Voigt model, making EM arbitrary. This is represented by

the curve “EM = 0” (dashed red) in Fig. 4.6, which corresponds to the relation F (δ) = Felastic(EKV , δ)

with EKV = 900Pa. The limiting cases λM → 0 and λM → ∞ thus enclose the range of possible

force-indentation curves, with the other parameters remaining unchanged. To obtain meaningful re-

sults, the fitting range of λM is bound in the algorithm to be dependent on tind (here: tind = 0.176 s),

where the upper and lower limits were set to 10 tind and tind/5, respectively.

E

Figure 4.6: Validity study of the fitting model Eq. (4.3) in different parameter ranges. Simulation
results (solid lines) are shown with varying values for the Maxwell relaxation time λM . The indentation
time is set to tind = 0.176 s. The ratio of the Maxwell relaxation and the indentation time is shown in
the figure. The remaining parameters used for the simulations are: vI = 5 µm/s, EKV = EM = 900Pa,
R = 2.5 µm. The viscosity η is neglected here. Adapted from [9].

Therefore, in order to give a clear view on the elasticity and the dissipation in different time scales,

it is most advantageous to evaluate the total unrelaxed elasticity Eu = EKV + EM contained in

the material and the apparent elasticity measured in the time scale of the indentation measurement

Eapp = EKV +EM exp (−Λ1δ/vIλM ) as well as the apparent viscosity η. These moduli lead to a more

robust and stable evaluation of the model parameters even at the extreme cases of the ratio λM/tind.
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Validation by means of different viscoelastic material models

To demonstrate the ability of the explicit force-indentation relation Eq. (4.3) to fit to materials with

different mechanical characteristics, indentation is simulated in Kelvin-Voigt, standard linear liquid

(SLL; Maxwell element and a viscous dashpot in parallel) and Kelvin-Voigt-Maxwell model half-spaces.

In this way, the agreement of the fitted values of the elastic and viscous components with the values

chosen in the simulations can be evaluated. Note that the model parameters of the strain evolution

equations must be chosen accordingly to distinguish between the material models, as described in

Sec. 4.2.2. As indicated in Fig. 4.7, the fitted values are quite close to the simulated values, and the

fitting model can distinguish the different mechanical models used in the simulations. In the following

section, the fitting model is applied to experimental AFM data from different materials.

Figure 4.7: Validation of the fitting model Eq. (4.3) using simulated force-indentation curves with
different material properties. (a) Kelvin-Voigt , (b) standard linear liquid and (d) Kelvin-Voigt-
Maxwell. The solid black lines depict the force-indentation curves retrieved from the simulations.
The yellow dashed lines depict the model fits. The tables below each curve show the simulated and
fitted values of the mechanical parameters. The remaining parameters used for the simulations are:
vI = 5 µm/s, R = 2.5 µm, tind = 0.176 s. Adapted from [9].
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4.4 Probing mechanical properties of various materials

4.4.1 Viscoelastic properties of hydrogels

To investigate the fitting model performance on measured AFM curves, the mechanical properties of

two hydrogels were evaluated: polyacrylamide (PAAm) and low-gelling-point agarose hydrogels. The

PAAm hydrogel is chemically crosslinked using ammonium persulfate while the agarose hydrogel is

physically crosslinked by reducing the temperature of the solution. This difference in the crosslinking

mechanisms leads to an inherent difference in their mechanical properties, where the PAAm hydrogel

can be described as an elastic network swollen with a liquid solvent [81] and the agarose hydrogel

is described as a viscoelastic network. The time dependence of the PAAm hydrogel arises from the

necessity of the solvent to move through the elastic polymer network during deformation, while in the

agarose hydrogel it comes from the time-dependent nature of the crosslinks between the polymers.

AFM measurements were performed to generate force-indentation curves of the hydrogels at different

indenter velocities 5, 10 and 15 µm/s, followed by an evaluation of their mechanical properties by fitting

Eq. (4.3) to the curves. Representative force-indentation curves are shown in Fig. 4.8 at the end of

this section. Moreover, Fig. 4.9(a) and (c) show the two moduli EKV and EM for the PAAm and

agarose hydrogels, respectively. The apparent viscosity η of the two hydrogels at different velocities

is shown in Fig. 4.9(b) for PAAm and Fig. 4.9(d) for agarose.

The PAAm hydrogels showed similar values of the Kelvin-Voigt elastic modulus EKV at all indentation

velocities (2.45±0.04, 2.24±0.01 and 2.48±0.11 kPa, mean ± standard error of the mean, for velocities

of 5, 10 and 15 µm/s, respectively), while the Maxwell elastic modulus EM was considerably lower for

PAAm hydrogels. The agarose hydrogels had higher values of EM compared to EKV , pointing towards

a viscoelastic network that relaxes over time. The apparent viscosity values η for both hydrogels

decreased with higher indentation velocities (for PAAm, η = 1.3 ± 0.07, 1.02 ± 0.03, 0.95 ± 0.02Pa·s,
and for agarose, η = 0.45 ± 0.02, 0.21 ± 0.01, 0.17 ± 0.01Pa·s for velocities of 5, 10 and 15 µm/s,
respectively).

The unrelaxed modulus Eu = EKV + EM and the apparent modulus Eapp = EKV + EM exp
(

−Λ1δ
vIλM

)
for PAAm and agarose hydrogels at different indentation velocities are shown in Fig. 4.10(a) and (b),

respectively. As expected, the PAAm hydrogels had similar values for unrelaxed and apparent moduli

(Eu, Eapp = 2.45±0.04, 2.64±0.05, 2.7±0.07 kPa for velocities of 5, 10 and 15 µm/s, respectively), a be-
havior indicative of the elastic network. The agarose hydrogels, though, showed lower values of the ap-

parent Young’s modulus when compared with the unrelaxed modulus (Eu = 2.25± 0.07, 2.15± 0.08,

2.07± 0.06 kPa and Eapp = 1.38± 0.06, 1.33± 0.06, 1.21± 0.05 kPa for velocities of 5, 10 and 15 µm/s,
respectively). This difference in the values of the unrelaxed and the apparent moduli originates from

the relaxation of the viscoelastic network during the measurement time. In summary, the ability of

the model to describe the mechanical behavior of two different hydrogels was demonstrated here.
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4.4.2 Viscoelastic properties of HeLa cells in interphase and mitosis

HeLa cells are a type of cell line originally derived from human cancer cells. They are robust and

reproduce very quickly, which makes them a valuable resource for scientific research. For more details

on the corresponding AFM measurements and the samples studied here, the reader is referred to [9].

In particular, viscoelastic properties of interphase and mitotic HeLa cells were measured. Represen-

tative force-indentation curves are shown in Fig. 4.11. Comparing the Kelvin-Voigt modulus EKV ,

the interphase cells appeared overall more compliant than the mitotic cells (EKV = 0.8± 0.06 kPa for

interphase and EKV = 2.2 ± 0.3 kPa for mitotic) as shown in Fig. 4.12(a). Interestingly, the mitotic

cells also had a significantly higher value of the Maxwell modulus EM which relaxes during the inden-

tation measurement time (EM = 0.0± 0.0 kPa for interphase and EM = 0.76± 0.17 kPa for mitotic).

The relaxing elastic component could be attributed to the difference in the actin cortex arrangement

between spread interphase cells and round mitotic cells. Furthermore, the apparent viscosity η was

higher for the interphase cells (η = 2.71± 0.18Pa·s for interphase and η = 1.71± 0.06Pa·s for mitotic

cells).

Owing to the presence of a Maxwell modulus component EM in the mechanical characterization of the

mitotic cells, their apparent Young’s Modulus appeared, although not statistically significant, lower

when compared with the unrelaxed modulus (Eu = 3.0±0.28 kPa and Eapp = 2.7±0.28 kPa) as shown

in Fig. 4.12(c). The interphase cells had similar values of the unrelaxed (Eu = 0.8 ± 0.06 kPa) and

apparent (Eapp = 0.8±0.07 kPa) moduli. Here it was shown that the viscoelastic properties of mitotic

and interphase cell states can now be easily compared via a simple force-indentation measurement.
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Figure 4.8: Representative force-indentation curves for (a) PAAm and (b) agarose hydrogels, see [9]
for resources. The blue line shows the force-indentation curve acquired by AFM, the dashed orange
line shows the approach curve using the fitting model in Eq. (4.3). The fitted parameters are shown in
the table below each figure. The vertical red line highlights the jump at the end of the approach and
the beginning of the retraction curve, regarding the AFM measurements. For these measurements, the
radius of the indenter is R = 2.5 µm and the indentation velocity is vI = 5 µm/s. Adapted from [9].
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Figure 4.9: Mechanical characterization of polyacrylamide (PAAm) hydrogel ((a) and (b)) and
agarose hydrogel ((c) and (d)) indented with a spherical indenter at different velocities using AFM,
see [9] for resources. (a) and (c) show the elastic moduli EKV (purple) and EM (green) for PAAm and
agarose hydrogels, respectively. (b) and (d) show the apparent viscosity η (orange) for PAAm and
agarose hydrogels, respectively. Data are presented as box-whisker plots (25th, 50th, 75th percentiles,
whiskers indicate 10th and 90th percentiles). Results of a statistical test (Kruskal Wallis) are shown.
*** denotes p values < 0.001, pointing to significantly different viscosity values. The number of curves
analyzed for every hydrogel at a specific indentation velocity is 27− 36. Each hydrogel was measured
in four different areas. Adapted from [9].
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Figure 4.10: Unrelaxed Eu (blue) and apparent Eapp (red) Young’s moduli of PAAm (a) and agarose
(b) hydrogels quantified at different indentation velocities (see [9] for resources). Data are presented
as violin plots indicating the 25th, 50th and 75th percentiles. Results of a statistical test (Kruskal
Wallis) are shown. *** denotes p-values < 0.001 (i.e. significant difference between Eu and Eapp) and
n.s. stands for not significant. Image from [9].
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Figure 4.11: Representative force-indentation curves of (a) interphase and (b) mitotic HeLa cells
(see [9] for resources). The blue line shows the force-indentation curve acquired by AFM, the dashed
orange line shows the approach curve using the fitting model in Eq. (4.3). The fitted parameters
are shown in the table below each figure. The vertical red line highlights the jump at the end of the
approach and the beginning of the retraction curve, regarding the AFM measurements. For these
measurements, the radius of the indenter is R = 2.5 µm and the indentation velocity is vI = 2 µm/s.
Adapted from [9].
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Figure 4.12: Mechanical properties of interphase and mitotic HeLa cells (see [9] for resources). (a)
The elastic moduli EKV (purple) and EM (green). (b) The apparent viscosity η (yellow). Data in (a)
and (b) are presented as box-whisker plots (25th, 50th, 75th percentiles, whiskers indicate 10th and
90th percentiles). (c) The unrelaxed Eu (blue) and apparent Eapp (red) moduli of cells in both cell
cycle phases. Data are presented as violin plots indicating the 25th, 50th and 75th percentiles. Results
of a statistical test (Kruskal Wallis) are shown. *** denotes p-values < 0.001, indicating significantly
different viscosity values in (b) and elasticity values in (c). In contrast, n.s. denotes non-significant
differences between Eu and Eapp in (c). For every cell cycle phase two independent experiments were
performed and a total of 32 cells were measured. Adapted from [9].
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4.5 Discussion

In the last few years, AFM became the gold standard method for probing the rheological properties

of small-sized soft materials that, otherwise, could not be probed with conventional viscometers and

rheometers. To adequately characterize the viscoelastic behavior of the materials with AFM, one

should observe the material response in time or frequency domains.

Time-dependent static measurements are usually applied via step-hold experiments, where the force

relaxation or the material creep are recorded. An analytical model is then fitted to the recorded

force or indentation signals extracting the viscoelastic properties [72, 65, 82]. Alternatively, dynamic

measurements can be applied by moving the cantilever in a sinusoidal manner and recording the

amplitude and the phase shift of the cantilever deflection. The complex modulus of the material is

then evaluated at the different oscillation frequencies of the cantilever [71, 70]. Both methods, step-

hold and sinusoidal oscillation, require the user to prepare elaborate acquisition and analysis processes

with lengthy measurement times.

Force-indentation measurements, where the cantilever is linearly lowered to indent the sample and

then retracted back, are still one of the most used methods for probing soft materials with AFM. A

Hertzian model is conventionally used to extract the elastic modulus of the probed sample from the

force-indentation curves. The hysteresis present between the approach and retraction curves of the

sample confirms that the Hertzian contact mechanics assumption of a purely elastic material is not

met. Thus, a few studies have attempted to derive the viscoleastic properties of the materials from

the hysteresis between the approach and retraction curves [83, 84, 85]. For example, Rabelo et al. [83]

estimated the viscoelastic properties of human kidney epithelial cancer cells from force-indentation

curves. The elastic modulus was obtained by fitting the Hertz model, while the apparent viscosity

was calculated from the hysteresis between approach and retraction curves of the cantilever. More

specifically, the work lost in the approach-retraction cycle was associated with the internal friction

forces of the sample. In this work, the calculation of the apparent viscosity required, among other

steps, the integration of the approach-retraction curves to calculate the slopes over the indentation

range. Nonetheless, this method relies on estimating the slope of noisy data and it assumes an elastic

fit for the indentation and retraction curves.

Other recent studies have suggested fitting both the approach and retraction parts of the force curve

with a model that accounts for the viscoelastic dissipation [86, 87, 88, 89]. The development of

the models relied on the viscoelastic contact mechanics derivation by Lee and Radok [90] and the

application of Ting’s model [91] for extending the solution to the retraction part of the curve. In each

of these studies, a mechanical model, such as a standard linear solid (SLS) or power law rheology,

is chosen to describe the material’s mechanical nature. Efremov et al. [88] suggested using a SLS

model for describing hydrogels and power law rheology for describing cells. The necessity to alternate

between models originated from the difference in the behavior of cells and hydrogels in the extreme
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cases of t→ 0 and t→ ∞. In these cases, the SLS model describes a purely elastic material with a high

elastic modulus E0 at short times (t→ 0) that relaxes to a lower elastic modulus value E∞ at longer

times (t → ∞). The power law model, on the other hand, shows a monotonic decrease of the elastic

modulus value over time. In such approaches, the user is required to select a model, SLS or power

law, even if the mechanical properties of the material have not yet been determined. In addition, the

suggested fitting models do not give an explicit relation between the force and indentation signals,

and require a rather iterative process of solving integrals numerically.

In this chapter (i.e. in [9]), a new model was developed for fitting AFM force-indentation curves and

extracting the viscoelastic behavior of a probed material. It was shown that combining the simplest two

viscoelastic mechanical models, Kelvin-Voigt and Maxwell, will account for the hysteresis as well as the

regaining of the initial material shape. The underlying numerical method uses fundamental physical

laws to predict the force-indentation curve for given viscoelastic parameters. The goal in experimental

applications is to directly predict viscoelastic parameters from the measured force-indentation curves.

As the numerical model cannot be easily inverted, numerical results were used here for a broad range

of parameters to extract the functional dependence by means of a fitting routine. Thus, to extract the

viscoelastic properties from AFM force-indentation curves, a fitting model was proposed that describes

an explicit relation between the force and the indentation signals in the approach curve. In contrast

to common mechanical models typically considered, such as SLS, the Kelvin-Voigt-Maxwell (KVM)

model can still describe the viscosity of the materials at very short times. In the force-indentation

curves this is translated to the presence of hysteresis between the approach and retraction parts at

low and high indentation velocities, a characteristic feature of force-indentation curves of cells [88]. In

addition, due to the flexibility of the model to describe simpler mechanical behaviors, such as Kelvin-

Voigt or SLL (see Fig. 4.7), it is suitable to be fitted to force-indentation curves of hydrogels that

exhibit no hysteresis at low indentation velocities [88]. Ultimately, using the present fitting method,

the user is not required to alternate between different models to capture the mechanical nature of

different materials and can conveniently compare their fitted parameters.

For validation of the fitting model and demonstration of the method’s potential, PAAm and agarose

hydrogels were used, each having a different cross-linking mechanism. The PAAm gels exhibited,

over the range of different indentation velocities, an elastic behavior accompanied with an apparent

viscosity that probably arises from the liquid solvent moving within the elastic polymer network. On

the other hand, the agarose gels displayed a viscoelastic behavior that can be explained by the physical

crosslinking mechanism of such gels which allows the rearrangement of the polymer network and its

contact points during the indentation process.

Finally, HeLa cells were indented in interphase and mitosis cell cycle phases. The interphase cells

seemed overall more compliant. However, the mitotic cells exhibited higher values of the Maxwell

modulus EM that lead to higher viscoelastic dissipation during the indentation. Additionally, the

apparent viscosity was higher for the interphase cells. These mechanical differences between the cell
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cycle phases were also highlighted in a number of other studies [92, 93, 94]. The higher overall stiffness

of the mitotic cells was repeatedly attributed to the stiffer actin cortex of these cells which plays an

important role in the rounding and the division processes. On the other hand, the lower apparent

viscosity of mitotic cells was supposed to be an outcome of the cytoplasmic protein dilution due to

water entry and the cell volume increase at this phase [95, 94].

In summary, an analysis method was developed here to extract viscoelastic properties of soft materials

from AFM force-indentation curves. The applicability of the method was demonstrated, using the

same mechanical model for both hydrogels and cells. This method can be easily incorporated into

the conventional analysis of force-indentation curves to broaden the characterization of the rheological

properties of soft materials and specifically biological matter.

This chapter vividly demonstrated the potential and the extensibility of the numerical method intro-

duced in Chapter 3.
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Chapter 5

Phase field coupled to a deformable

solid: Modeling and simulation of soft

wetting scenarios

This chapter presents a unified numerical model for wetting of deformable substrates (see Sec. 2.3

for a brief discussion on wetting). A two-phase fluid flow is represented using the phase field model

introduced in Sec. 2.2. The setting is now extended to include a soft, (visco-)elastic solid that interacts

with the fluid. Note that the method of numerical representation, which will be detailed below, has

already been briefly introduced and illustrated in Fig. 2.5. The model developed in this chapter will

subsequently be used to study the stick-slip phenomenon in Sec. 5.5. It should be mentioned that

the latter is only one example of a wide range of possible scenarios that can be simulated using this

method. The content presented here was published by the author in Aland/Mokbel [10] (concerning

the numerical model, up to Sec. 5.4) and in Mokbel et al. [11] (concerning stick-slip, Sec. 5.5). Only

minor changes in notation and structure are made here.

The following introduction also includes an overview of the structure in this chapter.

5.1 Introduction

Wetting of flexible substrates (also: soft wetting, or elasto-capillarity) plays a major role in a broad

variety of phenomena. Technical applications include the patterning of cells [96] or droplets [97] onto

soft surfaces, the optimization of condensation processes [98] or the deposition of droplets in ink-jet

printing or additive manufacturing. Also in biology, capillary interactions with flexible materials play

a major role in self-organization of cell tissues [99], cell motility [100] and cancer cell migration [101].

Still, our understanding of the dynamics of such soft wetting processes lags far behind of what is known

about rigid surfaces [102]. Despite significant progress in computational modeling of (de)wetting
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of rigid substrates and the interaction of single fluids with elastic solids separately, the continuum

modeling and simulation of wetting of elastic substrates has remained essentially unexplored [28].

One reason for this discrepancy is certainly the challenging nature of the problem, which is inherently

multi-scale in space (processes at the micro-scale determine dynamics on the macro-scale) and time

(different time scales ranging from microseconds to seconds). Additionally, the strong coupling of hy-

drodynamics and substrate dynamics near the contact line requires special attention from a numerical

point of view. Another reason for the lack of computational results in this field lies in the diversity

of the required numerical techniques: the simulation of wetting typically employs interface capturing

techniques (like the phase field method [103, 43]), while the interaction of a fluid with an elastic struc-

ture (fluid-structure interaction, short: FSI) is typically modeled by interface tracking techniques, in

particular the arbitrary Lagrangian-Eulerian (ALE) method [104]. Accordingly, the first simulations

of wetting of elastic substrates appeared only very recently [28, 105, 106, 32, 31]. These references

comprise basically the whole available literature on numerical simulations of soft wetting at the time

of publication of Aland/Mokbel [10]. A work created later is [12], where a ternary phase field approach

was used instead of an interface tracking method for FSI. For a brief discussion of general advantages

and disadvantages of interface tracking and interface capturing methods, see Sec. 2.4.

The phase field model is probably the most popular continuum model to describe wetting phenomena

with moving contact lines. According to Sec. 2.2, the idea is based on an order parameter, the phase

field function ϕ, which is used to indicate the fluid phases. The phase field function varies smoothly

across the interface leading to a (thin) diffuse interface region. This diffusive nature of the interface

regularizes the stress singularity at the contact line, making it a very natural approach for moving

contact lines. The rigorous thermodynamic substructure of the model allows for consistent modeling

of topological transitions (e.g. [107]), and enables energy stable discrete formulations [43] and robust

time discretizations [48]. Consistent boundary conditions for the phase field modeling of wetting have

been derived in [29, 108], see also Sec. 2.3.2 in this regard. In [103] an improved phase field model

was derived from variational arguments and showed impressive quantitative agreement to molecular

dynamics simulations.

Accordingly, the available approaches for simulation of soft wetting [28, 105, 106, 32, 31] all use a

combination of different phase field methods for two-phase flow coupled to an ALE discretization of

the fluid-solid interaction. For the latter part, advanced standard FSI methods are used in all works.

For example, computations on the elastic structure are carried out in a stationary reference domain

and mappings are used to transform the corresponding quantities to real space. While this approach

is comparatively easy to use for precomputing the stiffness matrix in standard FSI, it requires more

complicated strategies in soft wetting, since adaptively changing grids are needed to resolve the region

near the contact line. Hence, one could avoid the use of mappings in the ALE discretization by

actually moving the grids. Also, the solid incompressibility, which is given for basically any relevant

soft material, is not exploited in any of the available numerical methods at the time of publication of
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Aland/Mokbel [10].

This chapter aims to exploit these properties to come up with a unified and simpler mathematical

model for soft wetting. The model is amenable to a simpler numerical treatment, yet it will be shown

that the unified approach makes it numerically more robust with respect to time step restricions than

previous explicit models [28, 105, 106, 32]. In addition, since the solid viscosity can be easily included,

soft wetting of a viscoelastic material will be considered for the first time.

The structure of the chapter is as follows. Sec. 5.2 introduces the model equations for the binary fluid

and the solid structure together with the corresponding coupling conditions, followed by a reformula-

tion in a unified way. Subsequently, the numerical method including time and space discretization is

presented in Sec. 5.3. Benchmark tests and further simulations illustrate the accuracy and efficiency of

the method and are carried out in Sec. 5.4. They include the first simulations of the surfing behavior

of droplets on a viscoelastic substrate.

In addition, Sec. 5.5 examines a scenario of particular interest to current research, namely the phe-

nomenon of stick-slip contact line motion, to which the present model is applied. Conclusions from

this chapter are drawn in Sec. 5.6.

5.2 Mathematical model

5.2.1 Configuration

The domain under consideration is constructed as follows. A two-phase fluid subdomain Ωf ⊂ Rd,

consisting of both a fluid and an ambient phase, is connected to a viscoelastic substrate Ωs ⊂ Rd

(d = 2, 3). An illustration is given in Fig. 5.1, where the example of a droplet on a substrate is shown.

In order to indicate the fluid phases, the phase field function ϕ is introduced, cf. Sec. 2.2. Here, ϕ = 0

in the ambient phase (liquid or gas) and ϕ = 1 in the liquid phase. Across the ambient-liquid interface,

the phase field varies smoothly, following a tangent hyperbolic profile. This leads to a thin diffuse

interface with thickness ϵ, cf. Eqs. (2.16) and (2.17). Furthermore, Γ denotes the sharp fluid-solid

interface. The whole domain is denoted by Ω = Ωf ∪Ωs ∪Γ. Three surface tensions are present along

the three transition regions. A fluid-fluid tension σ contracts the interface described by the phase field

and two solid-fluid tensions, σ0 and σ1, contract the surface of the solid material which is in contact

with the ambient and liquid phase, respectively. Note here that the present strategy of numerical

representation of free boundaries has already been mentioned in Sec. 2.4.

5.2.2 Governing equations

Binary fluid model

If variable (phase-dependent) densities are involved, different formulations of the phase field model

equations have been proposed, e.g. [6, 21, 5]. However, in real scenarios away from the critical
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Figure 5.1: Illustration of the soft wetting scenario. A deformable solid domain Ωs borders on a
two-phase fluid domain Ωf . The two fluids are indicated by the value of the phase field function ϕ.
The fluid-fluid interface is diffuse with a thickness ϵ and carries a surface tension σ. The fluid-solid
interface Γ has two distinct surface tensions σ0 and σ1 depending on the contacting fluid. From
Aland/Mokbel [10].

point, the involved interface thickness ϵ is small such that all these models yield comparable results

[109]. Therefore, the simplest model from [6] is used here, which considers a volume-averaged velocity

formulation with fluid velocity vf . The model has also already been derived and presented in Sec. 2.2.5

and Sec. 2.2.6. It reads

ρf (ϕ) ∂
•vf −∇ · Sf = F

∇ · vf = 0

∂•ϕ = ∇ · (m∇q)

q = σ̃ϵ−1W ′ (ϕ)− σ̃ϵ∆ϕ


in Ωf (5.1)

with viscous, pressure and capillary stress

Sf = ηf (ϕ)
(
∇vf +∇vT

f

)
− pf I− σ̃ϵ∇ϕ⊗∇ϕ︸ ︷︷ ︸

Sca

. (5.2)

Here, the following denotations were used: the material time derivative ∂• = dt + vf · ∇, the phase-

dependent fluid density ρf , constant mobility m, the chemical potential q, the double well potential

W , the (scaled) fluid-fluid surface tension σ̃, the phase-dependent fluid viscosity ηf , and the identity

matrix I. In the present case, the double well potential is chosen as W (ϕ) = ϕ2 (1− ϕ)2, which yields

a scaling of a physically motivated surface tension σ according to σ̃ = 3
√
2σ, see Eq. (2.32).

Compared to previous literature on soft wetting [31], the term

I
(
σ̃ϵ

2
|∇ϕ|2 + σ̃

ϵ
W (ϕ)− qϕ

)
is omitted here in the definition of the capillary stress Sca, as it only rescales the interfacial pressure.
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That is, the pressure pf used here, is related to the real physical pressure pphys by

pf = pphys −
σ̃ϵ

2
|∇ϕ|2 − σ̃

ϵ
W (ϕ) + qϕ .

Omitting the left out terms also from the interfacial force balance (Eq. (5.5)2 below) ensures that this

approach is consistent.

Solid elasticity

In the following, the equations of solid elasticity are formulated, which are to be solved in Ωs. That

approach is different from typical approaches in fluid-structure interaction in which the equations are

defined on a stationary reference domain and mappings are used to transfer operators to the real

physical domain. Furthermore, the present approach exploits the fact that all soft elastic materials

(soft wetting occurs typically at Young’s moduli in the range of few kPa) are essentially gels, which

are incompressible, due to high fluid content. In most work on soft wetting (a notable exception

being [31]), this property is approximated by using a Poisson ratio close to 1/2. Instead, the exact

incompressibility condition is used here, and the governing equations are accordingly quite similar to

the Navier-Stokes equations above. Using a linear elastic model, the equations of momentum and

mass conservation are

ρs∂
•vs −∇ · Ss = F

∇ · vs = 0

}
in Ωs (5.3)

with viscous, pressure and elastic stress

Ss = ηs
(
∇vs +∇vT

s

)
− psI+G

(
∇u+∇uT −∇uT∇u

)︸ ︷︷ ︸
Sel

. (5.4)

Here, ∂• = dt+vs ·∇ denotes the material time derivative including the solid velocity vs. Furthermore,

ρs, ηs and G denote the solid density, solid viscosity and elastic shear modulus, respectively. Addition-

ally, u is a displacement field, i.e. the difference between current coordinates and initial coordinates of

material points. This displacement field can be tracked either by an additional PDE, ∂•u = vs in Ωs,

or by moving the grid with the velocity vs while memorizing initial coordinates x̂ of each grid point,

such that u = x− x̂. The latter approach is used in this work.

Note that the elastic stress Sel in Eq. (5.4) includes the nonlinear Euler-Almansi term to make the

model geometrically nonlinear. Contrary to previous approaches for numerical simulation of soft

wetting, the solid material includes a viscosity, which leads to an effective description as a Kelvin-

Voigt viscoelastic material. The viscosity of the solid is relevant for many dynamic phenomena in soft

wetting, and its influence is hardly understood [1].
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Moreover, note that in general G can be chosen as an arbitrary time- and space-dependent function in

Ωs, e.g. in order to implement an elasticity gradient in the substrate (for example to describe durotaxis

[97]). However, throughout this work G is assumed to be constant.

Coupling conditions

The following coupling conditions apply at the solid-fluid interface Γ:

vf = vs

Sf · n = Ss · n+∇Γ · (σs (ϕ)P)

dtϕ+ vf · ∇ϕ = −ν
(
σ̃ϵn · ∇ϕ+ σ′s (ϕ)

)
n · ∇q = 0


on Γ . (5.5)

The first equation is the continuity of velocities across the interface which is equal to the usual no-

slip condition. This condition also implies a topological condition which ensures that Ωf and Ωs are

contiguous at the interface (see Sec. 5.3.1). In typical sharp interface formulations such a no-slip

condition results in a pinning of the fluid-fluid contact line to the solid boundary. This effect, also

known as contact line singularity, is overcome in the present phase field model. Here, the fluid-fluid

interface can move not only by advection, but also by the Cahn-Hilliard diffusion. The corresponding

equations are constructed from energetic arguments, such as to minimize the overall surface energy

(i.e. to realize the correct contact angles). Hence, the use of a phase field model for the fluid-fluid

interface is an elegant and physically motivated way to avoid the contact line singularity.

The second equation is the dynamic condition which describes the balance of forces across the interface

(namely traction and capillary stress). Here, n is the outer normal to Ωf . The solid surface tension

σs (ϕ) represents the tension along Γ between the solid and the fluid indicated by the value of the phase

field. It is important to emphasize here that σs is defined only in Ωf , since in Ωs no phase field is given.

According to the derivation in Sec. 2.3.2 and Sec. 2.3.3, it is set to the following differentiable function

of the phase field: σs (ϕ) = (σ1 − σ0)ϕ
2 (3− 2ϕ) + σ0, which implies σs(0) = σ0 and σs(1) = σ1.

Further, ∇Γ · denotes the surface divergence operator and P = I − n ⊗ n is the surface projection

operator. Note that the present formulation coincides with the boundary conditions given in [28, 105,

31] as ∇Γ · (σs (ϕ)P) = σs (ϕ)κn + ∇Γσs (ϕ) with κ = −∇Γ · n being the total curvature. Further

note that condition (5.5)2 also results from the previous derivation in Sec. 2.3.2 and corresponds to

Eq. (2.64), here extended by the contribution of the solid stress Ss.

The third equation, Eq. (5.5)3 is responsible for the formation of a dynamic contact angle and was

also derived in Sec. 2.3.2, where ν denotes a relaxation parameter. Furthermore, this condition has

been presented previously in a variational model for moving contact lines in [103]. When ν tends

to infinity, the equation reduces to the static contact angle condition σ̃ϵn · ∇ϕ = −σ′s (ϕ), which is

used for the numerical simulations in this chapter. Moreover, note that both the kinematic and the
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topological condition are comparable to those in conventional FSI problems. However, the dynamic

condition as well as Eq. (5.5)3 differ from conventional FSI problems in terms of contribution of the

capillary stress Sca and the fluid-solid surface tension σs, leading to a discontinuity of the traction

across the interface (see also Sec. 2.3 of [31]).

Finally, Eq. (5.5)4 ensures mass conservation (no penetration) on Γ. With this, a closed system of equa-

tions is now specified (up to outer boundary conditions) for the unknown variables vf , pf ,vs, ps, ϕ, q.

5.2.3 Unified model

This section presents a unification of the previously described equations of binary fluid-structure

interaction, cf. [110] for a similar approach. The first step is to exploit the continuity of velocity

(5.5)1 to introduce the common velocity field v with v = vs in Ωs and v = vf in Ωf . Accordingly,

the material time derivative is now denoted by ∂• = dt + v · ∇. The fact that the domain Ωs is not

a reference domain, but moves with the material, makes it possible to define a common connected

computational domain Ω := Ωs ∪Ωf . In this domain, let χf and χs be the characteristic functions to

distinguish the domain parts, that is, χα = 1 in Ωα for α ∈ {f, s} and zero anywhere else. The surface

Γ is identified with the surface Dirac delta function δΓ. This notation allows to add up the variational

forms of the equations and to end up with

ρ̄∂•v−∇ ·
(
η̄
(
∇v+∇vT

))
+∇(χfpf + χsps) =

−∇ · (χfSca) +∇ · (χsSel)− δΓ∇Γ · (σsP) + F

∇ · v = 0

 in Ω. (5.6)

Here, ρ̄ = ρ̄ (x, ϕ(x)) and η̄ = η̄ (x, ϕ(x)) are the space-dependent density and viscosity, interpolated

in the way that

ρ̄ (x, ϕ(x)) =


ρs x ∈ Ωs

(ρf,1 − ρf,0)ϕ(x) + ρf,0 x ∈ Ωf , ϕ(x) ∈ [0, 1]

ρf,0 x ∈ Ωf , ϕ(x) < 0

ρf,1 x ∈ Ωf , ϕ(x) > 1 ,

where ρf,1 and ρf,0 denote the density in the liquid and in the ambient phase, respectively. The last

two case distinctions are necessary to limit ρ̄ to physically meaningful values. The reason for this is

that the phase field does not satisfy a maximum principle, hence its values can slightly exceed the

interval [0, 1], which can create unphysical density, especially for large differences between ρf,0 and

ρf,1. This type of interpolation also applies in an analogous manner to η̄.

Equation (5.6) consolidates Eqs. (5.1)1-(5.1)2, (5.2), (5.3), (5.4). Additionally also the kinematic

and dynamic coupling conditions Eqs. (5.5)1-(5.5)2 are included. This yields a single Navier-Stokes

equation which incorporates momentum and mass balance of fluid and solid phases together with the
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interfacial balance of forces in a monolithic way. Therefore, this formulation is expected to provide

superior stability of the numerical method, while greatly simplifying the numerical treatment of the

system, as will be shown in Sec. 5.4.1.

For completeness, note here that these equations are still accompanied by the Cahn-Hilliard system

in the fluid domain:

∂•ϕ = ∇ · (m∇q)

q = σ̃ϵ−1W ′ (ϕ)− σ̃ϵ∆ϕ

}
in Ωf , (5.7)

equipped with the boundary conditions (5.5)3-(5.5)4.

5.3 Discretization

5.3.1 ALE discretization

The arbitrary Lagrangian-Eulerian (ALE) method is used here to discretize the numerical grids, see

Sec. 2.4. The two domains Ωs and Ωf are discretized on two separate but connected, moving numerical

grids. Within the elastic structure as well as on Γ, grid points move with the material velocity v, i.e.

they are material points. In contrast, the grid points in the fluid structure move with a continuous

harmonic extension of this velocity in order to keep a proper shape of the mesh. In this work, the grid

velocity vGrid is calculated in the fluid domain by solving the Bi-Laplace problem

∆2vGrid = 0 in Ωf

vGrid = v, n · ∇∆vGrid = 0 on Γ

∆vGrid = vGrid = 0 on ∂Ωf \ Γ

(5.8)

and vGrid = v in Ωs. Alternatively, other methods can also be used to extend the grid velocity into

the fluid domain, for example by penalizing length changes of triangles/tetrahedra, see [111] for more

details.

The calculated grid velocity vGrid is then subtracted in all convective terms of the governing equations.

Therefore, the material derivate ∂• is replaced by

dt + (v− vGrid) · ∇ ,

where dt now denotes the time derivative along a quantity on a moving grid point.

5.3.2 Time discretization

The problem is discretized with equidistant time steps of size τ . At each time step, the general

workflow of the numerical solution procedure is as follows. First, the coupled system of momentum
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balance, mass balance, and phase field evolution, Eqs. (5.6)-(5.7) is solved in one monolithic system.

Afterwards the grid velocity vGrid is computed as explained in the previous subsection. Then in a last

step, the grid is updated, i.e. each grid point is moved by the corresponding value of vGrid.

An IMEX (implicit/explicit) Euler method is used to formulate a time discretization of Eqs. (5.6)-(5.7)

which is linear in the solution variables. In the following, quantities on discrete time points are

denoted by a superscript, where ()n−1 refers to the previous time step and ()n refers to the current

time step. Explicit discretizations (i.e. step n−1) are used for the nonlinear elastic term and most

occurrences of the phase field in the momentum balance. The linear elastic term is taken implicitly,

G(∇un + (∇un)T ), by using the identity un = un−1 + τvn (see also [110]). This yields an explicit

part G(∇un−1 + (∇un−1)T ) and an implicit part τG(∇vn + (∇vn)T ), which effectively leads to an

increment of the solid viscosity by τG.

Additionally, stability is increased by an implicit treatment of the fluid-fluid surface tension force. The

capillary stress Sca is taken semi-implicitly by using σ̃ϵ∇ϕn ⊗∇ϕn−1. Note, that the involved tensor

product is defined such that [∇ · (∇ϕn ⊗ ∇ϕn−1)]i =
∑

j ∂j(∂jϕ
n∂iϕ

n−1). It should be emphasized

here that the alternative discetization σ̃ϵ∇ϕn−1 ⊗∇ϕn does not lead to a stabilizing effect, since only

the first occurrence of ∇ϕ effectively contains the interface curvature, see [48] for a more detailed

discussion of stabilization of large surface tension in phase field models. This treatment must be

accompanied by using the new velocity field vn in the advective term of the phase field. Further, the

nonlinear derivative of the double well potential W ′(ϕ) is linearized by a first order Taylor expansion.

Finally, this results in the following time discrete formulation of the system:

In each time step n, find vn, pnf , p
n
s , ϕ

n, qn such that

ρ̄n−1

(
vn − vn−1

∗
τ

+ (vn−1 − vn−1
Grid) · ∇vn

)
=

−∇(χn−1
f pnf + χn−1

s pns ) +∇ ·
(
(η̄n−1 + χn−1

s τG)
(
∇vn + (∇vn)T

))
+∇ · (χsSel)n−1 −∇ · (χn−1

f σ̃ϵ∇ϕn ⊗∇ϕn−1)− δn−1
Γ ∇Γ · (σs(ϕ)P)n−1 + F

∇ · vn = 0


in Ωn−1 (5.9)

ϕn − ϕn−1
∗

τ
+ (vn − vn−1

Grid) · ∇ϕ
n−1 = ∇ · (m∇qn)

qn = σ̃ϵ−1
(
W ′(ϕn−1) +W ′′(ϕn−1)(ϕn − ϕn−1

)
− σ̃ϵ∆ϕn

 in Ωn−1
f . (5.10)

Here vn−1
∗ and ϕn−1

∗ denote the corresponding quantities from the last time step, but after the ap-

plied change of the grid point coordinates due to the mesh update. Further, ρ̄n−1 = ρ̄(x, ϕn−1(x)),

η̄n−1 = η̄(x, ϕn−1(x)).
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5.3.3 Space discretization

In the present finite element approach, separate triangulations Tf of Ωf and Ts of Ωs are considered,

where the membrane Γ connecting the two domains is triangulated by TΓ = Tf ∩Ts. In particular, the

connection is ensured by the fact that every grid point on the interface of Ωf has a corresponding grid

point on the interface of Ωs, sharing the same point coordinates. This allows us to enforce continuity

of velocity across Γ, as well as to implement the jump conditions of the stress there. For an example

illustration of the numerical mesh, see Fig. 5.2.

(a) (b)

Figure 5.2: Illustration of the setup in the numerical simulations. In (a), the two-dimensional
computational domain is indicated by the transparent rectangle. The substrate is represented by a
solid gray color, the liquid phase by blue and the ambient is invisible. Additionally, the solid mesh is
shown. The mesh at the contact line, marked by the red rectangular, is presented in (b). The solid
domain is illustrated in grey, while the coloring in the fluid domain represents the pressure. Adapted
from Aland/Mokbel [10].

The combined discrete system of Eqs. (5.1) - (5.5) in the weak form is presented in the following. The

finite element spaces read

Vh :=

{
v ∈ C0

(
Ω
)
∩H1 (Ω)

∣∣∣∣v|k ∈ P2 (k) , k ∈ Tf ∪ Ts
}

Ph,α :=

{
p ∈ C

(
Ωα

)
∩ L2 (Ωα)

∣∣∣∣p|k ∈ P1 (k) , k ∈ Tα

}
, α = s, f

Ch :=

{
c ∈ C0

(
Ωf

)
∩H1(Ωf )

∣∣∣∣c|k ∈ P2 (k) , k ∈ Tf

}
.

(5.11)

Here, Vh is the finite element space for the components of the velocity v. It ensures continuity of the

respective variables across TΓ. Note that in Eq. (5.11)2, α denotes a placeholder for the distinction

between the solid and the fluid domain. The use of two separate spaces, Ph,f and Ph,s, is motivated by

the discontinuity of pressure across Γ caused by the solid surface tension. The use of standard finite

element spaces for the discretization of the discontinuous pressure leads to poor numerical properties,

with an approximation order of only O(
√
h) with respect to the L2 norm [112]. Accordingly, the

usage of two separate spaces, Ph,f and Ph,s, extends the standard Taylor-Hood finite element space
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by additional degrees of freedom of the pressure at the interface, such that the discontinuity can be

exactly resolved. The remaining finite element space Ch refers to ϕ and q in Eqs. (5.1)3 and (5.1)4.

Navier-Stokes system

The previous arguments now allow to establish a uniform weak formulation of the momentum and

mass conservation equation for the combined domain Ω. The weak form reads:

Find
(
vn, pnf , p

n
s

)
∈ V d

h × Ph,f × Ph,s, such that ∀ (z, qf , qs) ∈ V d
h × Ph,f × Ph,s :

0 =

∫
Ωn−1

ρ̄n−1

(
vn − vn−1

∗
τ

+ (vn−1 − vn−1
Grid) · ∇vn

)
· z

+ (η̄n−1 + χn−1
s τG)

(
∇vn + (∇vn)T

)
: ∇z− F · z dx

−
∫
Ωn−1

f

σ̃ϵ∇ϕn ⊗∇ϕn−1 : ∇z+ pnf∇ · z dx

+

∫
Ωn−1

s

G
(
∇u+ (∇u)T − (∇u)T∇u

)n−1
: ∇z− pns∇ · z dx

+

∫
Γn−1

(∇Γ · (σs (ϕ)P))n−1 · z dx, (5.12)

0 =

∫
Ωn−1

f

qf∇ · vn dx+

∫
Ωn−1

s

qs∇ · vn dx . (5.13)

Cahn-Hilliard system

Since the rest of this chapter considers a static contact angle condition, Eq. (5.5)3 simplifies to σ̃ϵn ·
∇ϕ = −σ′s (ϕ). The weak form of Eqs. (5.1)3 and (5.1)4 equipped with boundary conditions (5.5)3-

(5.5)4 then reads:

Find (ϕn, qn) ∈ Ch × Ch such that ∀ (ψ1, ψ2) ∈ Ch × Ch

0 =

∫
Ωn−1

f

(
ϕn − ϕn−1

∗
τ

+ (vn − vn−1
Grid) · ∇ϕ

n−1

)
ψ1 +m∇qn · ∇ψ1 dx (5.14)

0 =

∫
Ωn−1

f

qmψ2 − σ̃ϵ∇ϕn · ∇ψ2 −
σ̃

ϵ

(
W ′(ϕn−1) +W ′′(ϕn−1)(ϕn − ϕn−1)

)
ψ2 dx

−
∫
Γn−1

σ′s
(
ϕn−1

)
ψ2 dx , (5.15)

where the nonlinear derivative of the double well potential W ′(ϕ) is linearized by a Taylor expansion

of first order. Note that the Cahn-Hilliard system is still directly coupled to the Navier-Stokes system

by the presence of ϕn in Eq.(5.12) and the presence of vn in Eq. (5.14). This coupling, which removes

time step restrictions for small interface length [48], is linear. Hence, the coupled system can be solved

by assembling Eqs. (5.12)-(5.15) in a monolithic way, and no subiterations are needed.
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5.4 Numerical tests

5.4.1 Validation study

This section starts the verification and validation of the proposed model with a popular wetting

test case: the relaxation of an initially half-spherical droplet on a substrate. The author’s work

Aland/Mokbel [10] presented here aimed to reproduce the numerical reference results in [31] and the

experimental data presented in [113] to follow up this benchmark case. The computational setup and

parameters are chosen according to [31] and are repeated here for completeness.

As indicated in Fig. 5.2, a cylindrical computational domain with radius 350 µm and height 300 µm is

considered. The bottom of the domain consists of a 50 µm thick soft elastic substrate. A liquid droplet

is placed in the center of the substrate. The shape of the drop is initially a spherical cap with radius

RC ≈ 177.8 µm, centered slightly above the substrate surface, such that the fluid-ambient contact line

assumes the equilibrium contact angle on the flat substrate. Note that this alignment of the correct

initial contact angle is not a necessity of the numerical algorithm but is used to comply with [31]. For

an initially undeformed planar substrate the contact angle θ is given by Young’s relation

cos θ =
σ0 − σ1

σ
,

which applies only to flat rigid substrates, see Sec. 2.3. In particular the time-dependent order pa-

rameter ϕ (t,x) initially reads (cf. Eqs. (2.16), (2.58))

ϕ (0,x) =
1

2
+

1

2
tanh

(
RC − |x− xC |

ϵ
√
2

)
,

where the center xC of the spherical cap is placed such that its distance to the surface of the substrate

is |RC cos θ| [31]. Furthermore, the following surface tensions are chosen:

σ = 46
mN

m
, σ1 = 36

mN

m
, σ0 = 31

mN

m
,

which leads to an equilibrium contact angle of approximately 96.24◦ and a distance of xC to the

substrate of RC |σ0−σ1
σ | ≈ 19.3 µm.

The shear modulus of the soft substrate has been reported to be G = 1kPa [31]. The width of the

fluid-fluid interface is set to ϵ = 2 µm, which is sufficiently smaller than the elastocapillary length σ
G .

That is, soft solid behavior and the formation of a three-phase contact angle can be expected, which

should roughly follow Neumann’s triangle, see Sec. 2.3 and [23]. Further parameters are

ρf,0 = 1
kg

m3
, ρf,1 = 1260

kg

m3
, ρs = 1000

kg

m3
,

ηf,0 = 0.1Pa · s, ηf,1 = 1.41Pa · s, ηs = 0.005Pa · s .
(5.16)
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Since a solid viscosity is not included in [31], ηs is chosen to be negligibly small here. In the associated

experiment, the data are measured examining a glycerol droplet in air on a silicone-gel layer. Note

that ambient parameters, ρf,0, ηf,0, in 5.16 are chosen to comply with [31]. There the authors deviated

from the physical values of air as used in the experiment [113], to improve numerical stability. The

experimental results are only compared in the stationary state, which is independent on ambient

viscosity and density.

At the bottom boundary of the solid substrate v = 0 holds, while a free-slip condition is set at all

other outer boundaries of the domain.

As in [31], an axisymmetric implementation of the method is chosen to incorporate the rotational

symmetry of the experimental setup, which amounts to performing simulations in the two-dimensional

x0 − r plane. According to Fig. 5.2, x0 and r refer to the coordinates in axial and radial direction,

respectively. The same finite-element spaces are used as described in Eq. (5.11), with dimension d = 2.

Axisymmetry is realized on the level of differential operators by using an axisymmetric divergence and

Laplace operator, which replace the corresponding operators in Eqs. (5.9),(5.10). To compute the

axisymmetric divergence of the viscous and elastic stress and the projection matrix, additional terms

have to be implemented to account for the missing tensor components in 2D. For a more detailed

overview of the time-discrete axisymmetric Navier-Stokes and Cahn-Hilliard system, see Sec. 3.5.

Further, the solid surface tension force is reformulated as ∇Γ · (σs (ϕ)P) = σs(ϕ)κn + ∇Γσs(ϕ), as

described in Sec. 5.2.2. Here, κ = −∇Γ ·n is the total curvature of the solid surface which is computed

in the discrete axisymmetric setting as in Sec. 4.2 of [111].

To resolve the dynamics of the wetting ridge formation, the time step size is set to 2 µs. The distance

between the grid nodes is 0.39 µm along the interface, which leads to approximately 16 degrees of

freedom across the interface region (ϕ ∈ [0.1, 0.9], cf. Eq. (2.17)). The grid size is increased away

from the interface region to a maximum node distance of 6.25 µm. The constant mobility is set to

m = 0.01 m3s
kg .

The first benchmark of interest is the equilibrium profile of the substrate, for which the choice of fluid

and ambient viscosities and the material densities is not relevant. Fig. 5.3(a) shows the resulting profile

at t = 6ms in the (almost) stationary state. Maximum strain is about 30% in a very small region near

the tip of the wetting ridge. A comparison with the reference simulation shows a very good agreement

in both, the substrate profile under the droplet as well as the wetting ridge. The slightly smaller

height of the wetting ridge could be explained by the fact that we model a linear elastic material in

contrast to the Neo-Hookean material in the reference. This is also confirmed by comparing to [28]

where a linear elastic model lead to a height of slightly less than 7 µm for the wetting ridge, which is

exactly the same as in our simulations. However the results of [28] are not included in the comparison

as they deviate largely in the indentation of the soft substrate below the droplet. Already in the

original paper the authors conjectured that this discrepancy is related to compressibility effects due
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(a) (b)

Figure 5.3: Height profile of the deformed elastic substrate. The left vertical axis corresponds to the
axis of symmetry. In (a), the equilibrium profile line of the substrate is shown. The black solid line
represents the result of the present simulation at time t = 6ms, the dashed red line is the reference
result in [31], and the cyan crosses show the experimental results in [113]. All data to reproduce the
graph were published in [114]. Part (b) indicates the evolution of the wetting ridge at 5 different times
(solid lines) in comparison to the reference values from [31] (dashed lines). The coordinate system was
repeatedly shifted by 2 µm for better visibility with initial position of the substrate indicated by the
horizontal lines. From Aland/Mokbel [10].

to their pseudo-incompressible solid model. Moreover, the comparison of the simulation results with

the experimental data from [113] also shows a good agreement, especially in the wetting ridge region.

Since the stationary wetting ridge profile can be considered as a standard benchmark case for soft

wetting, all data to reproduce Figure 5.3(a) were published in [114].

Fig. 5.3(b) shows the evolution of the profile line between t = 100 µs and t = 500 µs, in which a large

part of the clearly observable dynamic behavior takes place. At this point it is necessary to choose

viscosities and densities that match the reference. Using the above mentioned values refers to test

case 2 in [31]. A good agreement in the comparison to the reference is also shown here.

5.4.2 Time step stability

The used time step size of 2 µs was chosen so that in particular a precise analysis of the evolution of

the wetting ridge is possible. The small time step size ensures that kink formation (∼µs) and ridge

formation (∼ms) are reasonably well resolved. Many interesting soft wetting effects happen on larger

time scales of seconds or minutes (e.g. droplet motion, cheerios effect, soft nucleation). Obviously,

much larger time steps are necessary to resolve these phenomena within reasonable computation time.

In this case, one can sacrifice temporal accuracy during the formation of the wetting ridge, as one is

more interested to resolve the (slower) motion of an already formed ridge moving over the substrate.

However, the necessary larger time steps may pose problems to numerical algorithms as stability



5.4. NUMERICAL TESTS 93

restrictions kick in. Such restrictions were investigated for the above benchmark problem in detail in

[28]. It was reported that restrictions emerge due to the explicit coupling of fluid and solid equations.

It was also shown that restrictions are independent of the added mass effect. To get a convergent

solution in each time step, subiterations with underrelaxation were necessary. The largest stable

relaxation factor was found ∼ 10−2 which means that on the order of 102 subiterations were necessary

in each time step. This reduces the reported time step size of 10 µs to an “effective” time step size

of 0.1 µs. Similarly, in [32] time step sizes of 1 µs were chosen to conduct the same benchmark study.

Nothing is reported on stability requirements there, but it can be expected that much larger time

steps also posed problems, as the computations took already 47h on 128 cores.

The unified approach for the fluid and solid equations presented here seems to stabilize the coupling

significantly. The numerical simulations of the benchmark example are found to be stable for time

step sizes of up to 16 µs without any subiterations. For higher time step size the explicit coupling of

velocity evolution and geometry evolution (grid movement) becomes unstable. While this time step

size is already much larger than the sizes reported in previous literature on soft wetting (except for

the fully monolithic approach in [31]), the stability can be further increased by considering matched

viscosities and densities, which is a valid assumption to obtain the equilibrium state. For example,

with the choice ρf,0 = ρf,1 = 1260 kg/m3, ηf,0 = ηf,1 = ηs = 1.41Pa · s the time step size may be

increased to 128 µs. Also, coarsening of the finite element grid leads to weaker time step restrictions.

In our case, we found that doubling the mesh size enabled approximately 4 times larger time steps

(512 µs). A more detailed study on time step restrictions, stability criteria and time stepping errors

is left for future work.

Note that the method still contains an explicit coupling of geometry evolution and flow computa-

tion. It can therefore not cope with a completely implicit coupling as recently proposed in [31].

There the authors showed that their fully monolithic solution procedure can provide robust results at

time step size of 1000 µs, and probably even above. The fully implicit coupling however complicates

the solution procedure, including automatic differentiation, Newton iterations and a technique called

ϵ-continuation. Despite being not as robust as this fully implicit approach, the method proposed here

is more compact and can provide results at low computation time of each time step (35 s per time step

for the benchmark example on the finest grid with ≈ 280,000 DOFs on a single core).

5.4.3 Fluid substrates

This subsection illustrates that the present approach is capable to describe even much softer substrates.

To this end, the extreme case is assumed where the substrate is a purely viscous fluid without elasticity.

This approach is particularly interesting for multi-phase flow with free surfaces, such as gas-water-oil

mixtures. Fig. 5.4 shows the scenario of the above benchmark test case, but now with G = 0Pa.

Fig. 5.4(b) illustrates the significantly different dynamics during the first 1000 microseconds that

result from the omission of an elastic influence. While the elastic substrate is already close to the
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(a) (b)

Figure 5.4: Simulations of a droplet on a fluid substrate. (a) The droplet has sunk far into the
substrate at t = 6ms. (b) The dynamics of substrate profiles (left axis is the axis of symmetry). The
simulation results for G = 0Pa are shown by the dotted, colored lines. The black solid lines represents
the corresponding equilibrium profile with G = 1000Pa for comparison (cf. Fig. 5.3). Parameters
are as in Sec. 5.4.1, but now with a fluid substrate, G = 0Pa, ηs = 0.1Pa · s , ϵ = 8 µm. From
Aland/Mokbel [10].

0

(a) (σ : σ0 : σ1) = (1 : 1 : 1)

0

(b) (σ : σ0 : σ1) = (0.8 : 1 : 1.4)

Figure 5.5: Simulated equilibrium configurations of a droplet sinking into a fluid substrate for
different ratios of contact angles. In both images, the upper part belongs to the ambient fluid, the
lower part to the fluid substrate. Parameters are η0 = η1 = 1Pa · s, ρ0 = ρ1 = 1000 kg/m3, σ0 = 30 mN

m .
Adapted from Aland/Mokbel [10].

equilibrium state at this time, the purely viscous substrate keeps deforming. The Laplace pressure

pushes the droplet deeper and deeper into the substrate. As the substrate here is very thin, this

dynamics would eventually lead to a breakup of the substrate phase in the center. This breakup
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would cause the drop to touch the bottom boundary of the computational domain. Obviously, such a

topological change is not correctly described by a grid-based numerical model. Here the simulations

crash before the topological change due to degenerate mesh elements.

The observation of a fluid substrate also allows for a comparison of the equilibrium contact angle in the

simulations with the Neumann’s triangle, cf. Sec. 2.3.3. Fig. 5.5 shows a reproduction of the results

of three-phase flow simulations from [115, Fig.10], using the same relation of the surface tensions.

Uniform values for viscosity and density are chosen throughout the whole domain here, namely 1Pa · s
and 1000 kg/m3. The initial droplet is described as a small spherical cap upon a planar fluid substrate.

The obtained equilibrium shapes are displayed in Fig. 5.5.

The intersection between the fluid-fluid meniscus and the substrate shows good agreement of the

developed equilibrium contact angle with [115, Fig.10]. In particular, Fig. 5.5(a) indicates that for

σ = σ1 = σ0 the respective angles in all three phases are equal to each other (≈ 120◦). Also, the case

σ1 : σ0 : σ = 1 : 1.4 : 0.8 shown in Fig. 5.5(b) yields the expected shape when compared with the

reference.

5.4.4 Interaction between liquid droplets on viscoelastic substrates

After the validation studies for elastic and fluid substrates in the previous sections, the potential

of the method is illustrated in the following. This involves the first numerical simulations of two

experimentally observed soft wetting phenomena in Sections 5.4.4 and 5.4.5.

The first of these phenomena considers the substrate-mediated interaction of droplets. When placed

sufficiently close, liquid drops on soft solid substrates are found to attract or repel each other, due

to a combination of substrate elasticity and capillary forces [116]. This mechanism is also referred to

as the inverted Cheerios effect. The present model is able to simulate such scenarios including the

topological transition during fusion of drops.

The simulated scenario considers a 2D domain with two drops that are initially close to each other.

Fig. 5.6 shows an exemplary series of snapshots to describe the dynamics in more detail. Here, a

square domain Ω is set with length 150 µm, divided in half by Ωs and Ωf . The two drops are placed

symmetrically and centered so that they have an initial distance of 10.75 µm. The drops are initially

prescribed as half-spherical caps of 20 µm radius. Furthermore, ϵ = 2 µm, which is significantly

smaller than the distance between the drops, thus preventing the diffuse interfaces to “feel” each

other. To strengthen the substrate-mediated interaction, a relatively soft substrate is assumed, namely

G = 200Pa. The solid surface tensions are higher than the surface tension between drops and ambient,

σ1 = σ0 = 46mN
m , and σ = 31mN

m . In the whole domain, viscosity and density are chosen to be constant,

namely 1Pa · s and 1000 kg
m3 , respectively.

At the beginning there is a relatively rapid deformation of the substrate in vertical direction due to

the capillary forces (t = 160 µs). This dynamics decays after t = 3200 µs and the attraction force
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between the droplets becomes dominant, moving the two drops in horizontal direction towards each

other (t = 44800 µs), see also [116, Eq. 3]. After the two drops have merged (t = 45760 µs), the

resulting single drop develops an almost stationary state, as indicated in the last snapshot.

t = 160 µs t = 3200 µs t = 44800 µs

t = 45760 µs t = 48000 µs t = 77120 µs

Figure 5.6: Simulation of the inverted Cheerios effect. The six snapshots are chosen such that
essential aspects of the dynamic behavior can be recognized. The lower part of the images is Ωs, the
upper part is Ωf . The coloring in Ωf indicates the phase field values (ϕ = 1 in blue, ϕ = 0 in white).
Streamlines are colored by velocity magnitude (in m/s). For better visibility, all snapshots show a
section of Ω with 150 µm × 100 µm. Adapted from Aland/Mokbel [10].

5.4.5 Surfing on a viscoelastic substrate

Being able to describe viscoelastic substrates, the present model can simulate another interesting soft

wetting phenomenon: the observed surfing behavior of liquid droplets. In [1], it was reported that a

fluid-fluid interface on a viscoelastic substrate moves in front of the wetting ridge, which suggested

the term “surfing on the ridge”. Different rheological models were considered analytically for this

purpose [1], and provide a potential reference for results from numerical simulations. Fig. 5.7 (a)

shows an exemplary experimental setup from [1]. Water is injected into a hollow circular cylinder of

viscoelastic material. While water is pushed in, ambient gas drains out and the fluid-fluid interface

moves across the substrate, dragging the wetting ridge behind it.

To simulate this scenario, a cylinder is prescribed with 2mm inner radius, 6mm length and 2mm
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panel (b)

(a)

r

(b)

Figure 5.7: Simulation of a fluidic interface moving over a viscoelastic substrate. (a) The simulation
setup, where the black rectangle represents the region of interest. (b) The evolution of the surface in
the region of interest, indicated by 9 snapshots taken every 13.6ms. The vertical blue lines represent
the liquid-ambient interface and the black lines are the substrate profiles. The flow direction is from
left to right, with the liquid on the left side of the liquid-ambient interface. The individual snapshots
are each slightly shifted to enhance visibility. A scaling factor of 100 was applied in vertical direction
to pronounce the surfing behavior. Adapted from Aland/Mokbel [10].

thickness. The parameters are motivated by the experiments in [1]:

ρf,0 = 1
kg

m3
, ρf,1 = 1000

kg

m3
, ρs = 1000

kg

m3
,

ηf,0 = 0.002Pa · s, ηf,1 = 0.002Pa · s, ηs = 40Pa · s,

σ = 72
mN

m
, σ1 = 38

mN

m
, σ0 = 38

mN

m
,

vFlow ≈ 40
mm

s
, G = 1000Pa, ϵ = 38 µm,

where vFlow denotes the average inflow velocity, which also determines the velocity of the fluid-ambient

interface. Again, a higher viscosity of air is chosen to improve numerical robustness which barely

perturbs numerical results. The injection of water is realized using the Dirichlet boundary condition

of a parabolic velocity profile, see Sec. 5.5.2 below for details.

The evolution of the substrate profile around the contact line is shown in Fig. 5.7 (b). One can see in

the initial stages that the fluid-ambient interface moves faster in the direction of flow than the peak of

the wetting ridge. This behavior is caused by the substrate viscosity, which slows down the substrate

dynamics significantly. Accordingly, the three-phase contact point is displaced from the peak of the

wetting ridge. This gives rise to the “surfing” of the contact line along the front of the ridge.

The dynamics of the solid domain is further illustrated by velocity streamlines shown in Fig. 5.8 at

two different times. Note that the horizontal and vertical axes are scaled equally here, which clarifies

the actual flatness of the wetting ridge. It can be seen that two vortices appear in the early stage of
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(a) Region of interest

m

r

(b) t = 28.2ms
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(c) t = 67.2ms

Figure 5.8: Illustration of flow velocity during surfing. (a) The region of interest is marked by a black
rectangle. (b, c) Velocity streamlines in the region of interest referring to the simulation presented
in Fig. 5.7, exemplary for two different times. The solid substrate Ωs is in grey, the fluid (ϕ = 1) in
blue, and the ambient phase (ϕ = 0) in white. Streamlines in Ωs are colored by velocity magnitude
(in m/s), while streamlines in Ωf are black since the fluid velocity is about two orders of magnitude
higher. Adapted from Aland/Mokbel [10].

surfing, complemented by a third vortex in a later stage of the surfing process.

The here developed numerical method is the first one able to simulate the surfing behavior and

provides a framework to study visco-elasto-capillary dynamics beyond the limited theoretical study

in [1]. Therefore, it can be used to increase the fundamental understanding of the dynamics of soft

wetting with many potential applications, such as the patterning of cells[96] or droplets[97] onto soft

surfaces, or the optimization of condensation processes[98], which is left for further studies.

With regard to the surfing behavior, however, it is intended to further investigate within this thesis.

Of particular interest is the dependence of the behavior on the flow velocity. Simulations using the

above numerical method revealed in certain velocity regimes the stick-slip phenomenon often observed

experimentally (see e.g. [117]). In contrast, other velocity regimes showed a continuous motion of the

contact line. The following section elaborates on this promising finding.

5.5 Stick-slip contact line motion on Kelvin-Voigt model substrates

This section covers the content published by the author in Mokbel et al. [11], where simulation results

were compared with an analytical model [1]. The analytical results together with physical insights

were kindly provided by Stefan Karpitschka. Background information on the analytical model is not

discussed here.

The capillary traction of a liquid contact line causes highly localized deformations in soft solids, tremen-

dously slowing down wetting and dewetting dynamics by viscoelastic braking. Enforcing nonetheless

velocities in certain regimes leads to the so-called stick-slip instability, during which the contact line

periodically depins from its own wetting ridge. The mechanism of this periodic motion and, especially,
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the role of the dynamics in the fluid have remained elusive. This is partly because, to the author’s

knowledge, a theoretical description of the unsteady soft wetting problem is not available so far. This

section presents the first numerical simulations of the full unsteady soft wetting problem, with a full

coupling between the liquid and the solid dynamics.

Sec. 5.5.1 gives a brief outline of the state of the art. The model setup for the simulations is then shown

in Sec. 5.5.2 and is a specification of the approach presented earlier in this chapter. This is followed

by the validation of the numerical model in Sec. 5.5.3, using the analytical model [1]. Afterwards, the

findings from the simulations are presented in Sec. 5.5.4. There, three regimes of soft wetting dynamics

are observed: steady viscoelastic braking at slow speeds, stick-slip motion at intermediate speeds, and

finally another region of viscoelastic braking at high speeds. In the latter region, stick-slip behavior

is suppressed by liquid damping, which ultimately gives way to classical wetting dynamics dominated

by liquid dissipation. This work is concluded by a brief discussion of the results in Sec. 5.5.5.

5.5.1 State of the art

The capillary interaction of liquids with soft solids is a ubiquitous situation in natural or techno-

logical settings [25, 118, 119, 120], see also Sec. 5.1. The capillary tractions, exerted by the liquid

onto their soft support, cause strong deformations if the substrate is soft or the considered length

scale is sufficiently small [113, 121]. The typical scale below which capillarity deforms solids is given

by the elastocapillary length, ℓ = σ/G, the ratio of surface tension σ and (static) shear modulus

G, cf. Sec. 2.3.1. At three-phase contact lines, the length scale of the exerted traction lies in the

molecular domain, deforming the solid into a sharp-tipped wetting ridge [122]. As a liquid spreads

over a soft surface, the traction moves relative to the material points of the substrate. The necessary

rearrangement of the solid deformation leads to strong viscoelastic dissipation which counteracts the

motion, a phenomenon called viscoelastic braking, see e.g. [123, 1, 124]. At small speeds, the motion

remains steady [123], whereas at large speeds, unsteady motion, frequently termed stick-slip, has been

observed [117, 125, 1, 126, 127, 128]. In this mode, the contact line velocity and the apparent contact

angle undergo strong, periodic oscillations. On paraffin gels, Kajiya et al. [125] observed stick-slip mo-

tion only in an intermediate velocity range, returning to continuous motion if the speed was increased

even further.

The origin of this stick-slip motion remains debated in literature. It is clear that the pinning and

depinning is not associated with permanent surface features, but rather with the dynamics of the

wetting ridge itself: the solid deformation cannot follow the fast contact line motion of the depinned

(slip) phase of a stick-slip cycle [127, 128]. Unclear, however, are the conditions upon which a contact

line may escape from its ridge, thus eliminating the viscoelastic braking force. The depinning of a

contact line from a sharp-tipped feature on a surface is governed by the Gibbs inequality [129, 127].

Van Gorcum et al. [127] postulated a dynamical solid surface tension, which would alter the local force

balance and thus allow the contact line to slide down the slope of the ridge. Still, the physico-chemical
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origin of such dynamic solid surface tension remains elusive. Roche et al. [130] postulated the existence

of a point force due to bulk viscoelasticity, but the shear-thinning nature of typical soft polymeric

materials would prevent such a singularity at the strain rates encountered in soft wetting [131, 128].

Unclear as well is the role of the fluid phase during the cyclic motion, mainly because a comprehensive

multi-physics model for the unsteady soft wetting problem is not available to date.

This section presents the first fully unsteady numerical simulations of dynamical soft wetting, fully

accounting for liquid and solid mechanics, and for the capillarity of the interfaces, by which the life

cycle of stick-slip motion is revealed. Phase diagrams of steady and unsteady contact line motion are

derived by tuning parameters over large ranges, recovering stick-slip behavior at intermediate speeds.

At small and large speeds, steady motion appears that quantitatively agrees with the analytical model.

It should be noted that very recently, after the publication of Mokbel et al. [11], experimental studies

[132] of moving contact lines in water mixtures on soft polymer substrates (polydimethylsiloxane,

or PDMS for short) underpinned the observations that follow here with quite similar conclusions.

However, in contrast to the Stokes flow assumption made here, inertial forces in the liquid were also

considered in the experimental studies. It is important to emphasize here that a minimal model is

deliberately assumed for the present numerical simulations to keep the physics conceivable, even though

it is possible to extend the physics (e.g. to add inertial forces). This assumption reduces the complexity

of the stick-slip study to the key influencing factors and is essential for a basic understanding. The

present model specifications are described in more detail in the following section.

5.5.2 Setup and contact line motion

Computational domain and material parameters

Figure 5.9(a) shows the geometric setup of the numerical simulations. A hollow cylinder (undeformed

inner radius R), made of a soft viscoelastic material (gray, thickness hs ≪ R), with a fixed (rigid)

outer surface, is partially filled with a liquid (blue) and an ambient fluid phase (transparent). In the

following numerical simulations, the values are chosen as R = 2mm and hs = 1mm. The length

of the cylinder is 6mm. This cylindrical structure allows for the use of rotational symmetry and

thus the simulation of a 3D scenario in a 2D computational domain (see Sec. 3.5). Consequently,

the computational complexity significantly reduces compared to non-symmetrical 3D setups. The

two-phase fluid is implemented by the phase field approach with the finite liquid-ambient interface

thickness ϵ = 4.75µm ≪ hs, and the capillary traction of the meniscus onto the solid is distributed

over this characteristic width. The solid is modeled with a sharp interface towards the fluid.

As mentioned above, the physics should be kept conceivable, which is ensured by the following minimal

model specifications. The focus is on the evolution of the contact line, which should not depend on

a gradient of the fluid viscosity. Therefore, a constant fluid viscosity ηf = 1mPa · s is assumed here

in both the liquid and ambient phases. Nevertheless, the terms “liquid” and “ambient” are retained
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Figure 5.9: (a) Dynamical wetting of a cylindrical cavity (radius R) with a soft viscoelastic wall
(grey, thickness hs) by a two-phase fluid (blue and transparent). The fluid-fluid interface is represented
by the transition region of the phase field, with negligible interface width ϵ = 0.00475hs. The contact
line speed is controlled by the flux boundary condition Eq. (5.17) on the rear end of the cavity.
(b) Quasi-stationary wetting ridge on the cavity wall for different (constant) velocities, comparison
between FEM simulations (symbols) and the analytical model (lines). The liquid interface is aligned
at x = 0, while the left blue region indicates the advancing liquid phase. Moving ridges correspond
to large velocities beyond the stick-slip regime. Note that for non-zero velocities the maximum height
is located well behind the contact line. The rounded shapes are bumps generated by strong solid
dissipation, as opposed to the sharp kink imposed at the contact line for v = 0. (c) Inset containing
the definition of the fluid-fluid interface rotation ζ relative to the initial situation in which the interface
is perpendicular to the wall surface. Adapted from Mokbel et al. [11].

in the following. Furthermore, inertia is neglected by setting the density ρf = 0kg/m3 everywhere,

which reduces Eq. (5.1)1 to the Stokes limit. Constant and equal surface tensions σ = σs apply at all

interfaces (liquid-ambient, solid-liquid, and solid-ambient).

According to Sec. 5.2.2, the cylinder casing itself is modeled as an incompressible Kelvin-Voigt material.

A viscoelastic Kelvin-Voigt material is generally also characterized by a frequency-dependent complex

modulus G∗ = G0 + i ηs ω, with static shear modulus G0 and effective substrate viscosity ηs. Note

consequently that from here on the notation G0 replaces the previous G. Further parameters that

will be of interest here are the elastocapillary length ℓ = σ/G0 ≪ hs, a characteristic time scale

τ = ηs/G0, and an elastocapillary velocity vℓ = ℓ/τ = σ/ηs. The material parameters are listed in

Table 5.1. Importantly, since ϵ ≪ ℓ, the present analytical and numerical results do not significantly

depend on the actual value of ϵ (cf. Sec. 2.3).

The inner surface of the soft viscoelastic cylinder wall is deformed into a wetting ridge due to the

capillary action of the liquid meniscus. This can be seen in Fig. 5.9(b), in particular at the profile line

with zero velocity. The case of non-zero velocities is explained further below.

The present simulation results for the solid deformation are compared to [1], where the authors pre-
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symbol value meaning

ηf 1mPa · s fluid viscosity
σ 38mN/m fluid surface tension
σs 38mN/m solid surface tension
G0 1 kPa static shear modulus
ηs 3Pa · s substrate viscosity
hs 1mm substrate thickness
R 2mm cylindrical cavity radius
ϵ 4.75µm interface thickness

ℓ 38µm elastocapillary length
αs =

σs
G0 hs

0.038 elastocapillary number

vℓ = σs/ηs 0.0126m/s elastocapillary velocity

Table 5.1: Material parameters. Adapted from Mokbel et al. [11].

sented an analytical plane-strain model. Since hs ≪ R here, the substrate deformation is well approx-

imated by plane-strain conditions.

It should also be noted here that the numerical grid size is about 5% of the elastocapillary length at

the liquid-ambient interface, and typically about 20% outside of the interface region.

Contact line motion

As indicated in Fig. 5.9(a) the simulations consider the inflow of the liquid phase into the hollow space

of the cylinder. Therefore the liquid-ambient interface is initially placed 1mm away from the inflow

boundary BI . At the inflow boundary, a parabolic flow profile is used to establish a condition for the

velocity vf = (v0, vr) with components v0 in the flow (axial) direction and vr in the radial direction.

It reads

vf =
(
V (R2 − r2), 0

)T
on BI , (5.17)

where r is the position in radial direction (r = 0 at the axis of symmetry) and V is a factor which

controls the (mean) liquid-ambient interface velocity v. The latter can be calculated by

v =

∫
Ωf
v0 r dΩf∫

Ωf
r dΩf

. (5.18)

The liquid meniscus is forced to move by imposing the boundary condition Eq. (5.17) on the inflow

boundary BI , but can freely change its shape (curvature) in response to the fluid flow. In contrast

to the analytical model from [1], the instantaneous contact line velocity (here: vc) is not imposed,

but rather its long-term mean v as stated in Eq. (5.18). Although v is a time-dependent quantity,

the simulations show a nearly constant value with negligible deviations even for unsteady contact line
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motion. This constant velocity, approximated in the simulations by v, is the analytically expected

mean velocity for laminar flow in a pipe, V R2/2 (see e.g. [133]). In this section, v refers to this

approximative value of the mean velocity.

Furthermore, vs=0 applies at the outer surface of the cylinder, δΩs\Γ, and vr = 0 applies on δΩf\Γ,
i.e. there is no radial flow along the inflow and outflow boundary and on the symmetry axis. Note

that BI ⊂ δΩf and that the inset in Fig. 5.9(c) only shows a section of the rectangular computational

domain in the vicinity of the contact line. In particular, the height of the actual domain Ωf ∪ Ωs is

R+ hs and the axis of symmetry is part of δΩf .

All simulations are started at t = 0 with a flat substrate, a flat meniscus, and the imposed velocity

at the inflow boundary (Eq. (5.17)), and run until a steady state or limit cycle has been reached.

Fig. 5.9(b) compares the (sharp) stationary profiles of the simulated solid substrate for several imposed

velocities with the analytical model, with excellent agreement. Simulation results are represented there

by markers and analytical results by solid lines. The scaled profile height h/(σ/G0) is used, together

with the scaled position x/hs and the scaled velocity v/vℓ, which nondimensionalizes the occurring

physical quantities. Note that this comparison is only possible as steady ridge shapes are observed

for the chosen velocities. A static ridge (v = 0) and very fast ridges (v/vℓ > 6) are chosen, where in

the latter case the shapes are significantly different from the static case. One important feature of

fast ridges is the emergence of a dissipative “bump”, well behind the contact line (see Fig. 5.10(a) for

details about the ridge geometry). In an intermediate velocity range, unsteady cyclic shape dynamics

emerge (stick-slip) that cannot be grasped by the analytical model.

Moreover, an important comparative quantity is the liquid-ambient interface rotation angle ζ at the

contact line, which can be defined in multiple ways. Here ζ is measured as indicated in the inset in

Fig. 5.9(c). In the initial state this angle is zero as the liquid-ambient interface is perpendicular to

the solid surface. As the interface evolves, it curves accordingly. Automated angle measurement is

performed in a thin domain A ⊂ Ωf in the direct vicinity of the contact line. The dimensions of A

are chosen to be negligibly small compared to the radius of curvature of the liquid-ambient interface.

The rotation angle ζ is then calculated via a phase-dependent averaged normal

na =

∫
A∇ϕ dA∫
A |∇ϕ| dA

which points towards the liquid phase. Consequently, the rotation angle is calculated by

ζ =
π

2
− arccos (na · t / |na|),

where t = (t0, tr) denotes the tangent at the initial liquid-ambient interface, which is chosen here as

a unit vector in radial direction, i.e. t0 = 0, tr = 1. Note that −π
2 ≤ ζ ≤ π

2 is assumed here, while for

the present simulations only cases with a positive rotation angle are considered.
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Figure 5.10: Model validation via comparison of simulation results to the analytical model. (a) Char-
acteristic dimensions of a moving wetting ridge. The highest point of the ridge is not located at the
contact line, but is located ∆x behind and ∆h above the contact line, due to strong dissipation in
the solid. Both h0 and hmax decrease with velocity, due to dissipation. (b) hmax as a function of the
imposed (scaled) velocity, comparison between the analytical model (dashed line) and the simulations
(markers). The gap at intermediate velocities is the stick-slip region, where a comparison between the
unsteady simulation results and the analytical model becomes impossible. (c) and (d) ∆h and ∆x as
functions of the imposed (scaled) velocity, comparing the analytical model (solid line) to simulation
results (markers). Note that in the simulations the large magnitudes of the scaled velocity (right
subregions in (b)-(d)) are represented by varying G0 values instead of using large v values for stability
reasons. Adapted from Figures S2 and S3 in Mokbel et al. [11].

5.5.3 Validation by an analytical model

A further validation of the substrate deformations obtained in the numerical simulations is carried out

here by a direct comparison with the analytical model [1]. Note that a first validation step has already
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been presented in Fig. 5.9(b), comparing stationary substrate shapes for several velocities. As a next

step, Fig. 5.10(a) shows the characteristic, velocity-dependent dimensions of the wetting ridge. The

subfigure (b) compares the simulated maximum ridge height, hmax, to the analytical model, finding an

excellent agreement, both for small and large (nondimensionalized) velocities where the contact line

moves at constant velocity. In an intermediate (stick-slip) regime, the ridge shapes change drastically

in an oscillating manner, ruling out a direct comparison between the models. This is indicated by the

gap in numerical data points at intermediate velocities ≈ 10−1 and is discussed in more detail in the

following section.

Due to the strong dissipation in a Kelvin-Voigt solid, which is regularized by the finite width of the

capillary traction (controlled by the interface thickness ϵ of the phase field), the maximum ridge height

is not located at the contact line, but behind it. The distance between the contact line and the peak

of the ridge, in vertical and in horizontal direction, is plotted in Fig. 5.10(c) and (d). ∆h shows a

pronounced maximum at the elastocapillary velocity. ∆x increases monotonically and saturates at

large speeds. Also these ridge properties reveal an excellent agreement between the two models.

5.5.4 Results

Modes of contact line motion

The dynamics of the contact line motion can be characterized by the time-dependent contact line

velocity vc(t) and rotation ζ(t) of the liquid-ambient interface at the triple line (cf. Fig. 5.9(c)), where

the rotation angle is the main focus in the following. The three characteristic regimes revealed by the

simulations are now examined, corresponding to a small, intermediate, and large mean velocity v. Due

to the large differences in v, the dynamics are best compared by plotting ζ as a function of contact line

position, see Fig. 5.11(a). Subfigures (b) and (c) show further perspectives illustrating the three modes

of contact line motion. At small velocity (v ≲ vℓ, blue), after some initial transient the contact line

moves steadily with a constant speed and a constant dynamic contact angle. Here, the relation between

contact line velocity vc(t) and rotation ζ is permanently dominated by viscoelastic braking [123, 1].

Once the forcing velocity exceeds a critical value, the motion becomes unsteady, finding a limit cycle

after an initial transient (red): the liquid interface rotation ζ shows large oscillations, of peak-to-peak

amplitude ∆ζ on the order of the mean rotation ζ, with a non-trivial waveform, as the contact line

advances at an oscillatory velocity vc(t) (see Fig. 5.11(d)). This behavior is not captured by the simple

analytical model. For larger velocities (yellow), vc and ζ are constant again after an initial transient.

Note here that the motion in this regime is very sensitive to discretization artifacts and requires rather

fine grid resolutions to give consistent results. Movies illustrating contact line motion and substrate

dynamics for the three modes can be found online in the supplementary material of [11].

Fig. 5.11(d) shows a phase portrait of the contact line motion in terms of the physically relevant

variables ζ and vc. For slow forcing velocities (blue), a continuous, steady contact line motion is
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Figure 5.11: Illustration of the three characteristic modes of contact line motion from different
perspectives. (a) Rotation ζ of the liquid-ambient interface at the contact line, as a function of the
contact line position, for different imposed mean velocities. Slow and fast speeds show a continuous
motion (blue and yellow, respectively). For intermediate velocities (red) we observe a strong stick-slip
behavior, in which the liquid angle oscillates with an amplitude that is comparable to its mean. The
residual waviness of the yellow curve is not an actual non-stationary motion but can be traced back to
grid artifacts. (b) Rotation ζ of the liquid-ambient interface as a function of time. (c) Contact line
displacement as a function of time. In (b) and (c), the logarithmic scaling of the abscissae was chosen
for convenience, to allow a simultaneous display of early and late times for slow and fast contact lines.
(d) Phase portraits for contact line motion, showing the rotation angle ζ as a function of the (scaled)
contact line velocity vc. Blue: stable, stationary-motion regime. After an initial transient, the contact
line finds a stationary constant value in the vc-ζ-plane. Discretization artifacts are visible for small
speeds (mind the logarithmic scale). Red: stick-slip motion, characterized by a large limit cycle in the
vc-ζ-plane. Yellow: at large speeds, stick-slip motion is suppressed, finding a stationary point in the
vc-ζ-plane again. Adapted from Figures 2, 3 and S4 in Mokbel et al. [11].

observed, up to the scale of grid artifacts (mind the logarithmic scales). Intermediate forcing velocities

(red) lead to limit-cycles: As the liquid rotation exceeds a well-defined maximum ( 1○ in Fig. 5.11(d)),

the contact line accelerates. In this phase, it surfs down its own wetting ridge, releasing energy
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stored in the meniscus curvature, rate-limited partly by liquid dissipation ( 2○ in Fig. 5.11(d)). Then

it decelerates and a new wetting ridge starts to grow, opposing the contact line motion further ( 3○
in Fig. 5.11(d)) until the next cycle starts. For larger forcing velocities, the region covered by the

limit cycle decreases until it virtually vanishes (yellow), up to grid artifacts. This is caused by the

growing importance of liquid dissipation, which effectively limits, and finally prevents, the large-

velocity excursions during the slip phases.

Regimes of contact line motion

The contact line motion can be characterized by ζmax ( 1○ in Fig. 5.11(d)), ζmin ( 3○ in Fig. 5.11(d)),

and ζ, the maximum, minimum, and mean values of ζ, respectively, in the stationary/limit cycle

regime. Figure 5.12 shows these values as a function of the imposed (long-term mean) v. For small

velocities, the contact line actually moves with v, and the simulated ζ (symbols) coincides with the

result of the analytical model (black line), indicating the stability of steady contact line motion.

The onset of stick-slip motion (gray region) aligns with the maximum of ζ observed in the analytical

model where the constant contact line velocity vc is imposed instead of v. This was stipulated in [1]

since the rotation ζ is a measure for the dissipative (viscoelastic braking) force: A dissipative force that

decreases with speed causes acceleration, and thus an unstable motion. The maximum braking force is

observed at v ∼ vℓ = σs/(G0 τ) = σs/ηs, the elastocapillary velocity: The finite width of the traction

distribution regularizes the dissipation singularity at the scale ϵ ≪ ℓ ≪ hs. Thus the largest char-

acteristic frequency ω ∼ v/ϵ dominates the dissipation associated with the contact line motion. One

may evaluate the complex modulus at the dominant frequency to define a dynamical elastocapillary

length ℓv ∼ σs/|G∗(v/ϵ)| [127]. Near the maximum braking force, G′′(v/ϵ) = ηs v/ϵ≫ G0, and the ap-

proximation |G∗| ≈ ηs v/ϵ yields ℓv = σs ϵ/(ηs v). Resonance is expected at ϵ ∼ ℓv i.e., v ∼ σs/ηs = vℓ,

independent of the choice of ϵ, which is confirmed in the analytical model (see supplementary material

in [11]).

ζmax remains approximately constant upon entering the stick-slip regime, indicating a well-defined

upper limit of the viscoelastic braking force also in unsteady situations (cf. location 1○ in Fig. 5.11(d)).

However, this force periodically drops to much smaller values, as indicated by the much smaller values

of ζmin. In these surfing phases ( 2○ in Fig. 5.11(d)), liquid dissipation and the finite capillary energy

stored in the curved meniscus are the rate-limiting factors.

As the imposed v is increased further, the amplitude of the oscillation ∆ζ shrinks, reaching virtually

zero (indicated by the fading gray region). In this regime, the reduced viscoelastic braking force

(ζmax) limits the build-up of capillary energy in the meniscus, while liquid dissipation prevents its

fast release. This balance between capillarity and liquid dissipation can be quantified by the capillary

number Ca = v ηf/σ = (σs/σ)(ηf/ηs)(v/vℓ). If Ca exceeds a certain critical value Cac, the oscillatory

motion is effectively damped out by liquid dissipation. Cac depends on the solid parameters, most
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Figure 5.12: Rotation ζ of the liquid-ambient interface, as a function of the imposed mean velocity
v. In the gray region, the contact line motion is unsteady (stick-slip) in the simulations. The solid
black line depicts the analytical calculation of the ridge tip rotation, for an imposed constant contact
line velocity. Markers depict the maximum (green solid discs), mean (blue crosses), and minimum
(red open discs) angle observed in the simulations. The onset of unsteady motion correlates with the
maximum in ridge rotation. At large speeds, the amplitude of the angle oscillations decreases and
the motion becomes stationary again until, finally, liquid dissipation becomes relevant. Adapted from
Mokbel et al. [11].

notably the ratio σ/σs which sets the scale of ζ. Further, decay and growth rates of abandoned and

new ridges during the stick-slip cycle matter, and thus some dependence on ηs can also be expected.

For Ca ≳ Cac, the overall motion is still governed by viscoelastic braking: ζ ∼ v−1 closely follows

the result from the analytical model. The increased mean liquid rotation for the largest velocity

∼ 28vℓ, relative to the prediction of the analytical model, is another consequence of liquid dissipation.

This can be rationalized by a comparison with the Cox-Voinov law for moving contact lines on rigid

surfaces which predicts, for Ca ∼ 10−2, rotations of this order of magnitude [134, 135, 136]. In this

hydrodynamic regime, one returns to the classical wetting physics on rigid surfaces.

Figure 5.13 summarizes the dynamical wetting behavior in terms of these three modes, as a function

of the imposed mean velocity and the solid parameters. Steady small-velocity, stick-slip, and steady

high-velocity modes are indicated by blue, red, and yellow symbols, respectively. On panel (a), the

vertical axis shows varying solid and liquid surface tensions and thus a varying elastocapillary number

αs = ℓ/hs, while keeping the Neumann angles of static wetting constant (cf. Fig. 2.4). Since G0 and

hs merely enter αs, they are not varied separately but their effect can be extracted from Fig. 5.13 (a).

The onset of stick-slip is located near v = vℓ, given by the maximum of ζ vs. v. This maximum

is independent of αs, up to a small correction that itself vanishes for ϵ/ℓ → 0, as can be shown by

the analytical model (see Fig. 1 of the supplementary material in [11]). Since ϵ is kept constant

and ℓ is varied here, the onset of stick-slip motion is expected to depend slightly on ℓ (or σ = σs,

respectively), as observed in Fig. 5.13(a). In physical units, however, the onset of stick-slip is inversely
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(a) (b)

Figure 5.13: Phase diagrams for stick-slip behavior depending on the contact line velocity. Blue
triangles: steady contact line motion; red squares: stick-slip; yellow circles: high-speed continuous
motion. (a) Tuning the magnitude of capillary forces σ = σs on the vertical axis. (b) Varying the
substrate viscosity ηs on the vertical axis. Adapted from Mokbel et al. [11].

proportional to σs since vℓ ∼ σs. The transition to the fast continuous mode is, in scaled units, nearly

independent of the surface tension. This can be rationalized again by a critical capillary number:

Since σ and σs are tuned simultaneously, the scale of ζ ∼ σ/σs [1] remains constant, and neither Cac,

nor Ca ∼ (σs/σ)(v/vℓ) changes along the vertical axis. The stick-slip mode disappears at very low

σ = σs, where ℓ ∼ ϵ.

Similarly, the solid viscosity ηs (panel (b)) has no measurable impact on the critical v/vℓ for the

transition to stick-slip since the maximum ζ, which governs this transition, is independent of ηs. Still,

the physical critical velocity is proportional to ηs since vℓ ∼ η−1
s . The transition to the fast continuous

mode behaves differently. Ca ∼ (η/ηs)(v/vℓ) increases with decreasing ηs, and the damping effect

of liquid dissipation becomes noticeable already at smaller v/vℓ. Thus the transition back to steady

motion occurs earlier, such that the stick-slip region ultimately disappears at very low ηs. In any case,

at very large velocities, liquid dissipation will take over, leading to wetting dynamics equivalent to

those on rigid surfaces.

5.5.5 Discussion

This stick-slip study provides a comprehensive numerical analysis of dynamical soft wetting, including

the physics of all relevant elements, the liquid, the solid, and the interfaces. The minimum required

level of complexity is assumed in each element to keep physics intact and conceivable: the Stokes limit

for the fluid along with a uniform fluid viscosity, a Kelvin-Voigt constitutive relation for the soft solid,

regularized at a constant scale ϵ≪ ℓ, and constant and equal surface tensions on all three interfaces.

This simple model already requires a complex, strongly coupled multi-physics modeling approach, and
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exhibits rich behaviors.

The numerical experiments performed cover a wide range of system parameters and reveal three

regimes in which the dominant physical mechanisms differ: (i) a slow regime, in which the contact line

motion is entirely dominated by the dissipation in the solid. This regime is observed as long as the

viscoelastic braking force increases with velocity. (ii) an intermediate regime, in which the dominant

rate-limiting mechanism periodically switches from solid to liquid dissipation. This regime starts

where the viscoelastic braking force exhibits a maximum with respect to the imposed (mean) velocity.

This maximum is caused by a resonance effect, due to the regularization of a singular dissipation at

some finite (constant) length scale. Other mechanisms, like dynamic solid surface tensions (surface

constitutive relations [137, 138, 127, 139, 140, 141]) or a constitutive relation that exhibits resonance

(e.g., standard linear solid [1]) would lead to the same phenomenology. (iii) a large-v-regime with

continuous motion, yet governed by viscoelastic braking, in which liquid dissipation prevents strong

oscillations of the meniscus. This regime, and especially the transition into it, is based on a strong

coupling between solid and fluid physics. To the best knowledge of the authors of Mokbel et. al. [11],

this regime had been reported in only a single experimental work [125]. Another experimental work

carried out later provides complementary insights into different velocity regimes in unsteady soft

wetting [132]. Since the viscoelastic braking force, in contrast to liquid dissipation, does not increase

with velocity, liquid dissipation ultimately dominates the contact line motion in the large-v-regime,

and one recovers the wetting physics of rigid surfaces.

This first comprehensive overview of soft wetting physics scenarios provides a strong basis for interpret-

ing different phenomenology observed in experiments, ranging from paraffins [125] over microelectronic

sealants [127, 113] to biology [142, 143, 144] and motivate experiments on the so-far little explored

transition to continuous motion beyond stick-slip.

5.6 Conclusions

Soft wetting is an emerging young field of research with many potential applications (e.g. [96, 97,

98]) and a richness of not fully understood physical phenomena (e.g., durotaxis[97], Shuttleworth ef-

fect[145]) which demand for numerical simulation tools. The work presented in this chapter and in

[10] has contributed a novel method which differs from previous methods in exploiting some charac-

teristical properties of soft wetting. The result is a certain simplicity of the model (a unified approach

for fluid and solid equations) and of the numerical discretization (no mappings, no subiterations, no

non-linear solvers needed). It has been shown that the method is highly accurate and more robust

than previous methods based on explicit coupling of the involved subproblems. At least up to [10] it

was only surpassed by the fully monolithic method presented in [31].

As special features, the method includes exact incompressibility and a linear monolithic assembly of the

Navier-Stokes and Cahn-Hilliard equations which stabilizes dominant surface tension at small interface
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lengths [48]. Solid viscosity is included and it has been illustrated that solid material properties can

be continuously tuned from purely viscous (i.e. three-phase fluid flow) to purely elastic. The surfing

behavior of droplets on viscoelastic substrates has been reproduced for the first time. Moreover,

a more advanced numerical study of stick-slip contact line motion on a viscoelastic substrate was

performed using this method, which also explains the transitions to continuous motion, and which

takes into account the physics of all components involved (liquid, ambient, solid). The robustness and

flexibility of the method will permit detailed investigations of many further soft wetting phenomena

in the future.
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Chapter 6

Conclusions and outlook

In this thesis, two different approaches have been developed for modeling and simulation of ternary

fluid-structure interaction (FSI) problems with incompressible viscoelastic structures. All these ap-

proaches are based on a phase field model for two-phase flows. The corresponding models are solved

numerically using an adaptive finite element method.

The first approach considers the interaction between two structures and a fluid. One structure is

modeled as a deformable viscoelastic solid, the other as a rigid body. The fluid, together with the

viscoelastic solid, is represented by a phase field using a novel extended version of the basic phase

field model capable of simulating two-phase FSI. The equations for mass and momentum are solved

monolithically for velocity in both the fluid and the structure domain. This two-phase system interacts

with a freely moving part of the domain boundary, here realized by (but not limited to) the setting of

a spherical hole within the domain. This free boundary part may be moved with the flow or with a

self-defined velocity. An ALE method is used for the grid movement. To account for the viscoelasticity

of the structure, additional Oldroyd-B-like equations can be solved to describe the evolution of elastic

strain. Specific selections of these equations allow a combination of different viscoelastic models, such

as Kelvin-Voigt, Maxwell, or a parallel connection of these two. Since a neo-Hookean hyperelastic

model is used, results are expected to be accurate even at large strains up to 100%. The system is

shown to be thermodynamically consistent and stably discretizable, and validity is demonstrated using

a challenging bechmark scenario. Practical applicability is demonstrated by an elaborate study aimed

at probing viscoelastic properties of biological and synthetic materials. For this purpose, simulations

of atomic force microscopy (AFM) experiments are performed. The forces acting on the spherical

indenter in experiments can be easily computed for comparison in the simulations. Promising results

of this study confirm the usefulness of the method for further research on viscoelastic properties of a

wide range of materials. Moreover, the method is easily modifiable in several respects:

• Instead of FSI, the interaction between three structures can also be simulated.
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• The shape and motion of the rigid structure can be defined in different ways.

• A variety of viscoelastic models can be implemented.

• Contact dynamics can be simulated, including adhesion of the structure to a wall.

This opens a wide range of future applications of the method in biology, physics or material sciences.

In the second approach, a two-phase fluid interacting with a viscoelastic solid structure is considered.

The modeling is motivated by soft wetting scenarios, whose typical example is a liquid drop in air

sitting on a soft viscoelastic substrate. Fluid and solid are represented by two separate domains,

but aligned at the interface between them. The two-phase fluid is represented by the basic phase

field model. The solid structure is modeled as Kelvin-Voigt material with linear elastic contribution.

This method takes advantage of the fact that solid materials considered in soft wetting are usually

incompressible. Thus, a single Navier-Stokes system which incorporates conservation of momentum

and mass can be solved monolithically in both subdomains. Fluid and solid stresses are restricted

to their respective domains by characteristic functions. The monolithic system further encompasses

the balance of forces across the fluid-solid interface. The latter is sharply represented by grid points

and is moved with flow velocity. An ALE method is implemented for the overall grid motion. The

coupling conditions at the fluid-solid interface, in addition to force balance, are continuity of velocity,

no penetration, and a contact angle condition. The latter is of interest for cases where the fluid-

fluid interface meets the fluid-solid interface, resulting in a three-phase contact line (speaking in 3D).

Contact line singularities are regularized by the phase field representation of the fluid-fluid interface.

The latter can thus move freely in the fluid, controlled only by the evolution of the phase field, and

can also undergo topological changes. In particular, droplet merging or contact lines that slip over the

substrate are easy to simulate. Hence the method is capable of simulating a variety of both static and

dynamic soft wetting phenomena, with the unified approach leading to increased stability compared

to previous methods. Specific applications in this thesis include, as a benchmark scenario, the steady

state of a droplet on an elastic substrate, followed by simulations with fluid substrates, the (inverted)

Cheerios effect including droplet merging, surfing of the contact line over a substrate, and the stick-slip

phenomenon. The latter is the subject of a more in-depth study, where simulations provide physical

insight into soft wetting dynamics that have been quite unexplored.

In summary, the methods presented here provide powerful tools for exploring poorly understood

complex relationships in nature. On the one hand, these methods are already capable of contributing

to research in biology, physics, and materials science, and on the other hand, they can be flexibly

extended to further broaden the scope of application in the future.
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[64] Alba Diz-Muñoz, Daniel A. Fletcher, and Orion D. Weiner. “Use the force: membrane tension

as an organizer of cell shape and motility”. In: Trends in Cell Biology 23.2 (2013), pp. 47–

53. issn: 0962-8924. doi: https://doi.org/10.1016/j.tcb.2012.09.006. url: https:

//www.sciencedirect.com/science/article/pii/S0962892412001778.

[65] Eric M. Darling et al. “Viscoelastic properties of human mesenchymally-derived stem cells and

primary osteoblasts, chondrocytes, and adipocytes”. In: Journal of Biomechanics 41.2 (2008),

pp. 454–464. issn: 0021-9290. doi: https://doi.org/10.1016/j.jbiomech.2007.06.019.

url: https://www.sciencedirect.com/science/article/pii/S0021929007003028.

[66] Robert M Hochmuth. “Micropipette aspiration of living cells”. In: Journal of Biomechanics 33.1

(2000), pp. 15–22. issn: 0021-9290. doi: https://doi.org/10.1016/S0021-9290(99)00175-

X. url: https://www.sciencedirect.com/science/article/pii/S002192909900175X.

[67] J. Guck et al. “Optical Deformability of Soft Biological Dielectrics”. In: Phys. Rev. Lett. 84 (23

June 2000), pp. 5451–5454. doi: 10.1103/PhysRevLett.84.5451. url: https://link.aps.

org/doi/10.1103/PhysRevLett.84.5451.
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[144] Carlos Pérez-González et al. “Active wetting of epithelial tissues”. In: Nature physics 15.1

(2019), pp. 79–88.

[145] Bruno Andreotti and Jacco H. Snoeijer. “Soft wetting and the Shuttleworth effect, at the

crossroads between thermodynamics and mechanics”. In: Europhysics Letters 113.6 (Apr. 2016),

p. 66001. doi: 10.1209/0295-5075/113/66001. url: https://dx.doi.org/10.1209/0295-

5075/113/66001.

https://doi.org/10.1209/0295-5075/113/66001
https://dx.doi.org/10.1209/0295-5075/113/66001
https://dx.doi.org/10.1209/0295-5075/113/66001


129



130 BIBLIOGRAPHY



131

Acknowledgments

I would like to express my deep gratitude to my supervisor Prof. Dr. Sebastian Aland, who gave

me excellent support and motivation at all stages of this work from the very beginning. He was al-

ways ready to answer my questions and always provided a pleasant atmosphere. Through his provision

of funding opportunities and exciting projects, the last years have been a time for me to enjoy my work.

In addition, a number of other people deserve my sincere thanks:

• The entire Aland lab group, in particular Marcel Mokbel, Lucas Wittwer, Eloy de Kinkelder,

Luise Zieger, Claudia Wohlgemuth, Maximilian Kloppe, and Paul Auerbach, for an environment

where we support each other and always have a great time together.

• Shada Abuhattum for the cooperation regarding the AFM experiments and simulations.

• Stefan Karpitschka for the cooperation regarding the analysis of the stick-slip simulations.

• Helmut Abels for the cooperation regarding the phase field model for fluid-structure interaction.

I am also especially grateful to my wife for supporting me at any time and providing a refreshing and

motivating atmosphere. Finally, I would like to thank my parents who have supported me not only

materially, but also through the loving and humorous family environment in which I feel comfortable

at all times.



132



133

Copyright Information

Die am heutigen Tag eingereichte Dissertation zum Thema

Phase field modeling of ternary fluid-structure interaction problems

wurde am Institut für Numerische Mathematik und Optimierung der TU Freiberg unter Betreuung

durch Prof. Dr. rer. nat. Sebastian Aland angefertigt. Hiermit versichere ich, dass ich die vorliegende
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