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Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder that affects
millions of people worldwide. Current clinical assessments of PD symptoms
require trained raters and are subjective. Computer vision and machine learn-
ing can be used to automate PD assessments, reducing the reliance on trained
raters and introducing a more objective measure. However, complexity of hu-
man movements, subtle motion differences, and scarcity of annotated data
present challenges that this thesis attempts to address by developing novel
deep learning frameworks to predict PD severity in videos.

First, to assess PD using RGB data, we propose an end-to-end model, built
on a temporal segment framework to capture both spatial and long-term tem-
poral structures. We enhance the performance of our model by incorporating
a temporal attention mechanism. Motion boundaries are also explored as an
extra input modality to assist in obfuscating the effects of camera motion.
We evaluate this method on the PD2T dataset, which includes two PD mo-
tor function tasks performed by actual patients. Our results suggest that a
deep learning-based approach to assess PD from only RGB data is not only
feasible, but also effective.

Next, in response to the scarcity of annotated videos, we focus on self-
supervised learning (SSL). Unlike traditional SSL methods which struggle
with small pretraining data, our approach leverages an auxiliary pretraining
phase with knowledge similarity distillation, enabling improved generalisa-
tion with significantly less data. We further introduce a novel SSL pre-
text task, Video Segment Pace Prediction or VSPP, to provide more reliable
self-supervised representation. Our SSL framework shows state of the art
performance on UCF101 and HMDB50 datasets under a low-data regime.
Furthermore, this approach outperforms fully-supervised pretraining when
evaluated on a new PD dataset (PD4T), which includes four different PD
motor tasks.

Finally, this thesis presents a novel, parameter-efficient, continual pretraining
workflow (PECoP) that significantly improves upon conventional fine-tuning
techniques. Its primary objective is to enhance the transfer of knowledge
gained from existing large-scale video datasets to AQA target tasks by updat-
ing only a small number of parameters in additional bottleneck layers (called
3D-Adapters) through self-supervised learning. Evaluating our method on
PD4T, and three public AQA benchmarks (JIGSAWS, MTL-AQA, FineDiv-
ing), we show that PECoP can boost the robustness of recent state of the
art AQA methods, by a considerable margin.
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Chapter 1
Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder af-

ter Alzheimer’s dementia [126]. It affects around 10 million people worldwide, and is

slightly more prevalent in males [1]. PD involves the substantial reduction of dopamine-

producing neurons, particularly in the substantia nigra region, which is responsible for

the control of body movement [120]. The characteristic motor features of this condition

include slowness of movement (bradykinesia), stiffness (rigidity), tremor, and postural

instability [173]. These symptoms create significant barriers for patients in their daily

activities, from simple household duties to more complicated tasks such as driving, which

significantly reduce the quality of their lives.

Regular clinical assessment and close monitoring of the signs and symptoms of PD are

required to tailor symptomatic treatments and optimise disease control. Further, accu-

rate quantification of disease progression is crucial in the design and efficacy testing of

any drugs or interventions that are aimed at modifying or improving the course of the

condition, as it provides valuable data for longitudinal studies.

Assessment of motor symptoms in PD patients is usually performed in controlled clinical

settings. Here, the focus is mainly on evaluating the degree of rigidity and bradykinesia.

Typically, the patient is asked to perform an elaborate series of specific physical tasks.

These tasks may include actions such as opening and closing their hand in rapid suc-

cession, i.e., gripping and letting go, or walking at their usual pace for several meters,

and so on. The tasks are then closely monitored and evaluated by a PD physician or a

specifically-trained nurse who makes a professional evaluation based on their experience

in clinical practice.

In more formal research or experimental settings, such as drug trials or academic research
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Table 1.1: UPDRS Scoring for Gait. This table provides a standardised framework
for evaluating gait severity levels in individuals with PD.

Score Description

0 Normal: No problems.

1 Slight: Independent walking with minor gait impairment.

2 Mild: Independent walking but with substantial gait impairment.

3 Moderate: Requires an assistance device for safe walking (walking stick,
walker) but not a person.

4 Severe: Cannot walk at all or only with another person’s assistance.

studies, the clinical assessment is usually scored using a globally recognised scale known

as the Unified Parkinson’s Disease Rating Scale (UPDRS) [45]. This comprehensive

rating system consists of 33 separate examiner-defined tests aimed at offering a granular

evaluation of motor functions. An example of UPDRS scoring for the gait task is shown

in Table 1.1. Clinicians typically quantify the severity of each action by assigning a

numerical score that ranges from 0 (normal) to 4 (most severe). However, such a process

of assessment and scoring is highly subjective and necessitates the expense of an available

rater trained in PD assessment. Therefore, automating the PD assessment process may

assist in eliminating these shortcomings by offering a more objective and potentially

real-time method of evaluation.

In recent years, several techniques have been explored for the automated measurement of

symptoms related to PD [40, 61, 63, 99, 101, 132]. These have often relied on wearable

sensors, which can be both costly and intrusive. As an alternative, video technology

provides a non-intrusive and scalable solution for detecting and quantifying these symp-

toms. Advances in deep learning and high-performance computing now allow for more

precise analysis of human movements through video [80, 97, 114, 138, 166]. In video-

based PD assessment, most of the current research have focused on methods that employ

skeleton data to analyse human motion [48, 92, 96, 97, 125]. While promising, these

skeleton-based approaches come with their own challenges. First, they often require a

preprocessing step to extract meaningful skeletal features, adding extra computational

cost to the assessment process. Second, skeleton data may not always accurately cap-

ture the subtle movements exhibited by PD patients, especially those movements that

are crucial for an accurate severity assessment. For example, when assessing gait based

on the UPDRS, crucial factors like stride amplitude, stride speed, height of foot lift, and

quality of heel strike during walking are considered. Skeleton data may outline basic
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1.1 Challenges

movement trajectories but lack the granularity to capture these critical elements, which

are important for distinguishing between mild and moderate cases.

Given these limitations, the focus of this thesis will be on exploring the potential of RGB-

based video data for assessing PD severity through developing innovative deep learning

strategies tailored for this task. These strategies are categorised as follows:

i) End-to-end supervised learning, with a focus on motion analysis for PD severity assess-

ment; ii) Self-supervised representation learning to reduce dependency on large-scale an-

notated datasets; iii) Parameter-efficient continual pretraining to enhance model adapt-

ability by updating a few bottleneck layers through Self-Supervised Learning (SSL).

While these strategies are validated extensively on PD tasks, their versatility extends to

other domains within computer vision. Additional experiments confirm this by applying

the methods to a range of tasks including action recognition and other AQA tasks, such

as diving and surgical skill assessment.

1.1 Challenges

In this thesis, we will explore four main challenges associated with applying deep learning

to video-based PD severity assessment.

Challenge 1: Complexity of Human Movements

One of the main challenges in this area is the complexity of human movements, an issue

that becomes even more challenging when dealing with the symptoms of PD. Examining

the gait task, it is evident that even this basic action demonstrates a variety of arm

swings, stride lengths, and walking speeds among healthy people. These characteris-

tics are not only unique to each person but can also change based on factors such as

age, mood, or even the type of shoes they are wearing. When it comes to assessing

the severity of PD, this complexity is amplified. PD is associated with specific gait al-

terations like shuffling steps, a decrease in arm swing, or more severe symptoms such

as freezing, where the patient is unable to take the next step despite the intention to

continue walking. These subtle differences in motion, ranging from small changes in

stride to episodes of freezing, present a significant challenge for automated assessment

of PD severity. The challenge lies in designing deep learning models that are capable of

capturing both the spatial and temporal features of a given task, such as gait, while also

being sensitive enough to detect subtle irregularities representative of different levels of

PD severity.
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1.1 Challenges

Challenge 2: Presence of Camera Motion

The use of video data for clinical studies, such as the assessment of PD, can be hin-

dered by the introduction of variability caused by camera motions. For instance, when

evaluating gait, a camera that follows the subject can add ‘motion noise’ to the video

data, making it hard to differentiate between the subject’s actual movements and those

caused by the camera’s motion. This extra layer of complexity can disrupt vision-based

models that are meant to measure the severity of symptoms, such as stride irregularities

or freezing episodes, leading to less accurate results.

Challenge 3: Scarcity of Annotated Data

Deep learning models are known for their exceptional performance but require a large

amount of annotated data to reach that level of accuracy. In a clinical setting, partic-

ularly when dealing with PD, gathering this kind of extensive dataset presents several

challenges. The first challenge is the recording process itself, where patients are required

to perform specific motor tasks such as finger tapping or leg agility. These tasks can be

difficult and emotionally stressful for PD patients, complicating and lengthening the data

collection process. Furthermore, capturing these tasks on video often requires specialised

equipment and controlled environments to ensure high-quality data. Once the data is

collected, the next step is annotation. Medical experts need to carefully analyse these

videos to provide labels or annotations that serve as the ground truth for deep learning

models. This step is not only time-consuming but also costly, as it often requires the

expertise of highly trained clinicians.

Beyond these challenges, there are also ethical and legal considerations. Concerns about

patient privacy, data security, and informed consent add another layer of complexity to

the data collection process. Obtaining the necessary approvals and authorisations from

participants, and ensuring the sensitive data is stored and handled safely can take a

long time and involve a lot of paperwork. All these factors contribute to the difficulty

in collecting large-scale, high-quality annotated data for PD assessment tasks. This

limitation restricts deep learning models’ ability to generalise effectively, affecting their

performance on new patient data or different stages of the disease.

Challenge 4: Transfer of Knowledge to AQA Tasks

One common solution to address the scarcity of annotated data in Action Quality As-

sessment (AQA), particularly for tasks related to PD, involves initialising a model with

weights pretrained on more generic, large-scale datasets, e.g. Kinetics-400 [71]. Although

better than pretraining from scratch, this approach presents challenges. As illustrated in

Figure 1.1, samples from different classes in a generic dataset used for action recognition
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a) Action recognition b) PD severity assessment

 (hand movement)

Playing violin Horse riding Normal Slight

Figure 1.1: Comparison of inter-class variances in action recognition and PD severity
assessment (hand moveent task). For action recognition, classes like ‘horse riding’ and
‘playing violin’ exhibit clear temporal and spatial distinctions. In contrast, PD samples
from different severity levels (e.g., Normal and Slight) demonstrate subtler differences,
highlighting the intricate nature of PD severity assessment over action recognition.

task display distinct temporal and spatial patterns. However, these may not align well

with the specific needs of diagnosing or assessing PD severity. The nuanced differences in

hand movements, particularly between Normal and Slight PD severity levels, highlight

this mismatch. Therefore, there is a need to better adapt the knowledge gained from

existing large-scale video datasets to PD tasks.

1.2 Contributions and Publications

1.2.1 Contributions

The main contributions of this thesis can be summarized as follows:

• A novel, end-to-end Convolutional Neural Network (CNN) architecture is proposed

for evaluating the severity of PD motor states using only RGB video data aligned

with the UPDRS. A distinctive feature of this proposed method is the integration
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of motion boundaries to counteract camera motion effects, thus enhancing the

accuracy of video-based PD severity prediction.

• An auxiliary pretraining stage based on similarity-based knowledge distillation

is introduced to alleviate the dependency on large-scale generic datasets in self-

supervised video representation learning, allowing for the use of PD target datasets

instead of Kinetics-400.

• A simple, yet effective and novel SSL pretext task is presented which is more

commensurate with video motion events than existing pretext tasks.

• A parameter efficient continual pretraining workflow is presented to better transfer

the knowledge learned from existing large-scale video datasets to PD target tasks by

only updating a small number of additional bottleneck layers (called 3D-Adapters)

through SSL.

• A new AQA dataset, PD4T, is introduced, which includes 2,931 videos from 30 PD

patients performing four key motor tasks: gait, hand movement, finger tapping,

and leg agility. The dataset, captured at 25fps and clinically scored, aims to serve

as a robust benchmark for the vision community.

1.2.2 Publications

The research detailed in this thesis has resulted in the following publications:

• Amirhossein Dadashzadeh, Alan Whone, Michal Rolinski, and Majid Mirme-

hdi. Exploring motion boundaries in an end-to-end network for vision-based Parkin-

son’s severity assessment. 10th International Conference on Pattern Recognition

Applications and Methods (ICPRAM), 2021.(Chapter 3)

• Amirhossein Dadashzadeh, Alan Whone, and Majid Mirmehdi. Auxiliary

Learning for Self-Supervised Video Representation via Similarity-based Knowledge

Distillation. Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, 2022. (Chapter 4)

• Amirhossein Dadashzadeh, Shuchao Duan, Alan Whone, and Majid Mirmehdi.

PECoP: Parameter Efficient Continual Pretraining for Action Quality Assessment.

In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision, 2024. (Chapter 5)
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1.3 Thesis Overview

1.3 Thesis Overview

This thesis is presented in 6 main chapters. Following this introduction,

• In Chapter 2, we provide a comprehensive survey of literature relevant to our

research on PD severity assessment. We begin with an overview of AQA, covering

its applications in both sports and healthcare. We then explore works in advanced

learning strategies such as SSL, knowledge distillation, continual pretraining, and

parameter-efficient transfer learning, all of which are relevant to our study.

• In Chapter 3, we present an end-to-end multi-stream deep learning configuration,

adapting 3D CNNs to efficiently capture spatial and temporal features from RGB,

optical flow, and motion boundaries. A sparse temporal sampling strategy enables

capturing long-range temporal features, while attention units allow for focused

analysis on key video segments. This method is then evaluated on two distinct PD

tasks: hand movement and gait, showing its versatility and applicability.

• In Chapter 4, we tackle the limitations of self-supervised pretraining methods,

particularly their poor generalisation capabilities when faced with small unlabeled

datasets or significant domain shifts. To address these issues, we introduce a novel

auxiliary pretraining phase, which employs a teacher-student framework for knowl-

edge similarity distillation. We also propose a new pretext task, video segment pace

prediction, to provide more reliable self-supervised representations. We then eval-

uate our proposed SSL framework on action recognition using widely recognised

benchmarks UCF101 [134] and HMDB101 [75], as well as our newly introduced

PD4T dataset, including real patients performing actions such as gait, finger tap-

ping, hand movement, and leg agility.

• In Chapter 5, we present parameter-efficient continual pretraining, an innova-

tive stage in the AQA transfer learning pipeline. We introduce 3D-Adapter, a

lightweight bottleneck block inserted into pretrained 3D CNN architectures. The

adapter fine-tunes for domain-specific spatiotemporal features via SSL while freez-

ing the original model weights. This approach minimises computational costs and

storage needs while effectively dealing with overfitting and catastrophic forgetting

commonly encountered in continual learning scenarios. In this chapter, we eval-

uate our method on three public AQA benchmarks: MTL-AQA [114], JIGSAWS

[42], and FineDiving [159], while also providing comparative results on the PD4T

dataset.

• In Chapter 6, we start by providing a detailed review of the main objectives and
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the significant contributions presented throughout this thesis. Next, we critically

evaluate our major findings, underlining their strengths and limitations. Finally,

the chapter suggests potential directions and avenues that future research could

explore, building upon the groundwork laid in this study.
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Chapter 2
Background

This chapter provides a background of the literature relevant to the research explored

in this thesis. Section 2.1 offers an overview of AQA, exploring its applications in var-

ious domains such as sports and healthcare, but with a specific focus on assessing the

severity of PD. Section 2.2 delves into SSL, highlighting various pretext tasks and con-

trastive learning methods and their application in AQA. Following this, Section 2.3

introduces auxiliary learning that enhances self-supervised pretraining performance by

leveraging additional information. In Section 2.4, the focus shifts to knowledge distil-

lation, with particular emphasis on similarity-based methods. Section 2.5 explores con-

tinual pretraining, another avenue for improving the generalisation capabilities of deep

learning models, especially those employing SSL techniques. Next, Section 2.6 discusses

parameter-efficient transfer learning, exploring methods that enable effective knowledge

transfer with fewer parameters.

2.1 Action Quality Assessment (AQA)

In recent years, the field of AQA has gained increasing attention due to its vital role in

a variety of real-world applications, such as sport event analysis [8, 115, 119, 138, 166],

healthcare, physical rehabilitation [3, 11, 33, 96], skill assessment [30, 89], and more.

Unlike action recognition, which identifies the type of action, AQA evaluates the quality

of its execution. This involves focusing on finer details like slight variations in posture,

timing, and fluidity, making AQA a more complex yet invaluable task than merely

classifying or labeling an action. In this section, we explore in detail the various aspects of

AQA, discussing its role in sports scoring, skill assessment, and in healthcare, specifically

with regard to the evaluation of the severity of PD.
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2.1 Action Quality Assessment (AQA)

2.1.1 AQA for Sports Scoring

In the domain of sports, AQA mainly falls into two primary methodologies based on

the type of input data: pose-based methods [46, 119], which focus on the study of body

positions, and appearance-based methods [8, 113, 114, 124, 138, 166], which rely on visual

elements captured through cameras. In early studies on pose-based AQA [46, 119], the

process is usually divided into three main steps . First, the system tracks the location of

key body parts such as hands and feet. Next, it gathers important features like position,

speed, and direction from these tracked points. Finally, a score or grade for the quality of

the action is calculated using either set rules or machine learning methods. For example,

Pirsiavash et al. [119] introduce a regression-based method designed for the evaluation

of action quality in Olympic sports, such as diving and figure skating. They initially

capture the athletes’ body poses, which are then encoded using the Discrete Cosine

Transform (DCT). These transformed pose features serve as the input to a Support

Vector Regression (SVR) model that subsequently predicts action quality scores. Their

system not only predicts performance scores, but also generates constructive feedback for

athletes, advising them on the specific body movements that could enhance their overall

performance. Feedback examples for diving and figure skating actions generated by this

work are visually presented in Figure 2.1. However, obtaining accurate pose data in the

Figure 2.1: Feedback examples for divers in the first and second rows, and for skaters
in the third and fourth rows. The red vectors guide the divers/skaters by indicating
the direction in which they should move their bodies. The figure is adapted from [119].

sport domain is difficult [150]. Often, the gathered information is incomplete due to the
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2.1 Action Quality Assessment (AQA)

athlete’s body adopting complex positions, or because certain body parts are hidden

from view. For example, when a gymnast flips, the arms and legs may overlap, making

it difficult to get accurate data that can subsequently affect the final performance score.

Moreover, focusing on pose data overlooks crucial visual elements; in the case of diving,

for example, the size and shape of the water splash are essential for scoring but are not

captured by pose-based methods.

Due to these limitations of pose-based methods, researchers have increasingly shifted

their focus to appearance-based approaches [8, 113, 114, 124, 138, 166], which offer the

advantage of utilising both spatial and temporal visual features. These methods have

achieved considerable success in recent years.

As an early appearance-based approach, Parmar et al. [115] evaluate three different

frameworks to assess athletic performance in sports such as diving, gymnastics vaulting,

and figure skating. Initially, each framework employs a C3D [142] model to analyse 16-

frame, non-overlapping segments of video, capturing spatio-temporal features. The sub-

sequent phases involve various techniques for feature aggregation and score prediction.

The first framework averages these features and employs a Support Vector Regression

(SVR) for final score estimation. The second uses Long Short-Term Memory (LSTM)

networks to capture long-term sequential patterns, while the third integrates both LSTM

and SVR for a more comprehensive assessment.

In their later work, Parmar et al. [114] improve the scoring performance and the generali-

sation ability of their AQA model by employing multi-task learning, which integrates two

additional tasks, action recognition and commentary generation, alongside the primary

task of action score prediction. To capture features from various segments of a video,

a C3D network is utilised. For the tasks of action assessment and recognition, these

features are then averaged to create a unified video-level representation. In contrast, for

the commentary generation task, a sequence-to-sequence approach is adopted, and the

extracted features are individually input into its corresponding branch. Meanwhile, they

introduced a new multi-task AQA dataset, named MTL-AQA, which consists of 1,412

diving samples to evaluate their approach.

Pan et al. [109] introduce a graph-based joint relation model for a more fine-grained

analysis. This work emphasizes the importance of the interactions between neighbouring

joints for accurately assessing actions. The study introduces two specialised graphs, one

for spatial relationships and another for temporal dynamics, alongside two innovative

modules: the joint commonality module and the joint difference module. These modules

facilitate the understanding of general motions and differences in motion within body
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parts.

Figure 2.2: Pipeline of uncertainty-aware score distribution learning, proposed in
[138]. First, video frames are split into N segments and then processed using an
I3D backbone [10] for feature extraction. Then, the extracted features pass through
three fully-connected layers, get fused by temporal pooling, and are sent through a
softmax layer to generate the predicted distribution. Finally, the KL loss between
this predicted distribution and a Gaussian distribution derived from the score labels
is optimised. The figure is adapted from [138].

In previous AQA methods, regression algorithms are commonly used to predict action

scores based on video data. These traditional approaches, however, neglect the inherent

uncertainty and ambiguity present in score labels, often due to multiple judges or subjec-

tive evaluations. Addressing this limitation, Tang et al. [138] propose Uncertainty-Aware

Score Distribution Learning (USDL), which differs from traditional methods by model-

ing an action’s quality through a distribution of possible scores to better deal with the

uncertainties often found in assessing action quality. The pipeline of USDL is illustrated

in Figure 2.2.

For cases where fine-grained score labels are available, such as difficulty levels or multiple

judges’ scores, the authors extend USDL into a Multi-Path Uncertainty-Aware Score

Distributions Learning (MUSDL) method. MUSDL disentangles the various components

contributing to the final score, offering a more comprehensive handling of the inherent

uncertainties in AQA evaluations. Both the USDL and MUSDL frameworks leverage

KL to optimise the predicted score distribution against a Gaussian distribution that is

generated from the real score labels. The architecture of MUSDL is shown in Figure

2.3.

Yu et al. [166] propose Group-aware Contrastive Regression (CoRe) framework to em-

phasise the importance of pairwise comparison of videos in assessing action quality. This

is achieved by introducing a reference video, which belongs to the same category as

the video under assessment and acts as a standard for comparing quality. CoRe uses a
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Figure 2.3: Overview of MUSDL [138]. During the training phase, scores from
K (e.g. K=7) judges are modeled as distinct Gaussian distributions, and a similar
strategy is employed to train a model comprised of K sub-networks. In the testing
phase, the final assessment is derived from the K predicted scores and the rule of the
game. The figure is adapted from [138].

hierarchical approach with a Group-aware Regression Tree (GART) that helps divide

the task into smaller and easier-to-handle parts. Specifically, GART divides the relative

score into several non-overlapping intervals, referred to as groups. A binary tree is then

employed to progressively assign the relative score to one of these predefined groups.

Subsequently, regression is performed within the group where the relative score is situ-

ated to predict the final score. To optimise the model, CoRe employs a unique objective

function that combines classification and regression tasks. The classification part ensures

that video pairs are accurately sorted into predefined groups, while the regression part

refines the score predictions within those groups. An overall view of CoRe is shown in

Figure 2.4.

Xu et al. [159] argue that understanding both high-level semantics and internal temporal

aspects of actions in competitive sports is essential for accurate and interpretable AQA.

To support this claim, they present FineDiving, a fine-grained dataset developed for

various diving events. Unlike existing datasets, FineDiving includes detailed annotations

on action procedures, thereby facilitating a more reliable and transparent approach to
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Figure 2.4: The pipeline of group-aware contrastive regression method (CoRe [166]).
First each input video is paired with an exemplar video. This video pair is then fed
through the shared I3D backbone to extract spatio-temporal features, which are then
combined with the reference score of the exemplar video. This combined feature set is
sent through a group-aware regression tree to obtain the relative quality score between
the input and the exemplar. In the inference phase, this process is repeated with
multiple exemplars for a more robust final quality score for the input video, achieved
by averaging the relative scores. The figure is adapted from [166].

scoring in AQA. To exploit this fine-grained dataset, the authors introduce a procedure-

aware method for AQA using a novel Temporal Segmentation Attention (TSA) module.

Instead of traditional methods, their approach decomposes pairwise query and exemplar

action instances into consecutive steps to capture diverse correspondences. The TSA

module employs a procedure-aware cross-attention mechanism to learn embeddings and

find semantic, spatial, and temporal matches between the query and exemplar actions.

The method then performs fine-grained contrastive regression on these embeddings to

derive a reliable scoring mechanism that quantifies step-wise quality differences between

query and exemplar actions. The overall framework of TSA is illustrated in Figure 2.5.

It is worth noting that TSA can only be applied to those AQA datasets that contain

fine-grained scores (e.g. FineDiving).

To more effectively capture fine-grained intra-class variations in AQA tasks, Bai et al.

[8] presents a novel framework that utilises Temporal Parsing Transforme (TPT). This

framework decomposes holistic features into temporal part-level representations. Partic-

ularly, the model employs learnable queries to focus on atomic temporal patterns, thus

allowing for the capture of key phases in actions. For instance, in the case of a diving

action, these key phases could include the approach, take-off, and flight. This level of

specificity contributes to more accurate quality assessments. To calculate the quality

score, the authors take advantage of the contrastive regression framework proposed in

[166], which they apply to the temporally ordered part representations. The use of con-
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Figure 2.5: The architecture of the procedure-aware action quality assessment pro-
posed in [159]. With the use of pairwise query and exemplar instances, the method
leverages I3D to capture spatial-temporal visual features. To evaluate action quality,
a temporal segmentation attention module is introduced. This module performs tasks
in a sequence: it first segments the action procedure, then engages in procedure-aware
cross-attention learning, and finally carries out fine-grained contrastive regression. The
temporal segmentation attention module is trained using step transition labels and ac-
tion score labels. The figure is adapted from [159].

trastive regression allows the model to differentiate quality more effectively based on

these part-level features. Addressing the absence of temporal part-level labels in most of

AQA datasets, the authors introduce two innovative loss functions. The first is a ranking

loss that operates on the cross-attention responses of the transformer’s decoder. This

ensures that the learnable queries are aligned with the inherent temporal order of the

action’s phases. The second is a sparsity loss designed to make the part representations

more discriminative, thereby enhancing the model’s ability to differentiate between sub-

tle variations in quality. The architecture of TPT is shown in Figure 2.6. Please note

that the aforementioned AQA works (e.g. [8, 138, 159, 166]), detailed in this section,

have been used as baselines in subsequent chapters of this thesis.

In summary, most of the state-of-the-art methods in assessing the quality of sport actions

have demonstrated impressive performance on a variety of benchmarks. However, it

is important to note that these approaches often rely on initialising their backbone

model with large-scale datasets like Kinetics-400 [71]. This heavy reliance on large-

scale datasets raises questions about the models’ generalisability and transferability. In

particular, the performance gains might not solely come from the method’s effectiveness

in AQA tasks. Instead, they could be a byproduct of features learned from a dataset that

is quite different from the target AQA dataset. This highlights the need for methods that

are effective and versatile across a range of domains. In Chapters 5, we address this issue

by incorporating target AQA videos during the pretraining stage. Table 2.1 provides a
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summary of the learning-based approaches proposed for sports assessment.

It is worth noting that, in Chapters 4 and 5, the AQA methods detailed above, including

MUSDL [138], CoRe [166], TSA [159], and TPT [8], are leveraged as baselines, allowing

for a comprehensive comparison with the approaches proposed in this thesis.

Figure 2.6: Overview of TPT [8]. Clip-level representations are transformed into
part-level temporal representations by temporal parsing transformer. Part-wise rel-
ative representations are initially calculated and subsequently fused to estimate the
relative score by the part-aware contrastive regressor. A group-aware regression strat-
egy is utilised following previous work [166]. During the training phase, the learning
of part representations is guided by the employment of ranking loss and sparsity loss
on decoder cross-attention maps. The figure is adapted from [8].

2.1.2 AQA for Healthcare

In this subsection, we delve into the application of AQA within the healthcare domain,

with a particular emphasis on studies related to the assessment of Parkinson’s disease

severity. This area has predominantly utilised wearable sensors as a means for data collec-

tion and analysis, as evidenced by several significant studies [63, 99, 101, 126, 128, 131].

For example, Jeon et al. [69] perform a comparative study of various machine learn-

ing algorithms, such as decision trees, support vector machines, discriminant analysis,

random forests, and k-nearest-neighbor on data from a wrist-worn wearable device to

classify hand tremor severity. Evaluated on 85 patients, the highest accuracy obtained

was 85.6% by a decision tree classifier.

Seifert et al. [128] explore the use of radar micro-Doppler signatures for gait analysis

across diverse applications, spanning from home security to medical diagnosis, rehabili-

tation, and assisted living. The objective of their study is twofold: to identify changes
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Method Year Backbone Input Dataset

Pirsiavash et al. [119] 2014 2D Pose MIT-Olympic [119]

Parmar et al [115] 2017 C3D RGB
MIT-Olympic [119]

UNLV [115]

Li et al. [83] 2018 C3D RGB
MIT-Olympic [119]

UNLV [115]

Parmar et al. [113] 2019 C3D RGB AQA-7 [113]

Parmar et al. [114] 2019 C3D RGB

MTL-AQA [114]

UNLV [115]

MIT-Olympic [119]

Xu et al. [156] 2019 C3D RGB
MIT-Olympic [119]

Fis-V [156]

Pan et al. [109] 2019 I3D
RGB+ AQA-7 [113]

2D Pose

Roditakis et al. [124] 2021 I3D RGB MTL-AQA [114]

Pan et al. [110] 2021 I3D
RGB+ UNLV [115]

2D Pose

Tang et al. [138] 2020 I3D RGB

AQA-7 [113]

JIGSAWS [42]

MTL-AQA [114]

Yu et al. [166] 2021 I3D RGB

AQA-7 [113]

JIGSAWS [42]

MTL-AQA [114]

Farabi et al. [37] 2022 ResNet RGB MTL-AQA [114]

Xu et al. [159] 2022 I3D RGB FineDiving [159]

Zhang et al. [172] 2022 I3D RGB MTL-AQA [114]

Bai et al. [8] 2022 I3D RGB

AQA-7 [113]

JIGSAWS [42]

MTL-AQA [114]

Table 2.1: Overview of AQA methods mainly designed for sports performance eval-
uation.
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in gait patterns and tackle the intra-motion category classification challenge within gait

recognition. To this end, they introduce new gait classification methods based on phys-

ical features, subspace features, and sum-of-harmonics modeling. Evaluations were car-

ried out using K-band radar data from four test subjects, considering five unique gait

classes for each participant, including standard walking patterns, pathological strides,

and assisted ambulations.

While sensor-based methods can accurately capture human kinematics, their reliance on

wearable devices, which can be expensive, cumbersome, and sometimes intrusive, limits

their convenience and broad applicability in healthcare settings. In contrast, learning-

based approaches offer a scalable, contactless, and non-intrusive solution, making them

more convenient than sensor-based methods, as they only rely on cameras for data

collection.

As an early work, Paiement et al. [108] present a learning-based method for the assess-

ment of human movement quality in healthcare. Their approach is designed for online

analysis and focuses on patients who walk on stairs. Utilising 3D skeletal data captured

by a Kinect camera from a frontal view, the method consists of two key statistical models,

pose and dynamic. The pose model quantifies the likelihood of standard body positions

using a probability density function, while the dynamic model accounts for temporal

sequences through a continuous-state Hidden Markov Model (HMM). During the infer-

ence phase, each individual frame in each sequence is categorised as normal or abnormal.

This is based on how much the observed data deviates from the statistical models, as-

sessed via a log-likelihood metric with an empirically determined threshold. In addition,

the methodology involves initial steps to preprocess the skeleton data. These include

normalisation procedures as well as dimensionality reduction techniques to handle the

high-dimensionality problem of skeleton data.

Elkholy et al. [32] develop a system for assessing neuromusculoskeletal disorders in the

elderly, specifically focusing on diseases like Parkinson’s, relying on 3D skeletal data

captured using depth cameras. They focus on three key features: asymmetry, velocity

magnitude, and center-of-mass trajectory deformation. These features help to under-

stand both the speed and the pattern of movements. In the training phase, two types of

probabilistic models, Gaussian Mixture Model (GMM) and Kernel Density Estimation

(KDE), are built based on the descriptors from normal sequences. During inference, the

likelihood of a test sequence being normal or abnormal is computed using the trained

GMM, and compared with a learned threshold. They also use a multiple linear regression

model to give a score to abnormal movements, based on expert medical advice.
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Figure 2.7: Proposed framework by [96]. The subject is first tracked throughout the
video, while other individuals, such as clinicians, are removed. Following that, the 3D
body mesh of the identified participant is extracted, along with their skeleton. Finally,
the proposed OF-DDNet model estimates the MDS-UPDRS gait score solely based on
the 3D pose sequence. The figure is adapted from [96].

Among deep learning-based methods, Liao et al. [85] propose a comprehensive frame-

work tailored for assessment of home-based rehabilitation. The architecture employs

autoencoder neural networks for dimensionality reduction of skeletal joint coordinates,

followed by performance quantification and scoring mapping to produce movement qual-

ity scores. These scores serve as ground truth for training a deep neural network. This

network manages the complexities of human movements by organising data into tem-

poral pyramids and processing joint displacements of individual body parts via a series

sub-networks. The architecture combines convolutional layers for spatial features with

recurrent layers to capture temporal dependencies.

Lu et al. [96] introduce the first benchmark for classifying PD patients based on MDS-

UPDRS [45] gait severity scores, utilising data from 30 research participants each assessed

by a board-certified movement disorders neurologist. Their method operates in a series

of steps: initially identifying and tracking the subject in the video, followed by the

extraction of their 3D body skeleton from each frame. Then, a Temporal Convolutional

Neural Network (TCNN) is trained on sequences of these 3D poses. The TCNN is

based on a Double-Features Double-Motion Network [161] with a new hybrid ordinal-

focal objective. The hybrid ordinal-focal objective in this work combines focal loss [86]

and an ordinal loss [123] components, effectively handling data imbalances and leveraging

the ordinality of MDS-UPDRS scores. An overview of this framework is shown in Figure

2.7. However, the main issue in [96] is its reliance on one expert’s ratings, which could

introduce bias into the model. To address this, Lu et al. [97] incorporate scores from

three different neurologists, aiming for a more balanced and reliable model. Nonetheless,

this addition of multiple raters introduces a source of noise and uncertainty. To manage
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this, they propose a system known as rater confusion estimation. This system jointly

learns the rater scoring noise and MDS-UPDRS score estimation with the ordinal focal

neural network. Specifically, they create a learnable confusion matrix for each rater and

optimise it while classifying the input videos using a modified version of ordinal focal

strategy proposed in [96].

Turning to a different aspect of motor function, Guo et al. [48] explore the use of

video-based evaluations to assess the severity of PD through hand movements. To bet-

ter understand how the hand’s joints work together, they use a Graph Convolutional

Network (GCN) to look at the skeleton of the hand. The authors face two primary

challenges: extracting fine-grained features and ensuring model stability. To address

these issues, they introduce a tree-structure-guided GCN enhanced with group-sparse

contrastive learning. This unique method capitalises on the natural tree structure of the

human hand to create a sophisticated graph that captures key motion features from the

fingertips to the palm. Additionally, the use of contrastive learning [55] allows the model

to focus on the discriminative spatial-temporal motion features, rather than the minor

differences between sequences that are due to confounding factors.

Liu et al. [92] focuse on PD tremor severity assessment. They address the challenge

of capturing subtle and continuous tremors in different body parts (e.g. hand, leg, and

jaw). The authors use Eulerian video magnification for preprocessing to amplify subtle

tremors and introduce a model, global temporal-difference shift network, to focuse on

the micro temporal changes caused by the tremors. To further improve the prediction

accuracy, the model incorporates a global shift module, allowing each video segment to

consider global temporal features.

In summary, most of the current methods for evaluating human movement in healthcare,

particularly those related to PD, are dependent on 3D skeleton data. These methods

often involve additional computational costs for preprocessing and do not capture some

subtle important features for accurate PD severity assessment. This thesis instead fo-

cuses on assessment from only RGB data, which eliminates the need for preprocessing

and can capture a richer set of features vital for accurate evaluations.

2.2 Self-Supervised Learning (SSL)

In recent years, deep neural networks, particularly CNNs, have shown remarkable success

in various visual recognition tasks [14, 163]. These successes of CNNs have been largely

dependent on large training sets of manually annotated data. However, collecting these

large annotated datasets is both costly and time-consuming. Consider the action ‘shaking
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hands’, which might only occur for a few seconds in an hour-long video. To train a

model for this action using supervised learning, one has to sift through the entire video

to manually identify and annotate those specific frames or crop them into a manageable

range. The task becomes increasingly challenging and time-consuming as the volume

of video data and variety of action classes grow. On the other hand, unsupervised

learning methods that exploit unlabeled data provide much more scalable and flexible

learning algorithms. Among unsupervised learning approaches, a prominent paradigm

is self-supervised learning which provides a way for representation learning that does

not need human-labeled data and has shown promise in both image and video domains.

Particularly, the process of SSL starts by training the model on an unlabeled dataset

using a learning objective designed to capture the underlying structure of the data.

The pretrained model is then used as initialisation for the target dataset, where it is

fine-tuned using the provided labeled samples.

In this subsection, we provide a comprehensive review of existing methods for SSL. We

start by discussing pretext task-based SSL methods. Then, we move on to contrastive

learning, another form of SSL. Finally, we review specific AQA methods that have suc-

cessfully incorporated SSL into their frameworks.

2.2.1 Pretext Tasks

A pretext task is a SSL training goal that uses predefined tasks for the model to solve.

This enables the model to learn useful representations for subsequent downstream tasks.

The underlying concept is that if a model can solve a complex task that requires high-level

understanding of its input, then it will acquire features that are more general [127]. The

nature of these pretext tasks varies significantly between image and video domains. In the

image domain, pretext tasks often deal with appearance statistics through techniques

such as colorization [26, 67], ordering shuffled image patches [103, 106, 152], context

prediction [28],and rotation classification [43]. On the other hand, in the video domain,

pretext tasks extend beyond appearance statistics to also include temporal features.

These may include techniques like temporal order prediction [39, 100, 157], jigsaw [4, 66]

or video playback speed prediction [9, 148]. Next, we have a closer look at these specific

techniques.

Temporal Order Prediction – The majority of early studies in self-supervised video

representation learning focused on temporal order prediction [39, 78, 100, 157]. For

example, Fernando et al. [39] propose a pretext task called odd-one-out in which the

network takes multiple video sequences as input into its multi-branched architecture

with shared weights. The goal is to identify the video sequence that has been sampled
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Figure 2.8: Overview of clip order prediction framework proposed by [157]. (a)
Sample non-overlapping video clips and shuffle them to a random order. (b) Employ
the 3D ConvNets to extract the feature from all clips (c) The extracted features are
pairwise concatenated, and fully connected layers are applied on top to predict the
real order. The dashed lines indicate that the corresponding weights are shared among
clips. The figure is adapted from [157].

in an incorrect order. To identify this odd clip, the learning machine must compare all

the video clips, identify the regularities among them, and select the one that exhibits

irregularities. However, when relying on frame ordering, the difference between two

frames might be insufficient to recognise a change in motion for some activities. To

address this issue, Xu et al. [157] sample non-overlapping clips and shuffle them to

a random order. Then a 3DCNN [90] is utilised to extract features from clips, and

these features are processed to predict the actual order. This clip-based order prediction

allows for better comparison because the dynamics of an action are maintained in a

sub-clip. Figure 2.8 presents the overall framework, which is composed of mainly three

procedures.

Jigsaw – Noroozi et al. [106] were the first to create a jigsaw task for images. In this

task, an image is divided into 9 shuffled patches and the aim is to train the model to put

these shuffled patches back in their original order. To do this, they introduce a unique

neural network called a Context-Free Network, a type of siamese CNN that uses shared

weights. During training, an image with a random permutation of the nine patches is fed

to the network. Given that each image has nine patches, the total number of possible

permutations is 9! = 362,880, making it highly unlikely that all permutations could

be recognised. To limit this complexity, a Hamming distance measure was employed

to ensure the task is appropriately challenging for a CNN, neither too difficult nor too

easy.
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Figure 2.9: The suggested permutation sampling strategy by [4], which involves
randomly shuffling the patches within each frame of a tuple, followed by a permutation
of the frames themselves. Given that each frame contains 4 patches, there are 4! = 24
distinct methods for rearranging these patches within a single frame. This process is
repeated for all the frames in the tuple, and they finally choose the top N permutations
based on Hamming distance. The figure is adapted from [4].

A primary obstacle in adapting the jigsaw technique to videos is the rise in patch count,

which subsequently leads to a larger set of permutations. Ahsan et al. [4] address this

problem by dividing a video into clips of three frames, then split a video frame into 2 × 2

grid of patches which results in 3 × (2 × 2) = 12 total patches per video (see Figure 2.9).

Then, a multi-stream Siamese-like network (similar to [106]) is trained to predict both

the spatial location of a patch within a frame and its temporal position over time. Note

that before shuffling the frames themselves, the patches within each individual frame

were initially shuffled.

Huo et al. [66] claim that directly solving 3D jigsaw puzzles is intractable due to the

enormous number of possible permutations. As a solution, the authors develop Con-

strained Spatiotemporal Jigsaw, where the 3D puzzles are created in a constrained way

to include large, continuous spatiotemporal cuboids. These cuboids serve as cues for the

model to learn about spatiotemporal continuity. To make this task more manageable,

they introduce four surrogate tasks that are more solvable, designed to train the model

to be sensitive to spatiotemporal continuity on both local and global scales.

Video Playback Speed Prediction – Recently, estimating video playback speed has

attracted much interest as a highly effective way to encourage the model to learn features
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Figure 2.10: Generating samples and speed labels from the pretext task proposed
in [148]. Here, five different sampling paces are shown, ranging from super slow to
slow, normal, fast, and super fast. The darker the initial frame appears, the faster the
clip plays through. The figure is adapted from [148].

(of moving objects) in videos [9, 16, 34, 65, 68, 148, 164].

Epstein et al. [34] design a method to predict normal video speed to detect an un-

intentional event in the video. SpeedNet [9] determines whether a given video clip is

being played at normal or twice its original speed. Recently, Wang et al. [148] proposed

VideoPace to predict the specific speed of each video clip which is randomly sampled

at a different frame rate. The sampling strategy of this pretext task is shown in Figure

2.10. Formally, the authors represent pace sampling transformation as g(x). For a given

video x, they utilise g(x|p) to generate the training clip xe with an associated training

pace p. The task of predicting the pace serves as a classification problem. Consequently,

their neural network f(xe) is optimised using a cross-entropy loss Lcls:

Lcls = −
M∑
i=1

yi

(
log

exp(hi)∑M
j=1 exp(hj)

)
, h = f(xe) = f(gpac(x|p)), (2.1)

where M is the number of all the pace rate candidates.

Wang et al. [148] also prevent the network from taking shortcuts or cheating to accom-

plish their pretext task (VideoPace) by applying color jittering augmentation to each

frame. However, one of the main limitations in considering playback speed alone is that

video clips with different speed labels might appear similar to each other, e.g. when dif-

ferent athletes might perform the same sporting action at different speeds. In Chapter

4, this thesis proposes a novel pretext task to address the issue of inaccurate video speed

labeling.
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2.2.2 Contrastive Learning

Contrastive Learning (CL) is a discriminative method that differentiates between simi-

lar (often referred to as ‘anchors’ and ‘positives’) and dissimilar (‘negatives’) samples by

attracting the similar ones closer and repelling the dissimilar ones in the feature space

[76, 155]. A similarity metric measures the proximity between two feature vectors. In

typical CL [155], a ‘positive’ sample is created from a single data point through data

augmentation, while other images in the dataset are designated as ‘negative’ samples.

However, this method demands substantial memory for sample storage and large batch

sizes for effective training. To handle this issue, MoCo [55] employs an on-the-fly dictio-

nary with the goal of aligning a query with its positive key encoding while maximising

dissimilarity to the negative key encodings. Given a query embedding q and a set of

keys embeddings {ki}Ki=0 in the dictionary queue, the contrastive loss for MoCo can be

expressed as:

Lq = − log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (2.2)

where τ is a temperature coefficient in learning. The sum is over one positive and K

negative samples. This loss function tries to classify q as k+ (positive key) through a

softmax classification process.

As depicted in Figure 2.11, the MoCo framework essentially consists of two networks:

an encoder network responsible for extracting the query q, and a momentum encoder

network for generating the key feature vectors {ki}Ki=0. These keys are stored in a dynamic

queue that operates on a First-In, First-Out basis. When a new mini-batch of image

embeddings is processed, it pushes new keys to the head of the queue, simultaneously

removing the same number of older keys from the tail.

After the contrastive loss is computed, the encoder network is updated through backprop-

agation. In contrast, the momentum encoder network is updated via a momentum-based

rule which can be expressed as:

θk ← mθk + (1−m)θq, (2.3)

where θq and θk are parameters of the encoder and momentum encoder, respectivly. Here

m ∈ [0, 1) is the momentum coefficient. This slowly updating of the momentum encoder

guarantees stable key representations.

To eliminate the need for negative samples in CL, Grill et al. [47] introduce BYOL. Unlike

traditional approaches that emphasise dissimilarities, BYOL focuses on the similarities
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Figure 2.11: Architecture details of three different contrastive learning approaches
including MoCo, BYOL and SimSiam.

between samples and their corresponding representations. As shown in Figure 2.11,

it employs two encoders: an online network and a target network. These two networks

share the same architecture, with the online network having an additional predictor head.

During the training process, two augmented versions of the same image are inputted

into the online and target networks to generate embedding vectors. The online network

updates its encoder using these vectors, and these updated weights are then transferred

to the target network as an exponential moving average [55]. Unlike traditional methods

that use contrastive loss, BYOL utilises mean squared error to minimise the distance in

similarities between embedding vectors made by the online target networks. The loss

function in BYOL can be represented as follows:

Lθ,ξ ≜ ∥qθ(zθ)− z′ξ∥, (2.4)

where θ and ξ are the parameters for the target and online networks respectively, qθ(zθ)

is the projection of the latent representation zθ from the online network, and z′ξ is the

target representation.

Chen et al. [19] propose SimSiam to show that it is feasible to acquire a robust repre-

sentation without the need for negative samples or a momentum encoder. The SimSiam

model takes two augmented views and aims to maximise their similarity. These views

undergo an encoding process via an encoder network that shares the weights between

the two views. This encoder is constructed from a ResNet [54] backbone coupled with

a projection MLP. For one of the view representations, an MLP predictor is employed,

and then the stop-gradient operation is applied to another view representation to avoid
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Figure 2.12: An overview of temporally adversarial learning proposed by [111]. The
figure is adapted from [111].

collapse. The architecture of SimSiam is illustrated in Figure 2.11.

Due to the promising results of contrastive learning in the image domain, some works

have extended contrastive methods to the video domain [16, 65, 111, 162], with the aim

of capturing temporal dependencies in addition to spatial features.

VideoMoCo [111] builds upon MoCo to refine its application in video representation

learning. Similar to MoCo, it follows the usage of a queue and a moving-average en-

coder. To make the encoder better at capturing temporal features, VideoMoCo utilises

an adversarial learning approach comprising a generator (G) and a discriminator (D),

as depicted in Figure 2.12. When provided with an input sample x in the form of a

video clip, G selectively drops several frames to produce a new sample called xquery.

The discriminator (D) then analyses features from both the original x and the modified

xquery, calculating a similarity loss between them. This loss term is then used reversely

to train G. During training iterations, G is learned to continuously attack D by removing

different frames of x. Concurrently, D learns to defend this attack by encoding features

that are resilient to temporal variations. The xquery is then used for contrastive learning.

Furthermore, to deal with the discrepancy arising from the evolution of the momentum

encoder, they propose a temporal decay to model key degradations in the memory queue.

This helps the query sample to focus on the newest keys when computing the contrastive

loss.

Chen et al. [16] introduce RSPNet to predict the relative speed between two video clips

rather than the direct playback speed. As illustrated in Figure 2.13, the authors intro-

duce two primary tasks: the Relative Speed Perception (RSP) task, which encourages
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Figure 2.13: Illustration of RSPNet proposed by [16]. Utilising a set of video clips
at different speeds, an encoder f(; θ) followed by two projection heads (namely, gm
and ga) is used to extract features for two tasks. In the first task, Relative Speed
Perception (RSP), the aim is to identify the relative speed differences between clips.
For the second task, Appearance-Focused Video Instance Discrimination (A-VID), the
focus is on distinguishing video clips based on their visual content. Both tasks are
formulate as a metric learning problem, and triplet loss Lm and InfoNCE loss La are
used for the training process. The figure is adapted from [16].

the model to capture motion features, and the Appearance Video Instance Discrimina-

tion (A-VID) task, designed to model appearance features. For the RSP task, they use a

triplet loss to minimise the distance between two clips of the same video at the same play-

back speed and maximise the distance between two clips of the same video at different

playback speeds. For the A-VID task, they extended the contrastive learning in image

domain [55] to video. In particular, they sample two clips from the same randomly

selected video v, and K clips from videos in subset S\v . These clips are processed

through a spatial-temporal encoder, followed by a projection mechanism. Then they

compare the features generated for the two clips from the same video (considering them

a positive pair) and contrast them against the features of the other clips (considering

them negative pairs) using InfoNCE loss [107] method.

Different from RSPNet, which focuses on predicting relative speeds, Huang et al. [65]

propose ASCNet that emphasises speed similarity. They introduce two innovative tasks:

Appearance Consistency Perception (ACP) and Speed Consistency Perception (SCP).

In the ACP task, two clips are sampled from the same video but with different play-

back speeds. The goal is to encourage the feature representations of these two clips to

be closely aligned in the feature space. On the other hand, the SCP task focuses on

minimising the feature distance between two clips sampled from two distinct videos that

share the same playback speed. An overview of ASCNet is shown in Figure 2.14.

While aforementioned SSL techniques have achieved remarkable success in video repre-
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sentation learning, their effectiveness falters when the pretraining dataset is limited or

when there is a pronounced domain gap between the source (unlabeled data for pre-

training) and target tasks (labeled data for fine-tuning). To address these challenges, in

Chapter 4 an auxiliary learning stage to self-supervised pretraining is introduced. This

auxiliary phase leverages similarity-based knowledge distillation and promises improved

generalisation using considerably less video data for pretraining, e.g. Kinetics-100 in-

stead of Kinetics-400.

Figure 2.14: Illustration of ASCNet framework [65]: A set of video clips played at
different speeds (such as 1× and 2×) is processed through a video encoder f , which
maps them into appearance and speed embedding space. In the context of the ACP
task, the authors draw the appearance features from identical videos closer to each
other. For the SCP task, they initially identify videos of the same speed that have
similar content and then bring their speed features into closer alignment. The figure
is adapted from [65].

2.2.3 SSL for AQA

Although most of the state-of-the-art works in the AQA literature have focused on

supervised learning approaches, a few have recently explored self-supervised learning

[89, 124, 171]. In most of these studies, in addition to the traditional supervised regres-

sion loss, the framework is further equipped with an SSL loss during the finetuning stage

to improve the performance without the need for additional annotations. For instance,

Roditakis et al. [124] leverage Temporal Cycle Consistency (TCC) [31] embeddings to

improve the accuracy of quality score estimation. Their method consists of two learning

stages and a temporal alignment phase. In the first stage, TCC is employed to extract

self-supervised embeddings which are subsequently used to align the video clips tempo-

rally. Then, the aligned video clips are fed into the second learning phase to evaluate the

quality of actions. The second stage is supervised and incorporates features extracted by

TCC and I3D backbones to learn the quality score of action. During this second train-

ing phase, only the I3D network undergoes optimisation, while the TCC model remains
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Figure 2.15: The overall architecture of the self-supervised alignment for action
assessment [124]. Every video sample is first aligned to a fixed-sized reference video
that corresponds to the video of the best-performing individual within the training
set. The aligned sequence is then divided into M separate segments. These segments
are processed through two backbone networks: I3D and TCC. The features of both
backbones are concatenated with average temporal pooling to create a clip-level rep-
resentation, which is then used for quality score prediction. The figure is taken from
[124].

unchanged. This optimisation utilises the uncertainty loss function as described in [138].

Figure 2.15 provides an in-depth view of the suggested approach.

Zhang et al. [171] propose an adversarial self-supervised framework for semi-supervised

AQA, aiming to learn with a limited set of labeled data. Their method leverages temporal

patterns from unlabeled videos and aligns the representation distribution of labeled and

unlabeled samples using adversarial learning. By introducing a masked segment feature

recovery learning on unlabeled videos, the framework captures the temporal dependencies

essential for AQA. Additionally, it aligns the feature representations between labeled

and unseen unlabeled through a tripartite module system that includes masked segment

feature recovery, action assessment, and representation distribution alignment, jointly

trained to enhance semi-supervised learning efficiency.

In the domain of surgical skill assessment, Liu et al. [89] augment their supervised model

with a self-supervised contrastive loss to enhance the capture of temporal dynamics in

surgical videos. This self-supervised branch increases the model’s ability to overcome

the limitations posed by limited annotated data in surgical skill assessment tasks.

In Chapter 5, the advantages of SSL are leveraged during the pretraining stage of AQA

frameworks. This approach introduces a level of domain-specific focus to the pretrained

model, enabling more efficient handling of downstream AQA tasks.
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Figure 2.16: The training architecture of SSKD [158]. Input images undergo specific
transformations to get them ready for the self-supervision task. Both the teacher
and student networks are composed of three components: the backbone f(·), the
classifier p(·), and the SS module c(·, ·). The teacher’s training is divided into two
phases. In the first phase, ft(·) and pt(·) are trained through a classification task. The
second phase focuses on fine-tuning ct(·, ·) using a self-supervision task. During the
student’s training, the student is encouraged to mimic the teacher in terms of both the
classification and self-supervision outputs, in addition to the standard label loss. The
figure is adapted from [158].

2.3 Auxiliary Learning

To assist a primary task to generalise better to unseen data, training through auxiliary

learning is an effective approach [91, 104, 129]. By training on multiple tasks, the model

gains the ability to learn extra features that it would not have acquired by focusing only

on the primary task. This broadened feature set aids the model in performing better on

unfamiliar data for the primary task. This is different from multi-task learning, where

all tasks are considered equally important with the objective of optimising performance

across them. In auxiliary learning, the focus is on optimising a single primary task, using

the other tasks just as supplementary aids to boost its performance.

Auxiliary learning has been applied alongside a wide range of techniques, such as transfer

learning [145], reinforcement learning [87], semi-supervised learning [169], and knowledge

distillation [158]. Liu et al. [91] introduce a method called Meta Auxiliary Learning

(MAXL) to enhance the generalisation performance of a primary supervised learning

task without the need for manually labeling auxiliary data. The framework consists

of two neural networks: a) a multi-task network for training both the primary and

auxiliary tasks, as in standard auxiliary learning, and (b) a label-generation network for
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automatically creating labels for the auxiliary task. The central concept of MAXL is to

leverage the performance of the primary task, when trained with the auxiliary task in

a given iteration, as a basis for enhancing the auxiliary labels in subsequent iterations.

The authors empirically demonstrate that MAXL outperforms single-task learning and

other baseline methods for generating auxiliary labels across multiple image datasets, all

without requiring additional data.

In recent work, Xu et al. [158] introduce the Self-Supervised Knowledge Distillation

(SSKD) framework, which harnesses SSL as an auxiliary task. SSKD integrates a

lightweight auxiliary module within the teacher network to distill self-supervised signals,

empowering the student model with a more structured understanding. The framework’s

model-agnostic design further adds the advantage of versatility, enabling the transfer

of knowledge across various architectural designs. Notably, SSKD’s effectiveness has

been validated in scenarios like few-shot learning and environments with noisy labels. A

detailed illustration of the SSKD methodology is provided in Figure 2.16.

In Chapter 4, it is demonstrated that the similarity information between the embedded

feature points can serve as prior knowledge for self-supervised pretraining, enabling the

learning of more generalised representations through pretext tasks, which serve as the

primary task in this context. To capture this similarity information, a variation of knowl-

edge distillation, called similarity-based knowledge distillation [140, 144], is employed as

an auxiliary task.

2.4 Knowledge Distillation

Knowledge Distillation (KD) is a technique that aims to transfer the knowledge learned

by a cumbersome, high-capacity model (referred to as the teacher) into a cheaper and

faster model (known as the student) without losing too much generalisation power. This

process allows the student model to inherit the generalisation capabilities of the teacher

model but with the benefits of reduced computational complexity and latency. The con-

cept was popularised by the seminal work of Hinton et al. [60], where they demonstrated

that the dark knowledge contained in the soft probabilities of a teacher model could be

transferred to a student model through the minimisation of the Kullback-Leibler (KL)

divergence between their respective output distributions. In this way, the student model

can learn how teacher network studied given tasks in a compressed form.

Formally, for any given input (image/video) x, the teacher network generates a vector

of scores st(x) = [st1(x), s
t
2(x), . . . , s

t
K(x)]. These scores are subsequently turned into
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probabilities using ptk(x) = es
t
k
(x)∑

j e
st
j
(x)
. As trained neural networks often produce sharp

probability distributions, Hinton et al. [60] suggest softening these distributions with

temperature scaling:

p̃tk(x) =
es

t
k(x)/τ∑

j e
stj(x)/τ

, (2.5)

where τ > 1 is a temperature hyperparameter. Similarly, the student network generates

a softened probability distribution, p̃sk(x). The overall loss L for the student is a linear

combination of the standard cross-entropy loss Lcls and a knowledge distillation loss LKD:

L = λLcls + (1− λ)LKD, (2.6)

where LKD = −τ 2
∑
k

p̃tk(x) log p̃
s
k(x), and λ is a hyperparameter, with a typical choice

being λ = 0.9 [21, 60]. Since the introduction of this concept, numerous advances

have been made in exploring various aspects of KD. For example, Zagoruyko et al.

[168] propose attention transfer that focuses on the feature maps of the network as a

mechanism of transferring knowledge as opposed to the output logits [60]. In [165], the

transfer of knowledge was achieved using the Flow of Solution Procedure, which involves

calculating the Gram matrix of features across various layers. Heo et al. [59] propose

an activation transfer loss metric to distill the activation boundaries formed by hidden

neurons from the teacher to the compact student network. Using a double distillation

objective, Zhang et al. [170] train a network for new classes and then merge it with the

network focused on previous classes. The final model suffers less from forgetting the old

classes, while maintaining high accuracy in recognising the new classes.

Similarity Based Knowledge Distillation – Similarity-based Knowledge Distillation

(SKD) methods [2, 36, 112, 117, 139, 140, 144] train a student to mimic the similarity

score distribution inferred by the teacher over data samples. Most early works in SKD use

a supervised loss during distillation [112, 117, 144]. For example, Park et al. [112] propose

Relational Knowledge Distillation (RKD) which introduces distance-wise and angle-wise

distillation losses to preserve the structural relationships, such as relative distances and

angles between data points, as learnt by the teacher model. RKD can be seen as an

extension of traditional knowledge distillation, complementing it by emphasising the

importance of the relationships between data points in the embedding space. Their

experiments across multiple tasks — metric learning, image classification, and few-shot

learning — demonstrate that RKD not only improves the performance of student models
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but also can potentially enable them to surpass the teacher models.

Tung et al. [144] proposes a novel SKD method, based on the observation that se-

mantically similar inputs yield similar activation patterns in a trained neural network.

Utilising this insight, their method computes pairwise similarity matrices from output

activation maps for a given mini-batch of images. Then a distillation loss is defined

based on these matrices to guide the training of the student network, encouraging it to

mimic the activation patterns of the teacher network.

There are a number of works that employ SKD in the context of contrastive learning

[2, 35]. Abbasi et al. [2] propose a method for compressing deep SSL models, specifically

focusing on transferring the discriminative power of a teacher model to a smaller student

model. In this approach, the teacher’s model parameters are kept frozen, serving as a

fixed reference. The key idea is to transfer the probability distribution of the similarity

between anchor and query points from the teacher’s embedding space to the student’s.

The similarity measure employed is cosine similarity, converted into a probability distri-

bution using a SoftMax operator. An overview of this method is shown in Figure 2.17.

This work ([2]) also explores variations such as using the teacher’s memory bank for the

student and caching the teacher’s embeddings to save computational cost.

While [2] relies on a pretrained frozen teacher model, Tejankar et al. [139] propose an

iterative SKD method, known as ISD, where the teacher model continues to learn simi-

larity score distributions during training. ISD can be considered a more relaxed version

of contrastive learning methods such as BYOL [47]. Unlike BYOL, which compares a

query image only with a differently augmented version of the same image, ISD compares

the query image with other random images. More precisely, the ISD teacher network

measures the similarity of the query image to a set of anchor points stored in a memory

bank. It then converts this similarity into a probability distribution over neighboring

examples. This knowledge is transferred to the student network, enabling it to mimic

the same neighborhood similarity. As a result, ISD allows the embedding of the query

image to vary, as long as its neighborhood similarity remains consistent. This is in con-

trast to BYOL, which aims to keep the embedding of the query image unchanged when

subjected to augmentations. In this work, it should be noted that the teacher model is

updated using a momentum method to be the running average of the student, similar

to MoCo [55]. The student is also updated based on KL divergence loss.

In Chapter 4, an auxiliary learning stage for SSL is introduced. Although this stage

employs an architecture similar to ISD [139], it is designed to meet different objec-

tives, (i) extending ISD to extract representations from video data rather than images,
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Figure 2.17: An overview of compression framework proposed in [2]. The aim is
to transfer the self-supervised teacher’s knowledge to the student model. Each image
is compared with a random set of data points, called anchors, to produce a set of
similarity measures. These measures are then translated into a probability distribution
over the anchors, representing each image through its nearest neighbours. As the aim is
to transfer this knowledge to the student, an equivalent distribution from the student is
also obtained. The final step involves training the student to reduce the KL divergence
between the two distributions. The figure is taken from [2].

and (ii) employing distilled similarity representations as auxiliary knowledge for vari-

ous self-supervised pretraining methods, rather than using them directly in downstream

tasks.

2.5 Continual Pretraining

In contrast to the traditional approach in transfer learning that follows domain-general

pretraining (usually over ImageNet or Kinetics-400), continual pretraining can enhance

learning via in-domain self-supervised pretraining to handle domain shift problems [7,

49, 118, 122, 154, 160]. As an early contribution, Gururangan et al. [49] show the

importance of an additional pretraining phase with in-domain data to improve their

target task performance on text classification.

In the image domain, Reed et al. [122] verify that models continually pretrained on

datasets that are progressively more similar to the target data can speed up convergence

and increase robustness, while being particularly helpful when the target training data is

limited. To implement this strategy, they introduce a pretraining paradigm called HPT.

Initially, HPT starts with base pretraining on a general-domain dataset, such as Ima-
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geNet. Optionally, a subsequent phase, called source pretraining, utilises domain-specific

datasets. The authors select these domain-specific datasets from a pool of general-domain

data using a task-aware search strategy [74]. Finally, HPT performs pretraining on the

target dataset, known as the target pretraining. It is worth noting that all phases of

pretraining use MoCo-V2 [20] as the self-supervised training method.

Azizi et al. [6] show that models pretrained using SSL with natural images often outper-

form those pretrained in a supervised manner for medical image classification. They find

that further SSL pretraining with domain-specific medical images yields the best perfor-

mance. In a more recent study [7], they also reveal that a combination of both supervised

pretraining on large-scale generic dataset (e.g. ImageNet) and intermediate contrastive

SSL [18] on domain-specific medical data enhances the efficacy and robustness of the

model for various medical imaging tasks.

In Chapter 5, continual pretraining is investigated for the first time in the video domain,

specifically focusing on the AQA task. Instead of applying continual pretraining to the

entire model parameter set, advantage is taken of parameter-efficient transfer learning.

This approach reduces the cost of storage and model pretraining on in-domain data, while

preserving the knowledge obtained through the initial pretraining on domain-general

data.

2.6 Parameter-Efficient Transfer Learning

Parameter-Efficient Transfer Learning (PETL) has become an essential approach for

adapting pretrained models to new tasks, focusing on the fine-tuning of only a minimal

number of parameters. This strategy enables faster adaptation to new tasks and enhances

computational efficiency. This approach not only allows for quicker adaptation to new

tasks, but also improves computational efficiency. Recently, two main categories of PETL

approaches have been proposed, Prompt Tuning (PT) and Adapter Tuning (AT).

In PT [70, 82, 93, 136], a small number of learnable prompt vectors, also known as soft

prompts, are prepended to the input embeddings of the model. Only these added tokens

need to be fine-tuned for each downstream task. Compared to conventional fine-tuning,

this approach offers almost the same level of performance but needs 1000 times less

storage space for parameters [82].

Ju et al. [70], for the first time, introduce the concept of Visual Prompt Tuning (VPT)

by adapting PT from Natural Language Processing (NLP) to vision transformers. They

investigate two versions of VPT: (i) appending a series of learnable parameters to the
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input of each transformer layer, termed as VPT-Deep; (ii) solely inserting the prompt

parameters into the input of the first layer of Transformer encoder, termed as VPT-

Shallow. In their experiments, VPT-Deep surpasses all other parameter-efficient tuning

approaches across various tasks, making it the best fine-tuning strategy in storage-limited

scenarios. On the other hand, although not as effective as VPT-Deep, VPT-Shallow

still delivers significant improvements over head-oriented tuning methods (e.g. linear),

making it a worthwhile choice under severe storage constraints.

Figure 2.18: Comparison of conventional fine-tuning and fine-tuning via Adapt-
Former [17]. In AdaptFormer approach, the original MLP block of the vision trans-
former [29] is replaced with AdaptMLP. The AdaptMLP contains two branches: the
left one being a frozen branch and the right one being a trainable down→ up bottleneck
module. Similar with the adapter architecture designed for NLP, this module employs
a down projection followed by a ReLU activation and an up operation. The figure is
adapted from [17].

Similar to PT, AT was initially proposed for NLP tasks within transformer architectures

[27, 53, 62, 64]. An adapter introduces a bottleneck mechanism by down-projecting

the input h ∈ Rd to a lower-dimensional m-dimensional space (m < d). A non-linear

function g(·) is applied, followed by an up-projection back to d-dimensions. A residual

connection is added, yielding the final output as:

h← h+ g(hWdown)Wup, (2.7)

where Wdown ∈ Rd×m and Wup ∈ Rm×d are the matrices used for down- and up-

projections, respectively. For PETL, these adapter modules are inserted between the

layers of the pretrained model, and only these new modules are fine-tuned while the rest

of the model remains frozen.
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Beyond NLP, AT has also been adapted for computer vision tasks. Chen et al. [17]

presented AdaptFormer, designed to efficiently tailor a pretrained vision transformer

model [29] for scalable image and video recognition tasks (see Figure 2.18). Similarly, in

[13], a Conv-Adapter architecture was proposed, employing convolution layers to adapt

2D CNNs.

To our knowledge, no work has yet explored the utility of AT in 3D CNNs, presenting

an opportunity that this thesis fulfills in Chapter 5.

2.7 Conclusions

This chapter provided a detailed overview of the relevant literature that serve as the basis

for this thesis. Since the core focus of the thesis is on AQA, we initially reviewed works

in this field, including both sports scoring and human movement assessment techniques

in healthcare, particularly for PD. Due to the limited amount of labelled data in AQA

tasks, and even more so for PD, we turned to SSL strategies. In this context, we cov-

ered a variety of approaches, including pretext tasks and contrastive learning methods

to address the data limitation issue. Finally, the chapter looked at other learning meth-

ods aimed at enhancing the efficacy of SSL. These ranged from auxiliary learning and

knowledge distillation to continual pretraining and parameter efficient transfer learning.

By combining these methods, we aim to build a better and more efficient SSL system to

assess the severity of PD.
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Chapter 3
Supervised Learning with 3D CNNs and

Motion Boundaries

3.1 Introduction

In this chapter, we introduce a novel, end-to-end approach for assessing the severity of

Parkinson’s disease motor states in clinical settings using only video data. Our method

is based on UPDRS, a commonly used clinical assessment tool, to make the evaluation

process accurate and efficient. The work in this chapter was published in [22].

One of the challenges of using video data for clinical studies is the variability introduced

by camera motions. These movements can interfere with the assessment, making it

difficult to obtain an accurate measure of a patient’s condition. To overcome this, we

propose to use motion boundary features [25], calculated using optical flow algorithms, as

a way to stabilise the video input. This helps the model focus on the patient’s movements

rather than getting confused by unrelated camera motions.

Our model is built on a multi-stream deep learning configuration that uses not only RGB

video frames but also optical flow and the aforementioned motion boundary features. In

this framework, we employ the I3D CNN [10] to efficiently learn spatial and temporal

features from these multiple input streams. We also model long-range temporal structure

in the patient’s actions since assessing only a few moments of an action could result in

different scores by a rater, e.g. rapid hand opening and closing sequences may be very

similar in part, but in one case the hand may fail to keep up a consistent amplitude and

speed of movement towards the end of the sequence due to fatigue (as occurs in PD) or

may start badly at the start of the sequence but get better as the action evolves. To
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this end, we adopt a sparse temporal sampling strategy (as proposed in [149]) to train

our network. This allows for stacks of a few consecutive frames from different segments

of the input video to be processed by the 3D CNN independently at inference time and

their final scores averaged only at the end (see Figure 3.2).

Inspired by the success of ‘attention’, now commonly used in deep learning networks,

e.g. for human action recognition [95, 116], we engage attention units which assign in-

dividual attention weights over each temporal feature vector. Unlike spatial attention

[151, 153] which emphasises specific regions within a frame, our model benefits from tem-

poral attention by selectively emphasising the segments of a video that contain pivotal

classification information. This approach reflects clinical practices where assessments

are often based on momentary actions, such as an interruption or hesitation during the

hand movement task. Thus, the network is designed to prioritise critical temporal se-

quences over spatial features, which is particularly effective for capturing the dynamic

and progressive nature of Parkinson’s disease symptoms.

In this chapter, we use a dataset (named PD2T) collected from 25 clinically diagnosed PD

patients who underwent UPDRS assessments of their motor function after withholding

symptom improving dopaminergic medication overnight, focusing on the rapid hand

opening and closing and gait components. We train and test our model via a subject-

level N-fold cross validation scheme to evaluate its performance and compare against

other popular deep learning architectures – in particular to demonstrate the importance

of the use of motion boundaries.

In Section 3.2, we present PD2T dataset. Section 3.3 elaborates on our proposed ap-

proach, detailing the end-to-end deep learning framework we have developed for this

purpose. Section 3.4 focuses on the experiments we conducted to validate our approach,

including both the setup and the results. Finally, Section 3.5 offers a conclusion and

summarise our key findings in this chapter.

3.2 Dataset

3.2.1 PD2T dataset

The PD dataset used in this chapter (called PD2T) contains video data from 25 PD

patients tested longitudinally at 8 week intervals over time. Subjects were between the

ages of 41 to 72 years and performed UPDRS tasks and their scores were assigned by

trained clinical raters. Videos were captured at 25fps at a resolution of 1920×1080, using
a single RGB camera (SONY HXR-NX3). Our dataset consists of 1058 videos spanning
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Figure 3.1: Sample Frames from our PD dataset: The first two columns represent
hand movements with varying levels of severity, showing the intricacies of fine motor
skills affected by PD. The last two columns illustrate gait patterns in patients, also
with different levels of severity. All videos in this dataset are from actual PD patients
and were recorded at Southmead Hospital in Bristol, UK, within a clinical setting,
over the course of several months as part of a clinical study.

two different UPDRS tasks: hand movement and gait. In the first task, the patients had

to open and close their hand (each hand separately) 10 times, as fully and as quickly as

possible. The second task is gait analysis in which the patients walked 10 metres at a
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comfortable pace and then returned to their starting point. Table 3.1 shows the num-

ber of videos in each of our score classes, as well as their minimum/maximum number

of frames for each UPDRS task. To facilitate a more effective training and evaluation

process of our machine learning models, we have simplified the categorisation of UPDRS

scores into three labels: Normal (0), Mild (1-2), and Severe (3-4). This categorisation

was strategically chosen to consolidate the dataset into clinically significant groups that

reflect the gradations of severity in PD, thus enabling the model to learn with a more

balanced distribution of classes. Furthermore, to further mitigate the impact of class im-

balance during model training, we employed a focal loss function, as detailed in Section

3.3.3. Figure 3.1 shows sample frames from our dataset, PD2T, selected from four sub-

jects with different PD severity levels performing hand movement and gait tasks.

3.2.2 Data Protection and Ethical Approval

PD2T dataset has been collected, stored, and used in strict compliance with all relevant

data protection laws and guidelines. This compliance includes ensuring patient confiden-

tiality and the secure handling of personal data. All participants in the study provided

informed consent, being fully aware of the nature and purpose of the research.

To ensure the privacy and rights of the participants, any identifiable information has

been anonymised in the dataset, making it impossible to directly or indirectly identify

individual subjects through the data.

In addition to these measures, the data has been securely stored in the University of Bris-

tol’s Research Data Storage Facility (RDSF). This facility provides an additional layer

of security, ensuring that only authorised people can access the data. Please note PD2T

has full ethics approval from the relevant committees, ensuring all research conforms to

the highest ethical standards.

Table 3.1: Details of PD2T dataset.

Hand movement Gait

#video #frame min/max #video #frame min/max

Normal (0) 180 131/312 171 473/980

Mild (1-2) 500 123/717 180 580/5007

Severe (3-4) 24 202/1210 3 1367/3012
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Figure 3.2: Architecture of the proposed method for PD severity assessment task.
The whole model can be trained in an end-to-end manner by only one loss function.
The main steps are as follows: (i) Extracting spatial and temporal feature representa-
tions from K video snippets using a single I3D network that shares all of its weights
with the other branches. (ii) Computing an attention weight for each video snippet by
an attention unit. (iii) Weighting each feature vector by its corresponding attention
weight before being forwarded to the consensus function, (iv) Using a Softmax layer
to output class score predictions. Note that at every training and testing process, the
network takes one input modality amongst RGB, optical flow and motion boundaries.

Our aim is to learn an end-to-end, deep learning model for movement disorder severity

assessment in Parkinson’s patients, without resort to joint data or elaborate annotations.

Given a video from a patient in the clinic performing a UPDRS test task, such as hand

opening and closing, our model exploits the motion information in the scene to predict

a score depending on how well the task was carried out. Our only annotation is the

UPDRS score for the test, as determined by an expert clinical neuroscience rater. Figure

3.2 illustrates an overview of our network and approach. In the following, we explain the

details of our method and its training procedure.
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3.3.1 Network architecture

Our proposed network architecture consists of three main components: sparse temporal

sampling, backbone network, and attention unit. Next, we provide detailed descriptions

and justifications for each component.

Sparse Temporal Sampling – In order to facilitate efficient training of our model, we

adopt a sparse temporal sampling technique inspired by [149]. As illustrated in Figure

3.2, the first phase involves breaking the video into K distinct segments. From each of

these segments, a short snippet is randomly selected, forming a sparse representation of

the entire video, represented by K snippets {Ti, i = 1..K}. Each snippet is produced in

three formats: RGB, flow, and motion boundaries. Then, similar to [90], we apply a 3D

CNN as the backbone of this framework to directly learn spatial and temporal features

from video snippets.

Backbone – While 3D CNNs are inherently designed to capture spatio-temporal fea-

tures in video data, they come with their own set of challenges, including a large number

of parameters and an increased risk of overfitting. To mitigate these issues, we employ

I3D [10] as the 3D CNN backbone of our framework. I3D inflates 2D convolution filters

from Inception V1 architecture [137] to 3D, effectively reducing the number of parame-

ters while maintaining depth. This innovative inflation technique enables the I3D model

to capture spatio-temporal features more efficiently, while preserving the architectural

benefits of the original Inception V1. The architecture of the I3D model is shown in

Figure 3.3.

Figure 3.3: Architecture of I3D Model: The left diagram shows the overall I3D
model flow and the right diagram provides a detailed view of the Inception modules
(Inc.). The figure is taken from [10].
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Attention Unit – The spatial and temporal feature maps of the last convolutional layer

of I3D for each video snippet feed into an attention mechanism. The architecture of the

attention unit comprises two fully connected (FC) layers separated by a ReLU activation

function to introduce non-linearity. This is followed by a Sigmoid activation function.

The output of the Sigmoid function is the attention weight λ (0.0 ≤ λ ≤ 1.0) for each

video snippet. This is based on the attention module proposed in [105].

The role of these attention weights is to modulate the feature maps so that the model

can focus on more informative parts of the video when making a decision. Specifically,

in the forward pass of the system, the encoded, attention-weighted features are used to

modulate the global average pooling and therefore compiled via the consensus function

C(.) to produce class score fusion F of length M over K video snippets,

F = C(.) =
ΣK

i=1(λie(Ti, θ))

K
, (3.1)

where e(.) is the encoding function and θ are the network parameters. A Softmax on F
then provides the probability distribution p of the UPDRS class scores of the video clip,

i.e.

p =
expF i

ΣX
j=1 expFj

. (3.2)

3.3.2 Motion Boundaries

Previous works, such as [10, 133, 149], have shown the importance of using optical flow

in deep learning-based human action recognition. Optical flow computes the motion

between two frames, giving a dense map of apparent motion patterns. It effectively

captures how and where objects move in videos, which is important to recognise actions

[133]. A significant limitation of optical flow is its representation of absolute motion. This

means it captures all movements in the frame, including those caused by camera motions.

[12]. Wang et al. [149] proposed to use warped flow [147] to cancel out the camera motion.

However, warped flow did not results in a better performance than normal optical flow in

their work. Moreover, computing this modality can be computationally very expensive

[147].

To address this problem, we need a new input stream that better encodes the relative

motion between pixels. Our solution involves using motion boundaries. Originally in-

troduced for human detection tasks in [25], motion boundaries is designed to remove

constant motion from the scene. This inherently removes the effect of camera move-
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ments, allowing the model to focus more on the relevant motion within the frame, such

as the specific action of a patient with PD.

In a similar fashion to [25], we compute motion boundaries simply by a derivative oper-

ation on the optical flow components, as shown in Figure 3.4. Formally, let ux = ∂u
∂x

and

uy = ∂u
∂y

represent the x and y derivatives of horizontal optical flow, and vx = ∂v
∂x

and

vy =
∂v
∂y

represent the x and y derivatives of vertical optical flow respectively. Then, for

any frame j,

Bj
u = f(uj

x, u
j
y), B

j
v = f(vjx, v

j
y), (3.3)

where Bu represents the motion boundary in horizontal optical flow u, and Bv represents

the motion boundary in vertical optical flow v, and f is a summing function. It is

clear that, for a video clip with N frames, (N − 1) ∗ 2 motion boundary frames are

computed.

3.3.3 Class imbalance

In PD2T dataset used in this study (see details in Table 3.1), the number of videos

belonging to UPDRS scores 3 and 4 is significantly lower than those belonging to the

other classes. Therefore, we have a class imbalance problem which can lead to a model

biased towards the classes with large number of samples.

In order to mitigate this problem, we apply two strategies. In the first, we group the

scores into three classes: score 0 for normal subjects - i.e. patients who are at very early

stage of PD and may still have one unaffected upper limb, score 1-2 for subjects with

mild symptoms, and score 3-4 for subjects with severe symptoms. In the second strategy,

we utilise an extended version of the normal class entropy loss, called focal loss [86], to

train our multi-class classification task.

While the traditional cross-entropy loss has been standard for classification tasks, it can

be problematic when there is a class imbalance in the dataset. In such cases, the ma-

jority class can dominate the training, resulting in sub-optimal learning for the minority

class. The focal loss addresses this challenge by giving more emphasis to the harder, mis-

classified examples and reducing the contribution from easily classified instances. This

ensures that the model does not become biased towards the dominant class. In the con-

text of our multi-class PD severity assessment, where some severity levels might be less

common, the introduction of focal loss ensures a balanced learning approach across all
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u_flow

v_flow

Figure 3.4: Motion boundary computation from optical flow components u and
v. For each flow component, we compute two motion boundaries via derivatives
for the horizontal and vertical flow components. Then the final motion bound-
aries are obtained by their sum. It is clear that optical flow contains constant
motion in the background which is removed after computing motion boundaries.

47



3.4 Experiments

classes. Our loss function is expressed as

L(y, p) = −α(1− p)γy log p , (3.4)

The loss function combines two essential elements: the modulating factor, α(1−p)γ, and

the conventional cross-entropy term. The parameter γ adjusts the rate at which easy

samples are down-weighted. Specifically, for samples that the model classifies with high

confidence (large p), their contribution to the loss is minimal. However, for challenging

instances that are often misclassified (small p), the modulating factor amplifies their

impact on the overall loss, compelling the model to focus more on them. The factor

α offers a way to weight each class in the loss computation, a feature that becomes

critical in scenarios with pronounced class imbalances. When α = 1 and γ = 0, focal

loss essentially becomes the standard cross-entropy loss.

3.4 Experiments

In this section, we provide the experimental setup and our detailed ablation study of

various aspects of our model. Finally, we compare our model with the state-of-the-art

models, primarily those based on 3D CNNs, proposed for human action recognition.

3.4.1 Experimental Setup

Implementation Details – The input videos were reduced to a resolution of 340×256

pixels. We used Pytorch to implement our models and TV-L1 [167] for computing optical

flow fields. The focal loss (Eq. 3.4) parameters were set to α = 0.5 and γ = 2 for all

experiments. We applied Adam optimization with a learning rate of 0.00001, and batch

size 2 to optimize our model parameters. Dropout was applied with a ratio of 0.7 before

the output layer of our I3D network. All models were trained for 120 epochs using one

Nvidia RTX 2048TI GPU under Cuda 10.1 with cuDNN 7.6.

Training and Testing Details – Each video was split into K = 4 equal segments

along the temporal axis. Preserving chronological order, we randomly sampled 32 frames

within each video segment as a snippet. The length of our snippets is relatively larger

than the length of snippets used in [149]. We verified empirically that for our PD task

sampling these larger snippets can provide more application-specific motion characteris-

tics to our network.

Since in the training step all I3D models share their parameters, our trained model

behaves like the original I3D network [10] during testing. Therefore, we did not use
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Figure 3.5: An overview of our multi-stream configuration. We train our model
with each different input modality separately and then use a late fusion approach at
test time to average over all predicted scores.

temporal sampling when testing our model, allowing us to draw fair comparison with

other models who also tested without temporal sampling, such as [10, 38, 133]. In

particular, during inference we used 64 non-sampled snippets per video, each containing

16 consecutive frames. The prediction scores of all these snippets were then averaged

across each or combined modalities to get a video-level score (as illustrated in Figure

3.5). Note, this follows the same approach as [10] where RGB and Flow were averaged

at test time.

Given the constrained size of our dataset, we initialised I3D by the weights pretrained on

Kinetics [72], a large-scale, high-quality dataset. This simple transfer learning approach

provides our network with generic and rich spatial and temporal features, making it less
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Table 3.2: F1 score results of our proposed network for both hand movement and
gait tasks with different input modalities, with and without attention units. The last
column shows the average results across both tasks. All results are given in %.

Hand Movement Gait Average

Input Modalities +att. −att. +att. −att. +att. −att.

RGB 68.4 65.2 74.8 73.7 71.6 69.4

Flow 71.0 68.6 76.5 74.1 73.7 71.3

Motion Boundaries 72.3 70.0 76.8 76.5 74.5 73.2

RGB + Flow 69.9 68.8 76.2 75.1 73.0 71.9

RGB + Motion Boundaries 70.4 70.1 75.4 72.3 72.9 71.2

Flow + Motion Boundaries 71.7 71.7 77.1 76.2 74.4 73.9

All Modalities 71.1 70.2 77.1 75.1 74.1 72.6

dependent on our smaller dataset for feature extraction and reducing the potential for

overfitting. Furthermore, we incorporated a set of data augmentation techniques for all

frames within each training snippet. These included scale jittering, which adjusts the

scale of the image to introduce variability; corner cropping, a technique that involves

cropping the frame from its corners to diversify the viewpoint; and horizontal flipping,

which mirrors the video frames.

Evaluation Metrics – We used 5-fold cross validation for 5 batches (given our 25 pa-

tients). This approach yields an unbiased evaluation, since each patient’s data undergoes

both training and validation phases multiple times. Cross-validation is also important

in scenarios with limited data, as it maximises the training and validation utility of each

sample. We use F1 score to report the model’s performance, which is computed over the

average validation scores.

3.4.2 Results including Ablation Study

Choice of Input Modalities – The results presented in Table 3.2 offer a comparative

evaluation of different input modalities. For the Hand Movement task, using Motion

Boundaries alone yields the highest F1 score at 72.3%, which represents an increase of

3.9% and 1.3% over the RGB and Flow modalities, respectively. This suggests that Mo-

tion Boundaries effectively capture the characteristic movements that are critical for this

task. However, when Motion Boundaries are combined with RGB and Flow, there is a
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Table 3.3: Comparison of our method with different state-of-the-art architectures.
MBs is for Motion Boundaries and all results are given in %.

Model RGB Flow MBs Hand Movement Gait Average

Two-Stream [133] ✓ ✓ 60.3 56.7 58.5

TSN [149] ✓ ✓ 70.1 75.7 72.9

I3D [10] ✓ ✓ 69.1 73.1 71.1

SlowFast [38] ✓ 67.1 66.9 67.0

TSN + SlowFast ✓ 68.4 68.9 68.6

Proposed Method w/o Focal loss ✓ 70.7 75.7 73.2

Proposed Method ✓ ✓ 71.7 77.1 74.4

Proposed Method ✓ 72.3 76.8 74.5

nuanced improvement for the RGB to 70.4% but a more noticeable enhancement for the

Flow to 71.7%. The relatively modest increase when combining modalities could imply

that while Motion Boundaries add value, the network may not be fully capitalising on

the combined feature set, potentially due to the added complexity or noise introduced

by the additional modalities. For the gait task, characterised by more pronounced dy-

namic movement spatiotemporally, the combination of all modalities performs well, yet

it is the Flow combined with Motion Boundaries that achieves the peak performance at

77.1%. Overall, the inclusion of Motion Boundaries demonstrates their merit as an ad-

ditive modality; however, the results also indicate that the expected synergistic effect of

combining modalities does not always translate to improved performance, possibly due

to the increased complexity and noise in the data which may not be optimally managed

by the model.

Effect of Attention – To study the influence of the attention units, we perform all our

experiments with and without them. As seen in Table 3.2, in all experiments for hand

movement and gait tasks, our model achieves better accuracy with the attention units.

For example, when considering all modalities, attention improves the average accuracy

across both tasks by 1.5%, with a notable increase of 2.0% for the gait task alone. Again,

even without attention units, Motion Boundaries play a significant role in improving the

results over other modalities.

Performance of Other Architectures – Table 3.3 provides the F1 percentages of

other architectures adapted to provide a UPDRS score for our application. We used the
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same data augmentation strategy with focal loss to train all models. All the network

weights were initialised with pretrained models from Kinetics-400, except for the Slow-

Fast network, as one of the properties of this model is training from scratch without

needing any pretraining. Although we examined the performance of these architectures

for all possible input modalities, we only report here their best results, again except for

the SlowFast network, as this model is only based on RGB input. Thus, for example

for I3D [10], its best result is when using Flow and Motion Boundaries. As shown in

the table, our proposed approach performs better than these popular networks for both

hand movement and gait tasks.

Effect of focal loss – The importance of using our focal loss (Eq. 3.4) is also shown in

Table 3.3 where the performance of our method when using a categorical cross-entropy

loss results in an average drop of ↓1.3% compared to the full focal-loss based result of

74.5%.

3.5 Conclusions

In this chapter, we introduced an end-to-end network aimed at assessing the severity of

PD using video data. We focused on two key tasks of the UPDRS: hand movement and

gait. Our approach builds upon an inflated 3D CNN trained by a temporal sampling

strategy to effectively capture long-term patterns without a significant computational

burden. Furthermore, we incorporated an attention mechanism along the temporal di-

mension to ensure our model prioritises the most relevant segments for a more accurate

severity assessment. Recognising the challenges posed by constant camera motion, we

proposed the use of motion boundaries as a viable input modality to suppress constant

camera motion and showed its effect on the quality of the assessment scores quantita-

tively. Our results show the potential of our proposed model and highlight the value of

integrating advanced techniques, such as attention mechanisms and motion boundaries,

for improved accuracy in PD assessments.

While the proposed framework showed promise for Parkinson’s disease assessment, there

are notable limitations. First, due to the distinct training requirement for each modality,

the computational cost can be considerably high, which can be a problem, especially in

settings that may lack the budget for such resources. Another limitation of our approach

is that it is unable to handle several UPDRS tasks in one training process, and hence we

need to train and evaluate our model on each task separately. Additionally, our approach

is inherently supervised, and it requires large amounts of labelled data for accurate

performance. In real-world scenarios, acquiring such annotated data can be both time-
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consuming and expensive, posing challenges in scalability and adaptability to diverse

clinical environments. To address these limitations, future research could explore the

integration of Recurrent Neural Network (RNN), particularly Long Short-Term Memory

(LSTM) networks. LSTMs are well-suited for processing sequential data and could

potentially enable more efficient handling of multiple tasks concurrently. This approach

might also reduce the dependency on extensive labelled datasets. A hybrid model that

combines the strengths of 3D CNNs and LSTMs may offer a more computationally

efficient and potentially more accurate framework for assessing the severity of Parkinson’s

disease.
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Chapter 4
Auxiliary Learning for Self-supervised Video

Representation Learning

4.1 Introduction

Deep learning models generally require large amounts of well-annotated data to achieve

high levels of performance and generalisation. However, when it comes to specialized

tasks like Parkinson’s disease, preparing a large-scale annotated dataset is challenging

for two main reasons: i) the acquisition of such datasets is inherently expensive and

time-consuming, especially since clinicians are needed to provide detailed and accurate

annotations; ii) ethical concerns around patient privacy and data security need additional

procedures and paperwork.

In Chapter 3, we developed a model to address the challenges of our sparsely labeled PD

dataset by initialising it with supervised pretrained weights from a generic, large-scale

dataset (Kinetics-400). While this approach is better than training from scratch, deploy-

ing such pretrained models might be sub-optimal for AQA tasks (e.g. PD assessment)

due to the domain/task discrepancy between action recognition and AQA. For example,

in PD action performance scoring, one or two interruptions in the regular rhythm of a

patient’s movement while performing an action can result in a different quality score.

This contrasts with the source pretraining task, where subtle or even more pronounced

differences in performing an action should not affect the action classification. In view

of these obstacles, this chapter aims to address a crucial question: Is it possible to

utilise the inherent, unlabeled information in our target video data itself to facilitate

learning?
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This concern leads us to explore SSL methods, which eliminate the cost of annotating

large-scale datasets by acquiring high-level semantic visual representations from unla-

beled data [16, 39, 55, 73, 148]. However, it is essential to note that despite the efficiency

of SSL in utilising unlabeled data, there are still challenges to be addressed. The perfor-

mance improvements attributed to recent SSL techniques are contingent upon the avail-

ability of extensive unlabeled datasets, such as Kinetics-400 [16, 39, 55, 73, 148]. This

scale-dependency represents a obstacle when applying these methods to low-resource

environments such as PD severity assessment.

In addition, the computational and memory requirements for these SSL methods are

quite high. For example, it takes around two weeks to train MoCo [55] on Kinetics-400

for 300 epochs with two Nvidia RTX 2080TI GPUs. In fact, such computational costs

place many state-of-the-art SSL approaches only in the realms of huge corporations who

have such powerful resources [16, 47, 111], and this further becomes a subject of ethical

fairness as well as carbon emission footprints [135].

A few recent works have addressed the issue of efficient pretraining for image-based tasks

[57, 91, 121], but there is only Lin et al. [88]’s work for video-based tasks which improves

the generalisation performance of a contrastive learning-based method [141] under a

meta-learning paradigm. However, their method is not suited to most of the state-of-

the-art works that use transformation-based pretext tasks [39, 68, 98, 146, 148].

Our motivation is to develop a task-agnostic pretraining process that alleviates the de-

pendency on large-scale datasets for self-supervised video representation learning, while

ensuring the model generalises well and still contains rich information. To achieve this,

we propose an auxiliary pretraining stage based on knowledge distillation. Incorporat-

ing this stage enhances the adaptability and generalisation capabilities of our primary

SSL stage, particularly when using smaller-scale datasets (e.g. PD dataset/Kinetics-100

instead of Kinetics-400). Please note that both the auxiliary and primary stages operate

on the same dataset.

Figure 4.1 illustrates the difference between our framework and existing SSL methods,

such as [16, 39, 68, 98, 148]. We employ a slowly progressing teacher model to iter-

atively distill knowledge to the student, our self-supervised model, by evaluating the

similarity information of an augmented view of a query video clip to a large queue of

random clips as anchors and transferring that information to the student. We believe

that this Similarity-based Knowledge Distillation (SKD) approach leverages the inherent

structure and continuity present in video data, which is pivotal for learning robust video

representations. By focusing on similarity, the model is encouraged to understand and
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Figure 4.1: High-level overview of of our framework and recent SSL methods –
while recent methods encourage their model to solve a pretext task from scratch, our
SSL model benefits from an implicit similarity-based knowledge, distilled by a teacher
model, before solving the pretext task. However, the question that we pose in this
chapter is: can we use an implicit knowledge of this type to improve the generalisation
ability of self-supervised approaches?

encode temporal dynamics and contextual nuances, which are critical in video under-

standing.

To our knowledge, this work represents the first implementation of SKD in the domain

of video-based self-supervised learning. While SKD has recently been adopted in image-

based applications, such as for contrastive learning [139, 140] and model compression

[2, 36], its application in analysing video data is a novel approach. It is important to

highlight that, although our SKD architecture is inspired by [139], our objective differs

significantly. We utilise distilled similarity representations as auxiliary knowledge to

enhance various self-supervised pretraining methods, rather than directly applying them

to downstream tasks. To refer to this aspect of our work, we use auxSKD.

To support the operation of the proposed approach on temporal features in the video
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domain, we apply temporal augmentations, in addition to spatial augmentations, to

generate different transformed versions of a query video. Such temporal transformations

are the same as the pretext transformations used in the primary pretraining stage. Their

application at this stage allows our teacher to impart knowledge which matters most in

the primary pretraining stage.

Also in this chapter, we propose a new pretext task for video representation learning,

namely Video Segment Pace Prediction (VSPP) . While recent video playback rate pre-

diction methods randomly sample training clips at different paces or speeds [9, 148],

we sample training clips where only a randomly selected segment of the video has a

randomly selected speed and the other segments of the video retain their natural pace.

VSPP then requires the learner model to predict the playback speed of this randomly

selected segment and its temporal location in the input training video. We advocate

that by solving this pretext task, our model can strengthen its awareness of the natural

pace of the clip and deal with the imprecise video speed labeling problem [16]. The work

in this chapter was published in [23].

In Section 4.2 we elaborate on our proposed SSL framework that includes an auxiliary

pretraining stage and a new pretext task, designed to make video representation learning

more efficient in low-resource settings. Section 4.3 presents experiments in the action

recognition domain, using UCF101 [134] and HMDB51 [75] datasets. Section 4.4 shifts

focus to PD severity assessment, where we conduct experiments on various PD tasks and

introduce our PD4T dataset, which includes four different PD motor functions: gait,

finger tapping, hand movement, and leg agility. The conclusions are given in Section

4.6.

4.2 Proposed Method

Our goal is to reduce the pretext training computational burden by developing an aux-

iliary pretraining phase that assists the primary pretext task to learn as efficient gener-

alised self-supervised video representation as possible on a reduced-size source dataset.

To achieve this, we take inspiration from Similarity-based Knowledge Distillation which

is used in recent works [2, 36, 139, 140]. We illustrate our full self-supervised pretraining

framework in Figure 4.2.

4.2.1 Auxiliary Learning via auxSKD

Our auxiliary learning framework consists of a teacher T and a student S with the

same architecture followed by a fully-connected layer, as the projection, to map the
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Figure 4.2: The self-supervised learning pretext training scheme is supported by
an Auxiliary Pretraining task (auxSKD - see top region) that provides a similarity
knowledge distillation process via a teacher-student configuration. In this configura-
tion, both the teacher and the student 3D encoders are initialised and trained from
scratch. Our teacher encoder is updated using momentum as a moving-average of
the student weights. We train the student via gradient update by minimising the KL
divergence between the two probabilities from the teacher and the student for a trans-
formed version of input video v, computing its similarity over anchor points. Note
that in each iteration our encoders randomly take a different transformed input via
our clip speed sampling process (see section 4.2.2). In the primary pretraining task
(see bottom region), the student is ready to solve our VSPP task on input clips with
segments that include changed pace.

representations into a lower dimension space. We follow BYOL [47] and use a MLP

predictor layer on top of the student model to establish an asymmetric architecture

between the teacher and student 1. We randomly initialise both models from scratch

equally. The student model and its predictor layer are updated by back-propagation

1This design choice mitigates the risk of ‘collapsed solutions’, where diverse input representations
become indistinguishably similar, leading to poor performance on downstream tasks.
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while momentum update [55] is applied in the teacher model to be a running average of

the student.

At each iteration our pretext task transformation VSPP is applied twice to a raw video

instance v to generate two video clips v∗1 and v∗2 independently, with the goal of maxi-

mizing their similarity in our teacher-student framework. Then, given feature encodings

(T (v∗1),S(v∗2)) and predictor function MLP(.) for S, we perform L2 normalisation such

that zT = T (v∗1)/∥T (v∗1)∥2 and zS = MLP(S(v∗2))/∥MLP(S(v∗2))∥2.

Similar to [55, 139], we consider a memory bank of H feature vectors (or anchors) xT
i =

[xT
1 , ..., x

T
H ] obtained from the teacher model under a simple FIFO strategy. Specifically,

at each iteration, we enqueue the feature vectors of the current batch extracted from the

teacher model and dequeue the earliest instances. Next, we calculate the similarity of

the teacher’s embedding zT to all feature vectors in the memory bank and apply Softmax

to obtain a probability distribution,

pTi = − log
exp(sim(zT , xT

i )/γ
T )∑H

j=1 = exp(sim(zT , xT
j )/γ

T )
, (4.1)

where pTi = [pT1 , ..., p
T
H ] is the probability of teacher query zT for the i-th anchor point,

sim(., .) measures the similarity between L2 vectors, and γT is the temperature value for

the teacher’s model.

Similarly, we calculate the student similarity distribution pSi = [pS1 , ..., p
S
H ] over anchor

points, with

pSi = − log
exp(sim(zS , xT

i )/γ
S)∑H

j=1 = exp(sim(zS , xT
j )/γ

S)
. (4.2)

Here γS is the temperature value for the student’s model. Finally, the loss is measured

by the Kullback–Leibler (KL) divergence as

L(T ,S) =
∑
i

KL(pTi ∥ pSi ) . (4.3)

Note that during training, the teacher network’s weights are initialised randomly and

then they evolve gradually as a running average of the student using momentum with the

update rule θT ← mθT + (1−m)θS , where m ∈ [0, 1) is the momentum hyperparameter

to ensure smoothness and stability, and θT and θS are the teacher and student model

parameters respectively. Pseudo-code for our auxSKD training is provided in Algorithm
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Input: Teacher model T (., θT ) and student model S(., θS), videos V = {vi}Ni=1, and

memory bank {xT
i }Hi=1.

Output: Trained student model weights θS .

1: Randomly initialise T (., θT ) and S(., θS).

2: while not max epoch do

3: Randomly sample a video v from V .

4: Sample two clips v∗1 and v∗2 from v using VSPP (Section 4.2.2).

5: Compute student query features zS from clip v∗1 using student model S(., θS).

6: Update teacher parameters using momentum: θT ← mθT + (1−m)θS .

7: Compute teacher query features zT from clip v∗2 using teacher model T (., θT ).

8: Calculate pTi and pSi using Eq. 4.1 and Eq. 4.2.

9: Add the teacher’s embedding zT into the memory bank {xT
i }Hi=1.

10: Pop-out the earliest sample from the memory bank {xT
i }Hi=1

11: Optimize student model using KL divergence loss, Eq. 4.3.

12: end while

Algorithm 4.1: Training auxSKD

4.1.

4.2.2 Primary Pretext Task Learning via VSPP

A SSL pretext task encourages the neural network to learn a representation from un-

labelled data which contains high-level abstractions or semantics. In the video pace

prediction approach of Wang et al. [148], each training clip is randomly sampled at a

different pace and their pretext task then identifies the pace for each clip. While this is

an effective approach, it means each clip is treated as if its pace is its natural speed.
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We propose that each clip should contain within it one segment where the pace has been

(randomly) altered. Our assumption is similar to [9, 16, 148] in that the network can

only represent the underlying video content through efficient spatiotemporal features if

it succeeds in learning the pace reasoning task, however, we build on [148]’s proposal

through a more intricate, yet simple, within-video pace alteration task. Our proposed

VSPP pretext task requires our model to temporally explore a video clip and predict

the index and speed of a segment within a clip which is sampled at a different speed

rate.

Given a video clip vi comprising N frames, we generate video v∗i = {I0, I1, ..., IK−1} of
size K<N , comprising Z segments, such that K/Z number of frames in segment ζ are

sampled at pace λ, where both ζ and λ are randomly selected from 1 ≤ ζ ≤ Z and

1 ≤ λ ≤ Q respectively, and Q is the highest possible speed rate. Note, when Z = 1

the sampling strategy is similar to [148]. In this work, we select Z = 4 and Q = 4 to

allow a significantly wide variation of starting locations and sudden speed rate changes

to provide more precise self-supervision signals. Specifically, our approach results in a

change of speed rate in only one segment of the clip while the rest of the clip (before

and after) retains its natural rate (see Figure 4.3). This strategy allows the network

to better find the difference between natural speed (changes which happen gradually)

and altered speed (changes which happen suddenly) in a clip, alleviating imprecise video

speed labeling issues [16].

To have a random speed rate λ for the ζth segment, beginning at frame Ib and ending at

frame Ie, then

Ib = fr + ((ζ − 1) ∗ K
Z
) + (λ− 1),

Ie = Ib + λ ∗ (K
Z
− 1) , (4.4)

where fr is the r
th frame of the original video vi which is randomly selected during sam-

pling to generate a more diverse video clip v∗i at each iteration.

Summary of Our Overall Method – Given a 3D encoder, such as an R(2+1)D

or R3D-18, and a video dataset V = {vi}Ni=1, we perform our auxiliary learning stage

using our flavour of SKD (see Section 4.2 and Algorithm 4.1) based on a KL loss (Eq.

4.3). Following this auxiliary pretraining stage, the student model enters the primary

pretraining stage to solve our VSPP pretext task through two simultaneous sub-tasks: i)

predicting the speed rate λ in the ζth segment of v∗, ii) predicting the temporal location
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Natural   Natural2x Speed

Figure 4.3: Changing the natural speed of one random segment of a video clip for
the pretraining stage - the VSPP pretext task learns where in v∗ this occurs and at
what speed change. In this example λ = 2 and ζ = 2.

of the segment in v∗ which is sampled at a different speed, i.e. predicting index ζ. Then

by jointly optimizing these two tasks, the final self-supervised loss is defined as

L = αLspeed + βLseg, (4.5)

where α and β are balancing weights (empirically found to work best in our experiments

when α = β = 1). Lspeed and Lseg are cross-entropy losses.

4.3 Experiments on Action Recognition

4.3.1 Datasets

We conducted our experiments on four datasets, two for pretraining, Kinetics-400 [72] (K-

400) and Kinetics-100 [16] (K-100), and two for downstream action recognition, UCF101

[134], HMDB51 [75].

Kinetics-400 is an extensive dataset created for the task of action recognition, which

has been widely adopted in the computer vision community. This dataset, gathered from

YouTube, includes a diverse range of 400 human action classes. These include, but are

not limited to, physical exercises such as running and jumping, sports actions such as

playing cricket or basketball, and also intricate activities such as playing various musical

instruments or engaging in different cooking techniques. Each action class is represented

by approximately 600 video clips, which have been trimmed to approximately 10 seconds.

Altogether, the dataset contains around 240,000 video clips, providing a substantial

volume of data to train robust deep learning models. The videos are labelled with
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a single action class, despite the possibility of containing multiple discernible actions.

Kinetics-400’s structure and diversity make it an ideal benchmark for models intended

to understand and categorise human actions in video data, offering challenges in terms

of intra-class variance and inter-class similarity.

Kinetics-100 is created by selecting 100 classes from Kinetics-400, each with the small-

est file sizes in the training set, and comprises around 33K videos. We use K-400

and K-100 as pretraining datasets to validate our proposed approach’s performance on

a reduced-size dataset and promote less dependency on large-scale datasets for self-

supervised representation learning in action recognition tasks.

UCF101 is a widely-used dataset for action recognition, consisting of 13,320 video clips

that span 27 hours of video data, distributed across 101 diverse action classes. The

dataset covers a broad spectrum of activities, encompassing everything from daily life

actions such as brushing teeth and hand-washing, to sports activities like basketball and

volleyball, and even unique actions such as horse riding and trampoline jumping. These

clips have been extracted from realistic, user-uploaded videos on YouTube, which inher-

ently contain camera motion and cluttered backgrounds, presenting a substantial chal-

lenge for accurate action recognition. This dataset is divided into three training/testing

splits and we follow prior works [16, 148] to use training split 1 for self-supervised pre-

training and train/test split 1 for fine-tuning and evaluation.

HMDB51 consists of 6,849 video clips sourced from a variety of platforms such as movies

and web content. These clips are categorised into 51 different action types, such as jump,

kiss, and laugh, with each category having a minimum of 101 clips. For evaluation, the

dataset employs three different train/test splits. In every split, there are 70 clips for

training and 30 for testing within each action category. Here, we use split 1 for our

downstream task evaluation, similar to [16, 148].

4.3.2 Implementation Details

Backbone Networks – We choose two different backbones R(2+1)D [143] and R3D-18

[52], as our 3D encoder, which have been widely used in recent state-of-the-art self-

supervised video representation learning methods [16, 65, 111].

R3D-18 is a specific configuration of 3D Residual Network (ResNet [54]) designed for

video analysis tasks. This architecture consists of 18 layers with residual connections,

and it performs 3D convolutions on both the spatial and temporal dimensions of the

video.

R(2+1)D, short for Residual 2.5D, is also an extension of ResNet that separately han-
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dles spatial and temporal dimensions of video data. It decomposes 3D convolutions into

a 2D spatial convolution for each video frame and a 1D temporal convolution across

frames (see Figure 4.4). This decoupling makes the architecture computationally cheap

while effectively capturing both spatial and temporal features.

(a) (b)

Figure 4.4: (2+1)D versus 3D Convolution. (a) A 3D convolution utilises a filter
sized t× d× d, with t representing the temporal dimension, and d denoting the spatial
dimensions, both width and height. (b) Conversely, a (2+1)D convolutional archi-
tecture separates the process into an initial spatial 2D convolution and a subsequent
temporal 1D convolution. The quantity of 2D filters (Mi) is determined in such a
way that the parameter count in (2+1)D setup is equivalent to that of the full 3D
convolutional framework. The figure is taken from [143].

Default Settings – We run all experiments under PyTorch on two GeForce RTX 2080Ti

GPUs with a batch size of 30. We use SGD as our optimiser with momentum of 0.9 and

weight decay of 5e-4.

Pretraining Stages – Following [148], for both auxiliary and primary stages, we pre-

train our models for 20 epochs with an initial learning rate of 1 × 10−3. The learning

rate is decreased by 1/10 every 6 epochs. For data augmentation, we randomly crop

the video clip to 112 × 112 and then apply horizontal flip and color jittering to each

video frame. Following [5], for UCF101 we apply (10x more iterations at) 90K iterations

per epoch for temporal jittering. In our auxiliary pretraining stage, we use a predictor

head for the student encoder comprising a 3-layer MLP with hidden dimension 1024, and

output embedding dimension 128. We do not use a predictor for the teacher and only

set its output dimension (projection head) to 128. We follow MoCo [111] and set the

size of the memory bank to 16384 and set the momentum value of the encoder update

to 0.999. We also use the same temperature for both teacher and student model at 0.02.

To use the student encoder for the primary stage, the weights of the convolutional layers

are retained after auxiliary pretraining and we drop the projection layer and predictor

to replace them with two randomly initialised FC layers corresponding to the segment

speed and index outcomes of our VSPP pretext task (see Figure 4.2). We select our
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parameters empirically.

Fine-tuning – During fine-tuning, we transfer the weights of the convolutional layers

to the human action recognition downstream task, while the last FC layer is randomly

initialised. We fine-tune the network on UCF101 and HMDB51 for 25 epoches with

labelled videos and apply cross-entropy loss. We use the same data augmentation and

training strategy as the pretraining stage except for the initial learning rate which is set

to 3× 10−3, similar to [148].

Evaluation Settings – We follow the common evaluation protocols on video represen-

tation learning [65, 148] to assess the performance of our proposed approach. For action

recognition, we sample 10 clips uniformly from each video in the test sets of UCF-101

and HMDB-51. Then for each clip, we only simply apply the center-crop. To find the

final prediction, we average the Softmax probabilities of all 10 clips from the video.

4.3.3 Evaluations

Comparison on K400 Pretraining – For completeness sake, and to illustrate how

our proposed method fares when pretrained on K400, we present comparative results in

Table 4.1 for top-1 accuracy on both UCF-101 and HMDB-51 datasets, along with the

pretraining settings for all methods, i.e. backbone architecture, input size, pretraining

dataset, and number of epochs. In Rows 1-4, we show a mix of methods that operate

on temporal manipulations at different input sizes and on different backbones for refer-

ence. Rows 5-10 allow more like-for-like comparisons of recent, popular works in SSL

video representation learning based on K-400 pretraining, R3D-18 backbone and almost

consistent image sizes across the techniques. ASCNet achieves the most superior results

with a combined appearance and speed manipulation approach. In Rows 11-15, where

pretraining is on K-400 on the R(2+1)D architecture, RSPNet and VideoMoCo come

1st and 2nd-best alternatively on the two test datasets, while our approach exceeds CEP

on both.

Comparison on K100 Pretraining – The results on Rows 16-29 of Table 4.1 represent

the essence of our contributions, in that we aim to reduce the dependence of SSL methods

on large pretraining datasets, for example by replacing K-400 with K-100 for pretraining.

We apply our auxSKD stage to two other transformation-based pretext tasks, i.e. VCOP,

VideoPace, and also to one contrastive task, i.e. RSPNet, to exhibit the flexibility of our

method. For VCOP and VideoPace, we train their auxSKD with video clips sampled

based on VCOP and VideoPace’s own sampling strategies, as proposed in [148] and

[157] respectively. To integrate auxSKD into the RSPNet framework, we train it with
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Self-Supervised Methods Top 1 accuracy

Row Method Network Input Size Pretrain #ep. UCF101 HMDB51

1 Shuffle&Learn [100] [ECCV, 2016] Alexnet 256 × 256 UCF101 - 50.2 18.1

2 OPN [78] [ICCV, 2017] VGG 80 × 80 UCF101 - 59.8 23.8

3 VCOP [157] [CVPR, 2019] C3D 112 × 112 UCF101 - 65.6 28.4

4 SpeedNet [9] [CVPR, 2020] I3D 224 × 224 K-400 n/a 66.7 43.7

5 VideoPace [148] [ECCV, 2020] R3D-18 112 × 112 K-400 18 63.7 27.9

6 VideoMoCo [111] [CVPR, 2021] R3D-18 112 × 112 K-400 200 74.1 43.6

7 RSPNet [16] [AAAI, 2021] R3D-18 112 × 112 K-400 200 74.3 41.8

8 ASCNet [65] [ICCV, 2021] R3D-18 112 × 112 K-400 200 80.5 52.3

9 CEP[162] [BMVC, 2021] R3D-18 224 × 224 K-400 50 75.9 36.6

10 Ours R3D-18 112 × 112 K-400 40 67.9 32.6

11 VideoPace [148] [ECCV, 2020] R(2+1)D 112 × 112 K-400 18 77.1 36.6

12 VideoMoCo [111] [CVPR, 2021] R(2+1)D 112× 112 K-400 200 78.7 49.2

13 RSPNet [16] [AAAI, 2021] R(2+1)D 112 × 112 K-400 200 81.1 44.6

14 CEP[162] [BMVC, 2021] R(2+1)D 224 × 224 K-400 50 76.7 37.6

15 Ours R(2+1)D 112 × 112 K-400 20 77.6 40.4

16 VCOP [157] [CVPR, 2019] R(2+1)D 112 × 112 K-100 200 71.4 32.1

17 VCOP [157] + auxSKD R(2+1)D 112 × 112 K-100 200 72.6 32.5

18 VideoPace [148] [ECCV, 2020] R(2+1)D 112 × 112 K-100 18 73.8 36.2

19 VideoPace [148] + auxSKD R(2+1)D 112 × 112 K-100 18 76.1 38.6

20 RSPNet [16] [AAAI, 2021] R(2+1)D 112 × 112 K-100 200 74.7 37.4

21 RSPNet [16] + auxSKD R(2+1)D 112 × 112 K-100 200 75.5 39.0

22 Ours R(2+1)D 112 × 112 K-100 20 76.3 39.6

23 VCOP [157] [CVPR, 2019] R3D-18 112 × 112 K-100 200 58.2 25.2

24 VCOP [157] + auxSKD R3D-18 112 × 112 K-100 200 60.7 28.4

25 VideoPace [148] [ECCV, 2020] R3D-18 112 × 112 K-100 18 57.5 23.5

26 VideoPace [148] + auxSKD R3D-18 112 × 112 K-100 18 60.9 27.1

27 RSPNet [16] [AAAI, 2021] R3D-18 112 × 112 K-100 200 60.2 32.6

28 RSPNet [16] + auxSKD R3D-18 112 × 112 K-100 200 61.9 33.4

29 Ours R3D-18 112 × 112 K-100 20 62.9 33.0

Table 4.1: Comparative performance results on UCF101 and HMDB51 when
pretraining on K400, and most importantly, on the reduced-size dataset K-100
(shaded region) to emphasise the power of our proposed approach. Note auxSKD
refers to our proposed auxiliary pretraining stage using similarity-based knowl-
edge distillation.

66



4.3 Experiments on Action Recognition

the video transformation proposed in [16] and then transfer all the convolutional layer

weights to its query encoder and initialise the projection head and key encoder randomly

from scratch.

Rows 16-22 relate to the networks with a R(2+1)D backbone. VCOP+auxSKD im-

proves on VCOP by ↑1.2% and ↑0.4% on UCF101 and HMDB51 respectively, while

VideoPace+auxSKD similarly surpasses VideoPace alone by ↑2.3% and ↑2.4%. Note

these are very close performances to when VideoPace is pretrained on K-400 (cf. Row

11). RSPNet’s performance also improves when our auxiliary SKD is deployed, by ↑0.8%
for UCF101 and ↑1.7% for HMDB51.

When the R3D-18 backbone is used, consistent improvements are again observed (see

Rows 23-29) for all these methods when auxSKD is added to them. Our proposed method

obtains the best performance using the R(2+1)D backbone on both datasets at 76.3%

and 39.6%. When using R3D-18, it achieves the best result on UCF101 at 62.9% and the

2nd best on HMDB51 at 33.0%. Finally, we note that unlike VideoPace [148], RSPNet

[16] and ASCNet [65] (for which no code has been released at the time of writing), we

do not have an appearance stream in our method.

4.3.4 Ablation Studies

We perform ablations to establish the effectiveness of our auxiliary pretraining process

and our VSPP pretext task.

Effectiveness of auxSKD – We verify the impact of our auxiliary pretraining stage

by showing its gains in performance. In Table 4.2, we present the results of our proposed

method on both R(2+1)D and R3D-18 backbones, with and without auxiliary pretraining

for UCF101, using K-100 and K-400 for pretraining. It is clear that in each and every

case auxSKD causes an increase in performance. For example, when using the R3D-18

backbone pretrained on K-100, the relative performance increases for the UCF101 and

HMDB51 datasets are approximately 2.1% and 6.7%, respectively. This large margin

performance gain on HMDB51 further demonstrates the positive impact of auxSKD in

mitigating overfitting on this small-sized dataset.

Temperature Parameters –We studied the effect of changing temperatures of auxSKD

for both teacher and student models and report the results in Table 4.3. Here we use

VSPP as the pretext task for the primary stage. The best result is achieved when both

the teacher’s temperature (γT ) and the student’s temperature (γS) are set to 0.02. This

suggests that a balanced temperature setting for both teacher and student models is

optimal to achieve the best performance.
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Method
Pretrain UCF101 HMDB51

Dataset Top-1 Top-1

Backbone: R(2+1)D

Ours - auxSKD UCF101 76.0 37.4

Ours UCF101 77.3 38.6

Ours - auxSKD K-100 74.0 37.3

Ours K-100 76.3 39.6

Backbone: R3D-18

Ours - auxSKD K-400 65.8 28.8

Ours K-400 67.9 32.6

Ours - auxSKD K-100 60.8 26.3

Ours K-100 62.9 33.0

Table 4.2: Ablation of the auxiliary pretraining stage auxSKD with our proposed
approach (auxSKD + VSPP). The results highlight the impact of auxSKD on the
learning efficacy across two distinct datasets and two backbone architectures. Notably,
when the auxSKD stage is excluded from the pretraining process, there is a decrease
in top-1 accuracy, illustrating its vital role in our method’s performance. This is
consistent across both UCF101 and HMDB51 datasets, as well as R(2+1)D and R3D-
18 backbones.

Ablation on VSPP – Our VSPP pretext task determines both the segment within a

clip where there is a speed alteration compared to the natural speed of the rest of the clip

and what the speed rate is, effectively parameters λ and ζ. Based on ablation studies in

[148], for all the experiments here we consider 4 different speed rates i.e. Q = 4, hence

λ = {1, 2, 3, 4}.

Table 4.4 outlines the effect of each sub-task in VSPP when our model pretrains on

them separately and jointly (on K-100). Our auxSKD pretraining is not engaged for this

ablation. The best result is obtained at 60.8% on the UCF101 dataset when pretraining

jointly on both tasks and having the maximum number of segments Z = 4.

When the number of segments Z during sampling is fewer (i.e. as ζ ranges from 1 to Z)

or a subtask is missed out, the performance drops. Note, the first line of the table when

there is only one segment, i.e. Z = 1 is the equivalent to VideoPace. We believe that

increasing the number of segments in the clip pushes the model to temporally explore

the video more to find that specific segment with different speed, resulting in better

temporal representation.
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γT 0.01 0.02 0.05 0.07 0.1 0.01 0.02

γS 0.01 0.02 0.05 0.07 0.1 0.1 0.1

UCF101 75.0 76.3 75.3 74.9 74.9 75.5 75.0

Table 4.3: Effect of changing the temperatures for our method for UCF101 with
R(2+1)D backbone. γT and γS indicate teacher and student temperatures respectively.

Speed Segment #Classes

Prediction Prediction #speed, #segment UCF101

✓ - [Q = 4 , Z = 1] 57.5

✓ ✓ [Q = 4 , Z = 2] 57.5

✓ ✓ [Q = 4 , Z = 3] 59.5

✓ ✓ [Q = 4 , Z = 4] 60.8

✓ ✗ [Q = 4 , Z = 4] 58.3

✗ ✓ [Q = 4 , Z = 4] 59.9

Table 4.4: Ablation of our VSPP pretext task pretrained on K-100 with R3D-18 (no
auxSKD stage). We examine the importance of each subtask within VSPP while the
number of segments within the clip changes.

Pretraining Epochs – In Figure 4.5 (left), we evaluate the performance of our method

on UCF101 when pretrained on K-100, with and without auxSKD, using different check-

points. It can be seen that when auxiliary learning is switched on, the performance of

our VSPP pretext task is increased at all checkpoints. We also notice that the perfor-

mance starts to saturate after 20 epochs for both VSPP and VSPP+auxSKD. In Figure

4.5 (right), we can see that after around 20 epochs, the changes in the VSPP losses are

not significant. This demonstrates that our model converges quickly and we can ensure

its convergence during pretraining with only 20 epochs.

4.4 Experiments on PD Tasks

In this section, we turn our focus toward a specialised and clinically significant domain by

evaluating our SSL framework on the PD4T dataset. Unlike action recognition datasets

such as UCF101 and HMBD51, PD4T requires a quality assessment of action. This

form of evaluation is more complex and challenging than simply identifying actions, as

it pays close attention to subtle changes in movement, which are important for correctly

69



4.4 Experiments on PD Tasks

0 10 20 30 40

VSPP + auxSKD 58 73.5 76.3 74.4 74.6
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Figure 4.5: (Left) VSPP pretext task performance with auxSKD (VSPP+auxSKD)
and without (VSPP) based on the number of epochs. We pretrained the R(2+1)D
model on K-100 for 40 epochs and report the results every 10 epochs on UCF101.
(Right) Pre-training losses of our VSSP subtasks on K-100, i.e. speed prediction and
segment prediction losses, further illustrate that our model actually converges after
around 20 epochs.

predicting how severe medical conditions such as PD are.

4.4.1 PD4T Dataset

This new fully annotated dataset offers 2931 videos from 30 PD patients tested longi-

tudinally at 8 week intervals. The patients (41 to 72 years old) performed varius PD

tasks in clinical settings and their UPDRS [44] quality scores were assigned by trained

clinicians ranging from 0 (normal) to 4 (severe). The videos were recorded at 25 fps at

a resolution of 1920×1080, using a single RGB camera. PD4T contains four different

UPDRS tasks including gait, finger tapping, hand movement, and leg agility. In gait

analysis, patients were asked to walk 10 metres at a comfortable pace and then returned

to their starting point. In hand movement, patients opened and closed their hand (each

hand separately) 10 times, as fully and as quickly as possible. For finger tapping, the

patient had to tap the index finger on the thumb 10 times as quickly and as big as

possible. In leg agility, the patients placed the foot on the ground and then raised and

stomped the foot on the ground 10 times as high and as quick as possible. The number

of videos (#video) for each score, as well as the minimum/maximum number of frames

(#min/#max) for each task can be seen in Table 4.5. Sample frames are shown in

Figure 4.6. It is worth noting that, similar to the PD2T dataset outlined in Chapter 3,

the PD4T dataset adheres to the same stringent standards in terms of data protection,

70



4.4 Experiments on PD Tasks

Figure 4.6: Sample frames from the PD4T dataset: (a) gait, (b) finger tapping,
(c) leg agility, and (d) hand movement. All videos are from actual PD patients and
were captured at Southmead Hospital, Bristol, UK, as part of a clinical experiment
across several months. For hand movement, finger tapping, and leg agility, data were
collected from both the left and right sides for each subject.

ethical approval, and participant privacy.

4.4.2 Details on Fine-tuning

For the fine-tuning stage, we choose CoRe [166], a recent state-of-the-art action quality

assessment model, as an example for improvement via our self-supervised pretraining
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Score
Normal

(0)

Slight

(1)

Mild

(2)

Moderate

(3)

Severe

(4)

Gait

#video 196 158 64 8 0

#min 325 580 421 664 -

#max 980 1866 13428 10688 -

Finger

tapping

#video 167 492 169 24 2

#min 101 91 117 110 159

#max 450 724 853 398 460

Hand

movement

#video 235 411 179 23 5

#min 62 59 150 197 220

#max 334 571 717 1210 648

Leg

agility

#video 407 377 54 11 3

#min 129 126 155 273 345

#max 513 427 686 504 435

Table 4.5: The PD4T dataset summary, categorised by severity scores. For each of
the four motor tasks — Gait, Finger Tapping, Hand Movement, and Leg Agility — the
table lists the total number of videos (#video), the minimum (#min) and maximum
(#max) number of frames for the respective task. The severity scores are classified
into five categories: Normal (0), Slight (1), Mild (2), Moderate (3), and Severe (4).

technique. Following this, we fine-tune the model using the PD4T dataset for direct

performance evaluation; we employ the I3D model [10] as the backbone to ensure a

fair comparison. The baseline model, CoRe, also uses I3D but is pretrained on the

K400 dataset using supervised learning. After subjecting our I3D model to a two-stage

pretraining process on a PD4T task — initially through auxiliary pretraining using

auxSKD and then through primary pretraining using VSPP — we integrate it into the

CoRe pipeline to function as its backbone. In CoRe setup, each input video is paired

with an exemplar video. This video pair is then fed through the shared pretrained

I3D backbone to extract spatio-temporal features, which are then combined with the

reference score of the exemplar video. This combined feature set is sent through a

GART to obtain the relative quality score between the input and the exemplar. In the

inference phase, this process is repeated with multiple exemplars for a more robust final

quality score for the input video, achieved by averaging the relative scores. We evaluate

CoRe performance with the Spearman Rank Correlation metric (S). A larger value of S
indicates superior performance. The training parameters for CoRe are detailed in Table

4.6. It is worth noting that we use the same pretraining parameters for the pretraining
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stage as those used for the action recognition downstream task, as described in Section

4.2.2.

Parameter/Setting Value/Description

Depth of GART d = 5

Node Feature Dimension 256

Initial Learning Rate (Regression Tree) 1× 10−3

Initial Learning Rate (I3D Backbone) 1× 10−4

Optimizer Adam

Weight Decay 0

Table 4.6: Summary of training parameters and settings for CoRe.

4.4.3 Results

In Table 4.7, we analyse the efficacy of various pretraining approaches on the PD4T

dataset. CoRe serves as the AQA method for fine-tuning the models. The table starts

with the baseline approach, which employs an I3D model pretrained on the K400 dataset

in a supervised fashion. This baseline shows an average performance of 60.31% across

all tasks. Moving on to the second row, where the I3D model is pretrained on K400

using our self-supervised pretext task, VSPP, there is only a marginal decrement (↓
0.24) in average performance compared to the baseline. The third row brings into light

the impact of pretraining the I3D model on the target dataset, PD4T, using VSPP.

There is a noticeable improvement in average performance to 62.00% which is 2.8%

improvement over the baseline. The improvement suggests that the domain gap between

K400 and PD4T has been effectively mitigated by pretraining on target dataset. It is

worth highlighting that the performance in the “Leg Agility” task actually improves when

using VSPP pretrained on K400 compared to the baseline and also VSPP pretrained

on PD4T. This suggests that there is some level of domain overlap for this specific

task between the K400 and PD4T datasets, making the more generalised K400 dataset

beneficial for this particular task. Lastly, incorporating the auxiliary learning stage

(auxSKD) into VSPP and then pretraining on target data (PD4T) leads to a further

improvement of 0.76% in the average performance compared to pretraining the model on

PD4T using VSPP alone. This validates the importance of the auxiliary learning stage

for our PD severity assessment tasks.
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Row Approach
Pretraining

dataset
Gait

Finger

tapping

Hand

movem.

Leg

agility
Avg

1 Supervised K400 78.87 45.93 54.10 62.34 60.31

2 VSPP K400 77.37 44.48 54.45 63.98 60.07

3 VSPP PD4T 80.15 48.29 58.56 61.00 62.00

4 VSPP + auxSKD PD4T 81.19 48.66 59.38 61.82 62.76

Table 4.7: Various pretraining approaches on the PD4T dataset. Pretraining on PD

task with the VSPP method alone outperforms the same method using the generic

K400 dataset. Further incorporation of auxSKD into the PD4T pretraining enhances

average accuracy, underscoring the significance of task-specific pretraining in assessing

PD tasks.

4.5 Discussion

4.5.1 Importance of Our SSL Framework for PD

Our experimental results demonstrate the significance of SSL in the assessment of Parkin-

son’s disease severity, where SSL pretraining techniques outperform traditional super-

vised methods, as shown in Table 4.7. This improvement is attributed to SSL’s ability

to capture complex patterns and rich representations from data without explicit labels.

Unlike supervised learning methods, SSL can uncover subtle and intricate features that

might be overlooked in labeled datasets, which is particularly beneficial in the context

of PD, where the nature of symptoms is diverse and not always quantifiable with simple

labels. In real-world applications, SSL can harness the wealth of unlabelled clinical data

to enhance the detection and monitoring of PD, facilitating early intervention and per-

sonalised care, which are crucial for improving patient outcomes and quality of life.

4.5.2 Limitations

We identify three main limitations of our work:

(i) a fundamental aspect of our VSPP pretext task is that it thrives on the altered

natural pace of motion in a segment of a video while the rest of the clip retains its

natural motion. However, any sudden and very fast motion in a clip may violate this

assumption as the fast motion within the selected segment of a clip may be missed when

it is sampled. This is a similar limitation for other current speed based pretext tasks

such as VideoPace and RSPNet.
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(ii) other speed-related pretext tasks, such as ASCNet, RSPNet, and VideoPace include

an appearance stream in their methodology, however in this work, while the absence of

an appearance stream may seem to be a limitation, it was avoided to focus on the power

of VSPP as an independent pretext task and promote the auxiliary pretraining stage as

two contributions that may be used in a modular fashion by the community. We expect

that adding an appearance stream to our model may improve our results.

(iii) the two-stage pretraining approach in our self-supervised learning framework intro-

duces parameter inefficiency by significantly expanding the number of parameters needed.

This expansion not only strains computational resources but also escalates storage de-

mands, with each task requiring its unique set of parameters. Such a setup proves chal-

lenging in resource-constrained environments, such as edge devices in clinical settings,

where minimal computational load and efficient use of storage are imperative.

4.5.3 Future Work

Immediate future work is poised to include experiments with an additional appearance

stream and to investigate a more integrated analysis of speed relativity within video clips,

with an emphasis on maintaining insensitivity to extreme natural motions, whether slow

or fast. There is also an intention to explore methods that would enable the transfer

of richer temporal knowledge through the auxiliary pretraining stage to the primary

pretraining model, enhancing the depth and robustness of the learned representations.

Building upon these enhancements, subsequent studies could also extend the scope of

validation to another reduced-size versions of existing large datasets, such as FineAction

[94]. By doing so, the research could seek to further substantiate the efficacy of the

auxiliary pretraining stage and, importantly, offer valuable insights into diminishing the

reliance of self-supervised learning approaches on voluminous pretraining datasets —

addressing a salient limitation in the realm of deep learning.

4.6 Conclusions

In this chapter, we introduced an auxiliary-learning phase for self-supervised video rep-

resentation learning that allows a significant reduction in the amount of unlabelled data

required for the pretraining task. The approach exploits similarity-based knowledge dis-

tillation to better prepare a (student) network to perform its primary pretraining task.

Our experiments show that this new auxiliary phase auxSKD improves the performance

of other existing SSL approaches, such as VCOP [157], VideoPace[148], and RSPNet

[16]. We also introduced a new video speed analysis task, VSPP, that predicts the index
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and altered speed of a segment within a clip which is sampled at a different frame rate to

the rest of the clip. Solving this task can strength the network’s awareness of the video’s

natural speed rate and alleviate the imprecise video speed labeling problem [16]. Our

experiments illustrate that the features learnt achieve competitive or superior results

compared to the state of the art, while training on a much smaller dataset, e.g. K-100

rather than K-400, and at a lower computational cost.

We also expanded our experiments to include PD tasks, specifically by presenting results

on a new dataset of functional mobility actions performed by actual Parkinson’s patients,

named PD4T, for performance quality assessment with potential for longitudinal eval-

uation. We demonstrated that our SSL framework outperforms supervised method on

four different PD tasks of PD4T dataset. This breakthrough highlights the unique ad-

vantages of SSL methods for initialising AQA models with domain-specific knowledge

and paves the way for future research.
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Chapter 5
PECoP: Parameter Efficient Continual

Pretraining

5.1 Introduction

Despite recent advances in action quality assessment [22, 48, 79, 115, 138, 156, 159, 166],

these methods are affected by insufficient quantities of annotated data for training deep

networks [113]. This becomes even more challenging when extra effort is needed to

produce very precise labels, e.g. for health-related applications, such as PD severity

assessment [22, 33, 97, 102]. A common solution to address such problems is to start

with a model that is originally pretrained on a large domain-general dataset, commonly

Kinetics-400 [71] (K400), and finetune it on one’s target AQA dataset [138, 159, 166] (as

we explored in Chapter 3, see Fig 5.1(a)). However, in Chapter 4 we showed that this

could be less effective due to the significant domain gap between the general and target

AQA datasets.

A promising route to address the shortcomings of this direct jump from classical pretrain-

ing to finetuning can be to further pretrain using domain-specific unlabeled data, i.e.,

Continual Pretraining – a strategy that has had a remarkable impact in NLP [49, 50, 154]

and recently in image/object classification [7, 122]. When it comes to video-domain tasks

(e.g. as in AQA), this additional pretraining stage on in-domain data may be computa-

tionally prohibitive or impractical, due to the requirement for updating all parameters

and storing pretrained parameter sets for each separate task.

Another possible approach could be BatchNorm tuning [41, 122] to equip the pretrained

model with domain-specific information by only updating the affine parameters of Batch-
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Figure 5.1: (a) Previous works directly transfer the model pretrained on domain-
general data to AQA downstream tasks with target data fine-tuning, (b) in our pro-
posed PECoP framework, the pretrained model continues to learn towards a specific
AQA task through an additional pretraining stage, where only a small set of 3D-
Adapter parameters are updated on unlabeled domain-specific data in a SSL approach,
while the baseline model’s weights remain frozen.

Norm layers, while other pretrained parameters are frozen. Although this technique can

greatly reduce the number of trainable parameters, we show that in a continual learning

framework it can fail on those AQA tasks that are more domain-specific, e.g. in PD

tasks and JIGSAWS [42].

In this chapter, we propose adding a Parameter-Efficient Continual Pretraining (PECoP)

adaptation stage to the traditional AQA transfer learning workflow that can efficiently

adapt the domain-general pretrained model for the downstream AQA task. Inspired by

adapter-based methods which have recently achieved strong results with transformer ar-

chitectures on NLP benchmarks [53, 56, 62, 118], we present 3D-Adapter, a lightweight

convolutional bottleneck block which is inserted into a pretrained 3D CNN (e.g. I3D

inception modules [10]) and learns domain-specific spatiotemporal knowledge via a self-

supervised learning (SSL) approach. During domain-specific pretraining, only the adapter

parameters are updated while the original weights of the pretrained model are frozen to

allow a high degree of parameter-sharing (see Fig. 5.1(b)). This greatly reduces the

computational and storage costs of conventional continual pretraining, and also prevents

overfitting by alleviating catastrophic forgetting [56]. The work in this chapter was

published in [24].

In Section 5.2, we formalise each of the PECoP components. Section 5.3 presents compar-

78



5.2 Proposed Approach

 Pretraining Target  AQA

Supervised 

domain-general pretraining

SSL domain-specific

pretraining

VSPP
transformation

Fine-tuning

AQA Framework

(Video Label)

(Speed rate)

 (Segment no.)

shared

 weights

I3D layers
3D-Adapter

Score(s)

Knowledge

 Transfer

Knowledge

 Transfer

(Input video)

Figure 5.2: An overview of PECoP – First, a 3D encoder is pretrained on a domain-
general dataset (i.e. K400). Then, we equip the pretrained model with 3D-Adapters
and update their parameters using VSPP [23], a SSL pretext task, on unlabeled
domain-specific data. Finally, we fine-tune the pretrained model on the AQA tar-
get task.

ative experiments using our PD4T dataset and three public AQA benchmark datasets,

namely, MTL-AQA [114], JIGSAWS [42], and FineDiving [159]. Section 5.5 delves into

the learning efficiency of PECoP, its importance in the AQA context, as well as its

limitations and avenues for future work. Conclusions are drawn in Section 5.6.

5.2 Proposed Approach

Next, we outline our proposed continual pretraining approach implemented via self-

supervised training of 3D-Adapter modules. The pipeline of our framework is shown in

Fig. 5.2.

Let Dg be a large-scale, annotated, domain-general video dataset used for a learning task
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Tg, and Dt be a target video dataset in the AQA domain for a learning task Tt, with

a significant domain discrepancy between Tg and Tt. Then, given an unlabelled video

dataset Dq, where Dq ⊆ Dt, our aim is to leverage the representations in Dg and Dq to

learn a transferable spatiotemporal feature extractor that is able to perform as well as

possible on Dt for task Tt.

5.2.1 Domain-general Pretraining

The first stage of pretraining focuses on learning robust and general spatial-temporal

representations. This is achieved by training the backbone encoder from scratch on a

large and domain-general dataset, such as Kinetics-400 (see 1st column of Fig. 5.2).

Kinetics-400 is a significant dataset for this process, featuring a diverse collection of

videos that offer a wide spectrum of spatial-temporal patterns for our encoder to learn

from. This diversity forms the basis for rich and adaptable representations that can

be effectively leveraged for more specific tasks in the later stage. Given the availability

of pretrained weights, we merely initialise the backbone using the existing supervised

pretrained weights from Kinetics-400.

5.2.2 In-domain SSL Continual Pretraining

We then equip our K400 pretrained model with randomly initialised 3D-Adapter mod-

ules. Our proposed 3D-Adapter has a similar bottleneck architecture as used in Trans-

formers [62, 64] and recently in 2D CNNs [13]. However, what differentiates it from

these previous iterations is the necessity for 3D layers, allowing the Adapter to be ap-

plied effectively to 3D CNNs and, subsequently, trained on video data. The architecture

of our 3D-Adapter and its integrated design with the inception module of the I3D model

is shown in Figure 5.6. A performance boost can be obtained if a single 3D-Adapter is

inserted after the concatenation layer of each inception module.

A 3D-Adapter consists of a downsampling, depth-wise, 3D convolution with learnable

weights θdown ∈ R
Cin
λ

×λ×K×K×K , a non-linear function f(.), e.g. ReLU, followed by an

upsampling, point-wise, 3D convolution with learnable weights θup ∈ RCout×Cin
λ

×1×1×1.

Here, Cin and Cout are the channel dimensions of the input and output feature maps,

respectively, K = 3, and the compression factor λ denotes the bottleneck’s dimension.

Hence, given an input feature vector hin ∈ RCin×D×H×W , then the output feature vector

hout ∈ RCout×D×H×W of our 3D-Adapter is

hout = α.(θup ⊗ f(θdown⊗̄hin)) + hin , (5.1)
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Figure 5.3: Inception module with adapter used in I3D model. During the pretrain-
ing phase, only the adapter module parameters are optimised, while the parameters of
other layers within the Inception module remain frozen. The bottleneck structure of the
adapter is employed for its efficiency in dimensionality reduction and computational
manageability. It compresses high-dimensional input data into a lower-dimensional
space, allowing for focused processing with reduced computational overhead.

where ⊗ and ⊗̄ are point-wise and depth-wise 3D convolution respectively, and α is

a tunable scalar hyperparameter in RCout which is initialised as ones, following [13,

64].

During the proposed continual pretraining stage, we only allow the 3D-Adapter param-

eters to be optimised on Dq, while the original model layers’ weights stay frozen (middle

column in Fig. 5.2). We carry out the training process through the lens of self-supervised

learning, a mechanism by which labels are automatically generated from the unlabeled

videos present within the Dq dataset.

Since understanding the quality of action is heavily dependent on movement patterns,

we focus VSPP, proposed in Chapter 4, as an SSL pretext task for this stage. We shall

explore the performance of other recent SSL methods (e.g. VideoPace [148] and RSPNet

[16]) during our ablations.
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5.2.3 Supervised Fine-tuning

We select state-of-the-art action quality assessment models CoRe [166], USDL/MUSDL

[138], TSA [159], and TPT [8] as example models that can be enhanced with PECoP

and then fine-tuned on AQA datasets for direct evaluation. In essence, each layer of the

models, encompassing both the original layers and the newly introduced adapter layers,

are subjected to fine-tuning. This fine-tuning is carried out on the target dataset, Dt

(see rightmost column in Fig. 5.2).

USDL [138] – The features obtained from segments of a video clip pass through our

continually pretrained I3D backbone and fused through temporal pooling, and then sent

through softmax to generate the predicted quality assessment distribution. The KL

loss between the predicted distribution and a Gaussian distribution generated from the

ground-truth score is applied for optimisation.

MUSDL is a multi-path version of USDL which predicts the final score if multiple-judge

scores are available, as is the case in the MTL-AQA and JIGSAWS datasets.

TSA [159] – Upon receiving a pair of query and exemplar instances, we use our con-

tinual pretrained I3D to extract spatial-temporal features (similarly to CoRe). Then

a Temporal Segmentation Attention (TSA) module is used to evaluate action quality

through a series of steps, which include: successively accomplishing procedure segmen-

tation, carrying out procedure-aware cross-attention learning, and executing fine-grained

contrastive regression. The supervision of the TSA is based on step transition labels and

action score labels. These labels aid the model to focus on exemplar regions that align

with the query step and quantify their differences to predict accurate action scores.

TPT [8] – We first split the input video into 5 overlapping clips, and feed each clip into

our continually pretrained I3D backbone to get clip level feature representations. Then,

TPT is used to convert these representations into temporal part-level representations.

Finally, a part-aware contrastive regressor (following [166]) computes part-wise relative

representations and fuses them to perform the final relative score regression.

The training and inference pipeline of CoRe is explained in Section 4.4.

5.3 Experiments

5.3.1 Dataset

We evaluate our self-supervised continual pretraining adaptation module on our PD4T

dataset (Section 4.4.1) as well as three benchmark AQA datasets including MTL-AQA
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Figure 5.4: Sample frames of the three surgical tasks in the JIGSAWS dataset, from
left to right: suturing, knot-tying, and needle-passing.

[114], JIGSAWS [42], and FineDiving [159]. The details of benchmark datasets are

detailed below:

(i) MTL-AQA [114] contains 1412 video clips collected from 16 different world events

and includes a variety of diving actions, covering both individual and synchronous divers,

with videos from different angles. The dataset is equipped with various annotations to

support research in areas such as AQA, action recognition, and commentary generation.

The annotations comprise scores from 7 judges, final scores, difficulty degree and type

of diver’s action. We followed the evaluation settings suggested in [114] to divide the

dataset into a training set of 1,059 videos and a test set consisting of 353 videos.

(ii) JIGSAWS [42] is a collection of 103 surgical activity videos, distributed among three

different tasks: 39 videos for Suturing (S), 28 videos for Needle-Passing (NP), and 36

videos for Knot-Tying (KT). Further details on each task are elaborated as follows:

• S – The individual takes the needle and moves toward the incision (indicated as

a vertical line on the tabletop model), threading the needle through the simulated

“tissue” from one marked point on one side to a corresponding point on the opposite

side of the incision. Following the initial needle pass, the subject removes the needle

from the tissue, transfers it to the right hand, and carries out three more similar

needle passes.

• NP – The individual takes the needle and threads it through four small metal

loops from right to left. These loops are elevated slightly above the surface of the

tabletop model.

• KT – The individual picks up one end of a suture that is connected to a flexible

tube, which is in turn anchored at both ends to the tabletop model, and proceeds

to tie a single loop knot.

Figure 5.4 shows snapshots of the these tasks. Each task is annotated by multiple sub-
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scores (that represent e.g., flow of operation, quality of final outcome, and so on), with

the final score defined as the sum of these sub-scores. Following [138, 166], we adopt

4-fold cross validation for evaluation for this dataset.

(iii) FineDiving [159] is a fine-grained sports video dataset designed for AQA tasks. It

offers 3,000 videos from various diving events and competitions, including the Olympic

Games, World Cup, and World Championships. FineDiving has several characteristics:

(1) Two-level semantic structure. Each video is categorised using two layers of semantic

tags: one for the main action type and another for the sub-action type. The main

action type is derived from a sequence of these sub-actions. (2) Two-level temporal

structure. Actions within each video are time-stamped to mark their start and end, and

every action is further segmented into a series of steps based on a clearly established

vocabulary. (3) Certified scoring metrics, including evaluative scores from judges and

the level of difficulty, are obtained from FINA. The dataset comes with 52 actions, 29

sub-actions, and 23 types of difficulty degrees. Following the training and evaluation

settings outlined in [159], we select 75 percent of the samples of this dataset for training

and the remaining 25 percent for testing.

5.3.2 Experiment Setup

The experiments were performed on an Nvidia RTX 3090TI GPU under Cuda 11.6 with

cuDNN 8.2. We first initialise our I3D model with K400 pretrained weights which then

remain frozen throughout the pretraining stage. After adding 3D-Adapters, the classifi-

cation head is replaced with two randomly initialised FC layers fλ and fζ corresponding

to the segment speed and index outcomes of the VSPP [23] pretext task. In this stage,

we generate 32-frame long video clips, and empirically set the two parameters needed

for VSSP to [λ = 4, ζ = 4] or [λ = 4, ζ = 3] which is either at, or close to, those

recommended in [23].

We perform SSL pretraining on domain-specific datasets by only updating the 3D-

Adapter layers over 8 epochs, with batch size of 16 and SGD with a 1 × 10−3 learning

rate. Note that the training set videos of the target data is our domain-specific dataset

for SSL pretraining.

For data augmentation, we randomly crop the video clips to 224 × 224 followed by

horizontal flip and color jittering of each frame. Following [23], we apply 10x more

iterations per epoch for temporal jittering. In all experiments, the input clip length is

32 during pretraining.
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5.3.3 Fine-tuning

The pretrained I3D model is then the backbone network of our baselines USDL, MUSDL,

CoRe, TSA, and TPT. and we evaluate their performance with the Spearman Rank

Correlation metric (S), expressed as percentages.

For the JIGSAWS dataset, in keeping with other methods [138, 166], we provide values

after four-fold cross-validation.

Please note that, at this stage, we adopt similar hyperparameter settings and train-

ing/evaluation strategy for each baseline as reported in [138], [166], [159], and [8]. re-

spectively.

5.3.4 Comparative Evaluation

We present results on the MTL-AQA [114] and JIGSAWS [42] datasets against state-of-

the-art AQA methods MUSDL [138] and CoRe [166] when we enhance them with PECoP,

as well as when we enhance them with another recent continual pretraining workflow,

HPT [122] (see Table 5.1). In HPT, which has only been applied to image domain tasks

till now, simply additional pretraining steps are introduced on domain-specific datasets

with all model parameters updated at every stage. We use the same hyperparameters

for training both PECoP and HPT.

While with PECoP improved results are obtained across the board, the improvements on

JIGSAWS are very significant, e.g. after adding PECoP, MUSDL’s average performance

on the three tasks in the JIGSAWS dataset improves to 76% (↑ 6%). Similarly, CoRe’s

average performance on the same tasks increases to 89% (↑ 4%). This clearly shows

PECoP’s effectiveness in narrowing the substantial domain gap between the JIGSAWS

dataset and K400.

Further, we note that adding HPT to the baselines results in a performance drop on

JIGSAWS. Specifically, CoRe’s performance decreases to 80% (↓ 5%). This decline can

be attributed to overfitting, as HPT requires all model parameters to be pretrained on a

relatively small dataset (i.e. ∼13M parameters vs. PECoP’s 3D-Adapters’ ∼1M).

In Table 5.2, we show that not only PECoP dramatically reduces the model capacity, it

also requires drastically fewer epochs to converge compared with HPT.

Table 5.3 presents the results on the FineDiving dataset introduced in [159], comparing

CoRe [166] and TSA [159], with and without PECoP. Since TSA requires step transition

labels for training, we cannot evaluate it on other datasets. As shown, TSA+PECoP
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Table 5.1: Spearman Rank Correlation results on MTL-AQA and JIGSAWS,
with and without continual pretraining methods including our proposed PECoP
and HPT [121]. PECoP’s enhancement of MUSDL and CoRe models demon-
strates superior performance, achieving the highest scores and reflecting its effi-
cacy over HPT in these evaluations. Please note that ⋆ViSA [84] and MultiPath-
VTPE [89] are customised towards surgical skill assessment and not general AQA
tasks.

Method Year
MTL-AQA JIGSAWS

Diving S NP KT Avg S

C3D-SVR [115] 2017 77.16 - - - -

C3D-LSTM [115] 2017 84.89 - - - -

MSCADC-STL [114] 2019 84.72 - - - -

MSCADC-MTL [114] 2019 86.12 - - - -

C3D-AVG-STL [114] 2019 89.60 - - - -

C3D-AVG-MTL [114] 2019 90.44 - - - -

JRG [109] 2019 - 36 54 75 57

USDL [138] 2020 90.66 64 63 61 63

MultiPath-VTPE [89]⋆ 2021 - 82 76 83 80

TSA-Net [150] 2021 94.22 - - - -

I3D + MLP [166] 2021 89.21 61 68 66 65

I3D-TA [172] 2022 92.79 - - - -

ViSA[84]⋆ 2022 - 84 86 79 83

PCLN [81] 2022 92.30 - - - -

ResNet34-(2+1)D-WD [37] 2022 93.15 - - - -

MUSDL [138] 2020 92.73 71 69 71 70

MUSDL + HPT [122] 2023 93.49 69 75 72 72

MUSDL + PECoP 2023 93.72 77 76 76 76

CoRe [166] 2021 95.12 84 86 86 85

CoRe + HPT [122] 2023 94.26 80 81 80 80

CoRe + PECoP 2023 95.20 88 90 88 89
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Table 5.2: Comparison of PECoP and HPT [122] in terms of storage size and
pretraining cost. For PECoP, the count of trainable parameters is related to the
adapter modules inserted into the I3D model backbone, which contributes to a smaller
overall footprint and indicates more efficient utilisation of resources. Note that the
timing is per minibatch.

Continual

Pretraining

#trainble

parameters
#epochs Size Time/minibatch

HPT [122] ∼13M 16 ∼54MB 101ms

PECoP ∼1M 8 ∼4MB 71ms

improves on TSA by 1.10%. Although TSA outperforms CoRe alone, CoRe+PECoP sur-

passes TSA and TSA+PECoP to achieve the state-of-the-art performance on FineDiving

dataset.

Table 5.4 presents the results for the PD4T dataset. Given only a single action perfor-

mance score based on the UPDRS scale [44] is available per clip, we compare PECoP

and HPT for USDL instead of MUSDL. We observe the Spearman’s rank correlation

improves when averaged across the four PD4T tasks for both HPT and PECoP when

added to both USDL and CoRe (↑ 2.03% and ↑ 3.56% respectively for PECoP ), although

HPT performs marginally better (↑ 2.22%) when added to USDL. We assume this slight

advantage for HPT is likely due to its greater model capacity for handling the complex

patterns in the PD4T dataset; however, PECoP achieves nearly equivalent performance

gains while significantly reducing continual pretraining and storage costs.

Table 5.4 also shows that the performance on the finger tapping task is significantly

lower compared to other tasks. This is likely due to the inherent complexity of accurately

capturing and assessing the subtle and rapid movements involved in finger tapping, which

poses a greater challenge for the model’s analysis capabilities.

5.3.5 Temporal Parsing Transformer

The Temporal Parsing Transformer [8] (TPT) is a recent state-of-the-art AQA method

based on transformers [8]. Unlike existing AQA methods that focus on holistic video

representations for score regression, TPT decomposes the video into temporal segments

(part-level representations) to extract features. Such a decomposition is critical to TPT’s

learning process to capture the possible phases of a typical AQA action, e.g. a diving
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action which contains several key parts, such as approach, take off, flight, etc. We

evaluate the performance of TPT1 on our PD4T dataset with and without PECoP.

As shown in Table 5.5, PECoP significantly boosts the performance of TPT across

the various actions in PD4T. We note that, the performance of TPT is significantly

lower than CoRe and USDL on PD4T tasks (See Table 5.4). We believe this may be

attributed to the substantial degree of action repetition (e.g. in finger tapping or leg

agility). In such cases, TPT’s part-level representations, as opposed to a more holistic

representation, cannot provide enough discriminative information for its learning process

and hence TPT’s part-level representations do not necessarily align well with some AQA

tasks, such as those in PD4T.

Table 5.3: Spearman Rank Correlation results on FineDiving dataset with CoRe
and TSA as the baselines. While TSA alone achieves strong results, the combination
of CoRe and PECoP reaches state-of-the-art performance.

Method S

CoRe [166] 90.61

CoRe + PECoP 93.15

TSA [159] 92.03

TSA + PECoP 93.13

5.4 Ablations

In this section, we perform ablations on our PECoP framework for AQA tasks, focusing

on the influence of different SSL methods employed for domain-specific pretraining, the

role of BatchNorm tuning in domain adaptation, and the impact of integrating 3D-

Adapters into another 3D CNN, e.g. R3D-18 [54].

5.4.1 Different SSL Methods

We investigate the performance of PECoP when using different SSL methods for domain-

specific pretraining, i.e. RSPNet [16], a contrastive learning-based SSL approach (based

on MoCo [55]), and VideoPace [148], a transformation-based SSL pretex task (similar

to VSPP). In this ablation, CoRe has been used as the AQA baseline and JIGSAWS

1To train and evaluate TPT we used the code provided in https://github.com/baiyang4/aqa tpt.
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Table 5.4: Spearman Rank Correlation results on the PD4T dataset for baseline
methods USDL and CoRe, with further enhancements from continual pretraining
methods PECoP and HPT. Despite HPT’s greater model capacity benefitting USDL,
PECoP’s integration demonstrates nearly equivalent performance improvements with
the added advantage of reduced pretraining and storage costs.

Method Gait Finger tapping Hand movem. Leg agility Avg. S

USDL [138] 79.14 42.58 53.93 56.47 58.03

USDL + HPT [122] 81.93 46.38 54.15 58.54 60.25

USDL + PECoP 80.68 47.44 56.19 58.09 60.06

CoRe [166] 78.87 45.93 54.10 62.34 60.31

CoRe + HPT [122] 81.42 49.73 57.06 63.98 63.05

CoRe + PECoP 82.33 49.40 59.46 64.27 63.87

Table 5.5: Spearman Rank Correlation results on the PD4T dataset with TPT as
the baseline. Due to the lengthy training duration of TPT (approximately 5 days with
an Nvidia RTX 3090TI GPU for each task) evaluations were limited to PECoP without
comparison to other continual pretraining methods such as HPT.

Method Gait Finger tapping Hand movem. Leg agility Avg. S

TPT [8] 77.80 36.05 47.80 46.27 51.98

TPT + PECoP 79.90 40.73 51.07 50.38 55.52

as the target AQA task. As shown in Table 5.6, VSSP achieves the best result for

domain-specific pretraining.

Table 5.6: Determining which SSL pretext task would be better to use - comparing
contrastive learning approach (RSPNet [16]) to transformation-based ones (VideoPace
[148] and VSPP [23]). The experiment was performed on the JIGSAWS dataset as an
example.

Method S NP KT Avg. S

RSPNet [16] 83 86 84 84

VideoPace[148] 86 87 87 87

VSPP [23] 88 90 88 89
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5.4.2 BatchNorm (BN) Tuning

As mentioned earlier, BN tuning can be used to equip a pretrained model with domain-

specific knowledge by only updating the affine parameters of BatchNorm layers. Figure

5.5 illustrates the comparative performance of BatchNorm tuning (HPT+BN) and other

pretraining strategies, such as domain-general pretraining (Dom-G), domain-specific SSL

pretraining (Dom-S) from scratch, and PECoP. Again, CoRe is used as the AQA base-

line.

Each plot corresponds to an AQA target task taken from our various datasets. On all

these tasks, PECoP outperforms HPT+BN, particularly by a large margin on the tasks

within PD4T and JIGSAWS datasets. Further, we observe that, HPT+BN performs

significantly worse than Dom-G alone on the all three tasks within JIGSAWS dataset.

This suggests that the BN affine parameters, β and γ, generally have a negative impact on

downstream AQA tasks when facing a significant domain shift. This happens because β

and γ are tuned to the feature distribution of the source domain. When these parameters

are applied to a significantly different target domain, they fail to correctly adjust feature

statistics, resulting in a misalignment between the source and target domains. This

issue becomes worse in smaller target datasets, as the limited number of examples makes

it harder for the model to learn the true feature distribution, increasing the risk of

overfitting.

In addition, the figure also shows that Dom-S performs variably. It fared worse than

Dom-G on MTL-AQA, but exceeds Dom-G in nearly all PD4T tasks. This discrepancy

suggests that direct transfer from the K400 dataset may not be ideal for PD4T tasks

due to a significant domain gap. On the other hand, Dom-S also performs poorly on

all JIGSAWS tasks, implying that self-supervised pretraining from scratch on smaller

datasets is suboptimal. These observations highlight the need for adaptable pretraining

strategies, an aim achieved by our PECoP approach, which consistently delivers superior

performance in each of the evaluated tasks.

5.4.3 3D-Adapters for ResNet

We evaluate the effectiveness of our 3D-Adapter with another 3D CNN, i.e. R3D-18

[51] which is a common backbone network for action recognition tasks. We first insert

a 3D-Adapter into each 3D residual blocks of R3D-18 backbone (see Fig. 5.6) and train

this model through our continual pretraining framework. This model is then used as

the backbone network for CoRe to fine-tune on the target AQA task. We conduct this

experiment on our PD4T dataset and the results are reported in Table 5.7. As shown,

90



5.4 Ablations

Dom-G  Dom-S  HPT+BN PECoP

MTL-AQA 95.12 93.15 94.66 95.2

Gait 78.87 81.17 78.98 82.33

Needle Passing (NP) 86 80 82 90

Hand Movement (PD4T) 54.1 58.56 53.46 59.46

Leg Agility (PD4T) 62.34 61 63.3 64.27

Finger Tapping (PD4T) 45.93 48.29 43.19 49.4

Suturing (JIGSAWS) 84 79 79 88

Knot-Tying (JIGSAWS) 86 79 80 88
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Figure 5.5: Comparison of PECoP with Domain-Specific SSL Pretraining (Dom-
S), Domain-General Pretraining (Dom-G), and BatchNorm Tuning (HPT+BN) across
eight different AQA tasks from MTL-AQA, PD4T, and JIGSAWS datasets. Each plot
represents a unique AQA task and shows the performance of the four approaches. Dom-
G employs pretraining on a domain-general dataset like K400, while Dom-S focuses on
domain-specific self-supervised pretraining on target data. HPT+BN fine-tunes only
the BatchNorm layers of a pretrained model. PECoP consistently outperforms the
other approaches across all tasks, indicating its robustness and adaptability for AQA
tasks with different domains and complexities.
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Conv.

Conv.

Conv.

3D-Adapter

+

Identity

Figure 5.6: 3D residual block equipped with 3D-Adapter used in the R3D-18 model.
We empirically find that such a configuration leads to a better performance.

across all PD4T tasks, CoRe+PECoP outperforms CoRe alone (i.e. CoRe with R3D-18

backbone in both cases).

Table 5.7: Spearman Rank Correlation results on the PD4T dataset with R3D-
18 backbone used in CoRe. The results clearly demonstrate that the inclusion of
PECoP enhances the assessment accuracy across all evaluated Parkinson’s disease-
related tasks.

Method Gait Finger tapping Hand movem. Leg agility Avg. S

CoRe 76.16 35.35 50.53 49.96 53.00

CoRe + PECoP 79.11 39.71 55.37 52.56 56.69

5.5 Discussion

5.5.1 Learning Efficiency of PECoP

PECoP allows the model to leverage knowledge gained from a previous stage and requires

only a small subset of parameters to be specifically learnt for the new task. This approach

leads to fewer epochs and less training data required for convergence on a new task,

resulting in a reduction of both computational resources and pretraining time (refer to

Table 5.2). With fewer trainable parameters, PECoP has a limited capacity to memorise

training data, and as a result, it is forced to learn more generalised patterns, making it

less prone to overfitting.
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Another benefit to PECoP’s efficiency is its ability to avoid the issue of forgetting [56].

Unlike traditional continual pretraining methods [7, 122] that require updating all model

parameters, thereby risking forgetting previously learned patterns, PECoP leverages

pre-existing domain-general knowledge without modifying this foundational knowledge.

Instead, it simply augments it with domain-specific knowledge, thus effectively alleviating

the issue of forgetting.

5.5.2 Importance of PECoP for AQA

PECoP is crucial for AQA tasks, offering unique benefits that are valuable in diverse

applications, ranging from healthcare settings like PD severity assessment to sports eval-

uations such as diving. Its scalable design eliminates the need for multiple pretrained

models for different assessments, a key advantage where quick and precise evaluations

across a range of tasks are essential. Furthermore, PECoP’s data efficiency makes it

well-suited for healthcare settings where annotated data is often scarce. Its computa-

tional efficiency also facilitates faster decisions and saves resources, which is vital in

environments with limited computational capabilities.

5.5.3 Limitations

One of the key weaknesses in a parameter-efficient continual pretraining approach like

PECoP is the potential trade-off between efficiency and complexity in the model. Al-

though using a limited set of adaptable parameters minimises the risk of overfitting, it

may unintentionally lead to underfitting, making the model less effective at capturing

intricate spatial and temporal features. This limitation becomes especially noticeable in

AQA tasks, where accurately capturing subtle details may require a model with greater

capacity.

5.5.4 Future Work

PECoP has primarily been evaluated using 3D CNN backbones for AQA tasks. How-

ever, its potential effectiveness with other architectures, such as transformers, presents

an exciting avenue for future research. Given the backbone-agnostic nature of PECoP,

it can be adapted to multiple models, including transformers, by integrating appropriate

adapters [17], utilising a similar parameter-efficient continual pretraining approach. Fu-

ture studies could explore this strategy further, optimising the pretraining process across

different architectures and assessing its applicability to other vision tasks, including ac-

tion recognition and few-shot learning.
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5.6 Conclusions

We proposed PECoP, a parameter efficient continual pretraining workflow to better

transfer the knowledge learned from existing large-scale video datasets (e.g. K400) to

AQA target tasks by only updating a small number of additional bottleneck layers (called

3D-Adapters) through self-supervised learning. Alongside the evaluation on benchmark

datasets, we also presented results on PD4T dataset, including four different Parkinson’s

disease tasks: gait, finger tapping, leg agility, and hand movement. Experiments on

four AQA datasets (8 different tasks) with four AQA baselines (CoRe, USDL/MUSDL,

TSA, and TPT) demonstrated the significant advantages of PECoP over the conventional

continual pretraining approach with respect to both generalisation ability, storage needs,

and training cost.
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Chapter 6
Conclusions

In this final chapter, the key advances achieved in this thesis are summarised, while also

critically examining their limitations and proposing potential areas for future study. The

chapter is organised in the following manner: It begins with a summary to revisit the

primary objectives and contributions of this thesis (Section 6.1). This is followed by a

review of the major findings and their limitations, offering a balanced perspective on the

work conducted (Section 6.2). The chapter concludes by suggesting several promising

avenues for future research, indicating how the present study could be further developed

or refined (Section 6.3).

6.1 Summary

This thesis explored innovative deep learning frameworks for video-based assessment

of Parkinson’s disease severity. Methods were evaluated in alignment with UPDRS

on a variety of motor tasks, including gait, finger tapping, hand movement, and leg

agility, to provide a subtle understanding of functional mobility in individuals with PD.

Beyond this primary focus, the ideas developed in this thesis are also useful for other

areas in computer vision. To demonstrate their versatility, additional experiments were

carried out, applying the methods to different computer vision tasks such as action

recognition and other action quality assessment tasks, such as diving and surgical skill

assessment.

Recent efforts to automate PD symptoms assessment often rely on wearable sensors,

which can be costly and limited in scope. Video technology offers a less intrusive and

more scalable alternative. Despite advances in deep learning, most video-based research

uses skeleton data, which has limitations in accurately capturing subtle movements cru-
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cial for PD assessment. This thesis focuses on using RGB video data to overcome these

limitations through deep learning strategies. While RGB video data offers certain ad-

vantages for PD severity assessment, it is not without its own set of challenges. These

can be summarised as follows.

• Complexity of Movement – Human movements are complex and can vary signif-

icantly among individuals, which becomes even more complicated when considering

the symptoms of PD. This complexity requires the development of deep learning

models that are sensitive enough to capture subtle spatial and temporal features

for an accurate assessment of varying PD severity levels.

• Camera Motion – Camera motions introduce variability into video data for PD

assessment, adding ‘motion noise’ that can interfere with the model’s learning

process, leading to less accurate assessments of PD severity.

• Availability of Annotated Videos – The preparation of large-scale, high-

quality annotated data for PD assessment poses multiple challenges. Recording

motor tasks often requires specialized equipment and environments. Annotation

is both time-consuming and costly, as it requires the expertise of trained clini-

cians. Ethical and legal issues around patient privacy and data security add more

complications. These limitations can hinder the generalisation capabilities of deep

learning models, affecting their performance on new patient data.

• Domain Discrepancy – To address data scarcity in AQA, including those spe-

cific to PD, models often initialise with weights pretrained on generic, large-scale

datasets. While this is better than starting from scratch, it can result in mis-

alignment between the broader features captured in generic datasets and the more

subtle patterns essential for accurate AQA. Thus, there is a need to better adapt

these pretrained models for AQA tasks, e.g. PD.

To address these challenges, this thesis presented three different deep learning strate-

gies.

• End-to-end Supervised Learning – This approach emphasised in-depth motion

analysis by capturing both spatial and long-range temporal features, while also

focussing on the most critical parts of the video to enable a more comprehensive

understanding of disease severity.

• Self-supervised Representation Learning – This strategy focused on extract-

ing robust, high-level visual representations from unlabelled PD video data, using

pretext tasks to guide the learning process. The learned features were subsequently
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employed as initial weights for downstream tasks aimed at PD severity assessment,

thereby enhancing overall model performance.

• Parameter-Efficient Continual Pretraining – This strategy aimed to enhance

the knowledge transfer from large-scale video datasets to specialised tasks like AQA

in a computationally efficient way. By fine-tuning only a select set of parameters

through SSL, the approach minimised computational demands while maintaining

robust performance in PD severity assessment tasks.

6.2 Findings and Limitations

Chapter 3 employed a multi-stream deep learning architecture with a 3D CNN, serving as

the backbone, to accurately capture spatial and temporal features of complex movements

in PD assessment. The architecture incorporated a sparse temporal sampling strategy

to capture long-range temporal structures in patient movements. Attention units were

added to the model to emphasise critical video segments that are crucial for an accurate

assessment. The model also reduced the impact of camera motion by incorporating

motion boundary features. The effectiveness of this approach was validated on a dataset

from 25 clinically diagnosed PD patients, obtaining 72.3% and 77.1% top-1 accuracy on

hand movement and gait tasks, respectively.

The limitations of the method presented in Chapter 3 are multiple and noteworthy. First,

the evaluation was limited to only two specific PD tasks, which restricts the applicability

and robustness of the model across a more comprehensive range of PD symptoms and

motor functions. Assessing the model on a larger set of tasks would allow for a more

thorough evaluation of its versatility and effectiveness. Second, the UPDRS scores were

categorised into three broad classes: 0, (1, 2), and (3, 4). While this approach made

the classification task more manageable, it risks losing nuanced information about PD

severity, diminishing the model’s ability to capture the full range of disease progression.

Lastly, the method relies on supervised learning, which, although effective under certain

conditions, has limitations, especially in scenarios with limited annotated data, where

such approaches often fail to generalise effectively.

In Chapter 4, we addressed the issue of data scarcity in Parkinson’s disease assessment

by focusing on self-supervised learning methods. Recognising the limitations of tradi-

tional self-supervised learning methods, particularly their scale-dependency and compu-

tational cost, an innovative pretraining process was introduced that mitigates the need

for large-scale datasets. This approach used an auxiliary stage based on Similarity-based

Knowledge Distillation (auxSKD) to enhance the adaptability and generalisation of SSL
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models, particularly when pretrained on small size datasets like our PD dataset. In this

chapter, we also proposed a new pretext task, VSPP, designed to help the model better

understand the natural pace of video clips. This feature is especially valuable in handling

the complex, variable-speed actions often observed in PD patients.

Furthermore, we introduced a new annotated AQA dataset, PD4T, for the vision commu-

nity to evaluate various actions performed by actual PD patients. This dataset contains

four motor tasks including gait, finger tapping, and leg agility, offering a valuable resource

for future PD research. The SSL framework we introduced outperformed conventional

supervised pretraining on average across four tasks of PD4T. Additionally, this frame-

work demonstrated its robustness in action recognition, outperforming state-of-the-art

SSL methods like VCOP [157], VideoPace [148], and RSPNet [16] in benchmarks such as

UCF101 [134] and HMDB51 [75], even when pretrained on a reduced-size dataset, e.g.

Kinetics-100 instead of Kinetics-400.

In terms of limitations, the two-stage pretraining mechanism in our SSL framework intro-

duces the issue of parameter inefficiency. Specifically, both the auxiliary learning stage

(auxSKD) and the primary pretraining stage (VSPP) must be pretrained for each task

independently. This not only increases the computational cost but also poses challenges

for real-world scenario, especially in the context of PD assessment. In a healthcare set-

ting, where rapid and efficient analysis is often critical, the need to pretrain multiple

stages for each specific PD motor task can be impractical. Also, PD symptoms can

change a lot, both between different people and in the same person over time, so the

model needs to be updated frequently. The separate pretraining processes for each task

thus present a scalability issue, hindering the framework’s ability to adapt quickly to the

continually evolving nature of PD symptoms.

Beyond the above issue, the VSPP pretext task itself also has limitations worth noting.

A core feature of the VSPP is its reliance on the altered pace of movement in a specific

video segment while maintaining the rest of the clip at its natural pace. However, this

assumption may be compromised if the clip contains sudden or extremely quick motions

that might be missed during sampling. This is a drawback that is also observed in

other speed-based pretext tasks, such as VideoPace [148] and RSPNet [16]. Moreover,

our approach does not incorporate an appearance stream, unlike some other speed-

related tasks such as ASCNet [65], RSPNet, and VideoPace. Although this may seem

like a limitation, it was an intentional choice to focus on the efficacy of VSPP as an

independent pretext task and to emphasise the auxiliary pretraining stage.

In Chapter 5, we introduced a parameter-efficient continual pretraining framework, called
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PECoP, as an innovative advance in the AQA transfer learning pipeline. Through the

introduction of 3D-Adapter, a compact bottleneck layer, we enabled fine-tuning of pre-

trained 3D CNNs for domain-specific spatiotemporal features without altering the orig-

inal model parameters. This method not only reduced computational and storage cost,

but also mitigated issues like overfitting and catastrophic forgetting, often seen in con-

tinual pretraining paradigms. We demonstrated PECoP’s ability to enhance the perfor-

mance of recent state-of-the-art AQA methods (MUSDL [138], CoRe [166], TSA [159],

and TPT [8]), leading to considerable improvements on benchmark AQA datasets, JIG-

SAWS (↑ 6.0%), MTL-AQA (↑ 0.99%), and FineDiving (↑ 2.54%). Furthermore, when

applied to the PD4T dataset, PECoP surpassed the state-of-the-art, showing a perfor-

mance improvement of ↑ 3.56% in comparison.

However, one of the main limitations inherent to a parameter-efficient approach like

PECoP is the potential trade-off between the model’s efficiency and its ability to han-

dle complexity. Utilising a limited set of adaptable parameters effectively minimises

the chances of overfitting the model to the training data. However, this strategy could

unintentionally cause the model to underfit, limiting its capacity to capture complex spa-

tiotemporal characteristics. This limitation becomes especially significant in the context

of AQA tasks, where the precise capture of subtle features is often essential for accurate

assessments.

6.3 Directions for Future Work

Five potential avenues for future studies are outlined.

6.3.1 Advanced Methods for Class Imbalance

Given the imbalanced nature of the PD dataset in Chapter 3, UPDRS scores were cate-

gorised into three broad classes. Although this strategy simplified the classification task,

it could have led to a loss of detailed information about the progression of PD severity.

Future research might explore advanced machine learning techniques for better class bal-

ance. For example, a promising option could be meta-learning [77, 130], exemplified by

tools like Meta-Weight-Net [130], which adaptively alters loss weights during training,

thus tackling class imbalances more efficiently than traditional methods such as focal

loss.
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6.3.2 Appearance Stream for VSPP

The VSPP pretext task proposed in Chapter 4 primarily targets temporal features.

While effective, the framework could be enriched by incorporating spatial features. A

promising avenue for future research is to integrate an appearance stream into VSPP

to enhance its ability to effectively capture a broader range of features and increase the

model’s versatility and robustness. This enhancement is expected to make the model

more practical and effective across a range of applications, like more accurately identi-

fying specific actions, better detecting unusual activities in security videos, and offering

improved interaction with users by combining the visual aspects with the dynamics of

movement.

6.3.3 Assessing PECoP in Different Architectures and Tasks

While PECoP has been primarily evaluated using 3D CNN backbones for AQA tasks

in Chapter 5, its broader applicability remains an open question. The effectiveness of

the framework with alternative architectures, such as transformers, has not yet been

explored. Moreover, the versatility of PECoP could extend its utility to various other

vision tasks like action recognition and few-shot learning. Validating PECoP’s perfor-

mance in these areas could open up new avenues for its application, potentially making

it a more universally useful tool in the field of computer vision.

6.3.4 Utilising Enhanced Data Augmentation Techniques

In this thesis, we have utilised weak data augmentation techniques - jittering, cropping,

and flipping — for spatial and temporal transformations to improve the robustness of

our deep learning models for PD severity assessment. While these methods introduce

data variability, they may not capture the full spectrum of PD symptoms and their

variations. Therefore, the model’s ability to generalise to new, unseen data could be

compromised.

Moreover, there is a risk associated with the application of strong data augmentation

methods, such as those employing generative models [58]. These sophisticated techniques

could potentially lead to the generation of non-representative samples that deviate sig-

nificantly from the underlying data distribution. In the context of Parkinson’s disease,

this deviation might lead to the creation of videos that inaccurately reflect the disease’s

severity, potentially causing the model to misjudge the stage of Parkinson’s.

To overcome these limitations, exploring advanced data augmentation strategies, such

as VITA [15], is crucial. Such strategies are capable of producing realistic and varied
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6.3 Directions for Future Work

on-manifold samples, which equip models with an extensive, accurate representation of

PD examples. This enhancement could significantly boost the models’ generalisation

capabilities, leading to more precise and reliable severity predictions.

6.3.5 Advancing Generalisation in Parkinson’s Disease Severity

Assessment

As we look towards the future in PD severity assessment, the need for models with

strong generalisation capabilities is becoming more apparent. The groundwork laid by

this thesis through various learning strategies is just the beginning. The long-term

research direction necessitates enhancing models to intuitively grasp and interpret the

range of PD symptoms and their variations. The aim is to create models that can

seamlessly transfer learning from one patient context to another, reducing the need for

continuous retraining or tuning. Future efforts will likely involve gathering extensive and

diverse datasets that encompass the full spectrum of PD symptoms. Training models

on such comprehensive data will enable them to adapt more effectively to new scenarios

without constant updates. Moreover, ongoing refinement of our algorithms is essential

to ensure their effectiveness in various settings, from hospitals to patients’ homes, while

maintaining a balance between accuracy and practical usability.
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