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Abstract—Interpersonal influence has a radical impact on the
dissemination of information in online social media. Methods for
measuring this influence between online conversation partners
are often over-reliant on platform-level features, rendering them
inoperable in other settings. We propose a novel and portable
solution using Transformers to derive features of conversations
that indicate influence. In an evaluation across a diverse discus-
sion dataset, we show that our framework competes with existing
state-of-the-art large language models, being able to predict both
social and behavioural measures of influence accurately, and at
different levels of resolution, with a Macro-F1 above 0.91 in all
cases of social influence.

Index Terms—Artificial neural networks, Social network ser-
vices, Natural language processing, Text analysis

I. INTRODUCTION

Modern online social media enables billions of conversa-
tions between people. These conversations take place in a
variety of platform architectures, via a number of modalities,
and their content can cover the entire range of human interests.
A common factor in many human conversations is that one or
both of the parties uses the conversation to exert influence over
the other party’s point of view or future behaviour. Predicting
the magnitude of this influence between two conversation
partners is an important problem in a range of application
areas, including enabling effective information dissemination
[1], understanding historical social trends [2], halting the
spread of misinformation [3], and commercial advertising.

Many existing platform architectures include structural in-
dicators that can be predictive of influence. Depending on the
platform, a ‘friend’ or ‘following’ relationship can indicate
a greater trust or dependence between parties, which can
translate to a greater effect on the viewpoint or behaviour of
a connection. Some users can also be identified as more gen-
erally influential within a network because of the number of
other users with whom they have such structural connections.
These indicators are powerful, but limited, neglecting influ-
ential online interactions that are not (or not yet) recognised
with a structural indicator, and they can be highly platform-
dependent [4]. Whilst the growth of social media means that
increasing amounts of data is available on online interac-
tions [5], [6], methodologies using these structural indicators
for modelling influence can struggle when they need to be
applied in other platforms, such as in traditional web forums,
or interactions in large chatrooms [6]. Structural indicators

also neglect ‘controversial influence’ [7]–[10], in which social
media users interact and make connections to but are not
influenced by people whom they actively disagree

In this paper, we propose a novel framework that uses
features of the conversation itself to predict the influence
two parties may have on each other. We chose this ap-
proach because we believe it to be the most portable and
generally applicable, with the conversation features we use
being extractable from any online interaction, regardless of
the platform.

As this form of conversation-based interpersonal influence
prediction (unlike predicting general degree of influence in
a network) is a novel task, there are no standard metrics
or existing frameworks with which to evaluate performance.
Therefore, we define influence metrics using social and be-
havioural markers of influence. We use matching followers as
a measurement of ‘social influence’ due to the impact social
processes have on social network topology. We argue that
the act of two people gravitating to similar neighbourhoods
indicates an influenced user desiring more exposure to another
user or their network. We believe a future retweet is an intu-
itive example of an influential source impacting another user’s
behaviour. This behaviour is an active choice by someone to
project a message or show support, both of which indicate
a motivation to associate themselves with the user or their
message. A system that is able to predict both social and
behavioural influence outcomes from a conversation, at a range
of resolutions, is, we argue, modelling interpersonal influence
in that conversation.

Due to the novelty of this task, there is no existing approach
that tackles this conception of influence, with the most similar
literature tackling the identification of influential nodes within
social networks (which does not address whether a node
exerted influence in a particular conversation) or predicting
certain behaviours such as connection-forming at a macro-
level. To provide context for our framework designed as a
solution to this task, we assess the task’s difficulty by compar-
ing our framework’s performance against that of several large
language classifier models (BERT, RoBERTa, DistilBERT,
GPT2) and baseline classifiers using our own feature set (most
frequent class, stratified random, and uniform random).

We train and evaluate our model using social influence
(SI): the degree of overlap in conversation partners’ structural



connections on a platform, and behavioural influence (BI): the
likelihood of future signal-boosting behaviour between the two
parties (e.g., re-sharing content). Alongside this, we assess the
level of contribution to BI and SI for each conversation factor
under different circumstances, in an evaluation carried out on
a large social-networking dataset. In accordance with our aim
for a method that is not constrained to a particular domain,
our evaluation includes discussions across twenty different
topics, as well as different levels of resolution in quantifying
influence. In short, the research questions we address are:

• RQ1: To what extent can interpersonal influence be
predicted by an online conversation’s content?

• RQ2: Is there a significant change in model accuracy
when predicting different levels of social and behavioural
influence?

• RQ3: How do conversation features contribute to predict-
ing interpersonal influence?

• RQ4: How well can conversation features predict influ-
ence in isolation?

The remainder of this paper is organised as follows. In
Section II we survey existing methods for predicting wider-
group influence in social networks. Section III describes our
datasets and influence-modelling methodology. Section IV
presents the results of our experiments as applied within a
large Twitter corpus. Finally, we conclude with some key
observations.

II. RELATED WORK

Topology-based detection posits that the types of relation-
ships between nodes that can lead to behavioural or social
changes can be detected by looking at a network’s structural
features. For instance, outlier detection identifies influential
nodes in a network by the ratio of ingoing and outgoing node
connections across the network [11]. In a social network, these
influential nodes act like a heat source, where actions have
a transitive cascading effect, diffusing into the community
[10]. The features used to determine nodes’ in/out influence
ratios are often platform dependent features, such as the
number of followers, the number of posts or the number of
retweets [12]. Gaussian outlier detection can demonstrate this
principle by detecting anomalous and influential nodes with
more internal community edges than the network average,
and shows that news outlets and politicians hold the highest
number of connections, indicating greater influence [1].

Whilst there are examples of effective topological meth-
ods for monitoring and predicting interpersonal influence of
an individual based on a wider group, these methods are
often binary in resolution and depend heavily on structural
connections, neglecting much of the content of interactions
(which can lead to controversial influence false-positives [7]
[8] [9] [10]). Qiu et al. developed the DeepInf framework
[13] predicts an influential chain-reaction with a latent space
that reflects network structure features and a binary status
(indicating an action) for neighbouring nodes. A Graph At-
tention Transformer (GAT) layer in the DeepInf framework
provides the attention coefficients to measure the contributed

importance between graph vertices. As topological features
are dependent on structure, smaller graphs with fewer edges
provide less data for models to learn graph features. As
a solution, models such as AugInf use graph augmentation
during training and testing to create additional edges to a
network’s sub-groups via a Variational Graph Auto Encoder
[14]. These edges are based on their predicted likelihood
and provide more latent space detail for smaller networks.
Similar to DeepInf, the desire to increase node structural
details within latent feature spaces is also researched in
the MRAInf framework [15]. The MRAInf framework was
designed in response to the 1-Weisfeiler-Lehman restriction by
introducing a local stimulation mechanism containing multiple
1-Dimensional convolution blocks to provide discriminate
reinforcement between feature maps.

Content-based influence detection traditionally uses a sam-
ple of media content to predict a single resolution of so-
cial or behavioural influence [8]. In principle using content
provides a tailored set of assets for each node that are less
dependent on structural information and platform architecture
(which can contain edges between nodes for reasons other
than shared viewpoints [4]). Several methods can identify
linguistic characteristics of a discussion. Most commonly, low
resource-intense methods are used to extract discussion char-
acteristics using keyword extraction to determine generalised
endorsements (i.e. hashtags or links to political websites) [3].
This method whilst requiring less resources, provides limited
resolution, has dependencies on platform features (hashtag
implementation), and requires a wider network to draw conclu-
sions on behaviour. However, whilst more resource-intensive,
NLP Transformers can be trained to provide semantic and local
context to words within a sentence using word-embeddings
[16]. After fine-tuning, these models can classify discussion
characteristics such as sentiment and stance [17]. Although
resource intensive, we argue that the use of word embedding
(over traditional low resource methods) allow us to map
words to lower dimensional space, capturing unique semantic
and structural features which provide insight into otherwise
unknown influential principles, at a range of resolutions, and
without dependencies on platform specific content or the wider
network [18].

Whilst network structures and conversational features pro-
vide insight into the influence of a node within a network,
research in Topic Affinity Propagation (TAP) has provided a
combined approach including real world examples of topic
separation and influential clustering [19]. Whilst network
structures can indicate the amount of influence a node has, real
world social networks are noisy, with users having differing
levels of influence on different topics. TAP uses affinity
propagation on a topical factor graph model, where it receives
the structure and topic features for a sub-network of nodes.
The model is trained via distributed learning for topic sensitive
clustering. In applications beyond topic sensitivity, the EIRank
model embeds sub-networks representing different types of
interactions (retweets, replies, mentions, favourites, following)
such that interaction types have differing levels of contribution



for showing signs of influence [20]. The features related
to the interaction between nodes in an influence cascade
[21] expands this definition further, and uses platform related
interactions as features to indicate influence: initiation, contri-
bution, sharing. The types of behavioural influence being used
across the cascading levels are visualised through a Sankey
diagram, where users are divided into levels based on their
distance from the central node. The network’s structure and
features allow us to identify cultural and behavioral differences
in the methods people use to influence other’s politics on social
media [22], [23].

III. METHODOLOGY

In this study we base our framework first and fore-
most around content-based features, to uniquely provide
a non-platform-dependent influence prediction framework.
A conversation’s attributes can be defined as a =
{stance, sentiment, exposure}. That is: for each speaker,
the stance they take on the topic of conversation, the tone of
their contribution to the conversation, and their prior exposure
to this conversation partner. For instance, consider the graph
dataset G = (U,C), where U is the set of users (nodes)
with an individual user being represented as ui ∈ U , and
C is a set of conversations (directed edges) between users,
with an individual conversation being represented as ci ∈ C.
In conversation c1, if user u1 responds to a statement by
u2, it is possible for c1 to contain features that indicate
whether u1 is being influenced. We define influence in two
proxy categories: social influence s as the number of matching
followers between u1 and u2, and behavioural influence b as
the number of retweets by u1 from u2. This relationship can
be summarised as: a1 ⌢ a2 ⇒ s1, b1 or c1 ⇒ s1, b1.

As shown in Figure 1, our machine learning framework has
five stages and is trained and validated on a conglomerate
of large social-networking datasets. The first stage uses the
text of a post to predict the topic of conversation in each
interaction, with an interaction defined as a post and a reply
to that post. Once the conversation topic is predicted, in the
second stage we predict each conversation partner’s stance on
the topic. The third stage then examines both post and reply
to understand the users’ conduct as expressed in the sentiment
of their text. In the fourth stage, we count the number of past
encounters to understand the amount of previous exposure
these two users have to one another. The final stage uses
stance, sentiment, and exposure as conversational features in
a Random Forest classifier to predict the degree of social or
behavioural influence. Our motivation in using these modular
classifiers across the framework’s 5 stages [Figure 1] provides
novel and measurable insight into each factor’s contribution
to SI and BI. Thus we evaluate each model’s performance
and compare to state-of-the-art LLMs to provide confidence
in our modular features and the framework’s ability to answer
our RQs. All models were trained until experiencing a plateau
on the validation macro F1 score.

Fig. 1: Diagram showing the proposed social and behavioural
influence prediction framework in five stages. Stages 1-4
retrieve conversation features from the text and Stage 5 derives
an influence score from these features.

A. BERT Classifier

BERT models provide the basis for our word embeddings
and vectorisation in Stages 1-3 [Figure 1]. Each dataset is
divided into training (70%), validation (20%), and testing
(10%) [17], [24]. We adopt a pre-trained bert-base-uncased
model [25] that has been trained in a self-supervised manner
using the English Wikipedia site and Book Corpus (11038
unpublished books) [25]. We use the model’s input structure
and syntax [CLS] Sentence A [SEP] Sentence B [SEP] to
distinguish between sentences [17], [26] and train the BERT
multi-class-classifier at a leaning rate of 3e-5 (concluded
from Bayesian Optimisation tests). The external linear layer
uses an AdamW Optimizer algorithm and Cross-Entropy Loss
function [26], [27].

B. Stage 1 and 2 - Topic and Stance Model

1) Dataset - TOPIC AND STANCE: Motivated to have a
large corpus of political topics and nuance behaviours, for
Stages 1 and 2, we use five datasets gathered by Li, Zhao and
Caragea for stance and topic detection [27]:

• The MT-STANCE dataset [28] contains multi-labelled
Twitter posts collected during the United States 2016
presidential election. The influence of election cycles
provide topical relevance in detecting western political
figures.

• The TRUMP-BIDEN dataset [29] covers the six weeks
before the United States 2020 presidential election. This
data expands upon MT-Stance, providing more political
candidates as well as topical events.

• The COVID dataset [30] contains labelled Tweets from
the United States during the COVID-19 global pandemic
with stances and sentiment on COVID-19 restrictions.

• The CONTROVERSIAL-SIX dataset [31] contains Tweets
from the United States between 2016-2017 regarding
stances on six controversial political topics.

• The CONTROVERSIAL-EIGHT dataset [32] provides
seven additional controversial topics, increasing the rele-
vance of the topic detection model.

The content of the five datasets were combined, translated,
and condensed to Tweet, topic, and stance. We also augmented
the dataset with a random sample of Tweets to reflect non-
political discussions. We merge column labels from different



datasets that have identical topics (e.g. politician names),
and remove any unnatural message structures like Tweet @
symbols, hyperlinks, and unidentifiable characters. We keep
hashtag text but the octothorpe symbol is removed and un-
derscore characters are replaced with spaces. The final dataset
consists of 44500 Tweets covering 21 topics1.

2) Dataset - ADDITIONAL TOPIC AND STANCE DATASET
(ATS): To increase our confidence about the generalisability
of our model trained on the stance and topic datasets provided
by Li, Zhao and Caragea, we created an additional topic
and stance (ATS) dataset, which consists of 1000 Tweets
posted internationally between 2021 and 2022, for each of
the 21 topics from the Topic and Stance dataset. Tweets
were retrieved through searches using associated positive and
negative keywords.

3) Model Training: The topic detection model (fa) for
Stage 1 was trained using the Topic and Stance dataset to
identify political topics in a sentence. Conversation sentences
were tokenised (G ∈ Nm×n) and applied to the topic model
(X = fa(G)|X ∈ σ(Rm×21)) providing a sigmoid topic
probability vector for each conversation. Our motivation for
topic retrieval was to increase the conversation’s context. Thus,
the most likely topic was applied with the original sentence to
the stance classifier model (fb) to predict the labels: against,
for, neutral (Z1 = fb(G,X)|Z1 ∈ σ(Rm×3)). After fine-tuning,
our topic model has a Macro-F1 test score of 0.671. The
stance detection model for Stage 2 was fine-tuned on the same
dataset and achieved a Macro-F1 test score of 0.671. We then
test both models using the ATS dataset. The topic detection
model achieves a Macro-F1 score of 0.756. Each of the stance
topics’ were independently tested and averaged at 0.837 with
a standard deviation of 0.037.

C. Stage 3 - Sentiment Model

For Stage 3’s sentiment model training, we use the Twitter
Sentiment dataset [33] containing 27481 Tweets labeled for
sentiment classification. The sentiment model (fc) is also
trained using tokenised word-vectors (Z2 = fc(G)|Z2 ∈
σ(Rm×3)) and evaluates social conduct in conversation based
on three sentiment labels (positive, negative, and neutral), and
was split into training (70%), validation (20%), and testing
(10%) datasets. After classifier training, the model has a
Macro-F1 test score of 0.738.

D. Stage 4 and 5 - Interpersonal Influence Model

To train our interpersonal influence model, we extract con-
tent features (stance (Z1), sentiment (Z2), exposure (e ∈ Nm))
from the MuMiN dataset [34], which provides training data
(F = Z⌢

1 Z⌢
2 eT |F ∈ Rm×13)) for the social and behavioural

influence classifiers. This dataset consists of 20000 users and
71000 conversations and required updated follower details.

1Abortion, Atheism, Bernie Sanders, Climate Change is a Real Concern,
Cloning, the Death Penalty, Donald Trump, Face Masks, Anthony Fauci,
the Feminist Movement, Gun Control, Hillary Clinton, Joe Biden, Marijuana
Legalization, the Minimum Wage, Nuclear Energy, School Uniforms, School
Closures, Stay at Home Orders, Ted Cruz, and Random Tweets belonging to
none of the previous categories.

Fig. 2: Resolutions of interpersonal influence. We derive these
thresholds using K-Means clustering on the influence proxy
variables.

Exposure is assigned to each conversation from the number
of post-reply relationships in the dataset between the two in-
teracting users. Motivated to measure categorising capabilities,
our Random Forest classifier2 assesses interpersonal influence
at three different resolutions. We use K-means clustering
to categorise resolution training labels [Figure 2] which are
assigned by:

∑n
j [gj < h], where g ∈ Rn holds the lower

boundaries for each resolution and the scalar h represents the
two users’ matching follower or retweet count. Training results
will be discussed in Section IV.

IV. RESULTS

In this section we present answers to our main research
questions, including whether the features of a brief conversa-
tion can predict measures of social and behavioural influence
(RQ1) across ranges of detail (RQ2). We also examine the
relative importance and isolated predictive power of subsets
of conversation features (RQ3, RQ4). We compare our frame-
work, the complexity of the task, and the validity of our
extracted features against state-of-the-art LLMs and baseline
classifier comparisons (most frequent class, uniformly random,
stratified random). Compared to LLMs and baseline classifiers,
our framework shows good and more consistent prediction
rates across label resolutions. Further investigation indicates
that the exposure feature has the most significant impact on
predicting social and behavioural influence, followed by post
features. However, it should be noted that exposure struggles
to predict influence independently and that other conversation
features like sentiment perform better [Table II].

A. Predictions Across Label Resolutions (RQ1, RQ2)

The social influence tests [See Table I] show good per-
formance across label resolutions, with the detailed social
influence model achieving a Macro-F1 score of 0.9334. The
most accurate social influence model was moderate, followed
by detailed and simple. Both precision and recall scores across
all social influence model categories remain above 0.91, with
precision averaging 0.9402, whilst recall averaged 0.9211.
The poorest recall, precision, and Macro-F1 trend across
detailed and moderate models were the lowest social influence
labels (low and very low). In comparison, the most accurate
behavioural influence test was the simple model achieving
a Macro-F1 score of 0.891. Both simple and moderate be-
havioural models had larger Macro-F1 label inconsistency,
with the Moderate model ranging from 0.7058 (High) to
0.9986 (None).

2We evaluated other classifiers, with the Random Forest performing best.



Social Behavioural
S M D S M

InterInf Framework Labels (F1 Score)
None 0.919 0.922 0.918 0.998 0.998
Very Low

0.914

0.893 0.875

0.783

0.741Low 0.986
Medium 0.977 0.909 0.903
High 0.967 0.944 0.705Very High 0.966

Model Comparison (Macro F1 Score)
InterInf-Framework 0.916 0.94 0.933 0.891 0.837
BERT-Base 0.91 0.91 0.226 0.996 0.249
DistilBERT 0.898 0.848 0.823 0.988 0.339
GPT2 0.904 0.84 0.834 0.983 0.261
RoBERTa 0.0 0.168 0.112 0.996 0.249

Simple Baseline Classifier (Mean Average)
Stratified 0.492 0.247 0.167 0.503 0.253
Uniform 0.507 0.249 0.17 0.501 0.25
Most Frequent 0.49 0.08 0.005 0.006 0.0

TABLE I: Table showing interpersonal influence tests across
resolutions: Simple (S), Moderate (M), Detailed (D). Including
label and model comparisons, with row-spans representing the
resolution’s label categories [See Figure 2]. Our framework’s
best Macro-F1 label and resolution is the social influence
moderate model.

The prediction results were aligned with our expectations
for RQ1 and RQ2, as the framework outperforms simple
baseline classifiers, and is comparable to state-of-the-art large
language models (outperforming a standard BERT model in
most categories). Considering this, we are confident that the
features we extract (stance, sentiment, and exposure) are
justified to be assessed as indicators of influence and can
provide more transparent assessment than a black-box feature
space. Furthermore, considering the framework’s combined
modular size, it is far more consistent in prediction accuracy
across categories compared to single large language models.
We also note that we suspect the RoBERTa model would
perform significantly better in social categories if given more
suitable hardware during training.

B. Prediction Feature Importance (RQ3, RQ4)

In this section we review RQ3 and RQ4, by identifying the
contribution of conversation feature sets when determining the
social and behavioural models’ prediction results. We explore
the extent of this contribution under two circumstances: the
feature’s collective contribution alongside others; and the fea-
ture’s isolated contribution, where we measure an independent
feature or feature set’s prediction accuracy3. To retrieve a
feature or feature set’s isolated accuracy, new interpersonal
influence models were trained.

In answering RQ3, Figures 3 and 4 test results provide
us with details on collective feature importance. Consistently
across models, exposure was the dominant feature in pre-
dictions, with its contribution ranging from 23% to 28%.

3We use the following features and feature sets: post stance, post sentiment,
all post, reply stance, reply sentiment, all reply, and exposure.

Social Behavioural
S M D S M

all features 0.916 0.94 0.933 0.891 0.837
all sentiment 0.9014 0.9117 0.8952 0.8609 0.8288
all stance 0.8891 0.89 0.8264 0.7125 0.7247
all reply 0.8469 0.8785 0.873 0.8112 0.749
reply sentiment 0.8452 0.8695 0.8573 0.8076 0.7045
all post 0.8637 0.8372 0.7382 0.6113 0.4895
post sentiment 0.8626 0.8270 0.7362 0.6114 0.4896
post stance 0.8497 0.8105 0.6586 0.6086 0.4887
reply stance 0.8152 0.7606 0.7008 0.5157 0.5352
exposure 0.7589 0.6661 0.54 0.4068 0.2624

TABLE II: Table showing Macro-F1 tests of isolated conver-
sation features and feature sets across resolutions: Simple (S),
Moderate (M), Detailed (D). This test demonstrates that the
all sentiment feature set has the highest prediction accuracy
and exposure has the poorest. Isolated conversation feature sets
can be compared to feature models demonstrated in Table I.

We found that whilst there was a positive association with
exposure in social influence models, the reverse was true for
behavioural influence. However, both show a negative associa-
tion with post positive sentiment scores. Post features are also
consistently considered more important across models over
reply features. We also find no consistent trend in stance and
sentiment dominance toward final predictions. In answering
RQ4, we find that exposure and independent stances are poorer
at predicting social influence when isolated, with an average
Macro-F1 score below 0.78, in comparison to reply features
(such as reply sentiment) which reach an average Macro-F1
score of 0.8573 [Table II]. We notice an additional divide
when comparing all post (0.813) and all reply (0.8661) average
Macro-F1 values. Furthermore, when comparing stance (all
stance) and sentiment (all sentiment), sentiment has the best
Macro-F1 score for social influence averaging at 0.9027.
Behavioural influence reflects these results but consistently has
a lower Macro-F1 score in each category, as well as the all
reply feature set having a higher Macro-F1 score compared to
all stance by up to 10%. The impact of behavioural influence
features has also changed [Figure 4] for positive (post neutral
stance and sentiment) and negative associations (post stance
against).

The results of the collective feature importance tests [Ta-
ble 3] were aligned with our expectation that exposure has
the most significant impact in predicting both social and
behavioural influence. We hypothesise that the reason posts
have higher feature importance in comparison to replies, is
that a conversation relies on the composure of the initial
statement and that the reply in most circumstances follows
a pattern based on this. When isolating these features [Table
II], we see a switch in importance, with reply sentiment data
having better Macro-F1 scores in comparison to post and
exposure features. This is consistent with the discussed theory
and would suggest that isolated reply features become more
important for prediction.
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Fig. 3: Bar Charts showing collective feature importance tests for predicting social and behavioural influence. In both examples,
the exposure value has the most significant impact on interpersonal influence, followed by post features.

Fig. 4: SHAP diagram of the simple resolution for the social
and behavioural influence model showing how each features’
value impacts influence label prediction.

V. CONCLUSION

Determining the extent of online influence between two
people is a challenging issue and analysis can often be limited
to analysing platform dependent structures and features that
correlate to changes in behaviour. Our research addresses this
issue by providing a novel way to measure a user’s political
and social-economic influence using universal factors that are
non-platform-specific. Examining conversations between pairs
of users, we contribute a novel content-based approach, that
avoids dependence on topological features and was trained
and tested on large social-networking datasets to extract key
features of the conversation: its topic, sentiment, the prior
exposure of the two speakers, and their stance on the topic.
From these features, we demonstrate that we can predict
measures of social and behavioural influence with a Macro-
F1 score of 0.94 and 0.89, with our model showing more

consistent performance than state-of-the-art large language
models. Our research also provides novel insight into each
factor’s interpersonal influence contribution, finding that prior
exposure between people has the highest impact on social and
behavioural influence predictions within the model, but this
feature is a poor predictor by itself. We also discover that that
a post’s conversation features have more impact on the final
prediction than those of the reply. In summary, our research is
intended as an important stepping stone in determining online
social influence based on universal content seen both online
and offline. Our research shows strong predictive performance
for social and behavioural influence and gives insight into
feature importance across twenty political topics.
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