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Abstract

We show that the problem of determining if the identity matrix belongs to
a finitely generated semigroup of 2 × 2 matrices from the modular group
PSL2(Z), the Special Linear group SL2(Z) and the General Linear Group
GL2(Z) is solvable in NP. We extend this to prove that the membership
problem is decidable in NP for GL2(Z) and for any arbitrary regular expres-
sion over matrices from SL2(Z). We then derive that the problems of whether
a given finite set of matrices from SL2(Z) or PSL2(Z) generates a group or a
free semigroup are both decidable in NP. The previous algorithm for these
problems, shown in 2005 by Choffrut and Karhumäki, was in EXPSPACE.
Our algorithm is based on new techniques allowing us to operate on com-
pressed word representations of matrices without explicit expansions. When
combined with the known NP-hard lower bound, this proves that the iden-
tity (and thus membership) problem over GL2(Z) is NP-complete, and the
group problem and the non-freeness problem in SL2(Z) are NP-complete.
Thus the paper answer the long standing open question on the complexity of
the membership problem in semigroups generated by matrices from GL2(Z).
We develop novel techniques that can be used for solving numerical matrix
problems in symbolic form, which are applicable for solving compressed word
problems for groups and semigroups, bridging the gap between combinatorial
group theory, computational problems on matrices and complexity theory. 1

1A preliminary version of this paper appeared in [4].
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1. Introduction

A large number of naturally defined matrix problems are still unanswered
despite the long history of matrix theory. Originally, the notion of a matrix
naturally arose from abbreviated notations for a set of linear equations [15].
Nowadays, matrix problems emerge in a much larger context, as they ap-
pear in the analysis of various population models [14], verification of digital
processes [22], in the context of control theory questions [9], etc. In the the-
ory of computation, the analysis of many automata models and abstractions
often relies upon determining properties of the matrices which define them.
For example, the computation of Weighted Finite Automata (WFA) can be
defined as a product of integer matrices [26, 2], the dynamics of Probabilistic
Finite Automata (PFA) can be represented by stochastic matrices [28] or
in the case of Quantum Finite Automata (QFA) [8] by unitary matrices 2.
Computational problems on matrix semigroups have been associated with
several long standing open problems in algebraic number theory and tran-
scendence theory [24], Nash equilibria [23], program verification [41] as well
as in a large number of engineering fields [27].

The “embarrassing lack of techniques” for solving computational prob-
lems for even simple linear systems has been recently discussed and high-
lighted by several leading scientists, including Terence Tao [50] and Richard
Lipton [31]. Many computational problems on matrix semigroups are either
open or else undecidable, meaning there is no hope to find a tractable solution
to the problem at hand unless one makes several substantial restrictions on
the semigroup, such as its dimension, domain over which it is defined (i.e. Z,
Q , C , H or A), size of the generating set as well as additional constraints
on allowed reachability paths or other simplifications (such as allowing ap-
proximate solutions, considering reachability paths over bounded languages
or a more specific sub-classes of matrices).

2On the other hand, recent developments in automata theory and combinatorics on
words have been successfully used in solving algebraic problems in matrix semigroups
[18, 42, 25, 8, 5, 47].
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Many simply formulated and elementary problems for matrices are inher-
ently difficult to solve even in dimension two, and most of these problems
become undecidable in general, starting from dimension three or four. One
such hard question is the Membership Problem: Given a finite set of m×m
matrices F = {M1,M2, . . . ,Mn} and a matrix M , determine if there exist an
integer k ≥ 1 and i1, i2, . . . , ik ∈ {1, . . . , n} such that Mi1Mi2 · · ·Mik = M ,
i.e., determine whether matrix M belongs to the semigroup generated by F .
A seminal result in this area by M. Paterson showed that for semigroups gen-
erated by a finite number of three-dimensional integer matrices, determining
if the zero matrix belongs to the semigroup (the Mortality Problem) is unde-
cidable [43]. The decidability of the mortality problem for integer matrices of
dimension two still remains an open problem, although the problem is known
to be at least NP-hard [3].

In this paper, we develop various novel techniques that allow us to re-
place complex numerical problems on matrix products by combinatorial and
computational problems on words. More specifically, by operating with com-
pressed symbolic representations of matrices and matrix products, we dra-
matically reduce the computational complexity of the proposed algorithms
for several computational problems (such as membership, identity and free-
ness) from EXPSPACE to NP in the cases of the Projective Special Lin-
ear group PSL2(Z), Special Linear group SL2(Z) and General Linear Group
GL2(Z), which play central roles in many branches of mathematics. One
importance of the proposed techniques, which operate with compressed rep-
resentations of matrices in SL2(Z), is also in the potential applications for
larger classes of 2 × 2 matrices over integers, rationals or complex numbers
due to recently studied decomposition techniques (based on the Smith nor-
mal form), which convert the original problems on more general classes into
problems over symbolic forms of SL2(Z), see [46, 47, 48]. These techniques
can also contribute to other established areas, such as computational group
theory, including problems for compressed words [32], the analysis of cryp-
tosystems based on matrix groups [20] and several variants of the membership
problem in similar settings, see [37, 36, 34, 1].

SL2(Z), which is the most basic example of a discrete non-abelian group,
consists of all integer 2× 2 matrices, with determinant one3 and PSL2(Z) is

3The subgroup SL2(Z) of the group SL2(R) has a role somewhat like that of Z inside
of R.
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the quotient of SL2(Z) by its center {I,−I}, where I is the identity matrix.
In other words, PSL2(Z) consists of all integer 2× 2 matrices, with determi-
nant 1, where pairs of matrices A and −A are considered to be equivalent.
Group SL2(Z) is important in the context of many fundamental problems,
for example from hyperbolic geometry [52, 16, 21], dynamical systems [44],
Lorenz/modular knots [35], braid groups [45], particle physics, high energy
physics [51], M/string theories [19], ray tracing analysis, music theory [39]
and it plays a central role for the development of efficient solutions of 2× 2
matrix problems [46].

The structural properties of GL2(Z), SL2(Z) and PSL2(Z) have been stud-
ied extensively in various textbooks and research papers. In this work, we
reveal new techniques for efficient computations with compressed represen-
tations of elements in these groups in order to answer long-standing algo-
rithmic complexity questions. In particular, we show that for any finitely
generated semigroup S ⊆ GL2(Z) the membership problem for S (whether
or not a given matrix belongs to S) is NP-complete, and for S ⊆ SL2(Z) the
group problem (whether S is a group, i.e. S is closed under inverse) and the
freeness problem (whether each matrix in S has a unique factorisation) are
NP-complete, by reducing the previously known EXPSPACE upper bound
from [17] to NP.

In 1994, Cai, Fuchs, Kozen and Liu proved that the the membership prob-
lem for finitely generated subgroups and submonoids of the modular group
PSL2(Z) can be solved in polynomial time on average [11]4. Later, in 2007,
Gurevich and Schupp solved the membership problem for the modular group,
showing that the problem for the group case is decidable in polynomial time
[25]. The algorithm proposed by Gurevich and Schupp operates on a graph
representing a syllabic representation of elements of PSL2(Z), and works as
a graph contraction algorithm. This approach works efficiently since the au-
thors consider a group, not a semigroup. Consequently, in their “daisy graph”
(defined later, see Figure 1 for example) representing the group generators,
all directed edges run in both directions, and hence it is possible to reduce the
nondeterminism in this graph by contracting (i.e. joining “equivalent” paths

4Note that the subgroup membership problem can be seen as a special case of the sub-
monoid (semigroup) membership problem. The only difference between the subgroup and
submonoid membership problems is that in the subgroup membership problems, inverses
are allowed. The subgroup membership problems reduce to the submonoid membership
problems by simply including the inverses in the generating set of matrices.
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and nodes) gradually. This leads to a deterministic P algorithm, whereas
in the semigroup case, we cannot apply such contractions without breaking
the structure of the graph and hence one cannot do better than an NP al-
gorithm. While it is known that the membership problem is NP-hard for a
semigroup of matrices from SL2(Z), the exact complexity for the membership
problem in this case was still open.

As mentioned, a main result of this paper states that the identity problem
for matrix semigroups generated by any finite set of matrices from GL2(Z) is
NP-complete. We may note that the solution to the identity problem is the
most essential special case on the way to building an algorithm for the general
membership problem for GL2(Z). The previous algorithm for this problem,
shown in 2005 by Choffrut and Karhumäki [17], was in EXPSPACE mainly
due to the translation of matrices into exponentially long words over a binary
alphabet {s, r} and further constructions with a large nondeterministic finite
state automaton that is built on these words. However that decision proce-
dure could also be implemented in EXPTIME, as the construction of the
automaton relies on words which have an exponential length representation
of each matrix from the generator and which then requires an exponential
number of steps for the construction of additional edges and checking of the
membership problem in the resulting regular language. On the other hand,
the problem does not allow any obvious PSPACE algorithm, let alone an
NP algorithm, as it was shown in [7] that there are instances of the iden-
tity problem over SL2(Z) where the number of generator occurrences needed
to produce the identity matrix, or the number of potential solutions to the
identity problem are exponential in the description size of the semigroup
generator (see §4.1.1 and §4.1.2).

It is rather surprising then, in this context, that we can derive an NP
algorithm solving the membership problem for GL2(Z). Our new algorithm
is based on a range of new techniques that allow us to operate directly with
compressed word representations of matrices without explicit exponential ex-
pansions. The membership problem in GL2(Z) is susceptible to an exponen-
tial blow up in the space and time requirements, unless elaborate techniques
are used to avoid them and simpler approaches often have pathological cases
which cause recognisers for the problem to lie outside of NP. Our techniques
use various properties of PSL2(Z) and its rich word structure, which is cap-
tured by a succinct syllabic representation initially explored by [25]. In our
results, we rely on the fact that we can derive a reasonable characterization
of complex long paths within our derived compressed graph that we call Al-
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ternating Forms, which have extensive properties that can be exploited and
help us to greatly simplify some parts of the analysis. We utilise various prop-
erties of PSL2(Z) and these alternating forms, and we combine them with a
variety of ideas from algebra, number theory, and graph theory in a novel way
to get the desired NP algorithm. When combined with the NP-hard lower
bound shown in [7], this proves that the membership problem (including the
identity problem) and group problem in GL2(Z) is NP-complete. From this
fact, we can immediately derive that the fundamental problem of whether a
given finite set of matrices from SL2(Z) or PSL2(Z) generates a group is also
decidable in NP.

In fact, we prove a stronger statement that it is decidable whether an
arbitrary matrix is in S, where S is an arbitrary regular subset of SL2(Z)
that is, a subset which is defined by a finite automaton. Since SL2(Z) is closed
under inverses, we show a construction that solves the freeness problem in
NP. The non-freeness problem was recently proven to be NP-hard [30] so
the non-freeness problem in SL2(Z) is also NP-complete.

The decidability status of the identity problem and the group problem
in higher dimensions was unknown for several decades and was only shown
in 2010 to be undecidable for integer matrices starting from dimension four
[6], see also the solution to Problem 10.3 in [10] 5. This undecidability result
was recently improved by reducing the bound on the size of the generator
set from 48 to 8 over SL4(Z) in [29]. The freeness problem is known to be
undecidable for 3× 3 matrices over the integers [12]. Although some partial
results for the freeness problem in matrices of dimension two are known,
a complete picture is far from clear [13]. The decidability of the identity
problem in dimension three remains a long standing open problem as well as
many other questions on matrices in dimension two over Z, Q and C. The
case of dimension two is the most intriguing since there is some evidence that
if these problems are undecidable, then this cannot be proven by using any
previously known constructions. In particular, there is no injective semigroup
morphism from pairs of words over any finite alphabet (with at least two
elements) into complex 2× 2 matrices [12], which means that the coding of
independent pairs of words in 2× 2 complex matrices is impossible and the
exact encoding of the Post Correspondence Problem or a computation of a

5A similar problem for mortality, i.e. the membership of the zero matrix, was shown
for Z3×3 in [43], but the problem for the identity matrix in Z3×3 is still open.
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Turing Machine cannot be used directly for proving undecidability in 2 × 2
matrix semigroups over Z, Q or C. The only undecidability result in the
case of 2×2 matrices that has been shown so far is the membership, freeness
and vector reachability problems over quaternions [5] or more precisely in
the case of diagonal matrices over quaternions, which are dual quaternions.
There is a possibility of finding algorithmic solutions to membership problems
in SL3(Z) as in [29] it was shown that there is no embedding from pairs of
words into 3×3 integral matrices with determinant one, i.e., into SL3(Z), and
no embedding from pairs of words over a group alphabet into 3× 3 integral
matrices.

Of note is that the membership problem for subgroups of GL2(Z), which
is known to be decidable in polynomial time [33]. As is often the case for
membership problems, there is a distinction in the complexity of membership
problems for semigroups and groups.

The paper is organized as follows. In Section 2, we provide essential no-
tations and definitions. In Section 3, we investigate the structure of SL2(Z)
and PSL2(Z), and investigate techniques to convert numerical matrix prob-
lems into computational problems on symbolic compressed forms. Section 4
describes a known brute-force EXPSPACE algorithm for deciding the iden-
tity problem over PSL2(Z) and GL2(Z). Section 5 contains the main result
of this paper, introducing new techniques for operating with compressed syl-
labic forms and we derive an NP algorithm for solving the identity problem
in PSL2(Z) and then show various corollaries such as deciding membership
for a general regular expression in SL2(Z) is in NP, as is the non-freeness
problem. Combined with a known NP-hardness result for deciding the iden-
tity problem in SL2(Z), this proves the NP-completeness of several matrix
problems. Finally in the conclusion (Section 6), we provide an overview of
known results and show future directions for research in this area.

2. Preliminaries

2.1. Semigroup basics

By an alphabet, we understand (usually) a finite set Σ, and call its el-
ements letters. Any alphabet can be furnished with algebraic structure,
defining a product by letter juxtaposition (concatenation). The semigroup
generated by Σ is denoted by Σ+ or ⟨Σ⟩sg = {σ1σ2 . . . σn | n ≥ 1, σi ∈ Σ}.
The assumption that there are no nontrivial relations between the letters
such as commutation is another way to say that Σ+ is freely generated by Σ.
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An element of the semigroup Σ+ is called a word, and there is a natural
extension of Σ+ into a monoid, just by adding the neutral element called
the empty word, which is denoted by ε or 1. The monoid generated by Σ is
denoted by Σ∗. Given a word w = σ1σ2 · · · σk, we denote by wi,j the word
(also called a factor) σi · · ·σj, with the assumption that 1 ≤ i ≤ j ≤ k.

If Σ is included in an algebraic structure which also contains the inverse of
each σ ∈ Σ satisfying σσ−1 = σ−1σ = 1, we may define the group generated
by Σ as ⟨Σ⟩gr = {σa1

1 σa2
2 . . . σan

n | n ≥ 0, σi ∈ Σ, ai ∈ {−1, 1}}. If there is no
danger of confusion, we omit the subscript ‘gr’ and simply write ⟨Σ⟩.

2.2. Matrix Groups in Z2×2

Notation Z2×2 stands for the set of all 2×2 integer matrices. This set has
a natural ring structure with respect to ordinary matrix addition and mul-
tiplication. Unfortunately, the algebraic structure of Z2×2 seems too com-
plicated to imply any straightforward algorithm for membership questions,
hence simpler structures are needed.

A subset of Z2×2,

GL2(Z) = {A ∈ Z2×2 | det(A) ∈ {−1, 1}}.

also denoted as GL(2,Z) is called the General Linear group, consisting of
all 2 × 2 integer matrices having integer matrix inverses. Group GL2(Z) is
clearly the largest multiplicative matrix group contained in Z2×2. However, as
it shortly turns out, a smaller subgroup is useful for computational purposes.

One restriction that turns out to be useful is the Special Linear group
defined as

SL2(Z) = {A ∈ GL2(Z) | det(A) = 1},

but the quotient group

PSL2(Z) = SL2(Z)/{±I}

called the Projective Special Linear group appears even more useful. In fact,
PSL2(Z) has a very useful representation as a free product of two cyclic
groups of order 2 and 3. Notice that by the very definition, an element of
PSL2(Z) is a set a = {A,−A} of two matrices in SL2(Z), but from now on,
we may slightly abuse the notations and write a = ±A, or choose either
matrix A or −A to represent a. Intuitively, PSL2(Z) can be taken as SL2(Z)
by ignoring the sign.
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2.3. Graph Theory

We will study labelled multigraphs with the property that all edges be-
tween vertices v1 and v2 have distinct labels. Therefore, our notion of multi-
graphs can be formally defined as follows: V is a finite set of vertices (also
called nodes), L is the set of labels (which may be infinite) and E ⊆ V ×L×V
is the set of labelled edges (also called arcs). Now (u, l, v) ∈ E means that
there is an edge from u to v labelled with l.

A path in a graph is understood as a sequence of adjacent edges, and can
hence be presented as a sequence

Π = (v1, l1, v2)(v2, l2, v3) . . . (vk, lk, vk+1) ∈ E∗ (1)

Using notation ei = (vi, li, vi+i), the above presentation can be written as
Π = e1e2 . . . ek ∈ E∗. The length of path (1) is k and its label is defined
as the concatenation l1l2 . . . lk ∈ L∗. It is important to notice that if the
label set contains the empty word ε, then it is treated under concatenation
as usual, i.e. l1εl2 = l1l2. For a path with label l beginning at vertex u and
ending at v we may also use the notation Π = (u, l, v).

A subpath of (1) is defined as eiei+1 . . . ej, where 1 ≤ i ≤ j ≤ k. The
subpath is proper if i > 1 or j < k.

Definition 1. A dual edge cycle is a path of the form e1e2E
∗e1e2, where e1,

e2 ∈ E.

Remark 2. The notion of dual edge cycle is essentially different from the
usual graph-theoretical notion of a cycle, which requires that a node is visited
twice.

Intuitively, a dual edge cycle is a path at least four edges long that returns
to the two initial edges at the very end. Unless otherwise stated, the notion
of “cycle” in this article refers to Definition 1. The reason for such a defini-
tion is that in the later analysis, we want to remove cycles in the graph but
simultaneously preserve local properties of the path from which the cycle was
removed.

We call a dual edge cycle reduced, if none of its proper subpaths is a dual
edge cycle.

Definition 3. The nondeterminstic reduction function red : E∗ → E∗ is de-
fined to remove dual edge cycles: If Π = Π1Π2Π3, where Π2 = e1e2E

∗e1e2 is a
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dual edge cycle and Π1,Π3 ∈ E∗ are arbitrary paths, then red(Π) = Π1e1e2Π3.
Note that an arbitrary path Π may contain several dual edge cycles which can
be reduced by red. We may therefore consider red as being nondeterministic
when applied to a path, and we define red∗ as the transitive closure of red,
i.e., red∗(Π) is a set of paths, none of which contains a dual edge cycle. Thus,
red∗(Π) contains each consecutive pair of edges of the graph at most once.
Such a path is called a reduced path.

Example 4. Consider set of edges {e1, e2, e3} ⊆ V × L× V and path

Π = e1e2e3e1e3e2e3e1e2

Now, Π is a dual edge cycle, since e1e2 is a prefix and suffix. Π is not reduced
since it is a dual edge cycle, and anyway, e3e1e3e2e3e1 and e2e3e1e3e2e3 are
proper subpaths and dual edge cycles.

Notice that red, and thus red∗, is nondeterministic in this example, since
red(Π) ∈ {e1e2, e1e2e3e1e2} and red∗(Π) = {e1e2}. The second path was
generated by reduction red(Π) = red(e1 · e2e3e1e3e2e2 · e1e2) = e1e2e3e1e2
since red(e2e3e1e3e2e2) = e2e3.

3. The Structure of PSL2(Z)

3.1. Generating SL2(Z)
The group SL2(Z) is very important in number theory, and its structure

has been studied extensively in various textbooks (see [49], for instance),
but for pointing out the algorithmic complexity issues, we reproduce the
structural properties most relevant to our study here.

Two structurally important elements of SL2(Z) are

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

Evidently S2 = −I (which implies S3 = −S and S4 = I, so S has order 4),
whereas for each n ∈ Z,

T n =

(
1 n
0 1

)
,

implying that T has no finite order. Nevertheless, it can be shown that S
and T generate SL2(Z), and the following lemma provides even a quantitative
version of this fact.
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Lemma 5. SL2(Z) = ⟨S, T ⟩gr. Furthermore, any matrix

A =

(
a b
c d

)
∈ SL2(Z)

can be represented as

A = SαT q1S3T q2 · . . . S3T qkSβT qk+1 , (2)

so that α, β ∈ {0, 1, 2, 3}, qi ∈ Z, k ≤ 1 + log2M , and |qi| ≤ M , with M =
max{|a| , |b| , |c| , |d|}. Representation (2) can be found in time polynomial in
log2M .

Proof. By a direct computation we see that left multiplication of A by S and
T n can be described as follows:

S

(
a b
c d

)
=

(
−c −d
a b

)
,

T n

(
a b
c d

)
=

(
a+ nc b+ nd

c d

)
.

(3)

If c = 0, then

A =

(
a b
0 d

)
,

and since det(A) = ad = 1, it follows that a = d ∈ {−1, 1}. Therefore

A ∈
{(

1 b
0 1

)
,

(
−1 b
0 −1

)}
= {T b, S2T−b}.

If c ̸= 0 but a = 0, then according to (3) SA ∈ {T−d, S2T d}, implying that
A ∈ {S3T−d, ST d} (since S4 = I). In these cases, the claim evidently holds.

Assume then that ac ̸= 0. If |A11| < |A21|, then according to (3),
|(SA)11| > |(SA)21|. So define

α =

{
1 if |a| < |c|
0 if |a| ≥ |c|.

to see that

A1 = SαA =

(
a1 b1
c1 d1

)
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enjoys property |(A1)11| = |a1| ≥ |c1| = |(A1)21|. Assume then that

Ai =

(
ai bi
ci di

)
with property |(Ai)11| = |ai| ≥ |ci| = |(Ai)21| has been defined, but ci ̸= 0.
Then, due to the (extended) division algorithm, we can find an integer qi so
that ai = qici + ri, where |ri| ≤ 1

2
|ci|.

We define now

Ai+1 = ST−qiAi =

(
−ci −di
ri bi − qici

)
, (4)

and denote ai+1 = −ci, bi+1 = −di, ci+1 = ri, and di+1 = bi − qici. Then
matrix Ai+1 clearly satisfies |(Ai+1)11| = |ai+1| = |ci| > |ri| = |ci+1| =
|(Ai+1)21|.

The sequence A1, A2, . . . of matrices is defined until the least k for which
ck = 0 and hence

Ak =

(
ak bk
0 dk

)
,

and therefore, as we concluded above,

Ak ∈ {T bk , S2T−bk}.

Define β and qk so that Ak = SβT qk , where β ∈ {0, 2} and qk ∈ {±bk}. Now
Ai+1 = ST−qiAi implies Ai = T qiS3Ai+1, so

A = S−αA1 = S−αT q1S3A2 = S−αT q1S3T q2S3A3

=
...

= S−αT q1S3T q2S3 · · ·T qk−1S3Ak

= S−αT q1S3T q2S3 · · ·T qk−1S3+βT qk .

To estimate the magnitude of the numbers k, q1, q2, . . ., qk, let Mi be the
absolute value of the largest element of Ai and M the largest Mi. Clearly
M = M1 and notice also that according to the process defined above, |ci+1| ≤
1
2
|ci| for each i. But if |ci+1| = |ri| = 1

2
|ci| = 1

2
|ai+1| for some step, ci+1

divides ai+1 implying that ri+1 = 0 and the process terminates. Hence we
have, if the process has not yet terminated,

1 ≤ |ci| <
1

2
|ci−1| <

1

22
|ci−2| < . . . <

1

2i−1
|c1| ,
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which implies i− 1 < log2 |c1| ≤ log2M1. By contraposition, i ≥ 1 + log2M1

implies ci = 0. Thus, if k is chosen as the least number so that ck = 0,
then k ≤ 1 + log2M1. For the magnitude of numbers qi, notice that as
in (4) it always hold that |ri| ≤ 1

2
|ci|, then Mi+1 > Mi is possible only in

the case Mi+1 = |di+1|. To analyze this, the determinant condition gives
−cidi+1 + ridi = 1, and if i < k, then ci ̸= 0 and therefore

di+1 =
1− ridi
−ci

implying

Mi < Mi+1 = |di+1| ≤
1

|ci|
+

|ri|
|ci|

|di| ≤ 1 +
1

2
Mi,

But the inequality Mi < 1 + 1
2
Mi thus obtained can be valid only if Mi ≤ 1.

Now Mi = 0 can be true only for the zero matrix, whereas Mi = 1 results
in a small number of cases which can each be checked to satisfy Mi+1 ≤ Mi.
For the final step where ck = 0 the determinant condition implies |dk| = 1
anyway, so we can conclude that the process described above cannot increase
the absolute value of the maximal matrix entry.

For i < k we can write qi =
ai−ri
ci

, so

|qi| ≤
∣∣∣∣aici

∣∣∣∣+ ∣∣∣∣rici
∣∣∣∣ ≤ |ai|+

1

2
≤ Mi +

1

2
,

and since qi and Mi are both integers, we can conclude that |qi| ≤ Mi ≤
M1 = M . As qk ∈ {±bk,±dk}, trivially |qk| ≤ Mk ≤ M1 = M .

It is a straightforward task to analyze that the procedure for finding rep-
resentation (2) is a polynomial-time algorithm, given the bit representation
size of A as the input size.

Remark 6. Even though all matrices A ∈ SL2(Z) can be represented in
terms of S and T , it is worth noticing that the representation is not unique.
A direct computation shows that, for example, TST = ST−1S3.

For a more canonical representation, let

R = ST =

(
0 −1
1 1

)
.
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Direct computation shows that

R2 =

(
−1 −1
1 0

)
and R3 = −I,

implying that R6 = I, so R is of order 6. Since now T = S−1R = S3R, it
follows that SL2(Z) = ⟨S,R⟩, and that a representation of A ∈ SL2(Z) in
terms of R and S can be obtained by substituting T = S3R = −SR in (2). It
is noteworthy that when substituting T = −SR in (2), one can use R3 = −I
and S2 = −I to get a representation

A = (−1)γRn0SRn1S · . . . ·Rnl−1SRnl , (5)

where γ ∈ {0, 1}, ni ∈ {0, 1, 2} and ni ∈ {1, 2} for 0 < i < l.

Remark 7. It can be shown that the representation (5) for a given matrix
A ∈ SL2(Z) is unique, but it should be noticed that representation (5) can
be exponentially long in the representation size of matrix A in bits, as the
example (

1 m
0 1

)
= Tm = (−SR)m = (−1)m SR . . . SR︸ ︷︷ ︸

m times

(6)

demonstrates. The representation size of the matrix Tm is proportional to
log2m, but the representation (6) contains 2m matrices.

It is structurally simpler to present (5) ignoring the sign. For that pur-
pose, we introduce two structurally important elements of PSL2(Z).

Definition 8. Let s = S{±I} and r = R{±I} be the projections of S and
R in PSL2(Z).

Remark 9. Since S2 = R3 = −I in SL2(Z), it is clear that s2 = r3 = ε in
PSL2(Z), with ε corresponding to the identity matrix.

3.2. Generating PSL2(Z)
Lemma 10. [49] - PSL2(Z) = SL2(Z)/{±I} is a free product of ⟨s⟩ = {1, s}
and ⟨r⟩ = {1, r, r2}. That is, PSL2(Z) = ⟨r, s | s2 = r3 = 1⟩ and if

rn0srn1s · · · rnp−1srnp = rm0srm1s · · · rmq−1srmq , (7)

where ni,mj ∈ {0, 1, 2} and ni, mj ∈ {1, 2} for 0 < i < p and 0 < j < q,
then p = q and ni = mi for each i.
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For the proof of Lemma 10 see [49].

Definition 11. We call a representation w of a ∈ PSL2(Z) a ground level
presentation, or ⟨r, s⟩-presentation if w ∈ {r, s}∗ strictly, (eg. no parentheses
and exponents are involved), and reduced, if w contains no subwords ss or
rrr.

Remark 12. By Lemma 10 every element of PSL2(Z) admits a unique re-
duced ground level representation. However, it follows directly from Remark
7 that the unique representation of the projection of Tm in PSL2(Z) is

tm = rs . . . rs︸ ︷︷ ︸
m times

, (8)

which is exponentially long in the representation size of tm, being Θ(log2m)
since we can use Tm to represent tm = {Tm,−Tm}.

Despite Definition 11, we may refer to the ground level representation
using exponents and parentheses, e.g., r2, or even (sr)m, but it should then be
clear from the context that we are not referring to the succinct representation
which we now define.

It is remarkable that for a given matrix A, the representation (7) of
a = ±A always contains so much periodicity, that it is possible to have
a polynomially long description. In the continuation, we will call such a
description a succinct or compact representation.

In fact, substituting T = −SR in (2) and taking the projections S → s
and R → r we learn that

a = sα(sr)q1s(sr)q2 · . . . s(sr)qksβ(sr)qk+1 , (9)

where the estimation for the exponents and k are the same as in Lemma 5.
We need to remember that in this representation, numbers qi are not neces-
sarily positive but, if qi < 0, we can simply write (sr)qi = (r2s)−qi to get a
presentation with positive exponents expressed in the following lemma:

Lemma 13. Any element a = {A,−A} of PSL2(Z) admits a unique succinct
representation of the form

a = rα(sr)n1(sr2)n2(sr)n3(sr2)n4 . . . (sr)nl−1(sr2)nlsβ, (10)

where α ∈ {0, 1, 2}, β ∈ {0, 1} and ni > 0 if 1 < i < l. The representation
size can be bounded analogously to Lemma 5.
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It is possible to formalize the notion of the succinct representation by
extending alphabet from {r, s} into a larger one containing parentheses (
and ), exponent symbol ↑, and 0 and 1 to present the exponents in binary.
When applying this approach to equation (8), we would have a representation

tm = (rs) ↑ (m1 . . .mk), (11)

where m1 . . .mk is the binary representation of integer m and hence k =
⌊log2m⌋ + 1. Now the length of the right hand side of (11) as a string over
the larger alphabet described above is approximately 1+2+1+1+1+k+1,
which is proportional to log2m, the representation size of tm.

However, to achieve simplification, we will not use such a formalism for
the succinct representations. Instead, we choose to use an infinite alphabet
consisting of syllables defined in the next section.

3.3. Syllabic Presentation of PSL2(Z)
A more straightforward version of the compact representation (10) can

be obtained by using the notion of a syllable. In principle, a syllable is just
a word over alphabet {r, s}, but typically a systematic form is desirable.

Definition 14. Following Gurevich and Schupp [25], we define the following
syllables:

Ri =


(rs)i−1r if i > 0
(r2s)|i|−1r2 if i < 0
ε if i = 0

We say that syllable Ri is positive if i > 0, and negative if i < 0. The
representation size of the syllable is a constant (to define the type) plus the
subscript a representation size for Ra type syllable.

In the continuation, we will introduce more syllables but for the moment,
these are sufficient. Notice that Ri is the inverse to R−i for any i ∈ Z (thus
RiR−i = ε). As r = R1, the following lemma is trivial but its claim is worth
emphasizing.

Lemma 15. All elements of PSL2(Z) can be represented by using syllables
of the set {s, Ra | a ∈ Z}.

The main advantage of syllables of Definition 14 is that they can be
used to write the compact representations (10) in a structural way, and also
provide a natural way to handle the potential cancellations of elements.
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Remark 16. It can easily be shown that the syllabic representation of PSL2(Z)
elements is not unique. Consider, for instance an element a = R2R−5. By
the definition,

R2R−5 = (rs)r(r2s)4r2 = (rs)rr2s(r2s)3r2

= r(r2s)3r2 = r(r2s)(r2s)2r2 = s(r2s)2r2

but also sR−3 = s(r2s)2r2.

The above example serves as a basis of the following definition.

Definition 17. Words w1 and w2 over the syllabic alphabet {s, Ra | a ∈ Z}
(or even over an extended alphabet we introduce later) are equivalent, if they
are representations of the same PSL2(Z) element. In the continuation, we
will denote the syllabic word equivalence by w1 ≡ w2. It should be noted that
for equivalent syllabic words w1 and w2, also w1 = w2 holds, if the equality is
understood in PSL2(Z). To keep notations simpler, we accept this ambiguity.

It is clear that ≡ is an equivalence relation, and even a congruence,
meaning that if w1 ≡ w2, then ww1 ≡ ww2, and w1w ≡ w2w for any
w ∈ {s, Ra | a ∈ Z}∗.

Even though the syllabic representation is not unique, the following re-
sult is proven in [25]. The representation size estimate follows directly from
Lemma 13.

Lemma 18. Each element a ∈ PSL2(Z) admits a unique representation of
the form

a = sαRn1sRn2sRn3s . . . sRnl
sβ, (12)

where α, β ∈ {0, 1} and the representation is alternating, meaning that
nini+1 < 0 for each i. The size of representation (12) is polynomial in the
representation size of a.

Because of the uniqueness, we call representation (12) a canonical syllabic
representation of PSL2(Z) elements.

Lemma 19. The syllables satisfy the following relations

• ss ≡ ε

• RaR−a ≡ ε, and
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• Ra+b ≡ RasRb, if ab > 0.

• R1R1 ≡ R−1, and R−1R−1 ≡ R1.

Proof. The proof is straightforward and uses only the definition of syllables
Ra, and relations r3 = s2 = ε in PSL2(Z).

Remark 20. It can be seen that the above relations give rise to other ones.
For example, if ab < 0 and |b| < |a|, then RaRb ≡ Ra+bsR−bRb ≡ Ra+bs, and
a symmetric version is obtained when |a| < |b|. To summarize:

• RaRb ≡ Ra+bs, if ab < 0 and |b| < |a|

• RaRb ≡ sRa+b, if ab < 0 and |a| < |b|.

Remark 21. The above rules in Lemma 19 and Remark 20 may seem like
cancellation rules: Syllables of type Ra with different subindex signs cancel
against each other very much like the exponents in a product, but the subindex
values close to zero introduce anomalities.

For example, it is easy to see that

R1R
t
2R1 ≡ R−1R−1R

t
2R1

≡ R−1sR1R
t−1
2 R1 ≡ . . .

≡ (R−1s)(R−1s) · · · (R−1s)R1R1

≡ (R−1s)
tR−1 ≡ R−(t+1)

From this, we can easily derive that Rt
2R1 ≡ R−1R−(t+1) ≡ R1sR−t and

R1R
t
2 ≡ R−tsR1. Similarly we can see that R−1R

t
−2R−1 ≡ Rt+1 and derive

analogous consequences.

We conclude this section by estimating the “reduction power” of the
equivalences of Lemma 19 and Remark 20.

Definition 22. The ground level length, also called rs-length of a syllable
is defined as the number of occurrences of generators r and s in the syllable.
That is, |s|⟨r,s⟩ = 1, and

|Ra|⟨r,s⟩ =


2a− 1 if a > 0

−3a− 1 if a < 0
0 if a = 0

The ground-level length of a syllabic word w = w1 . . . wn is defined as |w|⟨r,s⟩ =
|w1|⟨r,s⟩ + . . .+ |wn|⟨r,s⟩.
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Definition 23. A syllabic word w is reducible, if there exists an equivalent
syllabic word w′ so that |w′|⟨r,s⟩ < |w|⟨r,s⟩.

Lemma 24. A syllabic word w is reducible if and only if it contains a factor
of the form ss, RaR1Rb, R−aR−b, RaR−b, or R−aRb, where a, b > 0.

Proof. The proof is based on the fact that a syllabic word can always be
interpreted as a word over alphabet {r, s}, and as such, is reducible if and
only if it contains a factor s2 or r3.

Part “If”: Assume first that a syllabic word contains one of the aforemen-
tioned factors. Case ss is trivial, that factor can be removed to obtain an
equivalent syllabic word w′ so that |w′|⟨r,s⟩ = |w|⟨r,s⟩ − 2.

In case a = b = 1, we have RaR1Rb = rrr = ε. If a > 1 but b = 1, then
RaR1Rb = (rs)a−1r r r = (rs)a−2rs = Ra−1s, and a similar conclusion follows
in case a = 1, b > 1. In the remaining case, both a, b > 1, and a direct
calculation shows that RaR1Sb = (rs)a−1r r(rs)b−1r, a word which contains
first r3 and then s2 to be removed: RaR1Rb = (rs)a−2rs rr rs(rs)b−2r =
(rs)a−2r(rs)b−2r = Ra−1Rb−1.

If a, b > 1, then

R−aR−b = (r2s)a−1r2(r2s)b−1r2

= (r2s)a−2r2sr2r2s(r2s)b−2r2

= R−(a−1)sR1sR−(b−1)

(r3 was removed). A similar conclusion holds if either a = 1 or b = 1.
The cases RaR−b and R−aRb are obvious and can be treated analogously.

Part “Only if”: Assume then that a syllabic word w is reducible. Since all
reductions are done by removing s2 or r3 from the underlying presentation
over alphabet {s, r}, we can conduct the following analysis:

1) If ss can be removed, then ss must occur as a subword in the original
syllabic word, since the syllables Ra begin and end with an r.

2) The case when factor r3 can removed can occur only when syllables of
type Ra are concatenated.

2.1) In case RaRb, where a, b > 1, no reduction takes place, since RaRb =
(rs)a−1r(rs)b−1r contains only two consecutive occurrences of r. However, if
b = 1, Then RaRb ends with rr, and if the next syllable also begins with r, a
factor r3 can be removed. On the other hand, if the next syllable is of type
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R−b with b > 0, there is a factor R1R−b, which will fall in the subcase 2.3).
Hence we can finish with this subcase by concluding that the reduction takes
place if RaR1 is followed by Rb, where b > 0.

2.2) In the case R−aR−b, where a, b > 1, a reduction (r3 is removed)
always occurs:

R−aR−b = (r2s)a−1r2(r2s)b−1r2

= (r2s)a−2r2sr2r2s(r2s)b−2r2

= R−(a−1)srsR−(b−1)

= R−(a−1)sR1sR−(b−1).

2.3) In both cases RaR−b and R−aRb, a reduction clearly takes place:
RaR−b = (rs)a−1r(r2s)b−1r2 = Ra−1R−(b−1) if a, b > 1, and the reduction can
be applied recursively as long as both subindices remain positive. A similar
conclusion can be derived for the supplementary case RaR−b.

Notice that according to Lemma 24, the canonical form of Lemma 18 is
not reducible.

Definition 25. We define the set of syllables Ω = {ε, s, sαR±1s
β, sαR±2s

β},
where α, β ∈ {0, 1}. Intuitively, set Ω forms a “neighbourhood” of ε. This
notion is useful since long syllabic words often reduce not to ε but to some
other element ‘close’ to ε, i.e., an element of Ω.

Lemma 26. Assume that a syllabic word w is reducible to w′ ∈ Ω. Then the
reduction can be performed by using the following syllabic rules:

1. ss 7→ ε

2. RaR−a 7→ ε

3. RaR−b 7→ Ra−bs, if ab > 0 and |b| < |a|
4. RaR−b 7→ sRa−b, if ab > 0 and |a| < |b|
5. R−1R−1 7→ R1

6. R1 7→ R−1R−1

Remark 27. We do not introduce a rule R1R1 → R−1, even though the
equivalence R1R1 ≡ R−1 holds. The asymmetry becomes understandable
in the proof below. It should be noted that rule R1 → R−1R−1 is not a
ground level reduction, but it is used to incorporate the equivalence RaR1Rb ≡
Ra−1Rb−1.
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Proof. It is straightforward to verify that words over alphabet {s, r} together
with rewriting rules r3 7→ ε and s2 7→ ε form a locally confluent system, mean-
ing that if x 7→ y and x 7→ z by a single application of a reduction rule, then
there is a w so that y 7→∗ w and z 7→∗ w (using reduction rules repeatedly). It
follows from Newman’s lemma [38] that the system is confluent. Especially,
for any x ∈ {r, s}∗ there is a unique minimal element x′ ∈ {r, s}∗ obtained
by using the reduction rules recursively in any order as long as it is possible
to apply any rule.

Let us now assume that a syllabic word w is reducible to w′ ∈ Ω. We need
to show that a chain of reduction rules s2 7→ ε and r3 7→ ε can be replaced
by a chain of the rules mentioned in the statement of this lemma.

1) Factor ss can only occur if it is already present in the syllabic word,
and removing that factor corresponds exactly to the syllabic reduction rule
1.

2) The second type r3 7→ ε can be applied only if w contains three con-
secutive symbols r. The proof of the previous lemma shows that there are
three subcases:

2.1) Reduction of form RaR1Rb 7→ Ra−1Rb−1 (a, b > 1) removes one R1

and reduces the indices of the surrounding syllables, but it may be simulated
by rules 6, 3, 4, and 1:

RaR1Rb 7→ RaR−1R−1Rb 7→ Ra−1ssRb−1 7→ Ra−1Rb−1.

2.2) In this case, R−aR−b contains a factor r3 to be removed, and the
resulting representation is R−(a−1)sR1sR−(b−1) (assuming a, b > 1). However,
it is straightforward to see that in order to cancel a word containing such a
fragment to the identity word, the first or the last syllable must be cancelled
to the identity. More precisely, if a syllabic word

uR−aR−bv 7→ uR−(a−1)sR1sR−(b−1)v 7→∗ ω

is reducible to an element of Ω, then necessarily either u 7→∗ u1sRa−1 or
v 7→∗ Rb−1sv1. In the first case (the second is analogous), we can change the
reduction order to have

uR−aR−bv 7→∗ u1sRa−1R−aR−bv

7→ u1ssR1R−bv

7→ u1R1R−bv,

21



which can be further reduced by using case 2.3. Hence, we can conclude
that this subcase is actually not needed when reducing syllabic words to the
identity. If one of the subindices, say b, is equal to 1, then the corresponding
reduction rule is R−aR−1 7→ R−(a−1)sR1, but as this form is canonical as well,
a similar conclusion can be drawn. On the other hand, if a = b = 1, then
the rule becomes R−1R−1 7→ R1, which is exactly the rule number 5.

2.3) This case divides into various subcases. If a, b ̸= 0, we have RaR−b =
Ra−1R−(b−1), a reduction which is obtained by applying r3 7→ ε and s2 7→ ε.
As the system is confluent, we can assume that a reduction of this type is
applied recursively, consequently arriving either in rule 2, 3, or 4.

In the algorithm to be presented, we shall need all reduction rules of
Lemma 26 at least implicitly, but the following rules will form the backbone
of the algorithm presented in Section 5.

Definition 28 (Reduction function ρ). We call rules 1-4 of Lemma 26 reg-
ular and define function ρ to represent them as follows:

i) ρ(ss) = ε

ii) ρ(RxR−y) =


Rx−ys, if |x| > |y| ,
sRx−y, if |y| > |x| ,

ε, if |x| = |y| ,
where sgn(x) = sgn(y).

Function ρ can be applied iteratively and nondeterministically. We denote
by ρ∗ the reflexive transitive closure of ρ. Note that ρ is a locally confluent
rewriting system and ρ∗ is clearly terminating, thus ρ is globally confluent
by Newman’s lemma [38] (thus the order that rules of ρ are applied is not
important).

Reduction rules 5 and 6 are called anomalous.

4. First (Brute Force) Decision Procedure

Lemma 10 states that the elements of PSL2(Z) can be presented as words
over {r, s} satisfying relations r3 = s2 = ε. In this section, we use such a
presentation to describe the decision procedure for the identity problem via
standard automata-theoretical constructions, although the construction of
the automata will require exponential time and space.

We have already described the general formulation of the identity problem
in the preliminaries, but for the sake of accuracy, we state the computational
problem formally here.
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Problem 29 (Identity problem over PSL2(Z)). Given a finite set {A1, . . . , An} ⊂
SL2(Z); let ai = {Ai,−Ai} be the projection of Ai on PSL2(Z). The problem
is to decide if the semigroup ⟨a1, . . . , an⟩sg contains the identity element.

4.1. Input Size Measures

In order to estimate the problem’s complexity, it is necessary to define a
measure of the size of an input. Here we will use the following:

Definition 30. Given an integer a, we denote by |a|bit the bit representation
size of a, that is |a|bit = 1 + ⌊log2 |a|⌋ + 1, where the extra bit serves as the
sign of the integer, and log2(0) is taken as 0.

Definition 31. For any matrix A ∈ Z2×2, we denote by |A|bit the represen-
tion size of matrix A, which is given by |A|bit =

∑
1≤i,j≤2 |aij|bit.

Remark 32. Letting M = max1≤i,j≤2 |aij|, as in Lemma 5, it is obvious that
|A|bit = Θ(logM).

Definition 33. For any finite matrix set S = {A1, . . . , An}, the bit size of
S is defined as

|S|bit = |A1|bit + . . .+ |An|bit .

When estimating the input size, we ignore the separating symbols needed
for representing sets and matrices. It is obvious that including those would
produce only a linear increase in the representation size.

It is possible to find instances of Problem 29 where the representation of
the identity element requires a high number of generator occurrences.

Example 34. Let n > 1 and S = {sRn, R−1s}. Now the description size
of set S consists of the description of b = R−1s (a constant number of bits)
and a = sRn requires a number of bits proportional to log2 n the length of
the number. Using Remark 20 and Lemma 19 we see that ab = sRnR−1s =
sRn−1ss = sRn−1, ab

2 = sRn−2, and by induction abn = ε. It is evident that
the identity cannot be found in S+with fewer generator occurrences.

In this example, the smallest identity in A+ is obtained by an exponen-
tial (in the description size of the set A) number of the generator occur-
rences, but there is anyway a short sequence of elements in S+ witness-
ing the existence of the identity: By computing O(log2 n) elements of se-
quence b, b2 = R−1sR−1s = R−2s, b

4 = (b2)2 = R−4s, b
8 = (b4)2 = R−8s,

b16 = (b8)2 = R−16s, . . . it is possible to construct R−ns, and sRnR−ns = ε.
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4.1.1. An example of an exponential length solution

We now describe an example where the shortest identity is exponentially
long, but the parse tree only polynomially deep, originally shown in [7].

Let Q4 = {qi, q−1
i : 0 ≤ i ≤ 4}, Σ4 = {i, i−1 : 1 ≤ i ≤ 4} and

W =

{
q−1
0 1q1, q−1

2 2q0, q−1
3 3q0, q−1

4 4q0,
q−1
1 1−1q2, q−1

2 2−1q3, q−1
3 3−1q4, q−1

4 4−1q0

}
⊆ Q4Σ4Q4.

It was proven in [7] that ε ∈ W ∗, but the shortest such ε is of the form:

X1 = q−1
0 1q1 · q−1

1 1−1q2 ≡ q−1
0 q2

X2 = X1 · q−1
2 2q0 ·X1 · q−1

2 2−1q3 ≡ q−1
0 q3

X3 = X2 · q−1
3 3q0 ·X2 · q−1

3 3−1q4 ≡ q−1
0 q4

X4 = X3 · q−1
4 4q0 ·X3 · q−1

4 4−1q0 ≡ ε

We see that X4 ≡ ε consists of 30 words from W . In fact, set W can
be trivially generalised so that it consists of 2k elements and the shortest
sequence giving ε uses 2k+1 − 2 elements from W .

It is possible to encode each such word of W into SL2(Z) such that the
bit representation size of each such matrix is proportional to k, which we
now describe briefly (for full details, see [7]). Given an arbitrary sized group
alphabet Σt, and a binary group alphabet Σ2 = {a, b, a−1, b−1}, there exists
an injective homomorphism α : Σ∗

t → Σ∗
2. Furthermore, there exists an

injective homomorphism f : Σ∗
2 → PSL2(Z) given by:

f(a) =

(
1 2
0 1

)
, f(b) =

(
1 0
2 1

)
, f(a−1) =

(
1 −2
0 1

)
, f(b−1) =

(
1 −2
0 1

)
Note that f(a) = sR2, f(b) = sR−2 and thus f(a−1) = R−2s, f(b

−1) =
R2s, which makes it clear why {f(a), f(b)} form a free group. Given W ,
we may thus apply f ◦ α to each word to give a subset G ⊂ SL2(Z) which
can be combined to given the 2 × 2 identity matrix using at least an expo-
nential number of generator matrices (exponential in both |G| and the bit
representation size of each matrix in G).

4.1.2. An example daisy graph with exponentially many paths

Another ‘extreme’ case of a solution to the identity problem is that there
many exist exponentially many possible solutions (paths through the daisy
graph, defined in Remark 35) which must be checked. We give a brief proof
sketch of this here, see [7] for full details.
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As shown above in §4.1.1, there exists an injective morphism f : Σ∗
2 →

PSL2(Z) and in fact it is not difficult to extend this morphism to an arbitrary
sized domain group alphabet f : Σ∗

k → PSL2(Z) while retaining injectivity.
One may then define ‘border symbols’ to enforce restrictions on potential
solutions to the identity problem.

Consider the subset sum problem: let S = {s1, s2, . . . , sk−1} ⊆ N and
t ∈ N, does there exist some subset S ′ ⊆ S such that

∑
x∈S′ x = t? The

problem is well known to be NP-complete.
Using border symbols Σk = {1, 2, . . . , k, 1−1, 2−1, . . . , k−1}, we may define

the following set of words:

W =

{
1W12

−1, 2W23
−1, · · · (k − 1)Wk−1k

−1, kW−1
t 1−1,

1 · ε · 2−1, 2 · ε · 3−1, · · · (k − 1) · ε · k−1

}
,

where Wi = asi and W−1
t = a−t. The encoding of [7] is slightly more compli-

cated but the above is illustrative of the main idea. If we may combine these
words together to get the identity, then such a product can be shown to be
of the form:

1X12
−1 · 2X23

−1 · · · (k − 1)Xk−1k
−1 · kW−1

t 1−1,

where Xi ∈ {Wi, ε}. Reaching the identity for such words (with minor mod-
ifications to the encoding) is thus equivalent to the subset sum problem.
Clearly there are exponentially many such paths to check (exponential in k).
It is possible using encoding f to show that the encoding is size preserving
(a word asi is represented by a matrix f(asi) whose representation size is
logarithmic in si) and thus the identity problem is NP-hard (see [7] for full
details).

4.2. Automaton for Recognizing the Identity

The decision procedure presented in [17] is based on Lemma 10, which
states that all elements of PSL2(Z) can be faithfully represented as strings
over alphabet {r, s} with relations r3 = s2 = ε. Briefly described, the pro-
cedure works as follows: First, a nondeterministic finite automaton over
alphabet {r, s} recognizing A+ is constructed, and then ε-transitions are it-
eratively added to represent the relations r3 = s2 = ε between the nodes
(states) as long as possible. More precisely, whenever a path q1 → q2 with
label r3 or s2 is found, an ε-transition q1

ε−→ q2 is introduced. The procedure
ends eventually, since the number of states is finite, although exponential in
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the description size of A. The decision whether ε ∈ A+ is then made based
on the observation whether there is an ε-transition from the initial state to
the final state.

Another route to the decision procedure, when the aforementioned finite
automaton is constructed, is to note that the representations of the identity
element in PSL2(Z) can be described by a simple context-free grammar (the
starting and only nonterminal symbol is ∆)

∆ → 1 | s∆s∆ | r∆r∆r∆.

It is well-known that the intersection of a regular language L1 (accepted by a
finite automaton) and a context-free language L2 (that consists of the identity
element representations) is context-free, and the decision procedure follows
from the fact that the emptiness problem for the intersection of context-free
languages (i.e. L = L1 ∩ L2) is decidable.

The construction of an automaton recognizing language {a1, a2, . . . , an}+
is very straightforward: The automaton has two states q0 and q1, and for
each ai, there is a transition q0

ai−→ q1, as well as a loop q1
ai−→ q1. State q0 is

specified as the initial state, and q1 as the final state (See Figure 1).

q0 q1

a1

ai

an

a1

ai

an

Figure 1: Automaton recognizing {a1, a2, . . . , an}+. Initial and final states are indicated
with short arrows.

Remark 35. We call the graph of Figure 1 a daisy graph: Indeed, arrows
q0 → q1 form the stem, and each arrow q1 → q1 forms one petal.

The automaton of Figure 1 is defined on abstract symbols ai, and intro-
ducing the ⟨r, s⟩-representation will result in the automaton being augmented
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so that each edge will be replaced with a path as follows: if

ai = ti,1ti,2 . . . ti,ki ,

where each ti,j ∈ {r, s}, then each edge ◦ ai−→ ◦ of the previous automaton is
replaced with a path

◦ ti,1−−→ ◦ ti,2−−→ ◦ . . . ◦
ti,ki−−→ ◦,

and all the new nodes are assumed distinct. The replacements result in
a larger automaton shown in Figure 2. As described above, the ⟨r, s⟩-

q0 q1

t11

ti1

tn1

t12

ti2

tn2

t11

t12

ti1

ti2

tn1

tn2

Figure 2: ⟨r, s⟩-automaton recognizing {a1, . . . , an}+.

automaton of Figure 2 can be used to discover whether the semigroup A+

contains the identity element.
Now that the lengths of ⟨r, s⟩-representations of elements of PSL2(Z) can

be exponential in the description size of the elements (Remark 12), it follows
that the daisy graph of Figure 2 and consequently the described decision
procedure requires exponential space in the worst case.
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4.3. Syllabic Automaton

An obvious attempt to resolve the identity problem with fewer spatial
resources comes from the syllabic representations of the PSL2(Z) elements.
Using the syllabic representation instead of the ground-level representation,
we can redefine the daisy graph of Figure 2 to be only polynomially large in
the input size, but the price to pay is that the edge labels then come from
an infinite alphabet {s, Ra | a ∈ Z}.

The procedure described in Section 4.2 generalizes as well, but instead
of introducing ε-transitions only, we introduce new transitions according to
Lemma 26: Whenever a path q1 → q2 exists bearing a label equal to the left-
hand side of one of the syllabic rules of the Lemma, then a new edge q1 → q2
with the corresponding right hand side as the label should be introduced.

It is not very difficult to see that such a procedure will also eventually
halt, since for the new Ra-labels being introduced, the subscript a has no
greater absolute values than those already existing. Finally, the decision can
be made by checking whether the procedure has produced an ε-transition
from the initial to the final state.

However, the described procedure will produce a multigraph, which may
lead to an exponential increase in the amount of space required for the com-
putation.

Example 36. When applying this procedure to Example 34 we first get a
daisy graph with two ‘petals’: one with label sRn, and the second one with
label R−1s. Applying the reduction rules repeatedly will produce new paths
q1 → q1 with labels sRn−1, sRn−2, sRn−3, etc. Hence the number of new
edges eventually added will be exponential in the input description size.

Remark 37. It should be mentioned already here that the “daisy” form of
the graph is not essential for the decision procedure. On the contrary, it is
possible to generalize the procedure to decide if the identity is in R(a1, . . . , an),
where R is any regular expression of a1, . . ., an.

5. Improved Decision Procedure

In the continuation, we will demonstrate how to modify and analyze the
syllabic daisy graph in order to achieve a nondeterministic, polynomial time
algorithm for resolving Problem 29.

The strategy will avoid exponential growth in the edge set mentioned in
Example 36. A cursory description of the algorithm is as follows:
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• Given a matrix set M = {M1, . . . ,Mn} ⊆ SL2(Z), the procedure starts
with constructing a syllabic version of the “daisy graph” GM = (Q,E)
as described in Section 4.3. It follows from Lemma 18 that the size
of this graph is polynomial in the input size and the construction can
be done in polynomial time. Eqi,qj ⊆ E stands for labelled edges from
node qi to qj.

• For a nondeterministically chosen pair of vertices qi, qj ∈ Q, it is
checked if there is a path qi → qj with label equivalent to a syllabic
word in Ω, i.e. one “close” to ε. This may be done via short, medium, or
long reductions which we describe later. This steps repeats iteratively
whenever such new Ω-edges can be added.

• Finally, it is verified whether there is an ε-edge from the initial state
q0 to the final state q1. The witness for such an edge gives the positive
answer to the identity problem.

The short and medium reductions are straightforward to describe with the
already existing notions, but for the long reductions, we need to introduce
more terminology. As we shall show, the syllabic words reducing to the
identity can be assumed to be of a certain form, which can be locally verified.
The form we are aiming at would be much simpler without the reductions
shown in Remark 21.

5.1. Syllabic Graph Path Properties

In this section we study various important properties of the syllabic form
of the Daisy Graph. Recall from the Definition 25 that Ω-syllables are those
“close” to ε.

As shown in Remark 21, there is an option of having an unbounded
number of reductions for certain types of paths (where the labels are of the
form R1R

t
2R1 ≡ R−(t+1) or R−1R

t
−2R−1 ≡ Rt+1), and hence we will also

introduce R-minus -type “joker” syllable R−, and analogous plus -type joker
syllable of the form R+.

5.1.1. Syllables R− and R+

Consider a path Π = (qi, R2, qi)(qi, R1, qj) in GM . Note that we have
a self loop from qi to itself, labelled by syllable R2. This implies that the
path (qi, R2, qi)

t(qi, R1, qj) exists for any t ≥ 0. From Remark 21, (R2)
tR1 ≡

R−1R−(t+1), and hence for any t ∈ Z+, there is a path from qi to qj with label
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equivalent to R−1R−(t+1). We thus introduce a syllable R−, which denotes
an R syllable of any negative index.

If there exists a path Π = (qi, R−2, qi)(qi, R−1, qj), then since Rt
−2R−1 ≡

R1Rt+1, we define a syllable R+, which denotes an R syllable of any positive
index.

Definition 38. Let Γ+ = {Rx, R+|x > 2}, Γ− = {Rx, R−|x < 2}, Γ =
Γ+ ∪ Γ− and finally Σ = Ω ∪ Γ be the set of all syllables.

For each syllable in Σ, we now introduce a notion of “weight”, which gives
a magnitude to each such element.

Definition 39 (Weight). We define the weight of a syllable z ∈ Σ as a
function wgt : Σ → Z:

wgt(z) =


x, if z = Rx and z ∈ Γ;
±2, if z ∈ {sαR±2s

β |α, β ∈ {0, 1}};
±1, if z ∈ {sαR±1s

β |α, β ∈ {0, 1}};
0 if z ∈ {ε, s}.

We define the absolute weight of a syllable to be a function awgt : Σ →
N ∪ {0}, given by awgt(z) = |wgt(z)|. Function wgt (resp. awgt) can be
extended to a word w = w1w2 · · ·wk ∈ Σ∗ by defining wgt(w) =

∑k
i=1 wgt(wi)

(resp. awgt(w) =
∑k

i=1 awgt(wi)).
As described above, syllables R− and R+ are essentially ‘sets’ of syllables,

allowing any negative weight for R− and any positive weight for R+. There-
fore wgt(R+) is any positive integer and wgt(R+) is any negative integer.

Remark 40. It is worth noting that equivalent syllabic words may have dif-
ferent (absolute) weights. For example, R−5R10 ≡ sR−5, which shows that
the weight may differ, and R1 ≡ R−1R−1, which shows that even the absolute
weight may differ.

Therefore, the (absolute) weight is strictly related to a particular syllabic
word, not to the PSL2(Z) element it represents.

The following definition will help to characterize certain syllabic words
reducible to the identity and will be essential to the later analysis.

Definition 41 (Alternating Form (AF)). Let

AF = Σ∗ \ Σ∗{Ras
αsαRb, RasR−b}Σ∗,
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where a and b have the same sign, and α ∈ {0, 1}. In other words, a word
w ∈ Σ∗ is in alternating form if it does not contain two consecutive syllables
Ra and Rb (possibly with ss in between) with the same sign, or a substring
of the form RasR−b. Given a path Π = (qi, w, qj) ∈ Q×Σ∗ ×Q, we also say
Π ∈ AF if w ∈ AF and there is no danger of confusion.

Definition 42 (Ω-Minimal Word). A syllabic word w = w1w2 · · ·wk ∈ Σ∗

is called an Ω-minimal word if and only if w ≡ w′, where w′ ∈ Ω and
wiwi+1 · · ·wj ≡ w′′ where w′′ ∈ Ω for 1 ≤ i < j ≤ k implies that i = 1, j = k
and w′ = w′′. We denote the set of all Ω-minimal words over Σ by Φ.

For example, R10R−5sR−5 ∈ Φ, sinceR10R−5sR−5 ≡ R5ssR−5 ≡ R5R−5 ≡
ε, but no shorter syllabic subword of R10R−5sR−5 is reducible to an element
of Ω. We later show that Ω-minimal words whose length is greater than 3
are in alternating form which greatly simplifies their analysis.

The length of a path without dual edge cycles is analyzed in the following
lemma. Recall that function red : E∗ → E∗ is defined in Definition 3 and
nondeterministically removes a dual edge cycle from a path, if one is present.
Statement i) of Lemma 43 essentially says that if we have a path whose word
is in alternating form, then removing a dual edge cycle from that path gives
a word still in alternating form. Statement ii) of Lemma 43 says that the
length of a reduced path (one containing no dual edge cycle) is no more than
the square of the number of edges in the graph.

Lemma 43. Given a path Π ∈ Q×Σ∗×Q where Π = (qi, w, qj) and w ∈ AF .
Then the following two properties hold:

i) If Π′ ∈ red(Π), then Π′ = (qi, w
′, qj), where w′ ∈ AF ;

ii) |red∗(w)| ≤ |E|2.

Proof. To prove i), let Π = π1π2 · · · π|w| ∈ AF . If red(Π) = Π, then red(Π) ∈
AF as required. Otherwise, Π = Π1Π2Π3, where Π1,Π3 ∈ E∗ and Π2 =
e1e2 Ue1e2 ∈ E∗ is a dual edge cycle (for some e1, e2 ∈ E) and red(Π) =
Π1e1e2Π3. Notice that checking if an element of Σ∗ belongs to AF is a local
property of the word; we need only determine if every subword of length two
is not of the form Ras

α · sαRb, Ras · R−b, Ra · sR−b and every subword of
length three is not of the form Ra · s ·Rb, where ab > 0 and α ∈ {0, 1}.

If Π ∈ AF , then Π1e1e2 ∈ AF and e1e2Π3 ∈ AF , which implies that
red(Π) = Π1e1e2Π3 ∈ AF , since e1e2 ∈ E2 and the last syllable of Π1 agrees
with e1e2, which in turn agrees with the first syllable of Π3.

31



To prove ii) notice that |red∗(w)| is a reduced path and thus contains
each element of E2 at most once (otherwise we have a dual edge cycle which
can be removed). Thus |red∗(w)| ≤ |E|2.

5.2. Modification Principles of the Daisy Graph

In the analysis below, we shall require that the maximal number of edges
in the daisy graph GM is bounded polynomially in |M |bit. The initial number
of labelled edges of the daisy graph GM is |E| =

∑
qi,qj∈Q |Eqi,qj | and this is

polynomial in |M |bit by Lemma 13. The maximal possible number of edges
that will be added to GM by our algorithm will be proven to be polynomial
in the initial graph size. Other than the edges that we may add to GM

in the next section, Section 5.2.1, we will only ever add edges with a label
from Ω between existing pairs of vertices qi and qj in the graph as we see
in Section 5.2.2, and therefore the final graph will have a description size
polynomial in |M |bit since |Ω| is a constant.

5.2.1. Introduction of R− and R+ -edges

Consider a path given by Π = (qi, R2, qi)(qi, R1, qj) in GM , which implies
that the path: (qi, R2, qi)

t(qi, R1, qj) exists for any t ≥ 0. Since (R2)
tR1 ≡

R−1R−(t+1), we introduce a new vertex q and new edges by defining Eqi,q =
{R−1} and Eq,qj = {R−}, where R− is the syllable defined previously, which
stands for any R−(t+1) where t ≥ 0.

Similarly, for path Π = (qi, R1, qj)(qjR2, qj), we introduce a new vertex q′

and new edges qi
R−−−→ q′ and q′

R−1−−→ qj.
Any paths with label Rt

−2R−1 and R−1R
t
−2 are treated analogously.

However, we must note that paths where the set of visited vertices are dis-
tinct with finitely manyR2-labels such as (q1, R2, q2) · · · (qk−1, R2, qk)(qk, R1, qk+1)
in GM , do not contain a self-loop, and thus arbitrary powers of R2 are not
necessarily possible. In this case, we just add a new vertex q and new edges

q1
R1−→ q and q

R−k−−→ qk+1. The cases with other path label combinations such
as R−1R

t
−2 are analogous.

In the continuation, we may assume that if we have a subpath of the form
Π = (qi, R2, qi)

t(qi, R1, qj), then we can alternatively take the (equivalent)
path (qi, R−1, q)(q, R−t, qj) instead. Similar conclusion holds for subpaths
with labels R1R

t
2, R

t
−2R−1, and R−1R

t
−2.
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5.2.2. Introduction of Ω-edges

Let Π = (qi, w, qj) be a path in GM from vertex qi to vertex qj such that
w = w1w2 · · ·wk ∈ (Σ − {ε})k, with k ≥ 2, w ≡ w′ ∈ Ω, and w ∈ Φ, i.e.
w is Ω-minimal. Throughout this section, we ignore ε transitions, which we
assume can be taken at any point without explicitly mentioning them.

We then introduce an edge with label w′, i.e. Eqi,qj := Eqi,qj ∪{(qi, w′, qj)}
(if it does not already exist).

We now describe three ways of showing that there is indeed such a path

qi
w′
−→ qj.

1. Short Reductions. If |w| ≤ 3, then we call path Π a short reduction.
The existence of such a path can be directly checked for any vertex pair
(qi, qj).

2. Medium Reductions. Let |w| > 3, such that Π contains no dual edge
cycles, i.e. no consecutive pair of edges of the graph is used more than
once (excluding ε-edges). In this case, we call Π a medium reduction
from qi to qj.

3. Long Reductions. Let |w| > 3 such that Π contains at least one dual
edge cycle, then we call Π a long reduction from qi to qj.

For the study of medium and long reductions of Ω-minimal words over Σ,
where |w| > 3, the class AF gives a neat description of such words. We now
show that any Ω-minimal word (Definition 42) of length at least four will be
in Alternating Form (Definition 41).

Lemma 44. Let w ∈ Φ and |w| > 3. Then w ∈ AF .

Proof. We proceed by contradiction and show that any word w of length at
least 4 which is not in alternating form will not reduce to an element of Ω.
To do this, we will use the reduction function ρ from Lemma 28. To simplify
the analysis, we will also introduce the rule that ρ(RasRb) = Ra+b if ab > 0
in this proof. This property can immediately be deduced from the definition
of R-syllables in Definition 14 and is simply a rewriting of equivalent ground
level representations of a syllable.
Case 1) Assume w = W1Rx1Ry1W2 where W1,W2 ∈ Σ∗ and x1y1 > 0 (thus
x1 and y1 have the same sign). Consider ρ∗(W1). If it has suffix R−x1±1

then we have a contradiction since then R−x1±1Rx1 ∈ Ω and thus w is not Ω-
minimal and does not belong to Φ (note that ρ∗(W1)Rx1Ry1W2 is Ω-minimal
if and only if W1Rx1Ry1W2 is since ρ∗ does not alter the suffix, other than
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potentially adding symbol ‘s’). If the suffix is Rx2 with x1x2 > 0, then
the syllables do not cancel, similarly if the suffix is R−x2s. If the suffix
is Rx2s, then since Rx2sRx1 = Rx1+x2 , we may recursively consider w =
W ′

1Rx1+x2Ry1W2, where W ′
1 = W1R−x2 . The only other case is that ρ∗(W1)

has suffix R−x2 for x1x2 > 0.
If ρ∗(W1) = XR−x2 with |x2| > |x1|, then we have ρ∗(W1Rx1) = XR−x2Rx1 =

XR−x2+x1s and so ρ∗(W1Rx1) ends with a suffix of the form R−x′
2
s for some

x′
2 of the same sign as x1.
If ρ∗(W1) = XR−x2 with |x2| < |x1|, then ρ∗(W1Rx1) = XsRx1−x2 . X

cannot have suffix R−x3s for x3x2 > 0, since ρ(R−x3sR−x2) = R−(x2+x3). If
X = X ′Rx3s, then ρ∗(W1Rx1) = X ′ρ(Rx3ssRx1−x2) = X ′Rx3Rx1−x2 , which
does not cancel and ends with a positive R syllable. If X = X ′R−x3 , then
ρ∗(W1Rx1) = X ′ρ(R−x3sRx1−x2) = X ′R−x3sRx1−x2 , again ending with a pos-
itive R syllable since there is no cancelation. Thus, ρ∗(W1Rx1) ends with a
suffix of the form Rx′

2
for some x′

2 of the same sign as x1.
The above analysis therefore shows that if there is any left cancelation of

syllable Rx1 , then the suffix of ρ∗(W1Rx1) is Rx′
2
or R−x′

2
s where x′

2 has the
same sign as x1. A similar analysis shows that the prefix of ρ∗(Ry1W2) is of
the form Ry′2

or R−y′2
s where y′2 has the same sign as y1 (and thus x1). In fact,

we can see that |x′
2|, |y′2| > 2, since otherwise w contains a syllabic reduction

to a word of the form sαR±1s
β ∈ Ω, or sαR±2s

β ∈ Ω for α, β ∈ {0, 1}, which
is a contradiction since w is Ω-minimal.

Therefore, we see that ρ(W1Rx1)·ρ(Rx2W2) has one of the following forms:

XRx′
1

· Ry′1
Y

XR−x′
1
s · Ry′1

Y

XRx′
1

· sR−y′1
Y

XR−x′
1
s · sR−y′1

Y

for X, Y ∈ Σ∗ and x′
1, y

′
1 of the same sign as x1, y1. Since there is no

cancelation between the central elements of the first three of these cases,
then the word cannot reduce under ρ to a word in Ω. In the final case,
XR−x′

1
s · sR−y′1

Y ≡ XR−x′
1
R−y′1

X ′ has two central elements R−x′
1
R−y′1

with
|x′

1|, |y′1| > 2 and thus there is no further cancelation. Thus, a factor Rx1Ry1

cannot be present in any Ω-minimal word of length at least four as required.
Case 2) - w = W1Rx1sR−y1W2 where W1,W2 ∈ Σ∗ and x1y1 > 0. In this
case, an identical analysis to that above shows that the suffix of ρ∗(W1Rx1) is
of one of the forms {XRx′

1
, XR−x′

1
s} and the prefix of ρ∗(Ry1W2) is of one of
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the forms {R−y′1
Y, sRy′1

Y }, where X, Y ∈ Σ∗ and |x1|, |y1| > 2. Now we con-
sider what happens when these elements are combined as ρ∗(W1Rx1sR−y1W2)
for these four cases.

In the case ρ∗(W1Rx1) ≡ XRx′
1
and ρ∗(Ry1W2) ≡ R−y′1

Y , then XRx′
1
· s ·

R−y′1
Y is unchanged by the action of ρ sinceRx′

1
·s·R−y′1

has no cancelation. In
the second case ρ∗(W1Rx1) ≡ XRx′

1
and ρ∗(Ry1W2) ≡ sRy′1

Y , then ρ(XRx′
1
·

s · sRy′1
Y ) ≡ XRx′

1
·Ry′1

Y with x′
1, y

′
1 > 2 has already been considered above.

In case three, ρ∗(W1Rx1) ≡ XR−x′
1
s and ρ∗(Ry1W2) ≡ R−y′1

Y , then
ρ(XR−x′

1
s · s ·R−y′1

Y ) ≡ XR−x′
1
·R−y′1

Y with x′
1, y

′
1 > 2 has again been con-

sidered above. In case four, ρ∗(W1Rx1) ≡ XR−x′
1
s and ρ∗(Ry1W2) ≡ sRy′1

Y ,
thus ρ(XR−x′

1
s · s · sRy′1

Y ) ≡ XR−x′
1
s · Ry′1

Y which again is unchanged by
the action of ρ.

In fact, we can extend the previous Lemma to show that the weight of a
word w ∈ Φ must be in the set {0,±1,±2} and the value determines which
elements in Ω word w may reduce to, as we now see.

Lemma 45. Given a word w ∈ Φ with |w| > 3, then |wgt(w)| ≤ 2 and
w ≡ w′, for some w′ ∈ Ω. Furthermore, if

wgt(w) =


±2 ⇒ w′ = sαR±2s

β

±1 ⇒ w′ = sαR±1s
β

0 ⇒ w′ ∈ {s, ε}

where α, β ∈ {0, 1}.

Proof. Let w = w1w2 · · ·wk ∈ Φ. Note that the action of ρ, defined in
Definition 28 does not change the weight of word w. Consider thus ρ∗(w) ≡
w′ ∈ Ω. Since the weight of any syllable of Ω is 0,±1,±2, and by Lemma 26
and Lemma 44, ρ reduces w to w′ (since w ∈ Φ and thus w ∈ AF), then the
weight of w and w′ are the same as required.

The next technical lemma uses number-theoretic arguments and will be
required later in order to bound the number of distinct dual edge cycles
required in ‘long reductions’ to a polynomial value.

Lemma 46. Let 1 ≤ x, c1, . . . , ck1 , d1, . . . , dk2 < T such that there exists a
sequence of integers α1, . . . , αk1 , β1, . . . , βk2 > 0 where:

x+

k1∑
j=1

αjcj −
k2∑
j=1

βjdj = 0. (13)
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Then, there exists {c′1, . . . c′k′1} ⊆ {c1, . . . ck1}, {d′1, . . . d′k′2} ⊆ {d1, . . . dk2},
α′
i, β

′
i > 0 and k′

1, k
′
2 ∈ O(log T ) such that

x+

k′1∑
j=1

α′
jc

′
j −

k′2∑
j=1

β′
jd

′
j = 0. (14)

Proof. Let S = {c1, c2, . . . , ck} be a set of positive integers and pM the largest
prime divisor therein. We can then write

c1 = 2α11 · 3α12 · . . . · pα1M
M

c2 = 2α21 · 3α22 · . . . · pα2M
M

...

ck = 2αk1 · 3αk2 · . . . · pαkM
M

and if we take the minimal exponent of each column, say αj = min{α1j, α2j, . . . , αkj},
it is clear that

gcd(c1, c2, . . . , ck) = 2α13α2 · . . . · pαM
M .

The same gcd can be obtained by selecting at most M integers from set
S: Choose ci1 so that αi11 = α1 (the 1st column exponent is minimal), ci2
so that αi21 = α1 (the 2nd column exponent is minimal), etc. until ciM .
Some of the numbers ci1 , . . ., ciM may be the same, but anyway |S ′| =
|{ci1 , ci2 , . . . , ciM}| ≤ M . To estimate M is straightforward:

c1 = 2α113α12 · . . . · pα1M
M ≥ 2 · 3 · . . . · pM ≥ 2M ,

hence M ≤ log2 c1, and a similar estimate holds for any ci. Hence M ≤
log2 T , where T = max{c1, c2, . . . , ck}. It is clear that for any S ′′ so that
S ′ ⊂ S ′′ ⊂ S, we have gcd(S ′′) = gcd(S ′) = gcd(S).

Assume then that a Diophantine equation

x+

k1∑
j=1

αjcj −
k2∑
j=1

βjdj = 0

has a solution (α1, . . . , β1, . . .) over the natural numbers (here it is assumed
that k1, k2 > 0, i.e. that both signs really occur). As reasoned above, there
is a set {c′1, . . ., c′k′1 , d

′
1, . . ., d

′
k′2
} with cardinality at most log2 T + 1, where

T = max{c1, . . . , d1, . . .} (+1 comes from the requirement that there has to
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be at least one number of the opposite sign). Because of the gcd condition,
we know that

x+

k′1∑
j=1

αjc
′
j −

k′2∑
j=1

βjd
′
j = 0 (15)

has a some solution (α1, . . . , β1, . . .) over the integers. To simplify the nota-
tions, remove the primes and rewrite (15) as

x+

k1∑
j=1

αjcj −
k2∑
j=1

βjdj = 0. (16)

Let then B = c1 . . . ck1d1 . . . dk2 . Now for any n ∈ Z,

k1∑
j=1

(αj + nk2
B

cj
)cj −

k2∑
j=1

(βj + nk1
B

dj
)dj

=

k1∑
j=1

αjcj −
k2∑
j=1

βjdj + nk1k2B − nk1k2B,

which shows that for any n ∈ Z, αj 7→ αj + nk2
B
cj

(and similarly for βj)

yields another solution to (16). It follows that there is a solution where each
α (and β)is positive.

We now estimate the magnitude of the positive integers α and β in the
solution. In fact, B could be could even be replaced with B

gk1+k2
, where

g = gcd(c1, . . . , d1, . . .), but even without such a replacement we have that

B = c1 . . . ck1d1 . . . dk2 ≤ T k1+k2 ,

hence the bit size of B is at most

log2B ≤ (k1 + k2) log2 T ≤ (log2 T + 1) log2 T.

We also require the following technical lemma. This will allow us to
determine that if we have two words w1 ∈ Φ and w2 ∈ AF starting with the
same syllable, and ending with the same syllable, then if they have the same
weight they will reduce to exactly the same element of Ω.
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Lemma 47. Let Σ′ = Σ − {R−, R+} and w1 = uXv, where u, v ∈ Σ′ and
X ∈ Σ′∗ such that |w1| > 3, |wgt(w1)| ≤ 2 and w1 ∈ Φ. Then w1 ≡ w′ for
some unique w′ ∈ Ω and for any word w2 = uY v where Y ∈ Σ′∗, Y ∈ AF
and wgt(w2) = wgt(w1), then uY v ≡ w′.

Proof. Note that if u = s or v = s, then w1 ̸∈ Φ as is not difficult to see. For
example if u = s, and ρ∗(uXv) ∈ Ω, then it implies that ρ∗(Xv) ∈ Ω and
thus w1 ̸∈ Φ. We may therefore assume that u = Ra and v = Rb for some
a, b ∈ Z− {0}.

If wgt(w1) = 0, then w′ = ε or w′ = s by definition of wgt and Ω. In both
cases since wgt(w2) = wgt(w1) = 0, then w2 ≡ w′ since application of the
reduction rules of Lemma 26 only remove a multiple of 2 ‘s’ syllables from a
word as can easily be verified.

Therefore assume that wgt(w1) = t ∈ {±1,±2}. Thus we have w1 ≡
sα1Rts

β1 and w2 ≡ sα2Rts
β2 . We prove that α1 = α2 and β1 = β2 which will

prove the Lemma.
Clearly wgt(X) = wgt(Y ) and since w1, w2 ∈ AF , then it follows that

X, Y ∈ AF because a subword of a word in AF is also in AF . Assume by
contradiction that α1 = 1 and α2 = 0, i.e. that w1 = RaXRb ≡ sRts

β1 and
w2 = RaY Rb ≡ Rts

β2 . Then, X ≡ R−asRts
β1R−b and Y ≡ R−aRts

β2R−b.
Since X, Y ∈ AF , then sgn(a) = −sgn(t) in order that R−asRt ∈ AF .
However, sgn(a) = sgn(t) in order that R−aRt ∈ AF . Since t ̸= 0, this
give a contradiction. A similar proof shows that if α1 = 0 and α2 = 1,
i.e. if w1 ≡ Rts

β1 and w2 ≡ sRts
β2 , then we get a contradiction. Therefore

α1 = α2.
Assume by contradiction that β1 = 1 and β2 = 0, i.e. that w1 =

RaXRb ≡ sα1Rts and w2 = RaY Rb ≡ sα1Rt. Then, X ≡ R−as
α1RtsR−b

and Y ≡ R−as
α1RtR−b. Since X, Y ∈ AF , then sgn(b) = −sgn(t) in order

that RtsR−b ∈ AF . However, sgn(b) = sgn(t) in order that RtR−b ∈ AF .
Since t ̸= 0, this again gives a contradiction. Thus we see that α1 = α2 and
β1 = β2 as required.

Lemma 48. Let Π = (qi, w, qj) ∈ Ek be a path in GM from a vertex qi to a
vertex qj such that w = w1w2 · · ·wk ∈ Φ and k ≥ 2. Then a certificate for
the derivation of an edge (qi, w

′, qj), with w ≡ w′ ∈ Ω, can be nondetermin-
istically found in time polynomial in |M |bit.

Proof. We shall deal with three separate cases. In the proof, we again ignore
any ε transitions, which we may assume can be taken without explicitly
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mentioning them.
1) Short reductions. In this case, k ≤ 3 and we can verify that w ≡ w′ ∈ Ω
trivially via the reductions shown in Lemma 26. The only remaining cases
involve syllables R− and R+.

If w1w2 = R+λ1, w1w2 = λ2R−, w1w2 = R−λ2, w1w2 = λ1R+, w1w2 =
R−R+ or w1w2 = R+R−, where λ1 ∈ Γ− and λ2 ∈ Γ+: then the following
edges all belong to Eqi,qj : {ε, R2s, R1s, sR1, sR2}.

To see this, let us consider the first rule w1w2 = R+λ1, where λ1 = R−x

for some x > 2 as an example. The other cases follow in a similar analysis.
Since syllable R+ allows us to derive any syllable Rk, where k ≥ 1, then we
can easily verify that the following are all valid labels of edges from qi to qj:

Rx−2R−x ≡ sR−2; Rx−1R−x ≡ sR−1; RxR−x ≡ ε;
Rx+1R−x ≡ R1s; Rx+2R−x ≡ R2s.

Such a path can be found and verified in time polynomial in |M |bit. Thus
any short reductions can be found.
2) Medium reductions. In this case, k > 3 and Π does not contain a
dual edge cycle (as throughout, cycles will mean dual edge cycles unless oth-
erwise stated). We may assume that w ∈ AF by Lemma 44. By Lemma 43,
we know that |w| ≤ |E|2 since red(w) = w. Such a path Π can be guessed in
polynomial time and we can verify that w ≡ w′ ∈ Ω holds by applying the
reductions rules of Lemma 26.
3) Long reductions. In this case k > 3 and Π contains at least one dual
edge cycle. This is the most difficult case and we split the analysis into
two subcases. Since w ∈ Φ, we may assume that w ∈ AF by Lemma 44,
and that |wgt(Π)| ≤ 2, with the weight determining which element of Ω we
reduce to, up to factors of ‘s’ by Lemma 45. We shall show a way to find
an equivalent path Π2 = (qi, w2, qj), such that w2 ∈ AF , wgt(w2) = wgt(w)
and Π2 contains no more than a polynomial (in terms of |M |bit) number of
reduced dual edge cycles, which will allow us to verify that w2 ≡ w ≡ w′ ∈ Ω
succinctly.

In this step, we may assume that Π does not contain a subpath of the
form (qi, R1, qj)(qj, R2, qj) or (qj, R2, qj)(qj, R1, qk) (or the version with R−1

and R−2). This is because an equivalent path exists in the graph using word
R− (R+ resp.) by Section 5.2.1. In both cases 3a and 3b below, the presence
of such a path within Π implies that dual edge cycles of arbitrary positive
or negative weight exist, and then in both cases a solution is trivial to find
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(since the main difficulty in these cases is finding an equivalent path with low
descriptional complexity of a given weight). Therefore in the analysis below
we shall exclude syllables R− and R+, as well as subwords of the form R1R

t
2,

Rt
2R1, R−1R

t
−2 and Rt

−2R−1.
3a) Π contains both positive and negative weight dual edge cycles.
I.e. Π = X1C1Y1 = X2C2Y2 such that C1 and C2 are dual edge cycles and
wgt(C1) · wgt(C2) < 0, with X1, X2, Y1, Y2 ∈ E∗.

Each reduced dual edge cycle Ci present in Π has a weight, which we
denote by ci if the weight is positive and di if the weight is negative (we
take the absolute value of a negative weight, so all ci, di are positive). Let
x = wgt(red∗(Π)) and assume without loss of generality that x > 0. Note
that x is not unique, since red is nondeterministic. By Lemma 46, if there
exists a solution to x +

∑k1
j=1 αjcj −

∑k2
j=1 βjdj = 0, then there also exists

a solution when k1, k2 ∈ O(log T ), where T is the sum of absolute values of
edge label weights in the daisy graph GM . This corresponds to choosing a
subset of the reduced dual edge cycles of Π.

We now note a technical concern. The proof of Lemma 46 proceeds by
removing unnecessary terms from set {ci} and {di} whilst retaining the gcd.
However, we may choose some term ci1 , corresponding to some reduced cycle
Ci1 , whilst removing some other term ci2 , corresponding to some reduced
cycle Ci2 . The cycle Ci1 may not be directly connected to path red∗(Π)
however, and Ci2 may need to be present, at least once, in order to allow
cycle Ci1 to be taken. In this case, we may add ci2 to the set of chosen gcd
values however, which potentially increases the size of set {ci} by a factor
of two. In this case, the coefficient of ci2 (denoted αi2) must be nonzero,
since Ci2 must be chosen at least once, in order to allow Ci1 to be traversed.
However, if we have a solution to Equation (14) when αi2 = 0, then choose
any term βkdk and update αi2 := dk and βk := βk+ci2 and then a solution still
exists and αi2 , βk > 0. To see this, note that 0·ci2−βkdk = dkci2−(ci2+βk)dk.
A similar analysis holds for the elements of set {di}.

To find a certificate for an Ω-minimal word w along a path from qi to qj,
which is reducible to w′ ∈ Ω, we can thus:

a) Nondeterministically guess a reduced path Π′, in Alternating Form,
between nodes qi and qj of length ≤ |E|2 and of weight x.

b) Nondeterministically guess O(log T ) positive (resp. negative) reduced
dual edge cycles that can be ‘reinserted’ in to Π′ and denote their weight
by ci (resp. di). The length of each such cycle is bounded by |E|2 by
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Lemma 43, since they are reduced. This new path may be denoted
Π′′ = (qi, w

′′, qj). Note that Π ∈ AF ⇒ Π′′ ∈ AF by Lemma 43.

c) Verify that x+
∑k1

j=1 αjcj −
∑k2

j=1 βjdj = wgt(w′), where |wgt(w′)| ≤ 2
for some guessed values αj, βj ≥ 1.

Note that this procedure is guaranteed to find a syllable in Ω with the
same weight as w′ ∈ Ω. Note also in this procedure that since Π′′ and Π
start and end with the same syllable (since the procedure only removes and
reinserts dual edge cycles which leaves the first and last syllables unchanged),
and since Π′′ ∈ AF , then Lemma 47 implies that Π ≡ Π′′ ≡ w′ ∈ Ω as
required.
3b) Π only contains dual edge cycles of the same sign.

By abuse of notation, let Π′(τ) ≥ 0 denote the number of occurences of a
subpath τ ∈ E+ within a path Π′. For example, if Π′ = e1e2e3e1e2e4e3e1e2,
then Π′(e1e2) = 3 and Π′(e4) = 1.

Our aim is to construct a path Πz such that Πz(τ) = Π(τ) for all τ ∈ E2,
where Πz ∈ AF . Crucially, Πz will have a simple description and acts thus
as a certificate for path Π from qi to qj.

Let Π1 = red∗(Π). Our approach will be to nondeterministically guess
a reduced dual edge cycle Π∗ and ‘insert’ a power of Π∗ into Πi to give a
path Πi+1, starting from i = 1. The idea of this procedure is that the
description of this new path has a polynomial description in terms of |M |bit.
This procedure of inserting powers of a reduced dual edge cycle will generate
paths Π1,Π2, . . . ,Πz where we will reach a stopping condition that for all
τ ∈ E2, then Πz(τ) = Π(τ). The choice of the dual edge cycles will ensure
that z ≤ |E|2 and each cycle is taken to a bounded power. We will show that
Πi ∈ AF ⇒ Πi+1 ∈ AF and since Π1 ∈ AF by Lemma 43 then by induction
this will show that Πz ∈ AF . The constructed path Πz will then act as a
certificate for path Π.

Now we show how to find Π∗ for a given Πi. Assume that Πi(τ) ≤ Π(τ)
for all τ ∈ E2. This certainly holds for i = 1, since red only removes
dual edge cycles. Nondeterministically choose a reduced dual edge cycle
Π∗ = π1π2 · · · πmπ1π2 ∈ E∗, such that Πi(π1π2) > 0 and for each τ ∈ E2

such that Π∗(τ) ≥ 1, then Π(τ)− Πi(τ) ≥ 1. Note that by the definition of
a reduced dual edge cycle, |Π∗| ≤ |E|2 + 2. For each τ ∈ E2, then Π∗(τ) = 0
if τ is not a subpath of Π∗, Π∗(τ) = 2 if τ is equal to π1π2 and Π∗(τ) = 1
otherwise. Define x = min{Π(τ)−Πi(τ); τ ∈ E2 and Π∗(τ) ≥ 1}. Therefore,
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x ≥ 1 by the choice of Π∗ and x denotes the minimum difference between
the number of times some τ ∈ E2 appears in Π and in Πi.

Recall that we assumed all dual edge cycles have the same sign. Let
b = wgt(Π1). Assume without loss of generality that b < −2 and therefore
all dual edge cycles of Π have a positive weight (otherwise the weight of Π
would certainly be less than −2). Note that b has a description size which
is polynomial in |M |bit, since |Π1| ≤ E2 + 2 and so |b| is no more than two
times the sum of all edge weights in the graph GM .

Now, since Πi(π1π2) > 0, then we can write Πi = Π′
iπ1π2Π

′′
i ∈ E∗, where

Π′
i,Π

′′
i ∈ E∗. We define Πi+1 = Π′

i(π1π2 · · · πm)
xπ1π2Π

′′
i ∈ E∗ (we intuitively

call this ‘inserting’ Πx
∗ into Πi). Clearly, Πi+1 is a path in GM since π1π2 was

already a subpath of Πi and Π∗ is a dual edge cycle. Since each cycle has a
positive weight (at least 1) then x ≤ |b|+4 because otherwise wgt(Πi+1) > 2
and any additional (positive) dual edge cycles that are added to Πi+1 will
only increase the weight, even though |wgt(Π)| ≤ 2. At this point then,
notice that x is bounded polynomially in |M |bit.

Furthermore, invariant Πi+1(τ) ≤ Π(τ) still holds for all τ ∈ E2 by
the choice of x. Crucially, notice that there exists some τ ∈ E2 such that
Π(τ)−Πi(τ) > 0 and Π(τ)−Πi+1(τ) = 0; this is just the τ that defined value
x. Each time we repeat this procedure, there exists some new τ ∈ E2 such
that the number of occurences of τ in Π and Πi+1 is equal. Since τ ∈ E2,
then this procedure can be repeated no more than |E|2 times to generate
some path Πz, after which for every pair τ ∈ E2, we have that Πz(τ) = Π(τ).

By Lemma 43, we know that function red retains Alternating Form for
paths (i.e. if path Π′ ∈ AF , then red(Π′) ∈ AF). A minor modification of
the proof also shows that if Πi = Π′

iπ1π2Π
′′
i ∈ AF , then Πi+1 = Π′

iΠ
x
∗Π

′′
i ∈

AF , since inserting a dual edge cycle also retains the required local properties
of syllables.

The final part to verify is that this procedure can be carried out iteratively
until Πz(τ) = Π(τ) for all τ ∈ E2. The only way that this can fail is if at
some point we generate path Πi and there does not exist a reduced dual edge
cycle Π∗ ∈ E∗ which can be ‘inserted’ into Πi, i.e. for some τ ∈ E2 which is
a subpath of Π∗, then Π(τ)− Πi(τ) = 0, which means that we cannot use τ
again while maintaining invariant Πi+1(τ) ≤ Π(τ).

Let Λ(Πi) = {τ ′ | τ ′ ∈ E2 and Π(τ ′) − Πi(τ
′) ≥ 1}. Thus, Λ(Πi) is just

the set of dual edges which are present more in Π than in Πi.
Assume then by contradiction that |Λ(Πi)| ≥ 1, but there does not exist

a reduced dual edge cycle which only uses edges of Λ(Πi). In this case, we
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cannot insert another cycle into Πi, even though Π(τ)− Πi(τ) ≥ 1 for some
τ ∈ Λ(Πi).

Let τ1 = (qj, u1, q) ∈ E, τ2 = (q, u2, qk) ∈ E and τc = τ1τ2 ∈ Λ(Πi) ⊆ E2.
If there exists some edge el = (q′j, u

′
1, qj) ∈ E such that τc(elτ1) = 0 and

elτ1 ∈ Λ(Πi), then we ‘extend’ τc to the left to give τc 7→ elτc. Note that τc
is still a valid path. This procedure is performed iteratively. Now, since we
only left extend τc if it does not cause repetition of some dual edge, then this
procedure must eventually halt for some τ ∗c and then ∥τ ∗c | ≤ |Λ(Πi)| ≤ |E|2.
Note also that τ ∗c is not a dual edge cycle by our above assumption that no
such cycle is possible using only elements of Λ(Πi). Now, τ ∗c is a path from
some vertex q1 to qk that cannot be further left extended by any edges from
Λ(Πi).

Let In : E∗×Q → N be a function such that In(Π′, q′) denotes the number
of edges of Π′ ∈ E∗ going to vertex q′ ∈ Q, plus 1 if Π′ starts at vertex q′.
Similarly, Out : E∗ ×Q → N is a function such that Out(Π′, q′) denotes the
number of edges of Π′ ∈ E∗ leaving vertex q′ ∈ Q, plus 1 if Π′ ends at vertex
q′. For example, given path:

Π′ = (q′1, w
′
1, q

′
2)(q

′
2, w

′
2, q

′
3)(q

′
3, w

′
3, q

′
2)(q

′
2, w

′
5, q

′
3),

then In(Π′, q′1) = 1, Out(Π′, q′1) = 1, In(Π′, q′2) = 2, Out(Π′, q′2) = 2 and
In(Π′, q′3) = 2, Out(Π′, q′3) = 2. These functions can be defined formally for
Π′ = π′

1π
′
2 · · · π′

k′ ∈ E∗ as follows:

In(Π′, q′) =
∑

πi′=(q′′,w′,q′)

1 +
∑

π1=(q′,w′,q′′)

1,

Out(Π′, q′) =
∑

πi′=(q′,w′,q′′)

1 +
∑

πk′=(q′′,w′,q′)

1,

where 1 ≤ i′ ≤ k′, q′′ ∈ Q and w′ ∈ Σ−{ε}. Note that the second summation
of function In/Out adds 1 if and only if Π′ begins/ends at vertex q′.

Note that for any path Π′ ∈ E2 and vertex q′ ∈ Q:

In(Π′, q′) = Out(Π′, q′). (17)

Consider vertex q1. Since τ ∗c cannot be further left extended from vertex
q1, then for all τ ∈ E2 of the form (qy1 , wy1 , q1)(q1, wx1 , qx1), for any qy1 , qx1 ∈
Q and wx1 , wy1 ∈ Σ− {ε}, then Π(τ)−Πi(τ) = 0, and thus τ ̸∈ Λ(Πi). This
implies that

In(Π, q1) = In(Πi, q1). (18)
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Since there exists some path τl = (q1, wx2 , qx2)(qx2 , wy1 , qy2) ∈ E2 such that
τl ∈ Λ(Πi), then Π(τl)− Πi(τl) > 0, then it implies that

Out(Π, q1) > Out(Πi, q1). (19)

Combining Invariant 17, Equality 18 and Inequality 19, we obtain the fol-
lowing contradiction:

In(Πi, q1) = Out(Πi, q1)

< Out(Π, q1)

= In(Π, q1)

= In(Πi, q1)

To recap then, given Π ∈ Φ such that |Π| > 2 and Π contains only dual
edge cycles of positive sign, we first define Π1 = red∗(Π), which we showed
has a polynomial length (polynomial in terms of |M |bit). We then define
some Π∗ and some x > 0, such that |Π∗| and x are polynomial in size and we
define Πi+1 by ‘inserting’ Πx

∗ into Πi. We repeat this procedure no more than
|E|2 + 2 times, and therefore the procedure is polynomial in |M |bit. Finally
this gives us a path Πz. We showed that Πi ∈ AF ⇒ Πi+1 ∈ AF and since
Π ∈ AF ⇒ Π1 ∈ AF , by Lemma 43, this implies that Πz ∈ AF . Since,
by definition, Πz(τ) = Π(τ) for all τ ∈ E2, then wgt(Πz) = wgt(Π). It is
clear that the first and last syllables of Π and Πz are the same, since function
red does not alter the first or last two syllables of any word. Therefore by
Lemma 47, since |Π| > 3, Π ∈ Φ, wgt(Π) = wgt(Πz) and Πz ∈ AF , then
Πz ≡ Π as required.

We conclude the aforementioned procedure in a theorem:

Theorem 49. The identity problem over PSL2(Z) is in NP.

Recall from Remark 37 that the described procedure is not limited to the
daisy graph and works for any regular expression R(a1, . . . , an). We define a
function ϕ mapping each letter of a regular expression to its corresponding
matrix in PSL2(Z).

Corollary 50. The problem of determining whether the identity matrix is in
ϕ(R(a1, . . . , an)) ⊆ PSL2(Z) for an arbitrary regular expression R(a1, . . . , an)
is in NP.
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Recall also that elements of PSL2(Z) are actually matrix pairs: a =
{A,−A} ⊂ SL2(Z). Let ⟨M ′⟩sg be a semigroup generated by some finite
M ′ ⊆ SL2(Z). We may then construct a syllabic automaton for the projection
of M ′ in PSL2(Z) only losing the information about the sign. If I belongs to
the projection of ⟨M ′⟩sg, then either I or −I belongs to ⟨M ′⟩sg. But in the
latter case, I = (−I)2 also belongs to ⟨M ′⟩sg. Hence we obtain the following
corollary:

Corollary 51. The identity problem over SL2(Z) is in NP.

Theorem 52. Determining if a matrix M ∈ PSL2(Z) is in ϕ(R(a1, . . . , an)) ⊆
PSL2(Z) for an arbitrary regular expression R(a1, . . . , an) is in NP.

Proof. The decidability of the problem was shown in [17] as it can be reduced
to the identity problem for a particular regular expression in PSL2(Z), i.e.

whether I ∈ M−1ϕ(R(a1, . . . , an)). Let M =

(
a b
c d

)
and since det(M) =

1, it follows that the inverse matrix M−1 =

(
d −b
−c a

)
as well as its

syllabic representation will be of the same size as the matrix M . Then
the statement of this theorem directly follows from Corollary 50 as deciding
whether I ∈ M−1ϕ(R(a1, . . . , an)) is in NP.

We now extend Theorem 52 to cover SL2(Z) rather than just PSL2(Z). We
cannot use the same proof idea as for Corollary 51 since if−I ∈ M−1ϕ(R(a1, . . . , an)),
it does not necessarily follow that I ∈ M−1ϕ(R(a1, . . . , an)). We thus modify
a proof technique from [17] to show this corollary.

Theorem 53. Determining if a matrix M is in ϕ(R(a1, . . . , an)) ⊆ SL2(Z)
for an arbitrary regular expression R(a1, . . . , an) is in NP.

Proof. We may assume that M ∈ SL2(Z). Let µ and µ−1 be new letters
(which will be used to represent matrices M and M−1 respectively).

Define ϕ : Σ∗ → PSL2(Z) to map alphabet Σ = {µ, µ−1, a1, a2, . . . an}
to their corresponding matrices in PSL2(Z). Let M mod 3 denote matrix
M with modulus 3 applied componentwise. Note that I mod 3 = I and −I
mod 3 = 2I ̸= I. We define a function θ : Z2×2 → (Z/3Z)2×2 which maps
each matrix X ∈ Z2×2 to X mod 3. Consider ϕ(µ−1R(a1, . . . , an)). Notice
that language

L = {l : l ∈ {µ, µ−1, a1, a2, . . . , an}∗ and θ(ϕ(l)) = I}
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is regular, thus so is L′ = µ−1 ·R(a1, . . . , an)∩L. If I ∈ ϕ(L′) it thus implies
that M ∈ ϕ(R(a1, . . . , an)).

We now extend this result to show that the membership problem for
GL2(Z) is decidable in NP. The difficulty here is that we do not have an
embedding from GL2(Z) to PSL2(Z) and so we need a way to deal with
matrices having determinant −1. We use a similar technique to that used in
[17] to deal with this problem.

Theorem 54. The membership problem for GL2(Z) is in NP.

Proof. Let X ∈ GL2(Z) be the target matrix, and G = {X1, . . . , Xk} ⊆
GL2(Z) the generator set of matrices. Since det(X) = ±1, it is clear that
X ∈ ⟨G⟩ implies that I ∈ X−1⟨G⟩. In this proof we consider rational subsets
of matrices by allowing regular operations (concatenation, Kleene star etc.)
on matrix sets in the natural way.

We may assume that if there exists a product I = X−1M1 · · ·Mn with
Mj ∈ G for 1 ≤ j ≤ n, then the number of matrices in the product with
determinant −1 is even. This holds since if det(X) = 1, then det(X−1) = 1
and thus det(M1 · · ·Mn) = 1. Similarly, if det(X) = −1, then det(X−1) =
−1 and thus det(M1 · · ·Mn) = −1, so again an even number of matrices in
the product have negative determinant.

We do not have an embedding from GL2(Z) to PSL2(Z). Thus we use
the following idea from [17].

Assume first that det(X) = 1. Let J denote the subset of integers from
1 ≤ i ≤ k where det(Xi) = −1. Define Xi,ℓ = XiXℓX

−1
i for all i ∈ J

and ℓ ̸∈ J . Furthermore, denote Zi,k = XiXk for i, k ∈ J . Finally, let
A = {Xi|i ̸∈ J}, Bi = {Xi,k|k ̸∈ J} for i ∈ J , and Zi = {Zi,k|k ∈ J} for
i ∈ J . Note therefore that the determinant of all matrices within A, Bi, and
Zi is 1, and thus A,Bi, Zi ⊆ SL2(Z); thus each such matrix can be embedded
into PSL2(Z) as previously discussed.

We form the previously described ‘petal graph’ recognising matrix prod-
ucts of the form X−1A∗(B∗

i ZiA
∗)∗ for i ∈ J . Note that the size of this petal

graph remains polynomial, giving only a quadratic increase in its overall size.
We now show the correctness of this petal graph, i.e., we show that

I ∈ X−1⟨G⟩ if and only if I ∈ X−1A∗(B∗
i ZiA

∗)∗ which proves that the
membership problem is decidable in NP by Theorem 53.

Firstly, assume that I ∈ X−1⟨G⟩. This means that there exists A1 · · ·An

with Aj ∈ G for 1 ≤ j ≤ n with I = X−1A1 · · ·An. As before, we may
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assume that the number of matrices in the product with determinant −1 is
even.

The key argument is to consider the left most two matrices with determi-
nant−1 if they exist, denotedAi andAj. We then considerAiAi+1 · · ·Aj−1Aj =
Xi1Xi2 · · ·Xij with each index 1 ≤ ip ≤ k and replace it by the product
Xi1,i2Xi1,i3 · · ·Xi1,ij−1

Zii,ij ∈ B∗
i1
Zi1 , noting that

Xi1,i2Xi1,i3 · · ·Xi1,ij−1
Zi1,ij = Xi1Xi2X

−1
i1

·Xi1Xi3X
−1
i1

· · ·Xi1Xij−1
X−1

i1
·Xi1Xij

= Xi1Xi2 · · ·Xij

= AiAi+1 · · ·Aj (20)

Since there are an even number of matrices with determinant −1, this argu-
ment can be applied iteratively so that if I ∈ X−1⟨G⟩, then I ∈ X−1A∗(B∗

i ZiA
∗)∗

as required.
To finish the argument, assume that I ∈ X−1A∗(B∗

i ZiA
∗)∗. We want to

prove that this implies I ∈ X−1⟨G⟩.
Matrices in B∗

i Zi necessarily have the form of Equation (20). Therefore
any product ofX−1A∗(B∗

i ZiA
∗)∗ can be written in terms ofX−1 and matrices

from G.
We earlier assumed that det(X) = 1. If det(X) = −1, then we can

define X0,j = X−1XjX and Z0,i = X−1Xi for j ̸∈ J and i ∈ J so that
det(X0,j) = det(Z0,i) = 1. Let B0 = {X0,j|j ̸∈ J} and Z0 = {Z0,i|i ∈ J} then
consider regular subset B+

0 Z0A
∗(B∗

i ZiA
∗)∗ for i, j ∈ J . Since now all matrices

are over SL2(Z), we can apply Theorem 53 to determine if the identity matrix
belongs to this rational subset in NP.

Next we consider the non-freeness problem for regular expressions over
SL2(Z).

Theorem 55. The non-freeness problem is NP-complete for finitely gener-
ated semigroups in SL2(Z).

Proof. By Corollary 50 the problem of determining whether I ∈ ϕ(R(a1, . . . , an))
is in NP, where R(a1, . . . , an) is an arbitrary regular expression in PSL2(Z).
We first reduce the non-freeness problem in PSL2(Z) into the identity prob-
lem.

Let M = {m1,m2, . . . ,mn} ⊆ PSL2(Z) be a finite set generating a semi-
group ⟨M⟩sg. This semigroup is non-free if and only if there exist two different
factorizations

A ·X ·B = C · Y ·D, (21)
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where A,B,C,D ∈ M and X, Y ∈ ⟨M⟩sg so that A ̸= C and B ̸= D.
Equation (21) is equivalent to AXBD−1Y −1C−1 = I, hence the identity

element belongs to the language of the regular expressionAM∗BD−1(M−1)∗C−1,
where M−1 = {m−1 | m ∈ M}. Since there are only n2(n− 1)2 such expres-
sions with A ̸= C and B ̸= D, we can nondeterministically find a witness (if
one exists) for the identity for each in polynomial time.

To prove the result for SL2(Z), we use the same technique as in Theo-
rem 53, intersecting the regular language corresponding toAM∗BD−1(M−1)∗C−1

with a regular language L which differentiates between the positive and neg-
ative identity matrix so that all potential solutions correpond to the positive
identity (I). As before, regular language L is constructed by considering all
matrix products over M ∪ M−1 equivalent to the identity matrix, modulus
3.

The non-freeness problem was shown to be NP-hard in [30] (even over
SL2(Z)), and therefore it is NP-complete.

Our final result in this section shows that the problem of determining if
a given set of matrices over SL2(Z) generates a group is also NP-complete
by using Theorem 52.

Theorem 56. Given a finite set of matrices G ⊆ SL2(Z), determining if G
generates a group is NP-complete.

Proof. Let G = {G1, G2, . . . , GK} ⊆ SL2(Z). We must determine, for each
Gi ∈ G, whether G−1

i ∈ G∗.
By Theorem 52, determining if the identity matrix belongs to an arbitrary

regular expression is NP-complete. We therefore solve the following series
of questions sequentially:

1. Does I belong to G1G
∗?

2. Does I belong to G2G
∗?

3. . . .

4. Does I belong to GkG
∗?

If I belongs to GiG
∗, then clearly Gi has a multiplicative inverse in G∗. If

I does not belong to some regular expression GiG
∗, then Gi does not have

a multiplicative inverse in G. Determining if I ∈ GiG
∗ can be done in NP,

and thus performing this procedure k times means this ‘group problem’ can
be done in NP. The hardness result follows since even determining if any
element of G has an inverse is known to be NP-hard [7].
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6. Conclusion

The main contribution of this article is a new type of NP algorithm
applied to low-dimensional matrix problems. In particular, we derive the
exact complexity of the identity problem in GL2(Z), showing that it is NP-
complete. Moreover, theNP algorithm for checking whether the identity ma-
trix belongs to an arbitrary regular expression is important as many closely
related problems for 2× 2 matrices can be reduced to it, including the mem-
bership and non-freeness problems. In general, many problems for 2 × 2
matrices are still open. For example, even the decidability of the freeness
problem for 2×2 matrices over natural numbers still remains a long-standing
open problem [10]. Recently progress was made to show the decidability of
the vector reachability problem for SL2(Z), see [46] and the decidability of
the membership problem for two cases non-singular integer 2 × 2 matrices
see [47] and GL2(Z) extended by singular matrices [48]. However, the exact
complexity of these problems is not yet known.

The proposed techniques presented in this paper may be helpful for de-
signing more efficient algorithms for similar problems. One of the natural
steps would be to extend the NP algorithm if possible for the mortality
problem for 2 × 2 matrices whose determinants assume the values 0 or ±1.
This problem was shown to be NP-hard in [3] and decidability of this prob-
lem was shown in [40] based on the decidability for SL2(Z) from [17]. The
complexity of matrix problems over rational or complex numbers may be
even higher. Very little is still known not only about the complexity, but
also about the decidability of these problems.

In the seminal paper of Paterson in 1970 [43], an injective morphism from
pairs of words into 3×3 integral matrices was used to prove the undecidabil-
ity of the mortality problem, and later led to many undecidability results of
matrix problems in dimension three. In [29] it was shown that there is no em-
bedding from pairs of words into 3×3 integral matrices with determinant one,
i.e., into SL3(Z), which provides strong evidence that computational prob-
lems in SL3(Z) may be decidable, as all known undecidability techniques for
low-dimensional matrices are based on encoding of Turing machine computa-
tions via Post’s Correspondence Problem (PCP), which cannot be applied in
SL3(Z) following the results of [29]. In the case of the PCP encoding, matrix
products extended by right multiplication correspond to a Turing machine
simulation, and the only known proof alternatives rely on recursively enu-
merable sets and Hilbert’s Tenth Problem, but provide undecidability for
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matrix equations of very high dimensions.
As the decidability status of the identity problem in dimension three is

still a long standing open problem, it would be plausible to consider the
problem in SL3(Z), which also has a symbolic representation.

Comparing to the relatively simple representation of SL2(Z) = ⟨S, T |
S4 = I2, (ST )

6 = I2⟩, where S = ( 0 −1
1 0 ) and T = ( 1 1

0 1 ), the case of
SL3(Z) = ⟨X, Y, Z | X3 = Y 3 = Z2 = (XZ)3 = (Y Z)3 = (X−1ZXY )2 =
(Y −1ZY X)2 = (XY )6 = I3⟩, where

X =
(

0 1 0
0 0 1
1 0 0

)
, Y =

(
1 0 1
0 −1 −1
0 1 0

)
and Z =

(
0 1 0
1 0 0
−1 −1 −1

)
,

appears more challenging, containing both non-commutative and partially
commutative elements.
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