
DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON

SMALL ALPHABETS

PAUL C. BELL a AND PAVEL SEMUKHIN b

a Keele University, School of Computer Science and Mathematics, Colin Reeves Building, Keele,
Staffordshire, ST5 5BG, UK
e-mail address: p.c.bell@keele.ac.uk

b Liverpool John Moores University, School of Computer Science and Mathematics, James Parsons
Building, Byrom Street, Liverpool, L3 3AF, UK
e-mail address: P.Semukhin@ljmu.ac.uk

Abstract. We study the emptiness and λ-reachability problems for unary and binary
Probabilistic Finite Automata (PFA) and characterise the complexity of these problems
in terms of the degree of ambiguity of the automaton and the size of its alphabet. Our
main result is that emptiness and λ-reachability are solvable in EXPTIME for polynomially
ambiguous unary PFA and if, in addition, the transition matrix is over {0, 1}, we show
they are in NP. In contrast to the Skolem-hardness of the λ-reachability and emptiness
problems for exponentially ambiguous unary PFA, we show that these problems are NP-hard
even for finitely ambiguous unary PFA. We also show that the value of a polynomially
ambiguous PFA can be computed in EXPTIME. For binary polynomially ambiguous PFA
with commuting transition matrices, we prove NP-hardness of the λ-reachability (dimension
9), nonstrict emptiness (dimension 37) and strict emptiness (dimension 40) problems.

1. Introduction

There are many possible extensions of the fundamental notion of a nondeterministic finite
automaton. One such notion is that of Probabilistic Finite Automata (PFA) which was first
introduced by Rabin [Rab63]. In a PFA P over a (finite) input alphabet Σ the outgoing
transitions from a state, for each input letter of Σ, form a probability distribution, as does
the initial state vector. Thus, a word w ∈ Σ∗ is accepted with a certain probability, which
we denote P(w).

There are a variety of interesting questions that one may ask about a PFA P over an
alphabet Σ. In this article we focus on two decision questions, that of λ-reachability and
emptiness. The λ-reachability problem is stated thus: given a probability λ ∈ [0, 1], does
there exist some word w ∈ Σ∗ such that P(w) = λ? In the (strict) emptiness problem, we
ask if there exists any word w ∈ Σ∗ such that P (w) ≥ λ (resp. P (w) > λ). We also mention
the related cutpoint isolation problem — to determine if for each ε > 0, there exists a word

Key words and phrases: Probabilistic finite automata, unary alphabet, emptiness problem, bounded
ambiguity.
∗This is an extended version of the conference paper [BS21].

Preprint submitted to
Logical Methods in Computer Science

© P. C. Bell and P. Semukhin
CC© Creative Commons

https://orcid.org/0000-0003-2620-635X
https://orcid.org/0000-0002-7547-6391
http://creativecommons.org/about/licenses

2 P. C. BELL AND P. SEMUKHIN

w ∈ Σ such that |P(w) − λ| < ε. The value-1 problem is a special case of the cutpoint
isolation problem when λ = 1 [GO10] and the value problem is to determine the supremum
over all words of the acceptance probability of a word.

In general, the emptiness problem is undecidable for PFA [Paz71], even over a binary
alphabet when the automaton has 25 states [Hir07]. The cutpoint isolation problem is
undecidable [BMT77] even for PFA with 420 states over a binary alphabet [BC03]. The
problem is especially interesting given the seminal result of Rabin that if a cutpoint λ is
isolated, then the cutpoint language associated with λ is necessarily regular [Rab63].

We may ask which restrictions of PFA may lead to decidability of the previous problems.
In this paper we are interested in PFA of bounded ambiguity, where the ambiguity of a word
denotes the number of accepting runs of that word in the PFA. A PFA P is f -ambiguous,
for a function f : N→ N, if every word of length n has at most f(n) accepting runs. A run
is accepting if the probability of that run ending in a final state is strictly positive. The
degree of ambiguity is thus a property of the NFA underlying a PFA (i.e., the NFA produced
by setting all nonzero transition probabilities to 1). We may consider the notions of finite,
polynomial or exponential ambiguity of P based on whether f is bounded by a constant, is a
polynomial or else is exponential, respectively. Characterisations of the degree of ambiguity
of NFA are given by Weber and Seidel [WS91] and we discuss more about this in Section 2.1.

The authors of [FRW17] show that emptiness for PFA remains undecidable even for
polynomially ambiguous automata (quadratic ambiguity), show PSPACE-hardness results
for finitely ambiguous PFA and that emptiness is in NP for the class of k-ambiguous PFA for
every k > 0. The emptiness problem for PFA was later shown to be undecidable for linearly
ambiguous automata [DJL+18]. The emptiness problem is known to be in quasi-polynomial
time for 2-ambiguous PFA [FRW17]. Furthermore, the value of a k-ambiguous PFA is
approximable in polynomial time up to any multiplicative constant [FRW17].

Another restriction is to constrain input words of the PFA to come from a given
language L. If L is a letter-bounded language1, then the emptiness and λ-reachability
problems remain undecidable for polynomially ambiguous PFA, even when all transition
matrices commute [Bel19]. In contrast, the cutpoint-isolation problem is decidable even
for exponentially ambiguous PFA when inputs are constrained to come from a given letter-
bounded context-free language, although it is NP-hard for 3-state PFA on letter-bounded
inputs [BS20].

Our main results are as follows. We show that the λ-reachability and emptiness problems
for probabilistic finite automata are:

• In EXPTIME for the class of polynomially ambiguous unary PFA and are NP-complete if,
in addition, the transition matrix is over {0, 1} [Theorem 3.2 and Corollary 3.11].
• NP-hard for polynomially ambiguous PFA over a binary alphabet with fixed and commuting

transition matrices of dimension 40 (strict emptiness problem), 37 (nonstrict emptiness
problem) and 9 (λ-reachability problem) [Theorem 4.1].

We also show NP-hardness for the class of finitely ambiguous unary PFA with {0, 1}
transition matrix [Proposition 3.10]. Our hardness results rely on the NP-hardness of solving
binary quadratic equations and the universality problem for unary regular expressions. Note
that these restrictions of the PFA, to have polynomial ambiguity, a binary alphabet, fixed
and commuting transition matrices, or else finite ambiguity, unary alphabet and binary

1A language L over an alphabet Σ = {a1, . . . , ak} is letter-bounded if L ⊆ a∗j1 · · · a
∗
jp , where 1 ≤ ji ≤ k for

1 ≤ i ≤ p.

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 3

transition matrix, makes it more difficult to prove an NP-hard lower-bound. The aim is to
have as restricted a model as possible, while retaining NP-hardness.

An interesting question, that is left open, is to find the exact complexity of these
problems in the case of polynomially ambiguous unary PFA, i.e. to close the gap between
the EXPTIME upper bound and NP-hard lower bound.

There are connections between problems on polynomially ambiguous unary PFA and
reachability problems for special types of linear recurrence sequences (LRS). For example,
polynomially ambiguous unary PFA (or more generally, polynomially ambiguous unary
weighted automata) describe LRS whose characteristic roots are roots of rational numbers
[BFLM22]. It was recently shown that for LRS whose characteristic roots are roots of real
algebraic numbers, the reachability problem (also called the Skolem problem) can be solved
in NPRP [ABM+20]. However, the translation given in [BFLM22] can produce a description
for an LRS that is exponential in the size of the PFA. On the other hand, it is claimed
in [ABM+20] that the reachability problem for PFA is in NPRP for the special case where
roots are distinct roots of real numbers. Our results do not have such restrictions.

Our proof of the EXPTIME upper bound relies on a careful analysis of how fast the
acceptance probability P(ak) converges to its limit values as k → ∞. To prove the NP
bound when the transition matrix is over {0, 1}, we consider a nondeterministic version of
the EXPTIME algorithm, showing that the verification part can be done in polynomial
time. We also show that the value of a polynomially ambiguous PFA can be computed in
EXPTIME as a corollary of our techniques.

This is an extended version of the conference paper [BS21]. The present version contains
an expanded introduction, additional figures and explanations and full proofs which were
in the appendix of the submitted conference version. We also consider the problem of
computing the value of a PFA which was not considered in [BS21].

2. Probabilistic Finite Automata and Notation

We denote by Qn×n the set of all n× n matrices over Q. Given two column vectors u ∈ Qn

and v ∈ Qm, we denote by [u|v] the column vector (u1, . . . , un, v1, . . . , vm)T ∈ Qn+m. For a
sequence of vectors u1, u2, . . . , uk, we write [u1|u2| · · · |uk] for the column vector which stacks
the vectors on top of each other.

Given A = (aij) ∈ Qm×m and B ∈ Qn×n, we define the direct sum A⊕B and Kronecker
product A⊗B of A and B by:

A⊕B =

[
A 0m,n

0n,m B

]
, A⊗B =

a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

. . .
...

am1B am2B · · · ammB

 ,
where 0i,j denotes the zero matrix of dimension i × j. Note that neither ⊕ nor ⊗ are
commutative in general. The following useful properties of ⊕ and ⊗ are well known.

Lemma 2.1. Let A,B,C,D ∈ Qn×n. Then we have:

• Associativity: (A⊗B)⊗C = A⊗ (B⊗C) and (A⊕B)⊕C = A⊕ (B⊕C), thus A⊗B⊗C
and A⊕B ⊕ C are unambiguous.
• Mixed product properties: (A⊗B)(C⊗D) = (AC⊗BD) and (A⊕B)(C⊕D) = (AC⊕BD).
• If A and B are stochastic matrices, then so are A⊕B and A⊗B.

4 P. C. BELL AND P. SEMUKHIN

• If A,B ∈ Qn×n are both upper-triangular, then so are A⊕B and A⊗B.

See [HJ91] for proofs of the first three properties of Lemma 2.1. The fourth property
follows directly from the definition of the direct sum and Kronecker product.

A Probabilistic Finite Automaton (PFA) P with n states over an alphabet Σ is defined
as P = (u, {Ma|a ∈ Σ}, v) where u ∈ Qn is the initial probability distribution; v ∈ {0, 1}n is
the final state vector and each Ma ∈ Qn×n is a (row) stochastic matrix. We will primarily
be interested in unary and binary PFA, for which |Σ| = 1 and |Σ| = 2 respectively. For a
word w = a1a2 · · · ak ∈ Σ∗, we define the acceptance probability P(w) : Σ∗ → Q of P as:

P(w) = uTMa1Ma2 · · ·Makv ∈ [0, 1],

which denotes the acceptance probability of w.2

For a given cutpoint λ ∈ [0, 1], we define the following languages: L≥λ(P) = {w ∈
Σ∗ | P(w) ≥ λ}, a nonstrict cutpoint language, and L>λ(P) = {w ∈ Σ∗ | P(w) > λ}, a strict
cutpoint language. The (strict) emptiness problem for a cutpoint language is to determine if
L≥λ(P) = ∅ (resp. L>λ(P) = ∅). We are also interested in the λ-reachability problem, for
which we ask if there exists a word w ∈ Σ∗ such that P(w) = λ.

2.1. PFA Ambiguity. The degree of ambiguity of an automaton is a structural parameter,
indicating the number of accepting runs for a given input word. See [WS91] for details of
ambiguity for nondeterministic automata and [Bel19,BS20,DJL+18,FRW17] for connections
to PFA.

Let w ∈ Σ∗ be an input word of an NFA N = (Q,Σ, δ, QI , QF), with Q the set of states,
Σ the input alphabet, δ ⊂ Q × Σ × Q the transition function, QI the set of initial states
and QF the set of final states. For each (p, w, q) ∈ Q× Σ∗ ×Q, define daN (p, w, q) as the
number of paths for w in N leading from state p to q. The degree of ambiguity of w in N ,
denoted daN (w), is defined as the number of all accepting paths for w (starting from an
initial and ending in a final state). The degree of ambiguity of N , denoted da(N), is the
supremum of the set {daN (w) | w ∈ Σ∗}. N is called infinitely ambiguous if da(N) =∞,
finitely ambiguous if da(N) < ∞, and unambiguous if da(N) ≤ 1. The degree of growth
of the ambiguity of N , denoted deg(N), is defined as the minimum degree of a univariate
polynomial h with positive integral coefficients such that for all w ∈ Σ∗, daN (w) ≤ h(|w|)
(if such a polynomial exists, in which case N is called polynomially ambiguous, otherwise
the degree of growth is infinite and N which we call exponentially ambiguous).

The above notions relate to NFA. We may derive an analogous notion of ambiguity for
PFA by considering an embedding of a PFA P into an NFA N in such a way that for each
letter a ∈ Σ, if the probability of transitioning from a state i to state j is nonzero under
P, then there is an edge from state i to j under N for letter a. The initial states of N are
those of P having nonzero initial probability and the final states of N and P coincide. We
then say that P is finitely/polynomially/exponentially ambiguous if N is (respectively).

A state q ∈ Q in an NFA (resp. PFA) is called useful if there exists an accepting
path which visits q (resp. an accepting path of nonzero probability which visits q). We
can characterise whether an NFA A (and thus a PFA by the above embedding) has finite,
polynomial or exponential ambiguity using the following properties (see Figs 1 and 2):
EDA - There is a useful state q ∈ Q such that, for some word v ∈ Σ∗, daA(q, v, q) ≥ 2.

2Some authors interchange the order of u and v and use column stochastic matrices, although the two
definitions are trivially equivalent.

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 5

IDAd - There are useful states r1, s1, . . . , rd, sd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈ Σ∗

such that for all 1 ≤ i ≤ d, ri and si are distinct and (ri, vi, ri), (ri, vi, si), (si, vi, si) ∈ δ and
for all 2 ≤ i ≤ d, (si−1, ui, ri) ∈ δ.

qq0 qF
w1

v

v

w2

Figure 1. EDA Property

r1 s1 rd sd

q0 qF

v1 v1 vd vd

w2

v1 vdudu2

w1

Figure 2. IDAd

Theorem 2.2 ([IR86,Reu77,WS91]). An NFA (or PFA) A having the EDA property is
equivalent to it being exponentially ambiguous. For any d ∈ N, an NFA (or PFA) A having
property IDAd is equivalent to deg(A) ≥ d.

Clearly, if N agrees with IDAd for some d > 0, then it also agrees with IDA1, . . . , IDAd−1.
An NFA (or PFA) is thus finitely ambiguous if it does not possess property IDA1.

3. Unary PFA

Our main focus is on unary automata. We begin by giving a simple folklore proof that
the λ-reachability and emptiness problems are as computationally difficult as the famous
Skolem problem, which is only known to be decidable for instances of depth 4 [Ver85]. See
also [AAOW15] for connections to reachability problems for Markov chains.

Theorem 3.1. The λ-reachability and emptiness problems for unary exponentially ambiguous
Probabilistic Finite Automata are Skolem-hard.

Proof. (Folklore). The λ-reachability problem for unary exponentially ambiguous PFA can
be shown Skolem-hard based on the matrix formulation of Skolem’s problem [HHHK05] and
Turakainen’s technique showing the equivalence of (strict) cutpoint language acceptance of
generalised automata and exponentially ambiguous probabilistic automata [Tur69]. We shall
now show the details of this procedure.

Consider the following linear recurrence sequence (LRS) un for n ≥ 0, with recurrence
coefficients a0, . . . , ak−1 ∈ Z and where u0, . . . , uk−1 ∈ Z are the given initial conditions:

un = ak−1un−1 + · · ·+ a0un−k

We denote the zero set of un by Z(un) = {j|uj = 0}. Skolem’s problem is to determine if
Z(un) is empty for a given LRS. The value k is the depth of the LRS. It is decidable to
determine if Z(un) is infinite [Han86].

6 P. C. BELL AND P. SEMUKHIN

Let M ∈ Zk×k be defined thus:

M =

ak−1 1 · · · 0 0

...
...

. . .
...

...
a2 0 · · · 1 0
a1 0 · · · 0 1
a0 0 · · · 0 0

 ,

and let u′ = (uk−1, . . . , u0)T ∈ Zk and v′ = (0, . . . , 0, 1) ∈ Zk. It is not difficult to verify that
uj = u′TM jv′.

We may now define:

A′ =

 0 0 0
sT M 0T

r t 0

 ∈ Z(k+2)×(k+2),

where r ∈ Z, s, t ∈ Zk are (uniquely) chosen so that each row and column sum is zero and
0 ∈ Zk is the zero vector. Clearly then A′j also has zero row and column sums and retains this
same structure for any j > 0. Define Ω ∈ Z(k+2)×(k+2) such that Ωi,` = 1 for 1 ≤ i, ` ≤ k+ 2.
Notice that Ωj = (k+ 2)j−1Ω and A′Ω = ΩA′ = 0. Let c = max{|a`||1 ≤ ` ≤ k− 1}+ 1 and

note that A′ + cΩ is strictly positive. Define A = 1
c(k+2)(A

′ + cΩ), u = [0|u′|0]
|u′|1 ∈ Qk+2 and

v = [0|v′|0] ∈ Zk+2, noting that |u|1 = 1. Let our PFA be given by P = (u,A, v).
It can now be seen that:

P(aj) = uTAjv

=

(
1

c(k + 2)

)j
uT (A′ + cΩ)jv

=

(
1

c(k + 2)

)j
uT (A′j + cjΩj)v

=

(
1

c(k + 2)

)j
(u′TM jv′ + cj(k + 2)j−1uTΩv)

=

(
1

c(k + 2)

)j
uj +

1

(k + 2)
,

which equals 1
(k+2) if and only if uj = 0. Thus determining if cutpoint λ = 1

(k+2) can be

reached is Skolem-hard.
The emptiness problem can be shown Skolem-hard by encoding the positivity problem

which is known to be Skolem-hard, see [OW14] for example. Essentially this stems from the
fact that u2j is also an LRS and clearly u2j is nonnegative. Thus, encoding u2j in the same

way as above means that P(aj) ≥ 1
(k+2) with equality if and only if uj = 0 as required.

Note that stochastic matrix A is necessarily exponentially ambiguous so long as one
of the coefficients a0, . . . , ak−1 is negative. This follows since A is then strictly positive by
construction. The degree of ambiguity of word aj is thus (k+2)j . An interesting construction
is shown in [OW12], where a technique to generate a stochastic matrix of dimension 2k + 1
is given (rather than dimension k+ 2 shown above). The resulting PFA is still exponentially
ambiguous, but with lower ambiguity.

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 7

We now move to prove our main result, specifically that the emptiness and λ-reachability
problems for polynomially ambiguous unary probabilistic finite automata are in EXPTIME.
Note again that without the restriction of polynomial ambiguity the problem is Skolem-hard
by Theorem 3.1 and thus not even known to be decidable.

Theorem 3.2. The λ-reachability and (strict) emptiness problems for unary polynomially
ambiguous Probabilistic Finite Automata are decidable in EXPTIME.

In order to establish Theorem 3.2, we need to prove a series of lemmas.
The next lemma states that we may consider a unary polynomially ambiguous PFA

whose transition matrix is upper-triangular. This will prove useful since in that case the
eigenvalues of the transition matrix are rational nonnegative. In general, a polynomially
ambiguous unary PFA may have a transition matrix with complex eigenvalues as illustrated
here:

A =

0 1 0
0 0 1
1 0 0

 ,

whose eigenvalues are
{

1,−1
2 ± i

√
3
2

}
. The proof of the lemma relies on the analysis of

strongly connected components (SCCs) of the underlying transition graph of a PFA.
The following lemma is folklore although we could not find a definite reference which

proved the statement and therefore we include a proof for completeness.

Lemma 3.3. Let P = (u,A, v) be a polynomially ambiguous unary Probabilistic Finite
Automaton with acceptance function P(ak) = uTAkv. Then we can compute in EXPTIME
a set of d polynomially ambiguous unary PFAs {Ps = (us, U, v

′) | 0 ≤ s ≤ d − 1} such
that U is rational upper-triangular and P(ak) = Ps(ar) = uTs U

rv′, where k = rd + s with
0 ≤ s ≤ d− 1.

Proof. We will identify P and its underlying graph in which an edge (p, q) exists iff Ap,q 6= 0.
Two states p, q of a PFA are said to be connected if there exists a path from p to q and
from q to p. We partition the set of states into Strongly Connected Components (SCC)
denoted S1, S2, . . . , S` so that for any SCC Sj , either |Sj | = 1, or else any two states in Sj
are connected. These SCCs can be computed in linear time.

A polynomially ambiguous PFA does not have the EDA property (see Sec. 2.1). This
implies that every Sj , with |Sj | > 1, consists of a single directed cycle, possibly with
transitions to other SCCs. To see this, suppose there are two different directed cycles inside
Sj of lengths m and n and a common vertex p. Then one can construct two different paths
of length mn from p to p by going m times along the first cycle and n time along the second
cycle, respectively, contradicting the assumption that P does not have the EDA property.

Note that if there exists a path from a state p ∈ Sj1 to some q ∈ Sj2 , then there does
not exist any path from any state in Sj2 to a state in Sj1 , otherwise Sj1 and Sj2 would merge
to a single SCC (since all vertices are then connected). This implies that the connected
components S1, S2, . . . , S` can be reordered in such a way that there are no transitions from
Sj to Si for i < j. Hence there exists a permutation matrix P such that the following matrix

8 P. C. BELL AND P. SEMUKHIN

is stochastic block upper-triangular:

B = PAP−1 =

B1 ∗ · · · ∗

0 B2
. . . ∗

...
. . .

. . .
...

0 0 · · · B`

 ,

such that each Bj ∈ Qdj×dj , where dj is the size of Sj , and Bj � Pj , where Pj ∈ Ndj×dj
is a permutation matrix, and the entries ∗ are arbitrary. Here M � N means that M is
entrywise less than or equal to N , i.e. Mi,j ≤ Ni,j .

Let d = lcm{dj | 1 ≤ j ≤ `} (in fact, we can simply take d =
∏`
j=1 dj). We then see

that:

U := Bd = PAdP−1 =

Bd

1 ∗ · · · ∗

0 Bd
2

. . . ∗
...

. . .
. . .

...
0 0 · · · Bd

`

 .

Note that each Bd
j � P dj = Ij , where Ij ∈ Ndj×dj is the identity matrix, and the entries ∗

are arbitrary. Therefore, each Bd
j is diagonal, and so U is clearly upper-triangular.

We then define Ps = (us, U, v
′), for 0 ≤ s ≤ d − 1, with uTs = uTAsP−1 and v′ = Pv

noting that Pv is a binary vector as required of a final state vector. We now see that:

P(ak) = uTAkv = uTAsArdv = uTAsP−1(PArdP−1)Pv = uTs U
rv′ = Ps(ar)

for k = rd+ s with 0 ≤ s ≤ d− 1 as required. Here we used the identity U r = PArdP−1.
Finally, note that d can be exponential in the number of states of P, which in turn

is bounded by the input size. Hence computing U and all us, for 0 ≤ s ≤ d − 1, takes
exponential time.

The next lemma gives us an efficient method to compute an explicit formula for the
acceptance probability function of a unary PFA with upper-triangular transition matrix. 3

Lemma 3.4. Let P = (u,A, v) be a unary probabilistic finite automaton such that A is
rational upper-triangular, and let λ0 = 1 > λ1 > · · · > λm ≥ 0 be distinct eigenvalues of
A. Then there exist a constant c ∈ Q and univariate polynomials p1, . . . , pm over Q, all of
which can be computed in polynomial time, such that

P(ak) = c+
m∑
i=1

pi(k)λki .

Proof. First, we write A in Jordan normal form A = S−1JS, where S is a nonsingular
(det(S) 6= 0) matrix consisting of the generalised eigenvectors of A. Recall that A is a
rational upper-triangular matrix. It follows that J and S must have rational entries because
to compute them, we need to solve systems of linear equations over Q. These calculations,
that is, computing J , S and S−1 can be done in polynomial time. In fact, these problems
are in NC, see [BvzGH82,Pap94]. Matrix J has the form J =

⊕m
i=0

⊕ni
j=1 J`i,j (λi), where

J`i,j (λi) is a `i,j× `i,j Jordan block and ni is the geometric multiplicity of λi (hence
∑ni

j=1 `i,j

3A similar result is derived in Proposition 1 of [ABM+20], without the claim of computing the polynomials
in polynomial time.

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 9

is the algebraic multiplicity of λi). Recall that a Jordan block J`(λ) of size ` × ` that
corresponds to an eigenvalue λ has the form:

J`(λ) =

λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

 ∈ Q`×`.

Noting that
(
x
y

)
= 0 if y > x, we see that

J`(λ)k =

λk

(
k
1

)
λk−1

(
k
2

)
λk−2 · · ·

(
k
`−1
)
λk−(`−1)

0 λk
(
k
1

)
λk−1 · · ·

(
k
`−2
)
λk−(`−2)

0 0 λk · · ·
(
k
`−3
)
λk−(`−3)

...
...

...
. . .

...
0 0 0 · · · λk

 . (3.1)

Note that the entries of J`(λ)k have the form qi,j(k)λk, where qi,j(k) are polynomials over Q
that can be computed in polynomial time. Namely, qi,i+p(k) =

(
k
p

)
λ−p for 0 ≤ p ≤ `− i, and

qi,j(k) = 0 for i > j. Note that even though p appears in the exponent of λ−p and as p! in(
k
p

)
, these values are still computable in PTIME from the input data because p is bounded

by the dimension of the matrix, which in turn is bounded by the input size.
Next, we note that Jk =

⊕m
i=0

⊕ni
j=1 J`i,j (λi)

k. Hence the entries of Jk have the form

ps,t(k)λki , where ps,t(k) are polynomials over Q. So we can write the function P(ak) as
follows:

P(ak) = uTAkv = (uTS−1)Jk(Sv).

Note that in the above equation, uTS−1 and Sv are rational vectors. It follows that

P(ak) =
m∑
i=0

pi(k)λki

for some polynomials pi(k) over Q. In fact, these polynomials are rational linear combinations
of those ps,t(k) that multiply λki in the expression for Jk, and so they can be computed in
polynomial time.

Finally, recall that λ0 = 1 and note that the Jordan blocks that correspond to the
dominant eigenvalues of a stochastic matrix have size 1× 1 (for the proof of this fact see,
e.g. [Fri15, Theorem 6.5.3]). It follows from (3.1) that the terms λk0 in the formula for Jk

are multiplied by constant polynomials ps,t(k) = 1. Hence p0(k) = c for some constant
c ∈ Q.

The next technical lemma is crucial in our later analysis of the running time of the
algorithms for the emptiness and λ-reachability problems presented in Lemmas 3.7 and 3.9.

Lemma 3.5. Let D ∈ R be such that lnD > 2. Then for all x > 3D lnD, we have
D lnx < x.

10 P. C. BELL AND P. SEMUKHIN

Proof. Our goal is to find x0 > 0 such that every x > x0 satisfies D lnx < x. First, let us
make a substitution x = Dt, where t > 1. Then we can rewrite D lnx < x as follows

D ln(Dt) < Dt,

ln t+ lnD < t.

We want to find t0 > 1 such that every t > t0 satisfies ln t+ lnD < t. Let us make another
substitution t = lnD + u ln lnD, where u > 0. Then we can write the previous inequality as

ln(lnD + u ln lnD) + lnD < lnD + u ln lnD,

ln

(
lnD

(
1 + u

ln lnD

lnD

))
< u ln lnD,

ln lnD + ln

(
1 + u

ln lnD

lnD

)
< u ln lnD. (3.2)

So we need to find u0 > 0 such that for all u > u0, the inequality (3.2) holds. In
order to do this, we can replace the left-hand side of (3.2) with a larger value using
ln
(
1 + u ln lnR

lnR

)
< u ln lnR

lnR . Thus we obtain

ln lnD + u
ln lnD

lnD
< u ln lnD,

1 +
u

lnD
< u, lnD + u < u lnD,

lnD

lnD − 1
< u.

Recall that by our assumption lnD > 2. In this case, lnD
lnD−1 < 2, and hence we can choose

u0 = 2. This gives us the values t0 = lnD + u0 ln lnD = lnD + 2 ln lnD and x0 = Dt0 =
D(lnD + 2 ln lnD). Since ln lnD < lnD, we can choose x0 to be x0 = 3D lnD.

We now proceed to the proof of our main result. We split the analysis into two cases
depending on whether or not the cutpoint λ coincides with the limit limk→∞ P(ak), which
is unique by Lemma 3.4.

Lemma 3.6. Let P = (u,A, v) be a unary probabilistic finite automaton such that A is ratio-
nal upper-triangular. Let λ ∈ [0, 1]∩Q be a cutpoint and assume that c = limk→∞ P(ak) 6= λ.
Then we can compute in PTIME a bound k0 > 0 such that for all k > k0, we have

|P(ak)− c| < |c− λ|
2

.

Moreover, we give an explicit formula for k0 in (3.6).

Proof. By Lemma 3.4, we can write P(ak) = c +
∑m

i=1 pi(k)λki , where 1 > λ1 > · · · > λm
are the eigenvalues of A. Note that c, λi’s and the coefficients of pi are rational numbers
that can be computed in polynomial time. By assumption, limk→∞ P(ak) = c 6= λ. Let
ε = |c− λ|/2. We now show how to compute an integer k0 > 0 such that |P(ak)− c| < ε for
all k > k0.

Let each pi(k) have the form pi(k) = ai,sk
s + ai,s−1k

s−1 + · · ·+ ai,0, where s ≤ n is the
size of the largest Jordan block in the Jordan normal form of A (we do not assume here
that ai,s 6= 0). Then for all k > 0 we have∣∣∣∣∣

m∑
i=1

pi(k)λki

∣∣∣∣∣ ≤ λk1
m∑
i=1

|pi(k)| ≤ λk1ks
m∑
i=1

s∑
j=0

|ai,j | = d ksλk1,

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 11

where d =
∑m

i=1

∑s
j=0 |ai,j | ∈ Q can be computed in polynomial time by Lemma 3.4.

Let k1 > 0 be a number to be defined later such that for all k > k1,

ks <

(
1√
λ1

)k
= λ

− k
2

1 .

Then for all k > k1, we have d ksλk1 < dλ
k
2
1 . Thus we need to find k0 ≥ k1 such that for

all k > k0, we have λ
k
2
1 < ε/d. Note that if ε/d ≥ 1, then we can take k0 = k1. Hence we

assume that ε/d < 1.

The inequality λ
k
2
1 < ε/d is equivalent to k lnλ1 < 2 ln(ε/d). Since lnλ1 < 0, the

previous inequality is equivalent to

k >
2 ln(ε/d)

lnλ1
=

2 ln(d/ε)

− lnλ1
. (3.3)

To determine k0, we need an upper bound on the right-hand side of (3.3). We will use the
fact that for any rational r > 1, ln r < log2 r ≤ log2dre < bins(dre), where bins(n) is the size
of the binary representation of n. Thus bins(dre) gives a polynomially computable integer
upper bound for ln r.

Next, using the fact that ln(1 + x) < x for x 6= 0, we obtain

lnλ1 = ln(1 + (λ1 − 1)) < λ1 − 1,

which gives − lnλ1 > 1 − λ1. Hence a polynomially computable upper bound on the
right-hand side of (3.3) is

2 ln(d/ε)

− lnλ1
<

2 bins(dd/εe)
1− λ1

. (3.4)

Next we compute a value k1 such that for all k > k1:

ks < λ
− k

2
1 or, equivalently, C ln k < k, (3.5)

where C =
2s

− lnλ1
. Using the fact that ln(1 + x) < x for x 6= 0, we obtain C <

2s

1− λ1
.

Hence in order to find k1, we can replace C in (3.5) with D =
2s

1− λ1
. In addition, we can

assume that lnD > 2, since otherwise we can replace D with a larger value that satisfies
this condition, e.g. with D = 9. Now, Lemma 3.5 implies that every k > 3D lnD satisfies
D ln k < k. To make this value polynomially computable, we can choose it to be

k1 = 3dDebins(dDe), where D = max

{
2s

1− λ1
, 9

}
.

Finally, combining the right-hand side of (3.4) with the above formula, we can define

k0 = max

{
2 bins(dd/εe)

1− λ1
, 3dDebins(dDe)

}
. (3.6)

Note that all the values that appear in the above formula, e.g. ε, d and D, can be computed
in polynomial time from the input data.

Lemma 3.7. Let P = (u,A, v) be a unary probabilistic finite automaton such that A
is rational upper-triangular, and let λ ∈ [0, 1] ∩ Q be a cutpoint. Assuming that λ 6=
limk→∞ P(ak), the (strict) emptiness and λ-reachability problems for P and λ are decidable
in EXPTIME.

12 P. C. BELL AND P. SEMUKHIN

Proof. In Lemma 3.6, we have derived a polynomially computable bound k0 such that
P(ak) = uTAkv ∈ (c− ε, c+ ε), where ε = |c− λ|/2. In particular, P(ak) 6= λ for all k > k0.
Now, to decide the λ-reachability problem, we need to check for each integer k ∈ [0, k0]

whether uTAkv = λ. Note that the number of integers in [0, k0] is O(2bins(k0)), which is
exponential in the instance size. Also, computing Ak for a given k ∈ [0, k0] takes exponential

time because bins(Ak) = O(2bins(k0)bins(A)). So, the overall algorithm is in EXPTIME.
In a similar way, we can decide the (strict) emptiness problem in EXPTIME. For

instance, suppose λ > c. Then for all k > k0, we have P(ak) < c + ε < λ. Thus deciding
whether there exists k such that P(ak) < λ is trivial. Suppose we want to know if there
exists k such that P(ak) ≥ λ. In this case, we need to check for each integer k ∈ [0, k0]
whether uTAkv ≥ λ. By the same argument as before, this can be done in EXPTIME.

Lemma 3.8. Let P = (u,A, v) be a unary polynomially ambiguous probabilistic finite
automaton such that A is upper-triangular. Let λ ∈ [0, 1] ∩ Q be a cutpoint such that
λ = limk→∞ P(ak). Then we can compute in PTIME a bound k0 > 0 such that

either P(ak) > λ for all k > k0,

or P(ak) < λ for all k > k0.

Moreover, we give an explicit formula for k0. Namely, k0 = max{k1, k2}, where k1 is defined
in (3.7) and k2 is defined in (3.12) and (3.13).

Proof. Recall that by Lemma 3.4, we can write P(ak) = c+
∑m

i=1 pi(k)λki , where 1 > λ1 >
· · · > λm are the eigenvalues of A, and c, λi’s and the coefficients of pi are rational numbers
that can be computed in polynomial time. By our assumption, λ = limk→∞ P(ak) = c. Let
each pi(k) have the form pi(k) = ai,sk

s+ai,s−1k
s−1 + · · ·+ai,0, where s ≤ n is the size of the

largest Jordan block in the Jordan normal form of A (we do not assume here that ai,s 6= 0).
In addition, assume that the leading coefficient of p1(k) is a1,t, for some t ≤ s. Suppose

that a1,t > 0. We now show how to compute k0 such that P(ak) > λ for all k > k0. (The

case when a1,t < 0 and P(ak) < λ for all k > k0 is symmetric).
First, we compute k1 such that p1(k) > 1

2a1,tk
t for all k > k1. To do this, we will use

the following inequalities:

a1,tk
t + a1,t−1k

t−1 + · · ·+ a1,0 >
1

2
a1,tk

t ⇐⇒ 1

2
a1,tk

t + a1,t−1k
t−1 + · · ·+ a1,0 > 0

and |a1,t−1kt−1 + · · ·+ a1,0| ≤ kt−1(|a1,t−1|+ · · ·+ |a1,0|) = kt−1
t−1∑
j=0

|a1,j | if k ≥ 1.

So, the inequality p1(k) > 1
2a1,tk

t follows from 1
2a1,tk

t > kt−1
∑t−1

j=0 |a1,j |, which is equivalent

to k > 2
a1,t

∑t−1
j=0 |a1,j |. Therefore, we conclude that

p1(k) >
1

2
a1,tk

t for all k such that k > k1 := max

1,
2

a1,t

t−1∑
j=0

|a1,j |

 . (3.7)

Now we want to find k2 ≥ k1 such that for all k > k2, we have

λk1p1(k) + λk2p2(k) + · · ·+ λkmpm(k) > 0. (3.8)

Note that

|λk2p2(k) + · · ·+ λkmpm(k)| ≤ λk2(|p2(k)|+ · · ·+ |pm(k)|) ≤ dksλk2, (3.9)

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 13

where d =
∑m

i=2

∑s
j=0 |ai.j |. Using (3.7) and (3.9), we see that (3.8) holds whenever k > k1

and dksλk2 <
1
2a1,tk

tλk1, which is equivalent to

2dks−t

a1,t
<

(
λ1
λ2

)k
or ln

2d

a1,t
+ (s− t) ln k < k ln

λ1
λ2

1

lnλ1/λ2

(
ln

2d

a1,t
+ (s− t) ln k

)
< k. (3.10)

We will use the following inequality

ln
λ1
λ2

= − ln
λ2
λ1

= − ln

(
1 +

λ2 − λ1
λ1

)
> −λ2 − λ1

λ1
> λ1 − λ2.

Then we can replace (3.10) with a stronger inequality

1

λ1 − λ2

(
ln

2d

a1,t
+ (s− t) ln k

)
< k. (3.11)

In the following, we will assume t < s since otherwise (3.11) simplifies to 1
λ1−λ2 ln 2d

a1,t
< k.

Let us make the substitution k = t
(

2d
a1,t

)− 1
s−t

, where t > 0. Then (3.11) can be written as

1

λ1 − λ2

(
ln

2d

a1,t
+ (s− t) ln t+ (s− t) −1

s− t
ln

2d

a1,t

)
< t

(
2d

a1,t

)− 1
s−t

(
2d

a1,t

) 1
s−t s− t

λ1 − λ2
ln t < t.

Let D = max

{
9,
(

2d
a1,t

) 1
s−t s−t

λ1−λ2

}
. Here 9 is needed to satisfy the requirement lnD > 2 in

Lemma 3.5. Then by Lemma 3.5, the above inequality holds when t > 3D lnD. Therefore,

(3.11) and hence (3.10) holds when k > 3
(

2d
a1,t

)− 1
s−t
D lnD. To make this bound polynomially

computable, we can simplify it as follows. Suppose that 2d ≥ a1,t. Then (3.10) holds when

k > k2 := 3dEebins(dEe), where E = max

{
9,

2d

a1,t
· s− t
λ1 − λ2

}
(3.12)

because in this case
(

2d
a1,t

) 1
s−t ≤ 2d

a1,t
and

(
2d
a1,t

)− 1
s−t ≤ 1. On the other hand, if 2d < a1,t,

then (3.10) holds when

k > k2 := 3
⌈a1,t

2d
E
⌉

bins(dEe), where E = max

{
9,

s− t
λ1 − λ2

}
(3.13)

because in this case
(

2d
a1,t

)− 1
s−t

<
(

2d
a1,t

)−1
and

(
2d
a1,t

) 1
s−t

< 1.

Finally, we conclude that (3.8) holds for all k > k0 := max{k1, k2}, where both k1 and
k2 are computable in PTIME.

Lemma 3.9. Let P = (u,A, v) be a unary polynomially ambiguous probabilistic finite
automaton such that A is upper-triangular and let λ ∈ [0, 1] ∩Q be a cutpoint. Assuming
that λ = limk→∞ P(ak), the (strict) emptiness and λ-reachability problems for P and λ are
decidable in EXPTIME.

14 P. C. BELL AND P. SEMUKHIN

Proof. In Lemma 3.8, we obtained a polynomially computable value k0 such that either
P(ak) > λ for all k > k0 or P(ak) < λ for all k > k0. Using the same argument as at the
end of the proof of Lemma 3.7, we can show that the (strict) emptiness and λ-reachability
problems are decidable in EXPTIME.

We are now ready to give a proof of Theorem 3.2.

Proof of Theorem 3.2. Let P = (u,A, v) be a polynomially ambiguous unary PFA. By
Lemma 3.3, we can compute in EXPTIME a set of d polynomially ambiguous unary PFAs
{Ps = (us, U, v

′) | 0 ≤ s ≤ d− 1} such that U is rational upper-triangular and

P(ard+s) = Ps(ar) = uTs U
rv′,

where 0 ≤ s ≤ d− 1.
Suppose λ is a given cutpoint. If we want to decide whether there exists k such that

P(ak) = λ (or P(ak) ≥ λ), we can check for every s from 0 to d− 1 whether there exists r
such that Ps(ar) = λ (or Ps(ar) ≥ λ, respectively), which can be done in EXPTIME using
Lemmas 3.7 and 3.9. Namely, we will use Lemma 3.7 if λ 6= cs and Lemma 3.9 if λ = cs for
the current values of s ∈ [0, d− 1]. Finally, we note that even though the value of d can be
exponential in the input size, the whole procedure can still be done in EXPTIME.

Skolem’s problem is at least NP-hard [BP02] implying that the λ-reachability and
emptiness problems are also NP-hard, at least for PFA of exponential ambiguity. Our next
result shows that NP-hardness can be established even for unary PFAs of finite ambiguity.

Proposition 3.10. The λ-reachability and emptiness problems for unary finitely ambiguous
Probabilistic Finite Automata P = (u,A, v) with {0, 1}-matrix A are NP-hard.

Proof. The NP-hardness of Skolem’s problem was established in [BP02]. Specifically, Corol-
lary 1.3 of [BP02] states that the problem of determining, for a given matrix A ∈ {0, 1}n×n
and row vectors b, c ∈ {0, 1}n, if bTAkc = 0 for some k ≥ 0 is NP-hard. Examination of the
proof of this corollary shows that in fact P is finitely ambiguous as we shall show.

The proof of Theorem 1.1 of [BP02] shows a reduction of 3SAT on m clauses with n
letters to a unary rational expression E of the form:

E =
k⋃
j=0

azj (arj)∗,

where k = O(n3m) and zj , rj = O(n6) as is not difficult to see from the proof in [BP02].
Notice then that each zj , rj represented in unary has a polynomial size in terms of the 3SAT
instance and thus E also has a polynomial representation size.

We may then invoke Kleene’s theorem [Kle56] to state that the language recognised
by E is also recognised by an NFA P = (b, {A}, c) which thus allows the derivation
of Corollary 1.3 of [BP02]. Note that E is simply the union of rational expressions of
the form Ej = azj (arj)∗. Each Ej can be transformed to an NFA Nj with zj + rj + 1
states Sj = n0,j , . . . , nzj ,j , nzj+1,j , . . . , nzj+rj ,j with initial state n0,j , final state nzj+1,j and
transition function δ : Sj × {a} → Sj given by δ(ni,j , a) = ni+1,j for 0 ≤ i ≤ zj + rj − 1 and
δ(nzj+rj , a) = nzj+1,j .

We may then form an NFA N by N =
⋃k
j=0Nj with the usual construction. In this case,

N has set of initial states {n0,j | 1 ≤ j ≤ k}, set of final states {nzj+1,j | 1 ≤ j ≤ k} and
states in disjoint subsets Sj and Sj′ with j 6= j′ are not connected. This implies by the IDA

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 15

property of [WS91] that N is finitely ambiguous since there does not exist any state with
two outgoing transitions (by which reasoning we also know that each row of N ’s transition
matrix has exactly one entry 1 with all others 0). In fact one may see that N is k-ambiguous

with k = O(n3m). The number of states of N is d =
∑k

j=0 zj + rj + 1 = O(n9m) which is
polynomial in the 3SAT instance representation size.

We note that actually N is already close to a PFA. Since each row is zero except for
exactly one entry 1, matrix A is stochastic. We thus consider Probabilistic Finite Automaton
P = (u, {A}, c) where u = b

|b| is the initial (stochastic) vector. P has polynomial ambiguity

since N does. Therefore, deciding if there exists k ≥ 0 such that P(ak) = 0 or P(ak) ≤ 0 is
NP-hard to determine, proving NP-hardness of the λ-reachability and emptiness problems.
Since we did not modify N to derive P other than to scale the initial vector, the degree of
ambiguity is retained.

Corollary 3.11. The λ-reachability and emptiness problems for unary polynomially am-
biguous PFA P = (u,A, v) with {0, 1}-matrix A are NP-complete.

Proof. NP-hardness follows from Proposition 3.10 since finite ambiguity is a stronger property
than polynomially ambiguity. To prove the NP upper bound, we will show that the algorithm
in the proof of Theorem 3.2 can be done in NP. We again use Lemmas 3.3, 3.4, 3.7 and
3.9. Note that the value d from Lemma 3.3 can be exponential. However, its binary
presentation has polynomial size. So, instead of cycling though all s from 0 to d− 1, we can
nondeterministically guess in polynomial time a value s ∈ [0, d− 1].

Next, we note that the values of k0 in Lemma 3.7 and k2 in Lemma 3.9 also have binary
representations of polynomial size. Again, instead of checking every k in [0, k0] or [0, k2], we
can nondeterministically guess k in polynomial time.

Finally, in the verification step of our algorithm we need to compute the matrices Ad,
As and (Ad)k. This can be done in polynomial time using exponentiation by squaring.
Indeed, the exponentiation by squaring requires polynomially many steps. Also, any power
of a stochastic {0, 1}-matrix is also a stochastic {0, 1}-matrix, so the entries of the power
matrices do not grow in size.

As an additional application of the techniques developed within this section, we can
also show that the value of a unary PFA can be determined.

Corollary 3.12. Let P = (u,A, v) be a polynomially ambiguous unary Probabilistic Finite
Automaton with acceptance function P(ak) = uTAkv. Then we can compute the value of P
in EXPTIME.

Proof. By Lemma 3.3, we can compute in EXPTIME a set of d PFA {Ps = (us, U, v
′) | 0 ≤

s ≤ d − 1} which are unary and polynomially ambiguous, such that U is rational upper-
triangular and P(ak) = Ps(ar) = uTs U

rv′, where k = rd+ s with 0 ≤ s ≤ d− 1. The size of
d depends on the structure of P but is no more than exponential in the description size of P .
The value of P defined by supk≥0 P(ak) is clearly the same as max0≤s≤d{supk≥0 Ps(ak)} and
thus we may simply compute the value of each of these d unary PFA with upper triangular
stochastic transition matrices. Assume then for the rest of the proof that P is a PFA with a
rational upper triangular transition matrix A ∈ Qn×n.

Lemma 3.4 shows that we can write the acceptance probability function of P as:

P(ak) = c+

m∑
i=1

pi(k)λki ,

16 P. C. BELL AND P. SEMUKHIN

where |λi| < 1 and pi are polynomials. There are two cases that we consider. Either
supk≥0 P(ak) = c, or else supk≥0 P(ak) > c.

By defining λ = c and then applying Lemma 3.9, we can determine if the first or second
cases holds, i.e., we can determine if there exists a word ak such that P(ak) > λ. If P(a`) ≤ λ
for all ` ≥ 0, then the value of P is λ (which is reached in the limit) and we may thus stop.
Assume then that P(ak) > c for at least one k > 0.

The outline of our approach is now as follows. Suppose the leading coefficient a1,t of the
polynomial p1(k) is positive, that is, a1,t > 0 (the case when a1,t < 0 is similar and even

simpler). Also, consider the derivative of P(ak) with respect to k:

P ′(ak) =
m∑
i=1

qi(k)λki .

The leading coefficient of q1(k) is equal to a1,t lnλ1. Note that since lnλ1 < 0, we have
a1,t lnλ1 < 0.

Using the same ideas as in the proof of Lemma 3.9, we can compute in polynomial
time a value k0 such that P(ak) > c and P ′(ak) < 0 for all k > k0. Notice that the
logarithms lnλi, for i = 1, . . . ,m, that appear in P ′(ak) may be irrational. In order to
do the above computations in polynomial time, we can use the following rational upper
bounds: lnλ1 ≤ λ1 − 1 < 0 and | lnλi| = ln(1/λi) ≤ 1/λi − 1 for i = 1, . . . ,m. Hence P(ak)
is greater than c and is strictly decreasing for all k > k0. Therefore, we only need to evaluate
{P(a`) | 1 ≤ ` ≤ k0} in order to find the value of P. This can be done in EXPTIME using
the same argument as at the end of the proof of Lemma 3.7.

4. Binary PFA

The following theorem shows that the λ-reachability and emptiness problems are NP-hard for
binary PFA of polynomial ambiguity with commuting transition matrices (and the matrices
can be assumed fixed in the case of λ-reachability and nonstrict emptiness). The emptiness
problem for non-commutative binary PFA over 25 states is known to be undecidable, at least
over exponentially ambiguous PFA [Hir07]. Emptiness is also undecidable for exponentially
ambiguous commutative PFA, although with many more states and a larger alphabet [Bel19].

Theorem 4.1. The λ-reachability and emptiness problems are NP-hard for binary proba-
bilistic finite automata of polynomial ambiguity with commuting matrices of dimension 9
for λ-reachability, 37 for nonstrict emptiness, and 40 for strict emptiness. Moreover, the
matrices can be assumed fixed for the λ-reachability and nonstrict emptiness problems.

Proof. We use a reduction from the solvability of binary quadratic Diophantine equations.
Namely, given an equation of the form ax2 + by − c = 0, where a, b, c ∈ N, it is NP-hard
to determine if there exists x, y ∈ N satisfying the equation [MA78]. We begin with the
λ-reachability problem before considering the emptiness problem.

λ-Reachability reduction. Let A =

(
1 1
0 1

)
and note that Ak =

(
1 k
0 1

)
and that

(A⊗ A)k1,4 = (Ak ⊗ Ak)1,4 = k2. We form a weighted automaton4 W1 on binary alphabet

Σ = {h, g} in the following way to encode ax2 + by (we will deal with c later). Let

4For our purposes here, by a weighted automaton we simply mean an automaton whose initial vector, final
vector, and transition matrices are over nonnegative integers.

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 17

W1 = (u1, φ, v1) where u1, v1 ∈ N7 and φ : Σ∗ → N7×7. We define u1 = (a, 0, 0, 0, b, 0, 0)T ,
v1 = (0, 0, 0, 1, 0, 1, 0)T and φ(`) = 1

4φ
′(`) for ` ∈ {h, g} with

φ′(h) =

(
(A⊗A)⊕ I2 t1

06 4

)
, φ′(g) =

(
I4 ⊕A t2
06 4

)
,

with 0k = (0, 0, . . . , 0) ∈ Nk, t1 = (0, 2, 2, 3, 3, 3)T and t2 = (3, 3, 3, 3, 2, 3)T . We see
then that each row of φ′(`) is nonnegative and sums to 4, thus φ(`) is stochastic for
` ∈ {g, h}. Furthermore, by the mixed product property of the Kronecker product, we see
that ((A⊗A)⊕ I2)x = (Ax⊗Ax)⊕ I2 and (I4⊕A)y = I4⊕Ay for x, y ∈ N and thus by the
block upper triangular structure of φ′(h), φ′(g), we see that

φ′(hxgy) =

(
(Ax ⊗Ax)⊕Ay txy

06 4x+y

)
,

where txy is a nonnegative vector maintaining the row sum at 4x+y. We now see that

uT1 φ(hxgy)v1 =
ax2 + by

4x+y
(4.1)

We define a second weighted automaton W2 = (u2, ψ, v2) with u2 = (c, 0)T , v2 = (0, 1)T

and ψ : Σ∗ → N2×2 with ψ(`) = 1
4ψ
′(`) for ` ∈ {h, g} defined thus: ψ′(h) = ψ′(g) =

(
1 3
0 4

)
.

We therefore see that

uT2 ψ(hxgy)v2 =
c(4x+y − 1)

4x+y
= c(1− 1

4x+y
) (4.2)

We now join W1 and W2 into a 9-state PFA P = (u, γ, v) where u = 1
a+b+c [u1|u2],

v = [v1|v2] and γ(`) = φ(`)⊕ ψ(`). Combining Eqns (4.1) and (4.2) we see that

uTγ(hxgy)v =
1

a+ b+ c

(
ax2 + by

4x+y
+ c(1− 1

4x+y
)

)
=

1

a+ b+ c

(
c+

ax2 + by − c
4x+y

)
(4.3)

which equals c
a+b+c if and only if ax2 + by − c = 0. Note that γ(h) and γ(g) commute by

their structure since clearly (A⊗A)⊕ I and I4 ⊕A commute, giving (A⊗A)⊕A in both
cases (as a consequence of the mixed product properties of Lemma 2.1) and the rightmost
vector of the matrix simply retains the row sum at 1 for such a product since the matrices
are stochastic. Both γ(h) and γ(g) are upper-triangular thus P is polynomially ambiguous.
Nonstrict Emptiness reduction. We now show the proof of the emptiness problem. We
showed that the λ-reachability problem is NP-hard by deriving a PFA P over the binary
alphabet {h, g} such that P(hxgy) is given by Eqn. 4.3. We note however that a non
solution to ax2 + by − c = 0 can be positive or negative and thus we may be above or below
the threshold c

a+b+c . This encoding thus cannot be used to show the NP-hardness of the
emptiness problem.

Instead, we can use a similar encoding of the quartic polynomial given by (ax2+by−c)2 =
a2x4 + 2abx2y + b2y2 + c2 − 2acx2 − 2bcy with a, b, c ∈ N. Note that we arranged the four
positive terms first, followed by the two negative terms. Clearly (ax2+by−c)2 is nonnegative

18 P. C. BELL AND P. SEMUKHIN

and equals zero if and only if ax2 + by − c = 0. We will derive a PFA P2 such that

P2(hxgy) =
1

z

(
(2ac+ 2bc) +

1

16x+y
(ax2 + by + c)2

)
,

where z = a2 + 2ab+ b2 + c2 + 2ac+ 2bc, with the property that P2(hxgy) ≥ 2ac+2bc
z with

equality if and only if (ax2 + by − c)2 = 0 which is NP-hard to determine. To this end, we
compute the following four matrices {H+, G+, H−, G−}, the idea being that H+ and G+

will be used to compute the positive four terms and H− and G− will compute the negative
terms:

H+ = (A⊗A⊗A⊗A)︸ ︷︷ ︸
x4

⊕ (A⊗A⊗ I2)︸ ︷︷ ︸
x2y

⊕ (I2 ⊗ I2)︸ ︷︷ ︸
y2

⊕ 1︸︷︷︸
1

G+ = (I2 ⊗ I2 ⊗ I2 ⊗ I2)︸ ︷︷ ︸
x4

⊕ (I2 ⊗ I2 ⊗A)︸ ︷︷ ︸
x2y

⊕ (A⊗A)︸ ︷︷ ︸
y2

⊕ 1︸︷︷︸
1

H− = (A⊗A)︸ ︷︷ ︸
x2

⊕ I2︸︷︷︸
y

G− = (I2 ⊗ I2)︸ ︷︷ ︸
x2

⊕ A︸︷︷︸
y

and by the mixed product property of Kronecker products of Lemma 2.1),

Hx
+G

y
+ = (Ax ⊗Ax ⊗Ax ⊗Ax)⊕ (Ax ⊗Ax ⊗Ay)⊕ (Ay ⊗Ay)⊕ 1

Hx
−G

y
− = (Ax ⊗Ax)⊕Ay

Note that Hx
+G

y
+ and Hx

−G
y
− each contain the positive and negative (respectively) term

of (ax2 + by − c)2, excluding the coefficients, e.g. (Hx
+G

y
+)1,16 = x4 and (Hx

+G
y
+)17,24 = x2y

etc. Note also that H+G+ = G+H+ and H−G− = G−H− which also follows from the mixed
product properties and thus matrices {H+, G+} and {H−, G−} commute.

As before, we may now increase the dimension of each matrix {H+, H−, G+, G−} by 1 to
ensure a common row sum (of 16 in this case) by adding a new column on the right hand side
of each matrix, and then divide each matrix by this common value to give {H ′+, H ′−, G′+, G′−}
so that each of these matrices is row stochastic. Matrices {H ′+, G′+} and {H ′−, G′−} still
commute since this change only has an effect on the final column of the matrix.

We now show how to handle each term of (ax2+by−c)2. We first handle the positive terms.
We define u1 = (a2, 0, . . . , 0)T ∈ Q16, u2 = (2ab, 0, . . . , 0)T ∈ Q8, u3 = (b2, 0, 0, 0)T ∈ Q4

and u4 = c2 and then let u+ = [u1|u2|u3|u4|0] ∈ Q30. We let v1 = (0, . . . , 0, 1)T ∈ Q16,
v2 = (0, . . . , 0, 1)T ∈ Q8, v3 = (0, 0, 0, 1)T ∈ Q4 and v4 = 1, and let v+ = [v1|v2|v3|v4|0] ∈ Q30.
We then see that

uT+(H ′+)x(G′+)yv+

=
1

16x+y
(
uT1 (Ax ⊗Ax ⊗Ax ⊗Ax)v1 + uT2 (Ax ⊗Ax ⊗Ay)v2 + uT3 (Ay ⊗Ay)v3 + uT4 v4

)
=

1

16x+y
(
a2x4 + 2abx2y + b2y2 + c2

)
(4.4)

We next handle the negative terms, which is essentially accomplished by switching final
and non-final states in the final state vectors to follow. Define u5 = (2ac, 0, 0, 0)T ∈ Q4

and u6 = (2bc, 0)T ∈ Q2 and let u− = [u5|u6|0] ∈ Q7. We let v5 = (0, 0, 0, 1)T ∈ Q4 and

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 19

v6 = (0, 1)T ∈ Q2. Define v− = [v5|v6|0] ∈ Q7. We then see that

uT−(H ′−)x(G′−)y(1− v−)

= (2ac+ 2bc)− 1

16x+y
(
uT5 (Ax ⊗Ax)v5 + uT6A

yv6 + 0
)

= (2ac+ 2bc)− 1

16x+y
(
2acx2 + 2bcy

)
, (4.5)

where 1 = (1, 1, . . . , 1)T ∈ Q7. We used here the fact that X1 = 1 for a row stochastic matrix
X. We finally define that H = H ′+⊕H ′− ∈ Q37×37 and G = G′+⊕G′− ∈ Q37×37, both of which

are row stochastic and commute, and let u? = [u+|u−]
z ∈ Q37 and v? = [v+|(1− v−)] ∈ Q37,

with z = a2 + 2ab + b2 + c2 + 2ac + 2bc to normalise vector u?. We see then that u? is a
stochastic vector as required. We define the PFA P2 = (u?, {H,G}, v?) and we can now
compute that

P2(hxgy) = uT?H
xGyv?

= uT? (H ′x+G
′y
+ ⊕H ′x−G

′y
−)v?

=
1

16x+y

 [u+|u−]

z

T

Hx

+G
y
+ ∗

0 16x+y
0

0
Hx
−G

y
− ∗

0 16x+y

 [v+|(1− v−)]

=
1

z16x+y
(
uT+H

x
+G

y
+v+ + uT−H

x
−G

y
−(1− v−)

)
=

1

z

(
uT+(H ′+)x(G′+)yv+ + uT−(H ′−)x(G′−)y(1− v−)

)
=

1

z

(
(2ac+ 2bc) +

1

16x+y
(
a2x4 + 2abx2y + b2y2 + c2

)
− 1

16x+y
(
2acx2 + 2bcy

))
=

1

z

(
(2ac+ 2bc) +

1

16x+y
(ax2 + by − c)2

)
(4.6)

where ∗ denote the column vectors used to ensure row sums of 16x+y and 0 denotes zero
matrices of appropriate sizes. We also used Eqns (4.4) and (4.5).

Since (ax2 + by − c)2 is nonnegative, we see that uT?H
xGyv? ≥ 2ac+2bc

z with equality if

and only if (ax2 + by − c)2 = 0, which is NP-hard to determine. Therefore using cutpoint
λ = 2ac+2bc

z ∈ Q ∩ [0, 1] means the (nonstrict) emptiness problem is NP-hard (i.e. does there

exist x, y ∈ N such that uT?H
xGyv? ≤ λ is NP-hard). As before, matrices H and G are

upper-triangular and commute by their structure, and therefore the result holds.
Strict Emptiness reduction. Finally we show how to handle the strict emptiness problem.
We proceed with a technique inspired by [GO10]. By (4.6), if P2(h

xgy) = uT?H
xGyv? 6=

1
z (2ac+ 2bc), then uT?H

xGyv? ≥ 1
z

(
(2ac+ 2bc) + 1

16x+y

)
therefore P2(h

xgy) ≤ 1
z (2ac+ 2bc)

if and only if P2(h
xgy) < 1

z

(
(2ac+ 2bc) + 1

16x+y

)
.

Let us adapt P2 in the following way to create a new PFA P3. Note that P2 has 6
initial states (by u?). We add three new states to P3, denoted q0, qF and q∗. State q0 is a
new initial state of P3 which, for any input letter, has probability 1

2·6 of moving to each

of the 6 initial states of P2 and probability 1
2 to move to new state qF . State qF is a new

20 P. C. BELL AND P. SEMUKHIN

final state that remains in qF for any input letter with probability 1− 1
16z and moves to a

new non-accepting absorbing sink state q∗ with probability 1
16z . We now see that for any

a ∈ {h, g}:

P3(aw) =
1

2
P2(w) +

1

2

(
1− 1

16|w|z|w|

)
If there exists w1 = hxgy with x, y ≥ 0 such that P2(w1) ≤ 1

z (2ac + 2bc) then P2(w1) =
1
z (2ac+ 2bc) and thus:

P3(aw1) =
1

2

(
1

z
(2ac+ 2bc)

)
+

1

2

(
1− 1

16|w1|z|w1|

)
<

1

2

(
1

z
(2ac+ 2bc) + 1

)
.

For any w2 = hxgy with x, y ≥ 0 such that P2(w2) >
1
z (2ac+ 2bc) then P2(w2) ≥ 1

z (2ac+

2bc) + 1
16x+y by (4.6). Thus:

P3(aw2) ≥
1

2

(
1

z
(2ac+ 2bc) +

1

16|w2|

)
+

1

2

(
1− 1

16|w2|z|w2|

)
>

1

2

(
1

z
(2ac+ 2bc) + 1

)
.

Thus determining if there exists w = hxgy such that P3(w) < 1
2

(
1
z (2ac+ 2bc) + 1

)
, i.e.

the strict emptiness problem for P3 on cutpoint 1
2

(
1
z (2ac+ 2bc) + 1

)
, is NP-hard. The

modifications to P2 retain polynomial ambiguity since q0 and qF have no incoming (non
self looping) edges and q∗ has no outgoing edges, therefore property EDA does not hold.
Commutativity of the PFA is unaffected since P3 is identical to P2 except for adding three
new states, behaving identically for both input letters. Note that P3 has 37 + 3 = 40
states.

5. Conclusion

We considered the emptiness and λ-reachability problems for unary and binary probabilistic
finite automata of bounded ambiguity. Our main result is an EXPTIME algorithm to solve
λ-reachability and emptiness for unary polynomially ambiguous PFA. We may note that our
procedure generates a polynomial size certificate for these problems, however the verification
step takes EXPTIME. We also note that the λ-reachability and emptiness problems are
NP-hard for unary finitely ambiguous PFA. It would be interesting to close the gap between
the upper and lower bounds for this problem. We also showed NP-hardness results for
λ-reachability (9 states) and strict (40 states) and nonstrict (37 states) emptiness for binary
polynomially ambiguous PFA with commutative transition matrices but a PSPACE-hardness
result in this setting appears challenging. A further avenue of research is to reduce the
number of states for which NP-hardness holds.

References

[AAOW15] S. Akshay, T. Antonopoulos, J. Ouaknine, and J. Worrell. Reachability problems for Markov
chains. Information Processing Letters, 115(2):155–158, 2015.

[ABM+20] S. Akshay, N. Balaji, A. Murhekar, R. Varma, and N. Vyas. Near-optimal complexity bounds for
fragments of the skolem problem. In 37th International Symposium on Theoretical Aspects of
Computer Science (STACS 2020), pages 37:1–37:18, 2020.

[BC03] V. Blondel and V. Canterini. Undecidable problems for probabilistic automata of fixed dimension.
Theory of Computing Systems, 36:231–245, 2003.

DECISION QUESTIONS FOR PROBABILISTIC AUTOMATA ON SMALL ALPHABETS 21

[Bel19] P. C. Bell. Polynomially ambiguous probabilistic automata on restricted languages. In Interna-
tional Colloquium on Automata, Languages, and Programming, number 105 in ICALP’19, pages
1–14, 2019.

[BFLM22] C. Barloy, N. Fijalkow, N. Lhote, and F. Mazowiecki. A robust class of linear recurrence sequences.
Information and Computation, 289(Part A):104964, 2022.

[BMT77] A. Bertoni, G. Mauri, and M. Torelli. Some recursively unsolvable problems relating to isolated
cutpoints in probabilistic automata. In Automata, Languages and Programming, volume 52,
pages 87–94, 1977.

[BP02] V. D. Blondel and N. Portier. The presence of a zero in an integer linear recurrent sequence is
NP-hard to decide. Linear Algebra and its Applications, pages 91–98, 2002.

[BS20] P. C. Bell and P. Semukhin. Decidability of cutpoint isolation for probabilistic finite automata
on letter-bounded inputs. In International Conference on Concurrency Theory, number 22 in
CONCUR’20, pages 1–16, 2020.

[BS21] P. C. Bell and P. Semukhin. Decision questions for probabilistic automata on small alphabets. In
46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021),
volume LIPIcs 202, pages 15:1–15:17. Schloss Dagstuhl, 2021.

[BvzGH82] A. Borodin, J. von zur Gathen, and J.E. Hopcroft. Fast parallel matrix and GCD computations.
Information and Control, 52(3):241–256, 1982.

[DJL+18] L. Daviaud, M. Jurdzinski, R. Lazic, F. Mazowiecki, G. A. Pérez, and J. Worrell. When is
containment decidable for probabilistic automata? In International Colloquium on Automata,
Languages, and Programming, number 121 in ICALP’18, pages 1–14, 2018.

[Fri15] S. Friedland. Matrices: Algebra, Analysis and Applications. World Scientific Publishing Company
Pte Limited, 2015. URL: https://books.google.co.uk/books?id=y8fACwAAQBAJ.

[FRW17] N. Fijalkow, C. Riveros, and J. Worrell. Probabilistic automata of bounded ambiguity. In 28th
International Conference on Concurrency Theory (CONCUR), pages 19:1–19:14, 2017.

[GO10] H. Gimbert and Y. Oualhadj. Probabilistic automata on finite words: decidable and undecidable
problems. In International Colloquium on Automata, Languages and Programming (ICALP’10),
volume 2, pages 527–538, 2010.

[Han86] G. Hansel. Une démonstration simple du théorème de Skolem-Mahler-Lech. Theoretical Computer
Science, 1(43):1–10, 1986.

[HHHK05] V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s problem — on the border
between decidability and undecidability. In TUCS Technical Report Number 683, 2005.

[Hir07] M. Hirvensalo. Improved undecidability results on the emptiness problem of probabilistic and
quantum cut-point languages. SOFSEM 2007: Theory and Practice of Computer Science, Lecture
Notes in Computer Science, 4362:309–319, 2007.

[HJ91] R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University Press, 1991.
[IR86] O. Ibarra and B. Ravikumar. On sparseness, ambiguity and other decision problems for acceptors

and transducers. In Proc. STACS 1986, volume 210, pages 171–179, 1986.
[Kle56] S. C. Kleene. Representation of events in nerve nets and finite automata. Automata Studies,

Annals of Mathematical Studies, 34, 1956.
[MA78] K. L. Manders and L. Adleman. NP-complete decision problems for binary quadratics. Journal

of Computer and System Sciences, 16:168–184, 1978.
[OW12] J. Ouaknine and J. Worrell. Decision problems for linear recurrence sequences. In Reachability

Problems - 6th International Workshop (RP 2012), volume LNCS 7550, pages 21–28. Springer,
2012.

[OW14] J. Ouaknine and J. Worrell. Positivity problems for low-order linear recurrence sequences.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’14, pages 366–379, SODA, 2014.

[Pap94] C.M. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
[Paz71] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971.
[Rab63] M. O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.
[Reu77] C. Reutenauer. Propertiétés arithmétiques et topologiques de séries rationnelles en variables non

commutatives. Thèse troisième cycle, Université Paris VI, 1977.
[Tur69] P. Turakainen. Generalized automata and stochastic languages. Proceedings of the American

Mathematical Society, 21:303–309, 1969.

https://books.google.co.uk/books?id=y8fACwAAQBAJ

22 P. C. BELL AND P. SEMUKHIN

[Ver85] N. K. Vereshchagin. The problem of appearance of a zero in a linear recurrence sequence (in
russian). Mat. Zametki, 38(2), 1985.

[WS91] A. Weber and H. Seidl. On the degree of ambiguity of finite automata. Theoretical Computer
Science, 88(2):325–349, 1991.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Probabilistic Finite Automata and Notation
	2.1. PFA Ambiguity

	3. Unary PFA
	4. Binary PFA
	5. Conclusion
	References

