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Abstract

Purpose:
The ability to characterise highly conducting objects, that may also be highly magnetic, by the complex
symmetric rank–2 magnetic polarizability tensor (MPT) is important for metal detection applications in-
cluding discriminating between threat and non-threat objects in security screening, identifying unexploded
anti-personnel landmines and ordnance and identifying metals of high commercial value in scrap sorting.
Many everyday non-threat items have both a large electrical conductivity and a magnetic behaviour, which,
for sufficiently weak fields and the frequencies of interest, can be modelled by a high relative magnetic per-
meability.
Design/methodology/approach:
The numerical simulation of the MPT for everyday non-threat highly conducting magnetic objects over a
broad range of frequencies is challenging due to the resulting thin skin depths. We address this by employing
higher order edge finite element discretisations based on unstructured meshes of tetrahedral elements with
the addition of thin layers of prismatic elements. Furthermore, computer aided design (CAD) geometrical
models of the non-threat and threat object are often not available and, instead, we extract the geometrical
features of an object from an imaging procedure.
Findings:
We obtain accurate numerical MPT characterisations that are in close agreement with experimental mea-
surements for realistic physical objects. Our assessment of uncertainty shows the impact of geometrical
and material parameter uncertainties on our computational results.
Originality:
We present novel computations and measurements of MPT characterisations of realistic objects made of
magnetic materials. A novel assessment of uncertainty in our numerical predictions of MPT characterisa-
tions for uncertain geometry and material parameters is included.
Keywords: Metal detection; eddy current; electromagnetic induction spectroscopy; magnetic polarizabil-
ity tensor; object characterisation.
Article classification: Research paper.

1 Introduction

The rank–2 magnetic polarizbility tensor (MPT), which has a solid mathematical foundation and important
real-world applications, has been shown to provide a useful economic characterisation of conducting objects
for metal detection. Important applications include the discrimination between threat and non-threat
objects in walk through metal detectors (e.g. Marsh et al. (2013, 2014), Makkonen et al. (2014, 2015),
Davidson et al. (2023)), identifying anti-personnel landmines and unexploded ordnance from background
metallic clutter in demining operations in post war countries and areas, in order to allow the land to be
returned safely for civilian use (e.g. Abdel-Rehim et al. (2016), Özdeg̃er, Ledger & Peyton (2022), Elgy
& Ledger (2023a)), identifying metal fragments in food and pharmaceutical production lines (e.g. Zhao
et al. (2016, 2014)), and identifying metals of high commercial value in scrap sorting (e.g. Williams et al.
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(2023), O’Toole et al. (2018)), where rapid differentiation between metallic materials is important from
both a cost and an environmental perspective. For these applications, there is also considerable interest
in characterising complex geometrical objects that contain both magnetic and non-magnetic metals. The
term magnetic covers a broad range of physical phenomena, but for the purpose of this paper, we refer to
a metallic material that displays an incremental relative magnetic permeability, µr, significantly greater
than unity (so that µr ą 1.5, but often significantly larger). Non-magnetic metals are further classified as
either paramagnetic (e.g. aluminium) if they have a relative magnetic permeability µr just larger than one,
or diamagnetic (e.g. copper), if µr “ 1 or µr is just less than one (Hayt & Buck 2011)[pg 244-252]. This
paper addresses the computation and measurement of MPT characterisations of objects made of magnetic
metallic materials.

The mathematical theory for characterising conducting objects by MPTs is now well established and
explicit formulae have been derived for the calculation of their coefficients (Ammari et al. 2014, Ledger
& Lionheart 2015, Ledger et al. 2019) where it is known that the coefficients of the MPT are complex,
symmetric, and independent of an object’s position. There are considerable benefits to exploiting the
MPT’s spectral signature (Ledger & Lionheart 2020) (the variation of the MPT coefficients as a function
of exciting frequency) compared to characterising an object by an MPT at a fixed frequency, which only
characterises the object’s shape and material parameters up to the best fitting ellipsoid. Improved object
characterisations can also be obtained by using high order generalised magnetic polarizability tensors
(GMPT) (Ledger & Lionheart 2018b, Özdeg̃er, Ledger, Lionheart & Peyton 2022), which provide additional
information about the object. These results focus on the situation where an object is made of one or more
materials, each with a linear constitutive relationship B “ µ0µrH between the magnetic flux density B
and the magnetic field strength H with µ0 being the magnetic permeability of free space. In the case of
magnetic materials, the magnetisation M also plays an important role, however, provided the fields are
sufficiently weak and the material displays an essentially linear response, which is also taken to be isotropic,
the constitutive relationship between B and H can be simplified to B “ µ0µrH, and while µr “ µrpBq
in general, for fields where |B| ă 1 mT and the frequencies currently employed in metal detection, µr " 1
can be regarded as a high constant relative magnetic permeability for magnetic materials (Landau et al.
1984)[pg. 200], which we will assume throughout.

Computational procedures based on the finite element method with a high order edge element (Hpcurlq
conforming) discretisation have been described for calculating the MPT characterisation of conducting ob-
jects (Ledger & Lionheart 2015). In addition, an efficient procedure for computing the MPT spectral
signature object characterisation based on a reduced order model approach, using proper orthogonal de-
composition (POD), has been developed (Wilson & Ledger 2021) and extended to higher dimensional
parameter spaces (Elgy & Ledger 2023b). Dictionaries of MPT spectral signature characterisations of
threat and non-threat objects have been developed (Ledger et al. 2021) and used as a basis for machine
learning classifiers (Ledger et al. 2022) to distinguish between threat and non-threat objects using simulated
data.

Accurate apparatus for measuring MPT spectral signatures has been developed for symmetrical (Özdeg̃er
et al. 2021) and non-symmetrical objects (Özdeg̃er et al. 2023) and the measured MPT coefficients have
been found to be in excellent agreement with the simulated MPT coefficients for the same object geometry
and for material parameters chosen according to the metal in the samples. This apparatus has also been
adapted to enable the measurement of GMPT coefficients (Özdeg̃er, Ledger, Lionheart & Peyton 2022),
where excellent agreement between the measured and computed coefficients has also been obtained.

Previous work has focused on computing and measuring conducting objects, which are non-magnetic
with µr “ 1 or µr close to unity. In this work, we wish to focus attention on the MPT characterisation of
objects that are made of materials that are not only highly conducting, but also have high µr (such as nickel
or steel). Such materials develop thin skin depths at higher frequencies, which make their characterisation
more challenging to compute compared to objects with µr « 1. In addition, we wish to consider the
characterisation of objects with complex geometries. In Ledger et al. (2021), the computation of the
MPT characterisation begins with setting up geometric models of objects by combining simple geometric
primitives. However, this approach becomes increasingly complicated when complex geometries are involved
and, in such situations, using a computer aided design (CAD) model, if one is available, is preferable.
Nevertheless there are also many important threat and non-threat objects where CAD models are not
readily available. These limitations are addressed through the main novelties of the work, which are:

1. Obtaining MPT characterisations of objects made of materials that are highly conducting and have
high µr.

2. Accurately resolving thin skin depth effects associated with high µr and higher frequencies by applying
the open source NGSolve finite element library (Schöberl 2014, Zaglmayr 2006, Schöberl 1997), using
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enrichment of the element order and the construction of boundary layer meshes.

3. Computing MPT characterisations of realistic complex shapes where an exact geometry is not avail-
able by extracting geometric details from imaging of objects.

4. Understanding the uncertainty in the MPT characterisation of an object when its shape and material
parameters are uncertain.

5. Accurate reproducibility of MPT measurements for complex physical objects with inhomogeneous
materials.

The material presented in the paper is organised as follows: In Section 2 we recall the eddy current
mathematical model that is appropriate for the metal detection problem, summarise previous results that
estimate the eddy current modelling error and recall the object characterisation using the MPT. Then, in
Section 3, we set out the computational procedure for computing the MPT characterisation including the
description of how objects without a CAD description can be imaged to extract their geometry. Section 4
briefly recalls the apparatus and approach used for measuring MPT object characterisations. In Section 5
we present a series of results of object characterisations where measurements and simulations are compared,
which includes objects that are magnetic and objects that do not have a CAD description. The paper closes
with some concluding remarks in Section 6.

2 Mathematical Model

The eddy current model is a low–frequency approximation to the time harmonic Maxwell system where
the displacement currents are neglected. As described in Section 1, assuming isotropic magnetic materials
described by a linear constitutive relationship between the magnetic flux density and the magnetic field
strength for sufficiently weak fields, it is given by

∇ˆEα “ iωµαHα, (1a)

∇ˆHα “ σαEα ` J0, (1b)

where Eα, Hα are the electric and magnetic interaction fields, J0 is the external current source, ω is the
angular frequency, µα is the position dependent magnetic permeability and σα is the position dependent
electrical conductivity. Considering the situation of a single conductor Bα in a non–conducting region,
then,

σα “

"

σ˚ in Bα
0 in Bcα “ R3zBα

, µα “

"

µ˚ in Bα
µ0 in Bcα

,

where µ0 “ 4πˆ10´7 H/m is the permeability of free space and we assume σ˚ and µ˚ are independent of ω
and J0 only has support in Bcα and is away from Bα. In the following, we assume that Bα can be described
as Bα :“ αB ` z, where α describes the object’s size, B is a unit-sized object with the same shape as Bα,
but centered at the origin, and z is the translation from the origin. We also introduce µr :“ µ˚{µ0 as the
relative magnetic permeability.

2.1 Estimating the eddy current error

The eddy current model described by (1) is often quoted as being valid when σ˚ is large and ω is small,
but α, µr and the topology of B also play an important role. Some classical texts (e.g. Wait (1951)) state
that the eddy current model applies when

α ! λ0, (2)

where λ0 is the free space wavelength obtained from k0 “ ω
?
ε0µ0 “ 2π{λ0 and ε0 “ 8.854 ˆ 10´12 F/m

is the electrical permittivity of the background, but this does not take into account the topology of the
object or its material parameters. Commonly, many engineering text state that the eddy current model
applies if the quasi-static approximation applies and the conductivity of the object is high, i.e.

α ! λ, and ωε˚ ! σ˚, (3)

where ε˚ is the permittivity of Bα, but this does not take in to account the topology of Bα. Note that in
a conductor, the wavenumber is complex

k “ k1 ` ik2 “
a

ω2ε˚µ˚ ` iµ˚σ˚ω, (4)
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and λC “ 2π{k1, while the imaginary part k2 relates to the depth of penetration of the fields inside the
conductor measured by the skin depth (the depth to which the fields decay to 1{e of their surface value)
given by Balanis (2012)

δ :“
1

d

ω2µ˚ε˚

2

c

1`
´

σ˚

ωε˚

¯2

´ 1

«

c

2

σ˚ωµ˚
, (5)

where the above approximation certainly holds in the eddy current regime, as ε˚ « ε0, σ˚ « 106 S/m and
ω is typically in the 0.1 kHz-10 kHz range for metal detection, although we would also expect this to be
true hold for much higher frequencies too.

Ammari et al. (2000) have rigorously shown that the solutions to (1) are first or second order accurate for
small frequencies depending on the topology of Bα. Building on this, and noting that for highly conducting
objects, λC ! λ0 and λC are also influenced by µ˚, Schmidt et al. (2008) propose that the eddy current
model hold if

C1ε˚µ˚ω
2α2 ! 1 and C2

ωε˚
σ˚

! 1, (6)

which, for moderate C1, C2, is approximately equivalent to (3). They also provide a procedure for com-
puting C1, C2, depending on the object’s topology, which reduce to moderate values for simply connected
objects. This approach has been applied in Ledger et al. (2021) to determine where the eddy current
approximation breaks down. In this work, for the object geometries and material parameters considered,
we limit ourselves to frequencies such that the eddy current model holds in the sense of (6).

2.2 Object characterisation using the MPT

Our interest lies in characterising hidden conducting magnetic objects when the eddy current approximation
of the Maxwell system applies. Given orthonormal coordinate basis vectors ei, i “ 1, 2, 3, and using Einstein
summation convention, the complex symmetric rank–2 MPT

M “ pMqijei b ej , (7)

which is a function of B, α, µr, σ˚ and ω, but independent of object position, has been shown to provide
object characterisation information in the leading order term of an asymptotic expansion of the perturbed
magnetic field for small objects in the form

pHα ´H0qpxqi “ pD
2
xGpx, zqqijpMqjkpH0pzqqk ` pRpxqqi. (8)

In the above, Gpx, zq “ 1{p4π|x ´ z|q denotes the free space Green’s function, H0pzq the background
magnetic field at the position of the object and Rpxq a residual term with known form (Ledger & Lionheart
2015, Ledger et al. 2019, Ledger & Lionheart 2018a, 2020). Furthermore, we have derived explicit formulae
for computing

Re ppMpαB, ω, σ˚, µrqqijq “ pR̃pαB, ω, σ˚, µrqqij “ pN 0pαB, µrqqij ` pRpαB, ω, σ˚, µrqqij , (9a)

Im ppMpαB, ω, σ˚, µrqqijq “ pIpαB, ω, σ˚, µrqqij , (9b)

which are based on post-processing the solution of vectorial transmission problems for θ
p1q
i and θ

p0q
i (Ledger

& Lionheart 2020). In addition, we refer to the aforementioned references for additional properties of the
MPT.

Arranging the coefficients of R̃ and I as real symmetric 3ˆ3 matrices, we observe that they each admit
real eigenvalues. We choose to order the eigenvalues by their multiplicity (ordering those with the highest
multiplicity first) and treat the eigenvalues of R̃ and I separately. In cases where all three eigenvalues are
unique, then they are sorted in ascending order.

3 Computational Procedure

An efficient procedure for computing the MPT spectral signature of a conducting object has been proposed
in Wilson & Ledger (2021) and a revised and improved implementation by Elgy & Ledger (2023b) is in the
updated MPT-Calculator1 (InitialRelease branch), using version 6.2.2204 of the higher order NGSolve finite

1An updated version of MPT-Calculator is available at https://github.com/MPT-Calculator/MPT-Calculator
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library (NGSolve n.d., Schöberl 2014, Zaglmayr 2006), and will be used throughout the work to generate

the numerical results. The approach computes discrete approximations to θ
p1q
i and θ

p0q
i for a small number

of sets of problem parameters using NGSolve with a Hpcurlq conforming discretisation on unstructured
(tetrahedral) grids (Schöberl & Zaglmayr 2005, NGSolve n.d., Schöberl 2014, Zaglmayr 2006) and the
Netgen mesher. These N solutions are called the representative full-order model solution snapshots. A
proper orthogonal decomposition approach using projection (PODP) is then applied to predict the discrete

approximations to θ
p1q
i and θ

p0q
i at other problem parameters. Note that this requires that the same mesh

and order of elements are used for all sets of problem parameters considered. The MPT coefficients in
(9) are then found by post-processing leading to the MPT spectral signature characterisations of different
objects.

This approach has been successfully applied to characterise a range of threat and non-threat objects
in Ledger et al. (2021) and then the resulting dictionary has been used to develop an efficient machine
learning approach for object classification in Ledger et al. (2022). However, the characterisations considered
were limited to non-magnetic objects with µr “ 1 or µr « 1 and to object geometries that were constructed
from combining Netgen primitives. For magnetic objects with µr " 1 the skin depth δ becomes very small
as the frequency is increased and, as a result, very large field gradients are experienced close to the surface
of the conductor resulting in a boundary layer effect that is common in fluid dynamics and mechanical
problems. Using traditional h–refinement of the grid to capture these field gradients leads to large meshes
of elements and using p–refinement alone is sub–optimal as it best suited to capturing smooth solutions
rather than solutions with sharp gradients. Furthermore, complex object geometries present additional
challenges as they cannot easily be built from simple geometric primitives in the Netgen mesher. We set
out below how these challenges are overcome.

3.1 Boundary layer meshes

To resolve the thin skin depth, the concept of anisotropic boundary layer meshes combined with p–
refinement can be applied to accurately capture the high field gradients. For related problems involving a
singularly perturbed elliptic problem, the use of such meshes has been shown to result in exponential con-
vergence of the numerical solution (Schwab & Suri 1996). Hence, to improve the rate of convergence of the

numerical solutions to θ
p1q
i , we include layers of prismatic elements to achieve the anisotropic refinement

close to the surface of B. The introduction of such elements increases the number of degrees of freedom by

a small amount, but also considerably improves the resolution of θ
p1q
i in the direction that is normal to the

surface of B for thin skin depths. The required Hpcurlq conforming basis functions for prismatic elements
are available in the NGSolve library and so their introduction is straight forward. In particular, we use the
Open Cascade Technology in NGSolve to define geometries and use their Netgen mesher to generate hybrid
meshes of tetrahedra and prisms. For further details we refer to the NGSolve documentation (NGSolve
n.d.). An illustration of a typical mesh including a prismatic boundary layer is shown in Figure 1.

Figure 1: British conducting magnetic 1p coin (post-1992): illustration of a cut through
the unstructured tetrahedral mesh inside the object showing the tetrahedra (red) and prisms
(cyan).

We provide numerical examples to illustrate the improvements in accuracy obtained by including pris-
matic elements in combination with p–refinement for objects with magnetic materials and thin skin depths
in Section 5.1.

3.2 Obtaining geometric information of complex objects

For simple objects, geometric primitives in Netgen can be combined to create object descriptions, as
has been illustrated in Ledger et al. (2021). However, for complex objects, this becomes increasingly
complicated and, as CAD descriptions are not always readily available, an alternative approach is needed.
In this work, for small objects with overall dimensions contained in the bounding box r0, 0.03s3 m3 to
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Figure 2: Demonstrative photo of EinScan experimental setup and measurement procedure.

r0, 0.2s3 m3 that cannot be easily constructed from combining Netgen geometric primitives (Schöberl 1997),
we will use the Shining-3D EinScan-SE imaging tool and their EXScan-S (version 3.1.2.0) software (EinScan
n.d.) for producing geometry descriptions. Note that while the EXScan-S software and the Shining-3D
EinScan-SE imaging tool can also be used to produce textured images of 3D objects this is not our goal
as we are only interested in capturing the geometrical information of the objects. To image objects, they
are placed on a turntable and and their geometric features are captured using structured light scanning.
The details of the imaging procedure are:

1. Objects are prepared with a thin layer of matt-grey primer to improve their contrast and make them
matt (rather than shiny) in appearance to aid with the imaging.

2. Images of the object were constructed by using non-textured scans under a full rotation split into 10˝

increments using the EXScan-S software. This was achieved by using a small amount of double sided
tape to keep the object in an up-right position while the rotations were performed. In the case of
objects with magnetic materials, the object was fixed using a small (« 5ˆ 10´3 m) spherical chrome
magnet. Due to the small shiny nature of the magnet it does not appear in the resultant point cloud.
An illustrative example is provided in Figure 2, where a small key is shown on the turntable. Effort
was taken to ensure that the lighting was consistent throughout the measurement and the scanner
was regularly re-calibrated to account for day-to-day changes in lighting. In all cases, the scanner was
placed in front of a large white box. This was to remove depth features from clutter on the far wall.
In addition, the white balance of the camera was adjusted such that the box was over exposed but the
object was not. In most lighting conditions, this was half the available range. For thick objects where
one dimension is not negligible compared to the others and where the point cloud is nonexistent or
insufficient to describe the geometry via visual inspection (from experience, this corresponds to a
minimum dimension greater than approximately 4 ˆ 10´3 m), we rotate the object 90˝ around the
horizontal axis, illustrated in Figure 3, and remeasure under the same settings. The two point clouds
then undergo feature based co-registration using the ExScan-S software. Three features are chosen to
be prominent and corresponding to dense areas of the point cloud for both measurements. For thin
objects whose minimum dimension is less than 2ˆ 10´3 m, the scan does not result in a dense point
cloud regardless of orientation. In such a scenario, rotating the object does not provide significant
additional information.

3. Using the EXScan-S software the point cloud was downsampled to a quasi-uniform distribution. In
addition, minor issues and undesired imaging artefacts were removed in this software. While the
downsampling of the point cloud results in a coarser resolution of the geometric features (as is illus-
trated in Figure 12), the loss of these geometrical features is not critical to the MPT characterisation
of an object and allows us to construct a coarser finite element discretisation, reducing the computa-
tional cost of our simulations.

4. The resulting output from the EXScan-S software is a point cloud description of the object saved as
a .stl format. Where necessary, meshes were then manually adjusted to remove unwanted interior
faces and fix mesh discontinuities. This involves using 3D modelling software (we used Autodesk
Meshmixer version 3.5.474) to remodel the object as a contiguous watertight mesh. We then perform
a quasi-uniform isoparametric remeshing of the surface to remove any degenerate or intersecting mesh
faces using MeshLab (version 2022.02).
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Figure 3: Example of the two different orientations used in step 2 of the imaging procedure
showing: (a) vertical orientation, and (b) horizontal orientation.

5. The point cloud was converted to a quasi-uniform mesh and saved as a .step format using the Maya
Autodesk Fusion-360 CAD package (version 2.0.1413) (Autodesk n.d.). The conversion to the .step
format was performed in a faceted manner where no smoothing or pointwise interpolation occurs.
The .step format file therefore consists of multiple faces.

6. An unstructured mesh of tetrahedra describing the object and the region out to a truncation boundary
placed sufficiently far from the object is created with Netgen using OCC-geometry and importing the
.step file. At this stage, we also centre the object and, if appropriate, introduce additional prismatic
boundary layer elements to help approximate the high field gradients in the thin skin depths for
highly magnetic objects.

4 Measurement Procedure

MPT measurements were acquired using a bespoke instrument comprising of three main parts, a multi-coil
arrangement, custom electronics, and control software on a PC. For the measurements reported in this
work, the system was operated over a frequency range from 119.25 Hz to 9.54 ˆ 104 Hz (749.26 rad/s to
5.99 ˆ 105 rad/s). The control software sets transmit control signals, e.g. frequency, signal amplitudes
and digital signal processing (DSP) settings to a dedicated microcontroller (Red Pitaya STEMlab 125-14).
The microcontroller generates the software-set excitation signals and sends to dedicated power amplifiers
(Analog Devices LT 1210) to produce upto 64 V peak-to-peak sine wave limited to 10 A to the transmit
coil. Measurement signals from the receive coils are amplified and filtered by custom-made electronics
controlled via the DSP of the microcontroller. Subsequent signal averaging of the acquired measurements
were performed in the control software prior to MPT inversion. Full details of the coil arrangement,
bespoke electronics and data acquisition are detailed in Özdeg̃er et al. (2021) and Özdeg̃er et al. (2023).
Measurements employed the use of a bespoke Target Orientation Manipulator (TOM) based on a truncated
Icosahedron (tI) enabling the test object rotation in three-dimensional space. The TOM is hollow and
sectioned in two separable halves and is constructed from 3D printed polylactic acid (PLA) filament and
has a point-to-point diameter of 0.15 m and a 0.01 m wall thickness. Each face of the TOM utilises a keyed
hole in the middle. These are used to place the faces on a custom-made table with a keyed seat within the
coil arrangement. This ensures control of the horizontal position of the target and thereby keeps rotation
around the vertical axis fixed for consistency. The use of the tI method has been fully described in Özdeg̃er
et al. (2023) and enables non-symmetrical target objects to be characterised. The tested objects presented
in this work were firmly secured in the centre of the TOM using adhesive tape. All measurements were
carried out in a temperature and humidity-controlled environment after an instrument warm-up period of a
least 30 minutes to minimise thermal drift within the system electronics and coil arrangement. In order to
quantify measurement precision and short-term measurement stability, a set of repeated coin measurements
were taken, which are discussed further in Section 5.2.

An illustrative photograph of the measurement system is shown in Figure 4, where the coil array, TOM,
bespoke system electronics including transmit and receive stages along with a dedicated microcontroller,
and an oscilloscope (used for observation of the transmit signal) are shown.
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Figure 4: MPT measurement system showing (a) the coil array, (b) the TOM, (c) bespoke
system electronics including transmit and receive stages along with dedicated microcontroller,
and (d) an oscilloscope used for observation of the transmit signal.

5 Results

5.1 Sphere

An exact solution is available for the MPT characterisation of this object allowing us to investigate the
accuracy of our approximate object characterisation scheme. We note that previous results have established
that the approximate MPT spectral signature obtained from p–convergence of the full order model solution
agrees well with the exact solution over a wide band of frequencies and non-magnetic material parameters
(e.g. Wilson & Ledger (2021) shows comparisons for a sphere or radius α “ 0.01 m and material parameters
σ˚ “ 5.96ˆ106 S/m, µr “ 1.5). Our interest in this paper is the ability to characterise magnetic materials,
where µr " 1, over a broad range of frequencies including those resulting in thin skin depths, which are
more challenging to capture.

We first consider the approximation to the MPT spectral signature characterisation of a conducting
magnetic sphere with radius α “ 0.01 m, conductivity σ˚ “ 1ˆ106 S/m and different relative permeabilities
µr “ 20, 40, 80 for the frequency range 1ˆ101 ď ω ď 1ˆ108 rad/s. The results were obtained by considering
a unit sized sphere B placed in a truncated domain of dimension r´1000, 1000s3 units and discretised by an
unstructured mesh of 21 424 tetrahedra. We consider N “ 13 full-order model solution snapshots computed
using different uniform orders of approximation p “ 0, 1, 2, 3, 4, 5 at logarithmically spaced frequencies. We
show the approximate solutions for λ1pR̃q and λ1pIq obtained using the POD based reduced order model
with a POD tolerance of TOL “ 1ˆ 10´6 in Figure 5. The behaviour for the other eigenvalues is similar.
While increasing p does tend towards convergence of the numerical solution to the exact solution, we see
that the maximum frequency for which we get good agreement reduces as µr increases. This is due to the
smaller skin depths associated with higher µr and larger ω, which make the solution to the transmission

problem for θ
p1q
i more challenging to resolve. If a discretisation with p ą 5 order elements were used, they

would eventually tend to the exact solution over the complete frequency range considered, but this would
be computationally prohibitive. Another alternative would be to use a locally refined mesh of tetrahedra
with refinement targeted to just inside the surface of B, but, again, this would lead to a large increase in
the number of degrees of freedom and require prohibitively large computational resources.

As an alternative, we consider the same conducting sphere, but instead consider POD solution where the
full order model snapshot solutions were obtained using a discretisation consisting of 21 150 unstructured
tetrahedra with the addition of 3 thin prismatic layers just inside the surface of B (1 449 prisms in total).
The thicknesses of the layers were chosen as 1ˆ 10´3, 5ˆ 10´3, and 5ˆ 10´2 units, respectively. Figure 6
shows the approximate solutions for λ1pR̃q and λ1pIq obtained using the POD settings as before and
uniform orders of approximation p “ 0, 1, 2, 3, 4, 5. In this figure, we observe rapid convergence of the
numerical solution to the exact solution over the complete range of frequencies considered for the three
cases of µr “ 20, 40, 80. In each case, p “ 2 order elements already provides an accurate solution, which
is far superior to p “ 5 on a mesh of 21 424 tetrahedra and solutions for p “ 3 and above are almost
indistinguishable from each other on this scale.

To further demonstrate the advantages of combining p–refinement with prismatic layers, we compare

the relative error E “ }Mexact ´Mhp}F {}Mexact}F using the Frobenious norm against N
1{3
d , where Nd

is the number of degrees of freedom, in Figure 7, for the case of a conducting permeable and magnetic
sphere of radius α “ 0.01 m, with conductivity σ˚ “ 1 ˆ 106 S/m, relative permeability µr “ 20, and
frequency ω “ 1 ˆ 106 rad/s for p–refinement on three different meshes. Note that a straight line on this
graph indicates exponential convergence and increased slope indicates superior convergence performance
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Figure 5: Conducting magnetic sphere with radius α “ 0.01 m, conductivity σ˚ “ 1 ˆ 106

S/m and relative magnetic permeabilities µr “ 20, 40, 80, showing convergence of the MPT
spectral signatures to the exact solution using POD with full order model solution snapshots
at logarithmically spaced frequencies using different uniform orders of approximation p “
0, 1, 2, 3, 4, 5 on an unstructured mesh of 21 424 tetrahedra: paq λ1pR̃pαB, ω, σ˚, µr “ 20qq,
pbq λ1pIpαB, ω, σ˚, µr “ 20qq, pcq λ1pR̃pαB, ω, σ˚, µr “ 40qq, pdq λ1pIpαB, ω, σ˚, µr “ 40qq,
peq λ1pR̃pαB, ω, σ˚, µr “ 80qq and pfq λ1pIpαB, ω, σ˚, µr “ 80qq.
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paq pbq

pcq pdq

peq pfq

Figure 6: Conducting magnetic sphere with radius α “ 0.01 m, conductivity σ˚ “ 1 ˆ 106

S/m and relative magnetic permeabilities µr “ 20, 40, 80, showing convergence of the MPT
spectral signatures to the exact solution using POD with full order model solution snap-
shots at logarithmically spaced frequencies using different uniform orders of approxima-
tion p “ 0, 1, 2, 3, 4, 5 on an unstructured mesh of 21 150 tetrahedra with the addition of
3 prismatic layers comprising of 1 449 prisms in total: paq λ1pR̃pαB, ω, σ˚, µr “ 20qq, pbq
λ1pIpαB, ω, σ˚, µr “ 20qq, pcq λ1pR̃pαB, ω, σ˚, µr “ 40qq, pdq λ1pIpαB, ω, σ˚, µr “ 40qq, peq
λ1pR̃pαB, ω, σ˚, µr “ 80qq and pfq λ1pIpαB, ω, σ˚, µr “ 80qq.

10



properties. We focus on ω “ 1 ˆ 106 rad/s as the error is visibly large for one of the approaches. We
consider the purely tetrahedral mesh and hybrid mesh discussed above (Figures 5 and 6) as well as a
hybrid mesh with 2 prismatic layers with thicknesses chosen according to a geometric progression (Elgy &
Ledger 2023a), resulting in a mesh consisting of 21 151 tetrahedra and 1 275 prisms. The results show that

Figure 7: Conducting magnetic sphere with radius α “ 0.01 m, σ˚ “ 1ˆ106 S/m, and relative
magnetic permeability µr “ 20 at a frequency ω “ 1ˆ 106 rad/s. p-refinement, showing the
error, E, for p “ 0, 1, 2, 3, 4, 5 for three different meshes, the tetrahedral and non–geometric
hybrid meshes used in Figures 5 and 6, respectively, and a hybrid mesh with a geometric
structure.

with p–refinement both hybrid meshes out-perform p–refinement on the purely tetrahedral mesh, with the
hybrid mesh using prismatic layers with thicknesses chosen according to a geometric progression giving
the best performance. For further details on the theory of boundary layers and hp–refinement we refer
to Schwab & Suri (1996) and for details on a simple practical approach for choosing the thickness of layers
for magnetic materials with thin skin depths, such as those used in Figure 7, we refer to Elgy & Ledger
(2023a). For the remainder of this work, we primarily consider objects where there is a thin metallic
coating of known or assumed thickness and, in such cases, the thickness of the boundary layers are chosen
accordingly.

5.2 Recent British coins

Building on the computed MPT characterisations of 1p (one penny), 2p (two pence), 5p (five pence), 10p
(ten pence), 20p (twenty pence), 50p (fifty pence), £1, and £2 denominations of British coins presented
in Ledger et al. (2021), we consider a larger range of British coins that are currently in circulation and
include more recent changes to their compositions. In particular, to reduce the manufacturing costs, and to
ensure that the costs of the metallic materials used for a denomination of coin do not exceed its face value,
the amount of copper used in the lower denominations of British coins has been reduced and/or replaced
by a lower cost metal with a thin coating or cladding. For example, in 1992, the 1p and 2p coins, which
were originally 97% copper, 2.5% zinc and 0.5% tin, were replaced with a new composition comprising of a
mild steel core (94% by volume) and a thin coating of copper (6% by volume) (Brunning 2014). Similarly,
more recently minted 5p and 10p coins have a mild steel core with a nickel coating. The 20p, 50p, and
£1 coins are non-circular and the £1 and £2 coins each consist of an annulus filled with a circular disc.
Details of the composition of British coins currently in circulation is presented in Table 1, which includes
coins whose composition is made from a solid material and also those with coatings. Importantly, this table
only presents estimates of the conductivity and permeability in all cases, which, in some cases can vary
considerably (e.g. mild steel and nickel, which we have chosen to model as σ˚ “ 6ˆ106 S/m, µr “ 200 and
σ˚ “ 1.45 ˆ 107 S/m, µr “ 100, respectively). Similarly, the thickness of the coating for more recent 1p,
2p, 5p and 10p coins is unknown and are estimates are based on Brunning (2014). We will also consider
the effects of these uncertainties on our simulations in Section 5.2.1.

To compute the MPT spectral signature characterisations of the coated 1p (post-1992), 2p (post-
1992), 5p (post-2011) and 10p (post-2011) coins we consider discretisations of the non-dimensional coin B,
centered at the origin with dimensions set according to those in Ledger et al. (2021) and α “ 1ˆ 10´3 m.
We truncate the otherwise unbounded domain with a truncation boundary in the form of a cylinder with
height and radius 1000 units resulting in an unstructured tetrahedral mesh with 89 976, 134 874, 82 004
and 101 777 tetrahedra, respectively, and the addition of a single prismatic layer to model the coating
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Coin mint
date

Modelled
shape

Total di-
ameter
[10´3 m]

Total
thickness
[10´3 m]

Coating
thickness
[10´3 m]

Composition Relative per-
meability (µr)

Conductivity
(σ˚) [S/m]

1p (1971-
1992)

Circular
disc

20.3 1.52 n/a 97% Copper,
2.5% zinc and
0.5% tin

1 4.03ˆ107

1p (1992-
Date)

Circular
disc

20.3 1.52 0.025 94% Mild
steel core,
6% copper
coating

200{1
(core/coating)

6 ˆ 106

{5.8 ˆ 107

(Core/coating)

2p (1971-
1992)

Circular
disc

25.9 1.85 n/a 97% Copper,
2.5% zinc and
0.5% tin

1 4.03ˆ107

2p (1992-
Date)

Circular
disc

25.9 2.03 0.025 4% Mild steel
core, 6% cop-
per coating

200{1
(Core/coating)

6 ˆ 106

{5.8 ˆ 107

(core/coating)

5p (1990-
2011)

Circular
disc

18 1.7 n/a 75% Copper
and 25%
nickel

1 2.91ˆ106

5p (2011-
Date)

Circular
disc

18 1.7 0.025 94% Mild
steel core, 6%
nickel coating

200{100
(core/coating)

6 ˆ 106

{1.45 ˆ 107

(core/coating)

10p (1990-
2011)

Circular
disc

24.5 1.85 n/a 75% Copper
and 25%
nickel

1 2.91ˆ106

10p (2011-
Date)

Circular
disc

24.5 1.85 0.025 94% Mild
steel core, 6%
nickel coating

200{100
(Core/coating)

6 ˆ 106

{1.45 ˆ 107

(Core/coating)

20p (1982-
Date)

Reuleaux
hep-
tagonal
disc

21.4 1.7 n/a 84% Copper
and 16%
nickel

1 5.26ˆ106

50p (1997-
Date)

Reuleaux
hep-
tagonal
disc

27.3 1.78 n/a 75% Copper
and 25%
nickel

1 2.91ˆ106

£1 (2017-
Date)

Inner
circular
disc en-
closed by
an annu-
lus with
a do-
decagonal
boundary

15.2 /23.45
(in/out)

2.8 / 2.8
(in/out)

0.05 Nickel plated
brass / 70%
copper, 24.5%
zinc and 5.5%
nickel

1 /100/1.15
(In/coating/out)

1.63ˆ107

/1.45ˆ107/
5.26ˆ106

(In/coating/out)

£2 (1998-
Date)

Inner cir-
cular disc
enclosed
by an
annulus

21 /28.4
(In/out)

2.5 /2.5
(In/out)

n/a 75% Copper
and 25%
nickel/ 97%
copper, 2.5%
zinc and 0.5%
tin

1 /1.15
(In/out)

2.91ˆ106 /
1.93ˆ107

(In/out)

Table 1: Set of British coins 1p, 2p, 5, 10p, £1, and £2 : Coin shape, dimensions and electrical
properties. Grey rows indicate coins whose composition includes a solid magnetic core with a
thin coating of a different material. With the exception of old £1 coins (not included), each
denomination remains in circulation.

consisting of 6 817, 11 175, 5 583 and 6 735 prisms, respectively. In the case of the coated 1p coin, we show,
in Figure 1, a cut through the mesh for the object to illustrate the prisms used to describe the copper
coating and the tetrahedra used to describe the mild steel core.

In each case, converged results were obtained for frequencies 1 ˆ 101 ď ω ď 1 ˆ 108 rad/s by using
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Figure 8: British conducting magnetic 1p (post-1992), 2p (post-1992), 5p (post-2011) and
10p (post 2011) showing the comparison between the measured and computed MPT spectral
signature for the coins. The computed MPT spectral signatures use POD with full order
model solution snapshots at logarithmically spaced frequencies using uniform p “ 3 elements
on unstructured meshes of 89 976, 134 874, 82 004 and 101 777 tetrahedra, respectively, with
the addition of a single prismatic layer in each case consisting of 6 817, 11 175, 5 583 and 6 735
prisms: paq λ1,2pR̃pαB, ω, σ˚, µrqq, pbq λ1,2pIpαB, ω, σ˚, µrqq, pcq λ3pR̃pαB, ω, σ˚, µrqq and
pdq λ3pIpαB, ω, σ˚, µrqq. In the figure, the measured eigenvalues for each coin are indicated
by the appropriately coloured dots.

the POD reduced order model, with N “ 13 full order solution snapshots computed using order p “ 3
elements at logarithmically spaced frequencies. Figure 8 shows the computed eigenvalues λipR̃q and λipIq
as a function of exciting frequency together with the measured MPT spectral signatures obtained using the
approach described in Section 4. For the frequencies where measurements are available, we observe good
agreement between the computed and measured MPT spectral signatures.

The metallic materials and assumed material parameters employed for the non-magnetic 1p (pre-1992),
2p (pre-1992), 5p (pre-2011), 10p (pre-2011), 20p, 50p, £1, and £2 coins currently in circulation are as
stated in Table 1. We observe that, with the exception of the £1 and £2 coins, these have µr “ 1 and, in
the case of these two coins, they were modelled with µr “ 1.15 in the outer ring to reflect the paramagnetic
constitutive behaviour of copper, nickel zinc mixtures (Gross 1951) and the magnetostatic response in the
measurements. The discretisations and computational models employed are as stated in Ledger et al. (2021)
since the non-magnetic behaviour of these coins means that the skin depth can be adequately captured
without the inclusion of a prismatic layer. In the case of the £1 coin, the thin nickel coating is observed,
via measurement (Figure 9), to have a negligible impact on the MPT, we therefore simplify our model of
the £1 coin to that of a bimetallic disk without the nickel coating. In Figure 9 we show the comparison
between the computed and measured MPT spectral signatures in the form of λipR̃q and λipIq as a function
of exciting frequency for these coins where good agreement is observed with the measurement data.
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Figure 9: British conducting non-magnetic 1p (pre-1992), 2p (pre-1992), 5p (pre-2011), 10p
(pre-2011), 20p, 50p, £1 and £2 showing the comparison between the measured and computed
MPT spectral signature for the coins (using discretisations similar to those stated in Ledger
et al. (2021)): paq λ1,2pR̃pαB, ω, σ˚, µrqq, pbq λ1,2pIpαB, ω, σ˚, µrqq, pcq λ3pR̃pαB, ω, σ˚, µrqq
and pdq λ3pIpαB, ω, σ˚, µrqq. In the figure, the measured eigenvalues for each coin are indi-
cated by the appropriately coloured dots.

5.2.1 Errors and uncertainties in MPT measurements and computations

We recall that accuracy is a measure of the agreement between a measured and accepted value and pre-
cision is a measure of consistency and repeatability of an experiment. With regard to measured spectral
signatures, the measurement apparatus keeps uncertainties and unavoidable errors that affect the accu-
racy and precision to a minimum. For example, the use of the TOM, together with the geometry of the
coins, mean that these objects are firmly secured in position during measurement. However, there is the
potential for background interference from the metallic structure of the building. To minimise this, and
improve their accuracy, measurements were taken in a room isolated as much as possible from the building
structure and repeated measurements were taken in isolation to avoid background contamination. Lower
metal content objects produce a weaker signal, that is harder to measure, compared to the stronger signal
produced by higher metal content objects. Nevertheless, the apparatus was designed for the measurement
of minimum metal content anti-personnel landmines, which have a lower metal content than the lowest
denomination 1p, 2p coins considered (Özdeg̃er, Ledger & Peyton 2022). From previous work Özdeg̃er
et al. (2021), for objects secured in position, the apparatus has been shown to accurately measure MPT
coefficients of the order of 10´7 m3, if not smaller. However, the post-processing of the data means that
reliable measurements can be made to around 10% of the magnitude of the peak MPT values and, hence,
the larger magnitude MPT coefficients are expected to be captured more accurately than the smaller ones.
Furthermore, as described in Section 4, all measurements are subject to thermal drift of the measurement
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system, which will affect their precision.
Our computational models are also subject to uncertainties and errors. When modelling the coins, we do

not have exact values of the true conductivities and permeabilities of the metallic materials used in the coin
and our geometric models are based on approximations to the true geometry of the coin. Each individual
coin can have variations in both its size and composition, depending on when it was minted and how long
it has been in circulation. Our computational results are also subject to modelling errors associated with
our finite element discretisation, approximations made in our POD reduced order model, and approximate
linear solution techniques and post-processing. We minimise these by ensuring that our computational
solutions are converged and using suitable tolerances, and so are confident that our solutions have at least
the same accuracy as the measurements for given set of material parameters and object geometry.

To understand the precision of the measured MPT signatures, 10 repeat measurements of a single
1p (post 1992) coin and a single £1 (post 2017) coin were taken. For each frequency, and each coin
measurement, we construct 95% confidence intervals for the mean values of λipR̃q and λipIq obtained from
the measurements, which are shown together with the mean values in Figure 10 in the form of markers
with error bars. The measured MPT signature for the 1p and £1 coins exhibits a high degree of precision
at all frequencies, as indicated by the small confidence intervals, with a small increase in the size of the
confidence interval towards the smallest frequencies. Note that, if repeat measurements of different 1p and
£1 coins were taken, we would expect their confidence intervals to become larger due to variations in the
object size and compositions of coins minted on different dates and by different machines.

Also included in Figure 10 are curves indicating the spread in the converged computed MPT spectral
signatures where, in addition to the geometric and material properties stated in Table 1, we take account
of uncertainties in the object size and material parameters. The spread in the data is illustrated by
the construction of 5th and 95th percentiles and median values for the simulated λipR̃q and λipIq for
these different object sizes and materials2. In the case of the 1p and £1 coins, the data is generated by
drawing samples α „ Npαm, αsq, where Npαm, αsq refers to a normal distribution with mean αm and
standard deviation αs, and take αm “ 1 ˆ 10´3 m and αs “ 5 ˆ 10´5 m, which have been constructed
based on comparing the dimensions of a sample of coins. To take account of possible variations in the
conductivity, we draw samples σ˚ „ Nppσ˚qm, pσ˚qsq, with mean pσ˚qm and standard deviation pσ˚qs. For
the 1p coin, pσ˚qm “ 2.95 ˆ 107 S/m, corresponds to the mean conductivity of the steel core and copper
cladding described in Table 1, and pσ˚qs “ 0.03pσ˚qm (Ho et al. 1983). Similarly, for the £1 coin, we take
pσ˚qm “ 1.078 ˆ 107 S/m for the mean of the conductivities in the inner and outer parts of the coin and
pσ˚qs “ 0.03pσ˚qm (Ho et al. 1983) and use these samples to scale the conductivities of each part of the coin
by the same factor. New MPT spectral signatures for each α, σ˚ combination were obtained at negligible
computational cost using the scaling results derived in Wilson & Ledger (2021). We observe that the
mean value of the measured λipR̃q and λipIq lies within (or very close to) the corresponding 5th and 95th

percentiles curves for our simulations giving us a high degree of confidence in our both our experimental
and computational results, despite the uncertainties outlined above. If desired, these percentiles could
be improved by also taking in to account possible variations in µr, which we incorporate for the cases of
magnetic keys in the following.

5.3 Common household keys

We consider a range of different household keys (notably Keys 4, 6, 9 and 11, which reflect a sample of
a larger set of different key types), photographs of which are provided in Figure 11. The approximate
dimensions of the keys and their possible compositions are listed in Table 2. For the sample keys their
exact material composition is unknown and the values in the table has been informed on the basis of
common material parameters of metals used in keys, the key’s colour and whether the key is magnetic or
not. Typical metals for keys include brass, steel, nickel silver, and sometimes nickel, aluminium or zinc
and, depending on the particular alloy, there can be some variation in both its relative permeability and
conductivity. For example, from Ho et al. (1983), a common form of brass is a 70%-30% copper-zinc alloy,
which at 20˝C has a conductivity of 1.64ˆ107˘3% S/m. We have chosen to model brass as σ˚ “ 1.5ˆ107

S/m to follow Ledger et al. (2021) and Conductivity Of Metals Sorted By Resistivity (n.d.), which is towards
the lower limit.

2The use of confidence intervals for the computed λipR̃q and λipIq is not appropriate as each computational experiment
considers a different material and a different geometry and hence each MPT signature characterisation is for a different object
rather than repeated simulations of the same object using different discretisations
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Figure 10: British conducting magnetic 1p and non-magnetic £1 coins showing a comparison
between measured and computed eigenvalues for the MPT spectral signatures including the
mean and 95% confidence intervals for the measured eigenvalues and the 5th and 95th per-
centiles on the simulated eigenvalues: paq λipR̃pαB, ω, σ˚, µrqq, pbq λipIpαB, ω, σ˚, µrqq for
the 1p coin and pc) λipR̃pαB, ω, σ˚, µrqq, pdq λipIpαB, ω, σ˚, µrqq for the £1 coin.
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paq pbq

pcq pdq

Figure 11: Photographs of a sample of British keys, which have been painted grey to aid with
the imaging process: paq Key 4, pbq Key 6, pcq Key 9 and pdq Key 11.

Key Colour Total
length
[10´3 m]

Total
width
[10´3 m]

Thickness
[10´3 m]

Composition Relative Per-
meability (µr)

Conductivity (σ˚)
[S/m]

Key 4 Silver 56 24 2 Mild steel 100-300 106 ´ 107

Key 6 Bronze 70 24 2 Brass 1 1.5 ˆ 107 (26%
IACS) (Conductiv-
ity Of Metals Sorted
By Resistivity n.d.)

Key 6 Silver 70 24 2 Nickel
plated brass
(5 ˆ 10´5

m plating
(Whittington
& Rose 2014))

1/ 100
(Core/coating)

1.5 ˆ 107{1.46 ˆ 107

(Conductivity Of
Metals Sorted By
Resistivity n.d.)

Key 6 Silver 70 24 2 Nickel silver 1.0 - 1.1 1.276 ˆ 107 (22%
IACS)(Westman
et al. 1972)

Key 9 Silver 78 24 7 Mild steel 100-300 106 ´ 107

Key 11 Bronze 70 25 7 Brass 1 1.5 ˆ 107 (26%
IACS)

Table 2: Typical house keys: Sizes, colour and composition of some typical house keys. The
rows indicated in grey are magnetic.

5.3.1 Key 4

Key 4 is a magnetic corrugated key, which is typically used in pin-tumbler locks. The procedure described
in Section 3.2 is applied to generate a 170 820 vertex point cloud to describe the non–dimensional object B
with dimensions such that α “ 1ˆ 10´3 m, which was then downsampled to a quasi-uniform 3120 vertex
point cloud, with average edge length 0.784 units, and converted into a faceted .step format. To generate
a MPT-Calculator compatible mesh, we insert the object B into a r´1000, 1000s3 units non-conducting
region, resulting in mesh with 27 478 unstructured tetrahedra. The maximum surface element size for the
key is limited by the density of the point cloud, thus the element size on the surface of the key will have
an average length of 0.784 units, however the element size away from the surface of B, such as the non-
conducting region, are not limited by the point cloud, instead we limit the element size by maxh “ 1000
units and minh “ 5 units. Figure 12 provides an example of each stage of the imaging process outlined in
Section 3.2 including the resulting surface discretisation for the object B in Figure 12 pdq.

Key 4 is known to be magnetic, thus we model the key as mild steel, which corresponds to a cheap
common key material. For steel, the conductivity is well defined as 1ˆ106 ď σ˚ ď 1ˆ107 S/m, however the
relative permeability can vary substantially by several orders of magnitude. For this reason, we consider
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a range of µr drawn from a normal distribution µr „ Nppµrqm, pµrqsq with pµrqm “ 200 and pµrqs “ 50
and note that high values of µr are not expected to result in significant change in the MPT spectral
signature (Elgy & Ledger 2023b). To ensure that accurate results are obtained, we introduce two thin
layers of prismatic elements of thickness δ{α and 2δ{α units resulting in a mesh with 12 479 prisms and
27 478 unstructured tetrahedra.

paq pbq

pcq pdq

Figure 12: Illustration of the imaging procedure detailed in Section 3.2 applied to Key 4
showing: pa) object on the scanner, pbq fine surface description associated with high density
point cloud, pcq coarser surface description corresponding to downsampled quasi-uniform point
cloud and pdq the associated coarser surface triangulation, which is then imported into Netgen

to create a volumetric mesh of unstructured tetrahedra to describe B and the surrounding
region to the truncation boundary.

To understand the variation in the MPT signatures for different material parameters and objects
sizes for Key 4, Figure 13 shows the median and 5th and 95th percentiles for λipR̃pαB, ω, σ˚, µrqq and
λipIpαB,ω, σ˚, µrqq. This was obtained, by generating 10 samples of µr drawn from µr „ Nppµrqm, pµrqsq,
with pµrqm “ 200 and pµrqs “ 50, 10 object sizes as α „ Npαm, αsq, with αm “ 1 ˆ 10´3 m and
αs “ 0.02αm, and 10 conductivities drawn from σ˚ „ Nppσ˚qm, pσ˚qsq, with pσ˚qm “ 6 ˆ 106 S/m and
pσ˚qs “ 2.5ˆ 106 S/m. The choice of αs is based on an generous estimate of the discrepancy between the
size of the original object (Figure 12 paq) and the final coarse mesh (Figure 12 pcq), taking into account
the point cloud density of the scanner (2 ˆ 10´4 m) and defects in the mesh resulting from the scanning
process. Since we do not have a ground truth geometry description for this object, the discrepancy between
the true geometry and the point cloud description is based on visual inspection. The choice of pσ˚qm, and
pσ˚qs correspond to the same steel material used in Section 5.2. The computed MPT spectral signatures for
different µr were obtained via repeat simulation using POD with 13 full order model solutions at logarith-
mically spaced snapshot frequencies with uniform order p “ 4 elements and the anisotropic mesh described
above, while, for the other parameters, the scaling results in Wilson & Ledger (2021) were employed. The
figure shows that the single set of measurements taken do generally lie within (or close to) the 5th and
95th percentiles for the simulations. However, compared, to the coins, there is an increased potential for
the key to move slightly during the measurements and also we have less confidence over the true material
parameters of the metals used in the key and the modelled geometry, which explain the results shown.

5.3.2 Key 6

Key 6 is a corrugated key and is weakly magnetic or non-magnetic. The procedure described in Section 3.2 is
applied to generate a 119 606 vertex point cloud to describe the non–dimensional object B with dimensions
such that α “ 1ˆ 10´3 m, which was then downsampled to a quasi-uniform 5614 vertex point cloud, with
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paq pbq

Figure 13: Key 4 MPT spectral signatures showing the variation in the computational results if
the material is mild steel with α „ Npαm, αsq, σ˚ „ Nppσ˚qm, pσ˚qsq, µr „ Nppµrqm, pµrqsq
compared with measurement data. The computed MPT spectral signatures use POD with full
order model solution snapshots at logarithmically spaced frequencies using uniform p “ 4 ele-
ments on a mesh of 7 311 prisms and 32 918 unstructured tetrahedra: paq λipR̃pαB, ω, σ˚, µrqq,
pbq λipIpαB, ω, σ˚, µrqq, for i “ 1, 2, 3.

average edge length 0.642 units, and converted into a faceted .step format. As with Key 4, we insert the
object B into a r´1000, 1000s3 units non-conducting region, resulting in a mesh with 41 834 unstructured
tetrahedra. The maximum surface element size for the key is limited by the density of the point cloud,
thus the element size on the surface of the key will have an average length of 0.642 units. In the same way
as Key 4, we limit the element size away from the surface of the object by specifying maxh “ 1000 units,
minh “ 5 units. The resulting surface discretisation for the object B is shown in Figure 14.

Figure 14: Key 6: Surface mesh description. The complete volume mesh contains 11 227
prisms and 41 834 unstructured tetrahedra in total.

Using the aforementioned tetrahedral mesh, we consider the MPT characterisations assuming the object
composition is brass, nickel-plated brass, and nickel-silver, in turn, using the material parameters stated
in Table 2. In the case of nickel-plated brass, a 5ˆ 10´5 m thick nickel coating is assumed (upper estimate
for the thickness of the coating (Westman et al. 1972)), which is modelled by using a single boundary layer
with 11 227 prisms in a mesh with an unchanged number of tetrahedra. In each case, uniform order p “ 3
elements were found to produce converged results at the N “ 13 frequency snapshots and the complete
MPT spectral signature for 1 ˆ 101 ď ω ď 1 ˆ 108 rad/s was obtained using the PODP method with a
truncation tolerance of 10´6. We show in Figure 15 comparisons of the MPT spectral signatures for λ1pR̃q
and λ3pIq, which are largest in magnitude. In this figure, we observe that modelling the key as nickel-silver
produces the closest match to the measurements, which notably is able to capture the small magnetostatic
response that is not possible using a brass or nickel-plated brass model.

As with Key 4, we consider the uncertainties in the object size and its material parameters for Key
6. While the imaging process is quoted as being accurate to ˘2 ˆ 10´4 m, further inaccuracies are also
introduced when the point cloud is downsampled and the unstructured mesh of tetrahedra is generated.
There are also additional uncertainties regarding the key’s relative permeability and conductivity. To
estimate percentiles for the MPT spectral signatures for the key, we introduce permutations of the MPT
spectral signature corresponding to variations in µr, σ˚, and α in a similar manner to as described in
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Figure 15: Key 6 MPT spectral signatures showing the computed spectral signature assuming
the object composition is brass, nickel-plated brass and nickel-silver compared with the ex-
perimental measurements. The computed MPT spectral signatures use POD with full order
model solution snapshots at logarithmically spaced frequencies using uniform p “ 3 elements
on a mesh of 41 834 unstructured tetrahedra (with 11 227 additional prisms to model the nickel
plating): paq λ1pR̃pαB, ω, σ˚, µrqq, pbq λ3pIpαB, ω, σ˚, µrqq.

Section 5.2.1. In particular, we generate 10 different MPT spectral signatures corresponding to object sizes
drawn as α „ Npαm, αsq, with αm “ 1ˆ10´3 m and αs “ 0.02αm. Similarly, we generate 10 MPT spectral
signatures corresponding to conductivities drawn from σ˚ „ Nppσ˚qm, pσ˚qsq, where pσ˚qm “ 1.276ˆ 107

S/m was obtained from quoted conductivities for nickel silver (Westman et al. 1972) and pσ˚qs is taken
to be 0.03 pσ˚qm corresponding to the uncertainty for copper based alloys stated in Ho et al. (1983). For
µr, we generate 10 samples drawn from µr „ Nppµrqm, pµrqsq with pµrqm “ 1.05 and pµrqs “ 0.025, so
that the majority of samples lie within the expected bounds 1 ď µr ď 1.1 obtained from observations
of the variation in the MPT spectral signature. This data set is used to construct the median, 5th, and
95th percentiles for the MPT spectral signatures shown in Figure 16. In a similar manner to Key 4, the
figure shows that the single set of measurements taken do generally lie within (or close to) the 5th and 95th

percentiles for the simulations. We again note there is an increased potential for the key to move slightly
during the measurements and also we have less confidence over the true material parameters of the metals
used in the key and the modelled geometry, which explain the results shown.

5.3.3 Key 9

Key 9 is a magnetic mortice key. The procedure described in Section 3.2 is applied to generate a 114 899
vertex point cloud to describe the non–dimensional object B with dimensions such that α “ 1 ˆ 10´3 m,
which was then downsampled to a quasi-uniform 3 290 vertex point cloud and converted into a faceted
.step format. To generate a MPT-Calculator compatible mesh, we insert the non–dimensional object B
into a r´1000, 1000s3 units non-conducting region. By also including a thin (h “ 5 ˆ 10´3 units) layer
of prismatic elements, this resulted in a mesh with 6 613 prisms and 67 512 unstructured tetrahedra. The
resulting surface mesh is illustrated in Figure 17. This is similar to Key 6 and results in a mean surface
element size of the object of 0.870 units.

We conjecture that the key is made of steel, as a common magnetic key material. As with the previ-
ous keys, we consider the effect of uncertainty in the object size and material parameters by constructing
samples corresponding to α „ Npαm, αsq, with αm “ 1 ˆ 10´3 m and αs “ 0.02αm, using the same con-
ductivity distribution σ˚ „ Nppσ˚qm, pσ˚qsq and relative permeability distribution µr „ Nppµrqm, pµrqsq
as Key 4 shown in Section 5.3.1. MPT spectral signatures corresponding to different µr were generated
using uniform order p “ 4 elements at the N “ 13 frequency snapshots snapshots and the complete MPT
spectral signature for 1ˆ101 ď ω ď 1ˆ108 rad/s was obtained using the PODP method with a truncation
tolerance of 10´6. Then, to estimate percentiles for the MPT spectral signatures for the key, we introduce
permutations of the MPT spectral signature corresponding to variations in µr, σ˚, and α in a similar
manner to as described in Section 5.2.1.

Figure 18 shows the resulting median, 5th, and 95th percentiles for the MPT spectral signatures along
with the measured data for λipR̃pαB,ω, σ˚, µrqq and λipIpαB,ω, σ˚, µrqq. Similar to the previous keys,
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Figure 16: Key 6 MPT spectral signatures showing the variation in the computational re-
sults if the material is nickel-silver with α „ Npαm, αsq, σ˚ „ Nppσ˚qm, pσ˚qsq, µr „
Nppµrqm, pµrqsq compared with measurement data. The computed MPT spectral signatures
use POD with full order model solution snapshots at logarithmically spaced frequencies using
uniform p “ 3 elements on a mesh 41 834 of unstructured tetrahedra: paq λipR̃pαB, ω, σ˚, µrqq,
and pbq λipIpαB, ω, σ˚, µrqq for i “ 1, 2, 3.

Figure 17: Key 9: Surface mesh description. The complete volume mesh contains 6 613 prisms
and 67 512 unstructured tetrahedra in total.

the figure shows that the single set of measurements taken do generally lie within (or close to) the 5th and
95th percentiles for the simulations with the differences attributed to the uncertainty of the geometry and
metallic materials used in the key and possible movement of the key as before.

5.3.4 Key 11

Key 11 is a non-magnetic mortice key. As with the other keys, Key 11 was first scuffed using sandpaper
before being spray-painted matt grey. During this time it was noticed that the key consists of a thin chrome
coating over bronze coloured metal, which together with its magnetostatic response indicated that it is
likely to be made of brass. The procedure described in Section 3.2 is again applied to generate a 137 230
vertex point cloud to describe the non–dimensional object B with dimensions such that α “ 1 ˆ 10´3

m, which was thendownsampled to a quasi-uniform 4 425 vertex point cloud, with average edge length
0.725 units, and converted into a faceted .step format. In the same way as the other keys, we insert the
non–dimensional object B into a r´1000, 1000s3 units non-conducting region, resulting in a mesh with
37 084 unstructured tetrahedra. The maximum surface element size for the key is limited by the density
of the point cloud, thus the element size on the surface of the key will have an average length of 0.724
units. As with the other keys, we limit the size of the elements away from the surface of B by specifying
maxh “ 1000 units, minh “ 5 units. The resulting surface mesh is illustrated in Figure 19.

Using the aforementioned tetrahedral mesh, we consider the MPT characterisations assuming the object
composition is brass using the material parameters stated in Table 2. Uniform order p “ 4 elements were
found to produce converged results at the N “ 13 frequency snapshots and the complete MPT spectral
signature for 10 ď ω ď 108 rad/s was obtained using the PODP method with a truncation tolerance of
10´6. In this case, we have a high degree of certainty in the material parameters and so only consider the
impact of the uncertainty in the geometrical modelling. In this case, considering the discrepancies between
the mesh and physical object, shown in Figure 19, we estimate that αs “ 0.02αm. Then, to estimate
percentiles for the MPT spectral signatures for the key, we introduce permutations of the MPT spectral
signature corresponding to variations in α (only) in a similar manner to as described in Section 5.2.1.

21



102 104 106 108

!, [rad/s]

-2

0

2

4

6

8

10

12

14

6
i(

~ R
)

[m
3
]

#10!5

61 Measurement
62 Measurement
63 Measurement
61 Median
62 Median
63 Median

61 5th and 95th Percentile

62 5th and 95th Percentile

63 5th and 95th Percentile

102 104 106 108

!, [rad/s]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

6
i(
I)

[m
3
]

#10!5

61 Measurement
62 Measurement
63 Measurement
61 Median
62 Median
63 Median

61 5th and 95th Percentile

62 5th and 95th Percentile

63 5th and 95th Percentile

paq pbq

Figure 18: Key 9 MPT spectral signatures showing the variation in the computational results
if the material is steel with α „ Npαm, αsq, σ˚ „ Nppσ˚qm, pσ˚qsq, µr „ Nppµrqm, pµrqsq
compared with measurement data. The computed MPT spectral signatures use POD with
full order model solution snapshots at logarithmically spaced frequencies using uniform p “ 4
elements on a mesh of 41 834 unstructured tetrahedra: paq λipR̃pαB, ω, σ˚, µrqq, and pbq
λipIpαB, ω, σ˚, µrqq for i “ 1, 2, 3.

Figure 19: Key 11: Surface mesh description. The mesh contains 37 084 unstructured tetra-
hedra in total.

Figure 20 shows the resulting median, 5th, and 95th percentiles for the MPT spectral signatures along
with the measured data for λipR̃pαB, ω, σ˚, µrqq and λipIpαB,ω, σ˚, µrqq for this key. We observe that
the measurement data is in close agreement with the median curves for λipR̃q and λipIq and falls within
the 5th and 95th percentiles for all frequencies.

6 Conclusion

This paper has presented computations and measurements of MPT characterisations of highly conducting
magnetic objects, which exhibit a high µr. Additionally, we consider characterisations of objects that are
made of layers of different highly conducting magnetic materials. The examples presented include current
and past denominations of British coins (which include recent 1p, 2p, 5p and 10p coins that have a layered
construction with a steel core) and examples of different keys (including those made of steel and nickel
silver). To accurately resolve the thin skin depths associated with high µr and higher frequencies, we have
employed the NGSolve finite element library and employed a combination of p–refinement of the finite
element basis functions and hybrid meshes of tetrahedral elements combined with thin layers of prismatic
elements. These have resulted in accurate computations of MPT object characterisations that are in close
agreement with the physical measurements. As the exact material properties of many physical objects
are unknown, and there can be variability in the physical object geometries for objects within the same
class, we have explored the uncertainty in the computed MPT characterisations for uncertain material
parameters and uncertain geometries.

We have also presented a procedure for obtaining geometric models of complex geometries based on
imaging when the exact geometry is unknown. We have applied this method to compute MPT characterisa-
tions of magnetic and non-magnetic conducting keys and compared our computations with measurements.
Additionally, we have again considered the uncertainty in our MPT characterisations given that our ob-
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Figure 20: Key 11 MPT spectral signatures showing the variation in the computational results
if the material is brass with α „ Npαm, αsq, σ˚ „ Nppσ˚qm, pσ˚qsq, µr “ 1 compared with
measurement data. The computed MPT spectral signatures use POD with full order model so-
lution snapshots at logarithmically spaced frequencies using uniform p “ 4 elements on a mesh
of 37 084 unstructured tetrahedra: paq λipR̃pαB, ω, σ˚, µrqq, and pbq λipIpαB, ω, σ˚, µrqq for
i “ 1, 2, 3.

tained geometric description is subject to modelling errors and the exact material conductivity and relative
permeability are unknown. The measured data for these objects lies within the 5th and 95th percentiles
describing the spread of the MPT coefficients.

We expect the procedures presented in this work to be invaluable for obtaining MPT characterisations
of threat and non-threat objects made of metallic materials with high µr. We also expect the ability to
take uncertainty in to account to be extremely beneficial when obtaining improved dictionaries of object
characterisations for training machine learning classifiers for distinguishing between threat and non-threat
objects in metal detection.

In future work, we would also like to take account of the dispersion effects of some magnetic materials
on the characterisation of objects by MPTs, such materials exhibit a non-constant µr with ω that decreases
towards unity for large ω, and also to consider MPT characterisations of objects with anisotropic magnetic
materials.
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Davidson, J. L., Özdeg̃er, T., Conniffe, D., Murray-Flutter, M. & Peyton, A. J. (2023), ‘Classification of
threat and nonthreat objects using the magnetic polarizability tensor and a large-scale multicoil array’,
IEEE Sensors Journal 23(2), 1541–1550.

EinScan (n.d.), ‘Download einscan software and latest updates’, https://www.einscan.com/support/

download/. Accessed: 13/10/2022.

Elgy, J. & Ledger, P. D. (2023a), ‘Improved efficiency and accuracy of the magnetic polarizability tensor
spectral signature object characterisation for metal detection’. doi: 10.48550/arXiv.2307.05590, Submit-
ted.

Elgy, J. & Ledger, P. D. (2023b), ‘Reduced order model approaches for predicting the magnetic polarizability
tensor for multiple parameters of interest’, Engineering with Computers . doi: 10.1007/s00366-023-01868-
x.

Gross, M. R. (1951), Magnetic characteristics of non-magnetic metallic materials comparison of proper-
ties in strong and weak fields, Technical Report E.E.S. Report 4E(2)66904, U.S. Naval Engineering
Experiment Station, Annapolis, Maryland, USA.

Hayt, W. H. & Buck, J. A. (2011), Engineering Electromagnetics, 8th edn, McGraw-Hill.

Ho, C. Y., Ackerman, M. W., Wu, K. Y., Havill, T. N., Bogaard, R. H., Matula, R. A., Oh, S. G. &
James, H. M. (1983), ‘Electrical resistivity of ten selected binary alloy systems’, Journal of Physical and
Chemical Reference Data 12(2), 183–322.

Landau, L., Lifshitz, E. & Pitaevskii, L. (1984), Electrodynamics of Continuous Media, Course of Theoret-
ical Physics, 2nd edn, Pergamon Press, Oxford, London, New York, Toronto, Sydney, Paris, Frankfurt.

Ledger, P. D. & Lionheart, W. R. B. (2015), ‘Characterising the shape and material properties of hidden
targets from magnetic induction data’, IMA Journal of Applied Mathematics 80(6), 1776–1798.

Ledger, P. D. & Lionheart, W. R. B. (2018a), ‘An explicit formula for the magnetic polarizability tensor
for object characterization’, IEEE Transactions on Geoscience and Remote Sensing 56(6), 3520–3533.

Ledger, P. D. & Lionheart, W. R. B. (2018b), ‘Generalised magnetic polarizability tensors’, Mathematical
Methods in the Applied Sciences 41, 3175–3196.

Ledger, P. D. & Lionheart, W. R. B. (2020), ‘The spectral properties of the magnetic polarizability tensor
for metallic object characterisation’, Mathematical Methods in the Applied Sciences 43, 78–113.

Ledger, P. D., Lionheart, W. R. B. & Amad, A. A. S. (2019), ‘Characterisation of multiple conducting
permeable objects in metal detection by polarizability tensors’, Mathematical Methods Applied Sciences
42(3), 830–860.

Ledger, P. D., Wilson, B. A., Amad, A. A. S. & Lionheart, W. R. B. (2021), ‘Identification of metallic
objects using spectral magnetic polarizability tensor signatures: Object characterisation and invariants’,
International Journal for Numerical Methods in Engineering 122, 3941–3984.

Ledger, P. D., Wilson, B. A. & Lionheart, W. R. B. (2022), ‘Identification of metallic objects using spectral
magnetic polarizability tensor signatures: Object classification’, International Journal for Numerical
Methods in Engineering 123, 2076–2111.

Makkonen, J., Marsh, L. A., Vihonen, J., Järvi, A., Armitage, D. W., Visa, A. & Peyton, A. J. (2014),
‘KNN classification of metallic targets using the magnetic polarizability tensor’, Measurement Science
and Technology 25, 055105.

24

https://www.compoundchem.com/2014/03/27/the-metals-in-uk-coins/
https://www.compoundchem.com/2014/03/27/the-metals-in-uk-coins/
https://www.effectrode.com/knowledge-base/conductivity-of-metals-sorted-by-resistivity/
https://www.effectrode.com/knowledge-base/conductivity-of-metals-sorted-by-resistivity/
https://www.einscan.com/support/download/
https://www.einscan.com/support/download/


Makkonen, J., Marsh, L. A., Vihonen, J., Järvi, A., Armitage, D. W., Visa, A. & Peyton, A. J. (2015),
‘Improving reliability for classification of metallic objects using a WTMD portal’, Measurement Science
and Technology 26, 105103.

Marsh, L. A., Ktisis, C., Järvi, A., Armitage, D. W. & Peyton, A. J. (2013), ‘Three-dimensional object
location and inversion of the magnetic polarisability tensor at a single frequency using a walk-through
metal detector’, Measurement Science and Technology 24, 045102.

Marsh, L. A., Ktistis, C., Järvi, A., .Armitage, D. W. & Peyton, A. J. (2014), ‘Determination of the
magnetic polarizability tensor and three dimensional object location for multiple objects using a walk-
through metal detector’, Measurement Science and Technology 25, 055107.

NGSolve (n.d.), https://ngsolve.org. Accessed 12/10/2021.

O’Toole, M. D., Karimian, N. & Peyton, A. J. (2018), ‘Classification of nonferrous metals using magnetic
induction spectroscopy’, IEEE Transactions on Industrial Informatics 14(8), 3477–3485.
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