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We study contract design for welfare maximization in the well-known “common agency” model of Bernheim

and Whinston [1986]. This model combines the challenges of coordinating multiple principals with the

fundamental challenge of contract design: that principals have incomplete information of the agent’s choice

of action. Our goal is to design contracts that satisfy truthfulness of the principals, welfare maximization

by the agent, and two fundamental properties of individual rationality (IR) for the principals and limited

liability (LL) for the agent.

Our results reveal an inherent impossibility. While for every common agency setting there exists a truthful

and welfare maximizing contract, which we refer to as “incomplete information VCG contracts (IIVCG)”,

there is no such contract that also satisfies IR and LL for all settings. As our main results, we show that the

class of settings for which there exists a contract that satisfies truthfulness, welfare maximization, LL, and

IR is identifiable by a polynomial-time algorithm. Furthermore, for these settings, we design a polynomial-

time computable contract: given valuation reports from the principals it returns, if possible for the setting, a

payment scheme for the agent that constitutes a contract with all desired properties. We also give a sufficient

graph-theoretic condition on the population of principals that ensures the existence of such a contract, and

two truthful and welfare-maximizing contracts, where one satisfies LL and the other one satisfies IR.

Key words : VCG; Principal; Common Agent; Contract; Equilibrium; Limited Liability; Individual

Rationality; Polynomial Complexity.
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1. Introduction

Markets are an ancient tool for allocating goods; but they are also a tool for the allocation of effort.

The theory that models the allocation of effort is the celebrated principal-agent model, a.k.a. con-

tract design, originating in the works of Hart, Hölmstrom and others. At the heart of the principal-

agent model is a relationship between one entity (agent) who acts on behalf of another (principal);

for example, corporate management and shareholders, a freelance worker and employers, the public

regulator and citizens. In all of these examples, the agent (manager/freelancer/regulator) acts on

behalf of multiple principals (shareholders/employers/citizens). The extension of the basic single-

agent, single-principal setting to multiple principals mirrors the extension of the basic single-seller,

single-buyer auction setting to multiple buyers. This extension was introduced in 1986 by Bernheim

and Whinston (1986a), and is known as common agency.

The main challenge in the principal-agent model (with one or more principals) is the agency

problem: Actions that generate good outcomes for the principal(s) are costly for the agent, who

rationally acts in his own self-interest. To align the interests of the principals with those of the agent,

the principals compensate the agent depending on the outcome of his action. This compensation

scheme, designed to incentivize the agent to choose a desirable action, is called a contract. The

agency problem has two necessary ingredients (if one of these is missing, the problem is resolved):

(i) Incomplete information of the agent’s actions; (ii) Principals are better risk bearers than the

agent. Incomplete information means that the principals cannot directly observe the agent’s choice

of action, only its resulting (stochastic) outcome. The contractual payment scheme thus depends

on the outcome, which serves as a noisy indicator of the action. This crucial feature of the model

is known as hidden action or moral hazard. The second crucial feature is the asymmetry between

principals and agents in their attitude towards risk. The principal typically has “deeper pockets”

and can bear the risk that the agent’s actions will lead to losses. The way this is incorporated into

our model follows classic works like Innes (1990), Gollier et al. (1997), Carroll (2015): we focus

on contracts guaranteeing limited liability (LL) for the agent, i.e., payments in the contractual



Alon et al.: Incomplete Information VCG Contracts for Common Agency
Article submitted to Operations Research; manuscript no. Draft 3

relationship flow only from the principals to the agent. We mention that other works like Bernheim

and Whinston (1986a) capture the asymmetry in risk attitudes among principal and agent by

explicitly modeling the agent’s risk averseness. Without LL or risk averseness, the trivial but

unrealistic solution of “buying the project” would apply (see, e.g., Carroll 2015).

Having multiple principals raises intriguing new challenges:

“The principal-agent problem here is intensified: not only is there still asymmetric information

between the principals and agent that can bring moral hazard, but there is also asymmetric

information between the principals themselves [... S]ince principals’ interests often diverge,

they face incentives to advance their individual interests instead of the joint interests by all

principals[...] As a result, introducing governance to align the interests of the principals with

those of the agent is much more difficult” (Wikipedia contributors 2021).

This misalignment among the principals combined with their private information (their types)

requires novel contractual mechanisms.

Research challenge. In this paper we focus on the design of welfare-maximizing contracts. We

seek for contracts that satisfy the following desiderata. (i) Incentives. This concerns the principals’

and agents’ willingness to participate, and principals’ willingness to provide private information.

Since principals’ values are privately-known, we require that principals are incentivized to report

their values truthfully in dominant strategies. We also require individual rationality (IR) so that

principals’ participation is a dominant strategy, and as explained above, we also require the LL

property so the agent faces no risk. We mention that one could also consider relaxing the LL

constraint by requiring not that every contractual payment is non-negative but rather that only

the aggregate payment from the principals to the agent is non-negative for every outcome; this does

not change our results (see Remark 2). (ii) Social welfare: The payment schemes should incentivize

the agent to choose a welfare maximizing action. We leave revenue maximization for future work,

noting that the concept of “revenue” in a multi-principal settings may require new definitions.

(iii) Computational efficiency: Our contracts should be polynomial-time computable.
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Our results. As our first conceptual contribution, in Section 2 we formulate a game that diverges

from classic literature by considering more complex contracts. Specifically, followed by Lavi and

Shamash (2019), we instantiate an abstract concept known as contractible contracts (see, e.g.,

Peters and Szentes 2012). Compared to classic contracts, principal `’s payment for an outcome is

no longer just her own (reported) value from this outcome, but is a function of the other principals’

reported values as well. We first prove that even under this general definition of contracts, there

exists no contract that satisfies our entire desiderata of truthfulness, welfare maximization, limited

liability and individual rationality (see Theorem 1).

At the cornerstone of our proof for the impossibility result, and the positive results that follow,

is a new class of contracts which we define, referred to as Incomplete Information VCG contracts

(IIVCG). We show that – similar to their namesake, this is the unique class of truthful and welfare

maximizing contracts. We use this characterization of truthful and welfare maximizing contracts

to prove Theorem 1. Specifically, we show that there exists no IIVCG contract that satisfies both

LL and IR simultaneously.

We mention that while the definition of IIVCG contracts shares important features with the

celebrated VCG mechanism, it also departs from it in a significant way: In the classic VCG model

there is a social planner that takes the welfare maximizing choice (with respect to the participants’

reported valuations). Here, the social planner is replaced with the strategic agent who acts in

his own self-interest. Therefore, our contract needs to incentivize the agent to take the welfare

maximizing choice, on top of the need to incentivize the principals to report truthfully.

The definition of IIVCG contracts is also useful since it exactly defines our “design space”. In

particular, it translates to linear constraints that allow to overcome the impossibility result using

the following algorithmic construction, which is our main contribution: We give a polynomial-time

algorithm (Algorithm 2) that determines for a given common agency setting whether or not there is

an IIVCG contract for this setting that is both LL and IR. Such settings are referred to as applicable

settings. If such a contract exists, we design another polynomial-time algorithm (Algorithm 1)
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that implements it, i.e., it computes “on the fly” contractual payments for every principal. The

algorithmic basis of this approach gives us flexibility that may not exist when trying to design a

contract with a closed-form formula for payments.

In the appendix we also give two instantiations of the IIVCG family called Auction-Inspired

IIVCG and Weighted IIVCG. The former satisfies IR and the latter satisfies LL. For Weighted

IIVCG, we also characterize the class of settings for which they are also IR – namely, settings that

satisfy a graph-theoretic condition on the graph whose nodes are the principals. This completes the

picture, showing the full range within IIVCG: IR and not LL (Auction-Inspired IIVCG), LL and

not IR (Weighted IIVCG), and both LL and IR whenever possible (i.e., for applicable settings). One

avenue we do not explore in this paper but leave as an open question is contracts that guarantee

LL and IR always, but only approximately achieve the optimal social welfare.

1.1. Additional Related Work

As mentioned above, our solution concept arises from recent work of Lavi and Shamash (2019).

Their work studies a model with multiple agents and complete information about the agents’ choice

of action, and thus no agency problem. To demonstrate how different the complete and incomplete

information models are note that with full information, the principal can simply tell the agent

to work and pay him his cost, thus maximizing welfare and extracting it fully as her expected

utility. Example 1 shows that this is no longer possible when there is incomplete information.

Further evidence of the difference between the two models is the state of the literature in each. For

complete information, the problem of welfare maximization with multiple principals and a single

agent is largely settled by Bernheim and Whinston (1986b) in a paper preceding their “Common

Agency” paper (Bernheim and Whinston 1986a). Lavi and Shamash (2019) address a generalization

of this problem to multiple agents (the generalization is due to Prat and Rustichini (2003)). They

instantiate an abstract concept known as contractible contracts (Peters and Szentes 2012), and

introduce a novel class of VCG contracts. In contrast, in the incomplete information world, the

problem of welfare maximization with multiple principals has remained largely open even for a
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single agent in the three decades since the common agency model was introduced by Bernheim

and Whinston (1986a). Several works have considered the design of contracts with incomplete

information from a computational point of view (see, e.g., Babaioff et al. 2006, Ho et al. 2016,

Kleinberg and Kleinberg 2018, Kleinberg and Raghavan 2019, Dütting et al. 2020, Dütting et al.

2019); some of these works have multiple agents (e.g., Xiao et al. (2020), Alon et al. (2020)), or

agent private types (e.g., Guruganesh et al. 2020), but none to our knowledge consider multiple

principals with private types.

2. Model and Preliminaries

Common agency settings. We adopt the classic model of Bernheim and Whinston (1986a), in

which there is a single agent, and n principals. The agent chooses an unobservable action that

incurs a cost on the agent, and stochastically leads to an observable outcome that benefits the

principals. This is formalized by a common agency setting (A,ψ,O,V,F ) as we now describe: A

is a set of q actions available to the agent. ψ : A→ R≥0 maps an agent’s action to its cost. We

assume for simplicity that all actions have different costs. O is a set of m outcomes. For ease of

notions, we assume outcomes are indexed, so every o∈O is associated with a number in [m]. F is

a set of distributions, F|a ∈ Rm≥0 ∀a ∈ A, such that the oth entry of F|a is the probability for the

oth outcome given that the agent takes action a denoted by po∼F|a(o). V is the tuple of principal’s

valuations domains (V1, ...,Vn) from which their valuations are drawn: A valuation profile v ∈ V

is the tuple (v1, . . . , vn), where v` ∈ V` is the valuation function v` :O→ R≥0 of principal ` ∈ [n],

which maps an outcome to a non-negative value. Note that the mapping v` can also be thought of

as a vector in Rm≥0 (valuations in our model are thus succinct objects). For simplicity, we assume

V` is a convex, polynomially-described polytope; all our results extend to general convex domains.

In the general case, the convex domains are represented by polynomial-time membership oracles.

Convex valuation domains appear, e.g., as the main application in (Holmström 1979). Throughout,

principals are indexed by `, actions by j and outcomes by i. Towards the computational analysis,

we assume that the representation size of (A,ψ,O,V,F ) is polynomial in n, q and m.
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Who knows what. The setting (A,ψ,O,V,F ) is assumed to be public knowledge. The realized

outcome i is publicly known, while the agent’s chosen action j and the principals’ valuations v`

∀`∈ [n] are privately known. This makes our model a hidden action, hidden type model (where the

type is of the principals).

Contracts. A contract profile t= (t1, ..., tn) (contract for short) includes a payment rule t` for each

principal `. We diverge from the classic model in that the payment rule t` depends not only on the

reported values of principal ` (and the outcome of the agent’s action), but also on the (reported)

valuations of all principals: t` : V×O→R. Such contracts are known as contractible. Taken together,

the n (publicly known) payment rules t` ∀`∈ [n] incentivize the agent when choosing an action.

The game. Fix a common agency setting. A contract t and valuation profile v define the following

two-stage game. First, principals simultaneously report their values. We denote principal `’s report

(a.k.a. bid) by b` ∈ V` (the report need not be truthful, i.e., b` is not necessarily v`). After perceiving

the bids, the agent chooses a hidden action a, which imposes a distribution F|a over the outcomes.

An outcome o is realized according to this distribution, and each principal ` pays the agent t`(b, o),

where b= (b1, ..., bn).

Utilities. We assume quasi-linear utilities and risk neutrality for all parties. The utility of principal

`’s is her value minus payment, i.e., v`(o)− t`(b, o). The agent’s utility is the sum of payments

minus the cost of chosen action, i.e.,
∑

`∈[n] t
`(b, o)−ψ(a).

Equilibrium. The agent’s chosen action x∗(b) given bid profile b maximizes his expected utility:

x∗(b)∈ arg max
a∈A

∑
`∈[n]

Eo∼F|a [t`(b, o)]−ψ(a)

 .

As is standard, we assume the agent tie-breaks in favor of the design objective (for an example

in the context of revenue see (Carroll 2015)). In our case the objective is the (declared) social

welfare. If among the utility-maximizing actions there are several with highest (declared) welfare,

we assume the agent chooses to invest maximum effort, i.e., takes the one with the maximum cost.

(While we feel this kind of “eager” tie-breaking is in line with the standard tie-breaking assumption,
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our results do not rely on it and would hold for any consistent tie-breaking rule.) We assume the

principals know the agent is rational and can anticipate his action x∗(b) given bid profile b. Given

the bids of all principals but `, denoted by b−`, principal `’s equilibrium bid b` maximizes her

expected utility Eo∼F|x∗(b) [v
`(o)− t`(b, o)] among all possible bids in V`, where b= (b−`, b`) and x∗(b)

is the agent’s anticipated action.

Consider now the game defined by contract t when the valuation profile v is not fixed. A strategy

of principal ` in this game is a mapping from every possible valuation v` to a bid b`. A strategy

is called dominant if it is guaranteed to maximize the principal’s expected utility for every v` no

matter what the other principals bid, i.e., for every b−` ∈ V−` (while still assuming the rationality of

the agent). Principal ` is truthful as a dominant strategy if announcing her true valuation maximizes

her expected utility, i.e., v` ∈ arg maxb`∈V` Eo∼F|x∗(b) [v
`(o)− t`(b, o)] for every v` ∈ V`, b−` ∈ V−`. We

say that contract t is truthful if every principal is truthful as a dominant strategy.

Design objectives. As mentioned above, our desiderata from a contract t concern (i) incentives,

(ii) social welfare, and (iii) computational complexity. The first group of design objectives address

incentives – principals’ and agent’s willingness to participate, and principals’ willingness to pro-

vide private information. For the latter, we focus on truthful contracts, in which every principal’s

dominant strategy is to simply report her valuation. To ensure principals’ participation in such

contracts, we require that every truthful principal has non-negative expected utility no matter how

the others bid – this is known as the individual rationality (IR) property for principals. Formally,

Definition 1. A contract t satisfies individual rationality (IR) if the utility of every truthful

principal is non-negative: Eo∼F|x∗(b−`,v`)
[v`(o)−t`((b−`, v`), o)]≥ 0 for every `∈ [n], b−` ∈ V−`, v` ∈ V`.

We now turn to the agent’s incentives, for which we need the following central definition:

Definition 2. A contract t satisfies limited liability (LL) if every payment from a principal to the

agent is non-negative: t`(b, o)≥ 0 for every `∈ [n], b∈ V, o∈O.

The LL requirement guarantees that the agent never pays out-of-pocket. Under LL, to ensure

the agent is guaranteed non-negative utility, we assume there exists an action with zero cost. We
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mention that this assumption is for simplicity; the alternative of requiring IR for the agent would

not change our results.

The second design objective is social welfare. Given a valuation profile v, the (expected) welfare

of action a, denoted by Wela(v), is the total expected value minus cost, and a∗(v) is a welfare-

maximizing action:

Wela(v) =
∑
`∈[n]

Eo∼F|a [v`(o)]−ψ(a); a∗(v)∈ arg max
a∈A

Wela(v).

We assume tie-breakings are consistent and aligned. Thus, as mentioned above, if there are several

welfare maximizing actions, a∗(v) is the one with maximum effort.

We seek for welfare maximizing contracts such that for every bid profile b, the agent’s action

choice x∗(b) maximizes the declared welfare, i.e., x∗(b) = a∗(b). Since we focus on truthful contracts,

when playing according to their dominant strategies the principals report b= v, and the agent’s

choice a∗(v) is indeed socially efficient.

The last design objective is computational complexity: given a bid profile b and an outcome o,

the payments t`(b, o) should be computable in polynomial time for every ` ∈ [n]. To summarize

our desiderata, we seek truthful, welfare maximizing, IR and LL contracts with payments that are

computable in polynomial time.

3. Impossibility

In this section we present our impossibility result. We show here that while there exists truthful

and welfare maximizing contract for all common agency settings (see Section 3.1), there exists no

such contract that satisfy both LL and IR:

Theorem 1. For any number of principals n> 0, there exists a common agency setting for which

no contract satisfies truthfulness, welfare maximization, limited liability and individual rationality.

The proof, and the positive results in the next sections rely on the following characterization

truthful and welfare-maximizing contracts (see Proposition 2).
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3.1. A Characterization of Truthful and Welfare Maximizing Contracts

Here, we characterize the family of truthful and welfare maximizing contracts. Specifically, we

define the family of Incomplete Information VCG (IIVCG) contracts (see Definition 3), and show

that a contract is truthful and welfare maximizing if and only if it is an IIVCG contract (see

Proposition 2). Furthermore, we show here that for every common agency setting there exists an

IIVCG contract (see Proposition 1).

Recall that compared to the classic VCG mechanism where there is a social planner, here, the

agent needs to be incentivized by the contract to take the welfare maximizing choice. To deduce the

exact payments that incentivize the agent to maximize welfare, we will make use of the following

definition.

La =

{
w ∈Rm≥0

∣∣ a∈ arg max
a′
{Eo∼F|a′ [w(o)]−ψ(a′)}

}
a∈A,

where w(o) for o ∈ [m] is the oth entry of vector w. La can be interpreted as follows: It is the set

of all non-negative payment vectors w ∈ Rm≥0 such that action a maximizes the agent’s expected

utility given w. Indeed, if the principals were cooperating to incentivize the agent to take an action,

e.g., a∗(b), they could have jointly pay the agent w(o) for every outcome o, for some w ∈La∗(b).

We use the definition of La∗(b) to define the following class of contracts which is (uniquely)

truthful and welfare-maximizing.

Definition 3 (IIVCG Contracts). A contract t= (t1, ..., tn) is called Incomplete Information

VCG (IIVCG) if there exist functions h1, . . . , hn where h` : V−`→ R, and w1, ...,wn ∈ Rm≥0 where∑
`∈[n]w

` ∈La∗(b) such that

t`(b, o) = h`(b−`)−Wela
∗(b)(b−`,w`) +w`(o) ∀`∈ [n], o∈O. (1)

Proposition 1 (Existence). For every common agency setting, there exists an IIVCG contract.

The proof is deferred to Appendix B where we give two different instantiations of the IIVCG

family of contracts for all settings. One of the instantiations satisfies LL, while the other one

satisfies IR.
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Proposition 2 (Characterization). A contract is truthful and welfare maximizing if and only

if it is an IIVCG contract.

We prove here the backward direction – given an IIVCG contract t, we show it is truthful and

welfare maximizing. The forward direction is deferred to Appendix A.

Proof of Proposition 2 (backward direction). We first show that the agent is incentivized to

maximize social welfare, i.e., that x∗(b) = a∗(b) ∀b∈ V. Consider a bid profile b, and the correspond-

ing welfare maximizing action a∗(b). Recall that x∗(b)∈ arg maxa′∈A{
∑

`∈[n]Eo∼F|a′ [t
`(b, o)]−ψ(a′)}

by definition. Since the only term in t`(b, o) that depends on the agent’s choice of action is w`(o),

and since summing up this term over the principals gives vector
∑

`∈[n]w
` ∈ La∗(b), it follows

that x∗(b) = a∗(b).

We prove that t satisfies dominant strategy truthfulness. We show that reporting truthfully

maximizes principal `’s expected utility for every principal ` and other principals’ bids b−`.

Observe that since x∗(b) = a∗(b) ∀b ∈ V, the principal’s expected utility for reporting b` is equal

to Eo∼F|a∗(b) [v
`(o)]− h`(b−`) + Wela

∗(b)(b−`,0), which, by summing up the first and the last term

is equal to Wela
∗(b)(b−`, v`)− h`(b−`). Since h` is independent of b`, this is maximized when the

first term is maximized. That is, by the definitions of Wela(·) and a∗(·), when the principal reports

truthfully, i.e., when b` = v`.

3.2. Proof of Theorem 1

In this section we leverage the characterization of truthful welfare maximizing contracts from the

previous section to prove the impossibility in Theorem 1.

Let n > 0 be the number of principals, Example 1 presents a common agency setting with n

principals for which there exists no truthful, welfare maximizing that is both LL and IR.

Example 1. There are two actions a1, a2 and two possible outcomes o1, o2. The distributions

imposed by actions are: po∼F|a1
(o1) = 1

2
, po∼F|a2

(o1) = 1. There are n principals with valuation

domains V` =R2
≥0 ∀`∈ [n]. The cost for each action is: ψ(a1) = 0, ψ(a2) = ε, where ε > 0.
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Consider the common agency setting in Example 1 and the valuation profile v1 = (3ε,0) and v` =

(0,0) ∀`∈ [n]\{1}. Note that Wela1(v) = 1.5ε, and Wela2(v) = 2ε. Thus, the socially efficient action

is a2. Suppose toward a contradiction that there exists a truthful welfare maximizing contract t

that satisfies LL and IR. Since t is an IIVCG contract (see Proposition 2), in a dominant strategy

equilibrium the principal is truthful, and the agent takes the socially efficient action, i.e., a2. Since

the agent maximizes the sum of payments minus cost, it must hold that
∑

`∈[n] t
`(b, o1)−ε≥

∑
o∈O

1
2
·∑

`∈[n] t
`(b, o). Thus,

∑
`∈[n] t

`(b, o1)− t`(b, o2)≥ 2ε. Further, since t satisfies IR and LL t`(b, o) = 0

∀` ∈ [n] \ {1}, o ∈ O in a dominant strategy equilibrium. Therefore, t1(b, o1) − t1(b, o2) ≥ 2ε. By

the assumption that t satisfies LL we have that t1(b, o2)≥ 0, so t1(b, o1)≥ 2ε. That is, t1(b, o1) =

Eo∼F|a2 [t1(b, o)] = h1(b−1)−Wela2(b−1,0)≥ 2ε. Since Wela2(b−1,0) =−ε, we conclude that h1(b−1)≥

ε. Now, consider a different valuation profile ṽ` = (0,0) ∀` ∈ [n]. Again, in a dominant strategy

equilibrium the principal is truthful b̃= ṽ and the agent takes the socially efficient action, which

is now a1. Since t satisfies IR, it holds that Eo∼F|a2 [ṽ1(o)]≥Eo∼F|a1 [t1(b̃, o)]. That is, 0≥ h1(b̃−1)−

Wela1(b̃−1,0), and since Wela1(b̃−1,0) = 0, we have that 0 ≥ h1(b̃−1). Note that by definition of

IIVCG, h1 is independent of b1. Thus, h1(b̃−1) = h1(b−1), which implies that 0≥ h1(b̃−1)≥ ε. We

have reached a contradiction.

Remark 1. With two or more principals, Theorem 1 is related to the classic result of Myerson and

Satterthwaite, by which there do not exist socially-efficient and budget-balanced mechanisms (see,

e.g., Myerson and Satterthwaite (1983)). Indeed, the agent in our setting can be viewed as the

mechanism designer in the classic result, and the principals in our setting can be viewed as the

players. However, the impossibility result of Myerson and Satterthwaite crucially relies on the

existence of two players, whereas Theorem 1 applies even to settings with a single principal.

4. Applicable Settings

The impossibility result (Theorem 1) motivates the following definition.

Definition 4. A common agency setting is applicable if there exists a truthful, welfare maximizing

contract that satisfies LL and IR for the setting.
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Here, we characterize the non-empty set of applicable settings (see Lemma 1 and Observation 1),

and provide a polynomial time algorithm to determine whether or not a setting is applicable (see

Theorem 3). Our characterization is constructive, yielding an IIVCG contract that satisfies both

LL and IR whenever such a contract exists. The contract we provide is conceptually different from

classic contract mapping – expressed using a mathematical formula. We introduce an algorithmic

approach, in which the contract mapping is algorithm-based. Specifically, we design a polynomial

time algorithm that upon receiving reports b= (b1, ..., bn) and an outcome o, it computes t`(b, o)

for every principal ` in order to determine the contractual payments. Altogether, the following two

theorems constitute our main results:

Theorem 2. For every applicable setting there is a truthful welfare maximizing contract t that

satisfies LL and IR and that its payment profile t(b, o) is computable by a polynomial time algorithm

for every bid profile b and every outcome o.

Theorem 3. There is a polynomial time algorithm that determines whether or not a given common

agency setting is applicable.

The proofs of both theorems are given in Sections 4.1 and 4.2, respectively.

4.1. Proof of Theorem 2

Here we prove Theorem 2. We will present Algorithm 1 and show that the payments it computes

form a truthful welfare maximizing contract that satisfies LL and IR for every applicable setting.

The proof relies on Definition 5, Lemma 1 and Lemma 2.

Definition 5. Consider a common agency setting. Define:

1. m`(b) = minṽ`∈V` Wela
∗(b−`,ṽ`)(b−`, ṽ`)−Wela

∗(b)(b−`,0) ∀`∈ [n], b∈ V.

2. ka = minw∈LaEo∼F|a [w(o)] ∀a.

Lemma 1. Consider a common agency setting. If the setting is applicable, ka∗(b) ≤
∑

`∈[n]m
`(b)

∀b∈ V. Conversely, if ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b∈ V, an IIVCG contract that satisfies LL and IR may

be constructed by using Definition 3 and
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1. h`(b−`) = minṽ`∈V` Wela
∗(b−`,ṽ`)(b−`, ṽ`) ∀`∈ [n], b−` ∈ V−`.

2. For every b ∈ V, take wb ∈ arg minw∈La∗(b)Eo∼F|a∗(b) [w(o)] and choose w1, ...,wn as follows:

w` = xb` ·wb where 0≤ xb`, xb` · ka∗(b) ≤m`(b) ∀`∈ [n], and
∑

`∈[n] x
b
` = 1.

Proof of Lemma 1. For the forward direction, we will show that ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b∈ V for

every applicable setting. Consider an applicable setting and a bid profile b ∈ V. By Definition 4,

there exists an IIVCG contract t that satisfies LL and IR. Define w ∈Rm as w(o) =
∑

`∈[n] t
`(b, o)

∀o∈ [m]. Since t satisfies limited liability, w is non-negative, i.e., w ∈Rm≥0. Furthermore, by Propo-

sition 2, the agent maximizes social welfare. Thus, a∗(b) ∈ arg maxa′{Eo∼F|a′ [w(o)]− ψ(a′)}. This

implies that w ∈ La∗(b) by definition of La ∀a ∈ A. Therefore, by the definition of ka∗(b), we have

that

ka∗(b) ≤
∑
`∈[n]

Eo∼F|a∗(b) [t
`(b, o)]. (2)

To complete the forward direction, we show that
∑

`∈[n]Eo∼F|a∗(b) [t
`(b, o)] ≤

∑
`∈[n]m

`(b). We do

so by showing that an IIVCG contract t satisfies IR if and only if Eo∼F|a∗(b) [t
`(b, o)]≤m`(b) ∀` ∈

[n], b∈ V. By definition, t satisfies IR if and only if each principal’s expected payment when she bids

truthfully is at most her expected value. That is, Eo∼F|a∗(b−`,v`)
[t`((b−`, v`), o)]≤Eo∼F|a∗(b−`,v`)

[v`(o)]

∀`∈ [n], b∈ V, v` ∈ V`. By definition of IIVCG (Definition 3), the above holds if and only if h`(b−`)−

Wela
∗(b−`,v`)(b−`,0) ≤ Eo∼F|a∗(b−`,v`)

[v`(o)] ∀`∈ [n], b∈ V, v` ∈ V`. By adding Wela
∗(b−`,v`)(b−`,0) −

Wela
∗(b)(b−`,0) to both sides of the inequality, we have that t satisfies IR if and only if h`(b−`)−

Wela
∗(b)(b−`,0)≤Wela

∗(b−`,v`)(b−`, v`)−Wela
∗(b)(b−`,0) ∀` ∈ [n], b ∈ V, v` ∈ V`. Since the left-hand

side is independent of v`, the above is equivalent to the following condition (obtained by minimizing

the right-hand side over all v` ∈ V` and dropping the ∀v` ∈ V` quantifier): h`(b−`)−Wela
∗(b)(b−`,0)≤

minṽ`∈V` Wela
∗(b−`,ṽ`)(b−`, ṽ`)−Wela

∗(b)(b−`,0) ∀`∈ [n], b∈ V. That is, by definition of IIVCG, and

by the definition of m`(b), if and only if Eo∼F|a∗(b) [t
`(b, o)]≤m`(b) ∀`∈ [n], b∈ V. By summing up

the above over all principals `∈ [n], and using (2) we conclude that if an IIVCG contract t satisfies

LL and IR then ka∗(b) ≤
∑

`∈[n]Eo∼F|a∗(b) [t
`(b, o)]≤

∑
`∈[n]m

`(b) ∀b∈ V.
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For the backwards direction, consider a setting that satisfies ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b∈ V, we

show that the construction in Lemma 1 forms an IIVCG contract that satisfies LL and IR.

We first show that this contract is in IIVCG. This is by definition of IIVCG since
∑

`∈[n]w
` =

wb ∈ La∗(b) ∀b ∈ V, and since h` is indeed independent of b`. To show LL, we must show that

t`(b, o) = h`(b−`)−Wela
∗(b)(b−`,w`) +w`(o)≥ 0 ∀` ∈ [n], b ∈ V, o ∈ O. Since w`(o) is non-negative,

the last inequality holds if h`(b−`)−Wela
∗(b)(b−`,w`)≥ 0 ∀`∈ [n], b∈ V. By adding Eo∼F|a∗(b) [w

`(o)]

to both sides of the inequality, the above inequality is equal to h`(b−`) − Wela
∗(b)(b−`,0) ≥

Eo∼F|a∗(b) [w
`(o)] ∀` ∈ [n], b ∈ V. By definition of m`(b), ka∗(b), and by our choice of h`(b−`) =

minṽ`∈V` Wela
∗(b−`,ṽ`)(b−`, ṽ`) and of w` = xb` · arg minw∈La∗(b)Eo∼F|a∗(b) [w(o)], this is equivalent to

m`(b)≥ xb` · ka∗(b) ∀` ∈ [n], b ∈ V, which holds by construction. LL is therefore satisfied. IR follows

from the arguments in the proof of the forward direction, where we show that an IIVCG contract

t satisfies IR if and only if Eo∼F|a∗(b) [t
`(b, o)]≤m`(b) ∀` ∈ [n], b ∈ V. By the choice of h`(b−`), the

letter holds with equality since Eo∼F|a∗(b) [t
`(b, o)] = minṽ`∈V` Wela

∗(b−`,ṽ`)(b−`, ṽ`)−Wela
∗(b)(b−`,0).

Observation 1. The set of applicable settings in non empty. For example, it can be verified that

the setting in Example 1 where the principals’ valuation profile is V` =R2
≥2ε ∀`∈ [n] is applicable.

Remark 2. One may consider relaxing the LL constraint, by requiring that only the aggregate

payment from all principals to the agent is non-negative. The proof of Lemma 1 shows that requiring

the payments from each individual principal to the agent to be non-negative is without loss of

generality.

Lemma 2. Consider an applicable common agency setting. Algorithm 1 computes the payments in

Lemma 1 in polynomial time for every bid profile b∈ V and every outcome o∈O.
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ALGORITHM 1: Computes the payments of LL and IR IIVCG contract.

Input: An applicable setting (A,O,V,F,ψ), a bid profile b∈ V, and an outcome o∈O.

Output: The payments {t`(b, o)}`∈[n] of an IIVCG contract that satisfies LL and IR.

// Compute m`(b) ∀`∈ [n] (see Definition 5)

1 for `∈ [n] do

2 minimize
ṽ`∈V`,h`∈R

h`

subject to F|aj · (b−` + ṽ`)−ψ(aj)≤ h` ∀j ∈ [q], where b−`(o) =
∑

` 6=`′∈[n] b
`′(o) ∀o∈O;

3 m`← h`−{F|a∗(b) · b−`−ψ(a∗(b))};

// Compute ka∗(b) (see Definition 5 below)

4 minimize
w∈Rm

Fa∗(b) ·w

subject to F|aj ·w−ψ(aj)≤ F|a∗(b) ·w−ψ(a∗(b)) ∀j ∈ [q],

wi ≥ 0 ∀i∈ [m];

5 ka∗(b)← F|a∗(b) ·w

// Compute contractual payments using Lemma 2 and Definition 3

6 maximize
xb∈Rn

∑
`∈[n] x

b
`

subject to 1≥
∑

`∈[n] x
b
`

xb` · ka∗(b) ≤m` ∀`∈ [n]

0≤ xb` ∀`∈ [n];

7 for `∈ [n] do

8 t`(b, o)← h`−{F|a∗(b) · (b−` +xb` ·wb)−ψ(a∗(b))}+xb` ·wb(o);

return {t`(b, o)}`∈[n];

Proof of Lemma 2. To compute the construction in Lemma 1 for a given bid profile b ∈ V,

we first compute m`(b) ∀` ∈ [n]. The first loop computes this term for every ` by computing

minṽ`∈V` Wela
∗(b−`,ṽ`)(b−`, ṽ`) using the linear program in line 2 as we shortly explain and subtract-

ing Wela
∗(b)(b−`,0) = F|a∗(b) ·b−`−ψ(a∗(b)) from its solution. As for the linear program in line 2, the

jth constraint ensure that the welfare from action aj given (b−`, ṽ`), i.e., Welaj (b−`, ṽ`) = F|aj ·(b−`+
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ṽ`)−ψ(aj) is at most h`. Thus, the optimal welfare given (b−`, ṽ`), i.e., Wela
∗(b−`,ṽ`)(b−`, ṽ`)≤ h` at

the feasible region by. Minimizing h` over all ṽ` ∈ V` gives minṽ`∈V` Wela
∗(b−`,ṽ`)(b−`, ṽ`), which is

the first term in m`(b). The linear program is solvable in polynomial time since it consists of O(m)

variables: 0≤ h`, ṽ` ∈ V` ⊆Rm; and polynomially-many constraints: O(q) constraints in addition to

the polynomially-many constraints ensuring that v ∈ V (recall that V` is a convex, polynomially-

described polytope for every `). Next, we compute ka∗(b) by solving the linear program in line

4. The first set of constraints ensures that a∗(b) ∈ arg maxa′{Eo∼F|a′ [w(o)]− ψ(a′)}. The second

set of constrains ensures that w ∈ Rm≥0. Altogether, w ∈ La∗(b) at the feasible region. Minimiz-

ing Fa∗(b) ·w= Eo∼F|a∗(b) [w(o)] computes ka∗(b). This linear program is also solvable in polynomial

time since it consists of O(m) variables: w ∈Rm, and O(q+m) constraints. Then, we use the linear

program in line 6 to compute x from Lemma 1 (2). This also runs in polynomial time because that

there are O(n) constraints and O(n) variables. The last loop uses all the above to compute the

exact payments according to The definition of IIVCG.

Proof of Theorem 2. Consider an applicable setting. By lemma 1, there exists an IIVCG con-

tract that satisfies LL and IR. By lemma 2, the payment profile of such contract is computable in

polynomial time.

4.2. Proof of Theorem 3.

To use the contract provided in the previous section, one must determine whether or not a setting

is applicable. Lemma 1 suggests that a setting is applicable if and only if

ka∗(b) ≤
∑
`∈[n]

m`(b) ∀b∈ V.

In this section, we present Algorithm 2 that computes this predicate in polynomial time. The key

observation for Algorithm 2 is that in order to test the above predicate ∀b ∈ V, it suffices to test

in only for O(q) bid profiles, where q is the number of actions.

Observation 2. Define Va = {v ∈ V | a= a∗(v)} ∀a. Then ka∗(b) ≤
∑

`∈[n]m
`(b) ∀b ∈ V if and only

if ka ≤minb∈Va
∑

`∈[n]m
`(b) ∀a.
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We complete the proof of Theorem 3 by showing that the above predicate can be computed in

polynomial time using Algorithm 2.

ALGORITHM 2: Determines if a setting is applicable.

Input: A common agency setting (A,O,V,F,ψ).

Output: APPLICABLE if the setting is applicable, and NOT-APPLICABLE otherwise.

// Compute the predicate in Lemma 1 using Observation 2

for a∈A do

// Compute minb∈Va
∑

`∈[n]m
`(b) (see Definition 5)

1 minimize
b∈Va,ṽ∈V,h∈Rn

∑
`∈[n]{h`− (F|a · b−`−ψ(a))}

subject to F|aj · (b−` + ṽ`)−ψ(aj)≤ h` ∀j ∈ [q], `∈ [n].1.

// Compute ka (see Definition 5)

2 minimize
w∈Rm

Fa ·w

subject to F|aj ·w−ψ(aj)≤ F|a ·w−ψ(a) ∀j ∈ [q],

wi ≥ 0 ∀i∈ [m];

3 if ka >minb∈Va
∑

`∈[n]m
`(b)

then

return NOT-APPLICABLE;

4 return APPLICABLE;

Proof of Theorem 3. Consider a common agency setting. According to Observation 2, it suf-

fices to test if ka ≤ minb∈Va
∑

`∈[n]m
`(b) ∀a in order to determine whether the setting is appli-

cable. This is done in Algorithm 2. For each action a, the linear program in line 1 computes

arg minb∈Va
∑

`∈[n]m
`(b). This linear program is similar to the linear program in line 2 in Algo-

rithm 1, which computes the first term in m`(b), denoted by h`. We use the same set of constraints

for each principal to ensure that Wela
∗(b−`,ṽ`)(b−`, ṽ`)≤ h` ∀`∈ [n] at the feasible region. However,

the search space and the objective are different. For the objecting, instead of computing the first

term in m`(b), we subtract Wela
∗(b)(b−`,0) = F|a∗(b) · b−`−ψ(a∗(b)) and sum over all principals to

compute
∑

`∈[n]m
`(b). We can do so since ṽ`s are independent. For the search space, we consider
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all b such that a∗(b) = a, i.e., b ∈ Va on top of all ṽ ∈ V to find min
∑

`∈[n]m
`(b). Then, in line 2

we compute ka using a similar linear program to line 4 in Algorithm 1. If the predicate in line 3 is

never satisfied then the algorithm returns that the setting is applicable.

Remark 3. When the principals have no private information (i.e., their types are fixed and pub-

licly known so Vi is a singleton), there are always contracts in IIVCG that satisfy LL and IR. That

is, our Algorithm 2 will return APPLICABLE and our Algorithm 1 will find the best such con-

tract for the principals. As a concrete example, one LL and IR IIVCG contract is as follows. Take

h` = Wela
∗(v)(v), and w` = v` in Definition 3 of the IIVCG family. One can verify that a principal’s

payments in this contract are exactly her values. LL holds since the principal’s values are non-

negative, and IR holds since the principal’s utility is zero. We mention that this contract favors the

agent’s utility over that of the principals’. At the other extreme, one can use Algorithmic-IIVCG.

Our LP approach to this class assures that the minimum payment required to incentivize the agent

is charged from the principals, thus favoring their utility over the agent’s.
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Appendix A: IIVCG Contracts: Missing Proofs from Section 3

In this section we prove the backwards direction of Proposition 2 – given a welfare maximizing and

dominant strategy truthful contract t, it is an IIVCG contract. To do so, we establish the following

lemma.

Lemma 3. For every welfare maximizing and dominant strategy truthful contract t, it holds that

Eo∼F|a∗(b) [t
`(b, o)] = h`(b−`)−Wela

∗(b)(b−`,0) ∀`∈ [n]. (3)

This result is reminiscent of the well-known result by Holmström (1979), establishing uniqueness

of VCG auctions for convex domains.2. In fact, our proof makes use of the following lemma

from Holmström (1979), in addition to the convexity of the valuation domains.

Lemma 4 (Lemma 1 in Holmström (1979)). Let f : [0,1]2→R and g : [0,1]→R satisfy:

1. y ∈ arg maxm∈[0,1] f(m,y),

2. y ∈ arg maxm∈[0,1] f(m,y) + g(m),

3.
∣∣∂f(m,y)

∂y

∣∣≤K <∞ for all m,y ∈ [0,1].

Then g(m) = constant on [0,1].

Proof of Lemma 3. Let t be a welfare maximizing and dominant strategy truthful contract.

Define h` : V →R as follows: h`(b) =Eo∼F|a∗(b) [t
`(b, o)] + Wela

∗(b)(b−`,0) ∀b∈ V and fix an arbitrary

b−` ∈ V−`. To prove Lemma 3, it suffices to show that h`(b−`, ·) is constant on b`. We make the

following observations: First, bidding truthfully is socially efficient, i.e.,

v` ∈ arg max
b`∈V`

Wela
∗(b−`,b`)(b−`, v`) ∀v` ∈ V`. (4)

Second, since principal ` is truthful, v` ∈ arg maxb`∈V` Eo∼F|a∗(b) [v
`(o)− t`(b, o)] ∀v` ∈ V`. Replacing

Eo∼F|a∗(b) [t
`(b, o)] with h`(b)−Wela

∗(b)(b−`,0), it holds that

v` ∈ arg max
b`∈V`

Wela
∗(b−`,b`)(b−`, v`)−h`(b) ∀v` ∈ V`. (5)

After establishing (4) and (5), we show that h`(b−`, ·) is constant on b`. Equivalently, we show

that for every pair of bid profiles b`, b̃` ∈ V` h`(b−`, b`) = h`(b−`, b̃`). To do so, define V`(b`, b̃`) =

{v`(y) | y ∈ [0,1]}, where v`(y) :O→ R as follows v`(y;o) = yb`(o) + (1− y)b̃`(o) ∀o ∈ O, y ∈ [0,1].

Note that v`(1) = b` and that v`(0) = b̃`. Thus, it suffices to show that h`(b−`, v`(1)) = h`(b−`, v`(0)).

By the assumption that V is convex, V`(b`, b̃`) is a sub domain of V`. Hence, using the notation of

a(m) = a∗(b−`, v`(m)), it follows from (4) and (5) that,

y ∈ arg max
m∈[0,1]

Wela(m)(b−`, v`(y)) ∀y ∈ [0,1]. (6)
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y ∈ arg max
m∈[0,1]

Wela(m)(b−`, v`(y))−h`(b−`, v`(m)) ∀y ∈ [0,1]. (7)

Define f(m,y) = Wela(m)(b−`, v`(y)) and g(m) = −h`(b−`, v`(m)) ∀m,y ∈ [0,1]. With these nota-

tions, note that (6), (7) are exactly 1,2 in Lemma 4 (respectively). To apply Lemma 4 we show

that 3 holds. Define K = arg maxa∈A
∣∣Eo∼F|a [b`(o)− b̃`(o)]

∣∣. Since A is a finite set, K <∞. We show

that
∣∣∂f(m,y)

∂y

∣∣≤K for all m,y ∈ [0,1] as follows. By definition of f and of the social welfare Wel(·),∣∣∣∣∂f(m,y)

∂y

∣∣∣∣= ∣∣∣∣∂Wela(m)(b−`, v`(y))

∂y

∣∣∣∣= ∣∣∣∣∂Eo∼F|a(m)
[v`(y, o)]

∂y

∣∣∣∣ (8)

By definition of v`(y, o),

Eo∼F|a(m)
[v`(y, o)] = y ·Eo∼F|a(m)

[b`(o)] + (1− y) ·Eo∼F|a(m)
[b̃`(o)]. (9)

According to (8) and (9) and definition of K,∣∣∣∣∂Eo∼F|a(m)
[v`(y, o)]

∂y

∣∣∣∣= ∣∣Eo∼F|a∗(m)
[b`(o)− b̃`(o)]

∣∣≤K.
By Lemma 4, g(m) is constant on m. That is, h`(b−`, v`(m)) is constant on m. We conclude that

h`(b−`, v`(1)) = h`(b−`, v`(0)) and the proof is complete.

Proof of Proposition 2 (backwards direction). Consider a dominant strategy truthful and wel-

fare maximizing contract t. Note that t` : V ×O→R can be re-composed as the sum of two func-

tions; c` : V →R, that depends only on b, and g` : V ×O→R that depends on b as well as on the

realised outcome, i.e.,

t`(b, o) = c`(b) + g`(b, o). (10)

With these notations, for every principal ` and every bid profile b,

Eo∼F|a∗(b) [t
`(b, o)] = c`(b) +Eo∼F|a∗(b) [g

`(b, o)]. (11)

Equalizing (11), and the expected payment in (3) it holds that there exists {h`}`∈[n] such that

c`(b) = h`(b−`)−Wela
∗(b)(b−`,0)−Eo∼F|a∗(b) [g

`(b, o)]. That is, c`(b) = h`(b−`)−Wela
∗(b)(b−`, g`(b, o)).

Therefore, by (10), t`(b, o) = h`(b−`)−Wela
∗(b)(b−`, g`(b, o))+g`(b, o). Since the agent maximizes the

(declared) social welfare, a∗(b) ∈ arg maxa∈A{Eo∼F|a [
∑

`∈[n] t
`(b, o)]− ψ(a)}. Note that in t`(b, o),

the only outcome-depended term in is g`(b, o).3. Hence,

a∗(b)∈ arg max
a∈A

Eo∼F|a [
∑
`∈[n]

g`(b, o)]−ψ(a). (12)

Define w` :O→Rm≥0 as follows: w`(o) = g`(b, o)−mino∈O g
`(b, o) ∀o∈O. Hence, t`(b, o) = h`(b−`)−

Wela
∗(b)(b`,w`) +w`(o), where

∑
`∈[n]w

` ∈La∗(b) by (12) and the definition of La.
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Appendix B: IIVCG Instantiations

We describe two different contracts for the case where the setting is not applicable; First, in

Section B.1 is an IIVCG contract that satisfies IR and not necessarily LL. Second, in Section B.2

is an IIVCG contract that satisfies LL. Note that providing a contract that is LL and IR but not

truthful welfare maximizing is trivial.

B.1. IIVCG Instantiation: Auction Inspired IIVCG

In this section we give an instantiation of the IIVCG family of contracts that satisfies IR. The

instantiation is closely related to the VCG contracts of Lavi and Shamash (2019) as well as to

VCG auctions, so we refer to the resulting contracts as “Auction-Inspired IIVCG”.

Definition 6. Contract t is an Auction-Inspired IIVCG contract if

t`(b, o) = Wela
∗(b−`,0)(b−`,0)−Wela

∗(b)(b) + b`(o) ∀`∈ [n], b∈ V, o∈O.

Observation 3. Every Auction-Inspired IIVCG contract belongs to the IIVCG family of contracts

by using Definition 3 and h`(b−`) = Wela
∗(b−`,0)(b−`,0), w` = b` ∀b∈ V.

It is not hard to see that in Auction-Inspired IIVCG contracts, the expected payment of prin-

cipal ` given bid profile b is her externality on the other principals: the difference between their

(declared) expected welfare had she not participated, i.e., Wela
∗(b−`,0)(b−`,0), and their (declared)

expected welfare with her participation, i.e., Wela
∗(b)(0, b`). This is exactly as in VCG auctions

with the Clarke pivot rule.

Observation 4. Every Auction-Inspired IIVCG contract is IR.

Proof. It can be verified that principal `’s expected utility when she bids truthfully b` = v` and

when others bid b−` is maxa∈AWela(b−`, v`)−maxa∈AWela(b−`,0), which is clearly non-negative.

Proposition 3. There exist common agency settings for which Auction-Inspired IIVCG contracts

do not satisfy LL.

Proof Sketch. Consider a common agency setting with a valuation profile such that no principal

has a positive externality on the others. Assume the principals are truthful (LL should hold for

any bid profile, including truthful ones). As mentioned above, in any Auction-Inspired IIVCG,

principal `’s expected payment is her externality. The principals’ expected payments are therefore

all zero. The LL requirement that the agent is never paid a negative amount then means that he

cannot be paid a positive amount either. When all payments are zero, the agent will not take any

action with nonzero cost, in contradiction to the requirement that the agent maximizes welfare.

A specific setting that illustrates Proposition 3 appears in Section 3.2.
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Figure 1 A possible correlation graph of the common agency setting in Example 2.

B.2. IIVCG Instantiation: Weighted IIVCG Contracts

In this section we introduce a class within IIVCG which guarantees LL but not necessarily IR, and

give a condition on common agency settings (“G-correlation”) that suffices for the existence of IR

as well. The high-level idea is as follows. From our discussion at the end of Section 3.1 it follows

that in order to satisfy LL, principals’ expected payment should be more than their externality on

others. While increasing principals’ payments may damage IR, a type of contract which we term

Weighted IIVCG succeeds in providing IR for a wide family of common agency settings. The central

idea is to approximate each principal’s valuation according to other principals using the concept of

a correlation graph, and use this to set the payments. Correlation graphs and G-correlated settings

are defined in Section B.2.1, and in Section B.2.2 we use these to define Weighted IIVCG.

B.2.1. Correlation Graphs and G-Correlated Settings A correlation graph (Definition 7)

describes how principals’ valuations are correlated. (As one interpretation, principals’ valuations

can be intuitively thought of as reflecting their socioeconomic status, and the correlation graph as

a natural way to describe it.)

Definition 7. A correlation graph G is a weighted directed graph with vertex set [n] and weights

on edges d : [n]2→ [0,1] such that
∑

k∈[n] d(k, `) = 1, and d(`, `) = 0 ∀`∈ [n].

We introduce the following “running example” for this section to demonstrate our definitions.

Figure 1 depicts a correlation graph of the setting in the following example.

Example 2. There are 3 principals, 2 actions and 2 outcomes. The valuation domain is V` =

[10,15]2 ∀` ∈ [3]. The costs are: ψ(a1) = 0, and ψ(a2) = 1. The probabilities over outcomes are:

po∼F|a1
(o1) = 1, and po∼F|a2

(o1) = 0.25, and principals’ valuations are: v1 = (11,13), v2 = (12,14),

and v3 = (10,11).
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We mention that a correlation graph may consist of several connected components. (In our

intuitive interpretation, think of a state with multiple cities, within each city individuals are socioe-

conomically correlated.)

Given a correlation graph G, we define principals’ approximate valuations, referred to as their

G-weighted valuations, as follows.

Definition 8. Consider a correlation graph G, and a valuation profile v. The G-weighted valuation

of principal ` is: v̂`G =
∑

k∈[n] d(`, k) · v̂k, where v̂k = vk(o)−mino′ v
k(o′) ∀o∈O, k ∈ [n].

In words, the G-weighted valuation of principal ` is a weighted average on other principals

valuations, when their valuations are shifted downwards. We will demonstrate this for Example 2

and the correlation graph G in Figure 1: The G-weighted valuation of principal 1 is v̂1G = d(1,2) · v̂2+

d(1,3) · v̂3. It can be verified that v̂2 = (0,2), v̂3 = (0,1), and since d(1,2) = 0.8, and d(1,3) = 0.5,

the G-weighted valuation of 1 is v̂1G = (0,1.6) + (0,0.5) = (0,2.1).

Definition 9. Given a correlation graph G, a setting is G-correlated if Wela
∗(v−`,v̂`G)(v−`, v̂`G)≤

Wela
∗(v)(v) ∀`∈ [n], v ∈ V.

That is, a setting is G-correlated if the welfare when principal `’s valuation is replaced with her G-

weighted valuation, is bounded by the actual welfare (for every valuation profile). We demonstrate

this condition for the setting and the valuation profile in Example 2, and the correlation graph in

Figure 1. Recall that v̂1G = (0,2.1). It can thus be verified that Wela1(v) = 33, Wela2(v) = 35.75 and

that Wela1(v−`, v̂`G) = 22, Wela2(v−`, v̂`G) = 24.825. Thus, the welfare when principal `’s valuation

is replaced with her G-weighted valuation is bounded by the actual welfare (for v).

Examples of G-correlated settings. The following claims describe natural special cases for

G-correlated settings.

Claim 1. Consider a common agency setting. If principals share the same expected value for each

action, there exists a correlation graph G for which the setting is G-correlated.4.

Proof. Take G as any graph on [n] vertices that has a weighted in-degree and out-degree

of 1 for all vertices.5. Consider a valuation profile v and a principal `. To satisfy the condi-

tion for G-correlation it suffices to have Eo∼F|a [v̂`G(o)] ≤ Eo∼F|a [v`(o)] ∀a. Since it implies that

Wela
∗(v−`,v̂`G)(v−`, v̂`G) ≤ Wela

∗(v−`,v̂`G)(v−`, v`) ≤ Wela
∗(v)(v). By the definition of v̂` and of v̂k,

Eo∼F|a [v̂`G(o)] = Eo∼F|a [
∑

k∈[n] d(`, k) · v̂k(o)] ≤ Eo∼F|a [
∑

k∈[n] d(`, k) · vk(o)]. Since principal’s share

the same expected valuation, Eo∼F|a [
∑

k∈[n] d(`, k) · vk(o)] =
∑

k∈[n] d(`, k) ·Eo∼F|a [v`(o)], and since∑
k∈[n] d(`, k) = 1, the last term is Eo∼F|a [v`(o)]. We conclude that Eo∼F|a [v̂`G(o)]≤Eo∼F|a [v`(o)] ∀a

as desired. This completes the proof.
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Claim 2. Consider a common agency setting. If principals’ valuation domain is [a, b]m where b−

a≤ a, there exists a correlation graph G for which the setting is G-correlated.

We mention that in this case, first price contracts may fail.

Proof. The proof proceeds as in Claim 1, but requires a different argument for proving that

Eo∼F|a [v̂`G(o)] ≤ Eo∼F|a [v`(o)] ∀a. By definition, Eo∼F|a [v̂`G(o)] = Eo∼F|a [
∑

k∈[n] d(`, k) · v̂k(o)]. Note

that since vk(o) ≤ b, and a ≤mino′∈O v
k(o′), we have that v̂k(o) ≤ b− a ≤ a ∀k ∈ [n], o ∈ O. This

implies that, Eo∼F|a [
∑

k∈[n] d(`, k) · v̂k(o)] ≤
∑

k∈[n] d(`, k) · a, and since
∑

k∈[n] d(`, k) = 1 the last

term is a. Recall that principal’s valuations are at least a. Thus, a ≤ Eo∼F|a [v`(o)]. We conclude

that Eo∼F|a [v̂`G(o)]≤Eo∼F|a [v`(o)] ∀a. This completes the proof.

B.2.2. G-Weighted IIVCG Contracts We can now use the concepts introduced in the pre-

vious section to define Weighted IIVCG contracts and analyze their properties.

Definition 10. Consider a correlation graph G. A G-Weighted IIVCG Contract is given by

t`(b, o) = Wela
∗(b−`,b̂`G)(b−`, b̂`G)−Wela

∗(b)(b−`, b̂`G) + b̂`G(o) ∀`∈ [n], b∈ V, o∈O.

Proposition 4. Consider a correlation graph G. Every G-Weighted IIVCG contract is in IIVCG.

Proof. The proof relies on Definition 3 when h`(b−`) = Wela
∗(b−`,b̂`G)(b−`, b̂`G) and w` = b̂`G(o).

We prove that the conditions of Definition 3 are met. First, h` is independent of b`, since b̂`G is

independent of b` (d(`, `) = 0 ∀` ∈ [n]). Second, we show that
∑

`∈[n]w
` ∈ La∗(b). To do so, we

establish that
∑

`∈[n]w
` =
∑

`∈[n] b̂
` using the following chain of equalities:

∑
`∈[n]

w`
(1)
=
∑
`∈[n]

∑
k∈[n]

d(`, k)b̂k
(2)
=
∑
k∈[n]

∑
`∈[n]

d(`, k)b̂k
(3)
=
∑
k∈[n]

b̂k.

Equality (1) follows from the choice of w`s above, and the definition of b̂`G (Definition 8). Equality

(2) changes the order of summands, and Equality (3) follows from the fact that
∑

k∈[n] d(k, `) = 1

∀`∈ [n] (Definition 9). Thus,
∑

`∈[n]w
` =
∑

`∈[n] b̂
`, and it suffices to show that

∑
`∈[n] b̂

` ∈La∗(b). To

do so, we show that
∑

`∈[n] b̂
` ∈Rm≥0 and that a∗(b)∈ arg maxa′{Eo∼F|a′ [

∑
`∈[n] b̂

`(o)]−ψ(a′)}. First,

by definition b̂`(o)≥ 0 ∀o∈O, `∈ [n]. Thus,
∑

`∈[n] b̂
` ∈Rm≥0. Second, by definition of a∗(b), it holds

that a∗(b) ∈ arg maxa′{Eo∼F|a′ [
∑

`∈[n] b
`(o)]− ψ(a′)}. Thus a∗(b) ∈ arg maxa′{Eo∼F|a′ [

∑
`∈[n] b

`(o)−

y] − ψ(a′)} ∀y ∈ R, and specifically for y =
∑

`∈[n] mino∈O b
`(o). We conclude that a∗(b) ∈

arg maxa′{Eo∼F|a′ [
∑

`∈[n] b̂
`(o)]−ψ(a′)}. This completes the proof.

Proposition 5. Consider a correlation graph G. Every G-Weighted IIVCG contract satisfies LL.

Furthermore, IR is satisfied if and only if the setting is G-correlated.
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Proof. Truthfulness and social efficiency are immediate since G-Weighted IIVCG is in IIVCG.

LL follows from the fact that the first term in the payment formula ,Wela
∗(b−`,b̂`G)(b−`, b̂`G), is

(weakly) higher than the second term, Wela
∗(b)(b−`, b̂`G), and since b̂`G(o) ≥ 0 ∀o. We prove IR if

and only if the setting is G-correlated. By definition, IR holds if and only if each principal `’s

expected payment when she bids truthfully is at most her expected value. That is, by the definition

of G-Weighted IIVCG IR holds, if and only if

Wela
∗(b−`,b̂`G)(b−`, b̂`G)−Wela

∗(b−`,v`)(b−`,0)≤Eo∼F|a∗(b−`,v`)
[v`(o)], ∀b−` ∈ V−`, v` ∈ V`, `∈ [n].

By adding Wela
∗(b−`,v`)(b−`,0) to both sides of the inequality, we get

Wela
∗(b−`,b̂`G)(b−`, b̂`G)≤Wela

∗(b−`,v`)(b−`, v`), ∀b−` ∈ V−`, v` ∈ V`, `∈ [n].

Denoting b= (b−`, v`), this condition is equivalent to Definition 9 of the G-correlated setting. This

completes the proof.
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