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Abstract
Recent minimum sample size formula (Riley et al.) for developing clinical prediction models help ensure that development

datasets are of sufficient size to minimise overfitting. While these criteria are known to avoid excessive overfitting on

average, the extent of variability in overfitting at recommended sample sizes is unknown. We investigated this through

a simulation study and empirical example to develop logistic regression clinical prediction models using unpenalised max-

imum likelihood estimation, and various post-estimation shrinkage or penalisation methods. While the mean calibration

slope was close to the ideal value of one for all methods, penalisation further reduced the level of overfitting, on average,

compared to unpenalised methods. This came at the cost of higher variability in predictive performance for penalisation

methods in external data. We recommend that penalisation methods are used in data that meet, or surpass, minimum

sample size requirements to further mitigate overfitting, and that the variability in predictive performance and any tuning

parameters should always be examined as part of the model development process, since this provides additional informa-

tion over average (optimism-adjusted) performance alone. Lower variability would give reassurance that the developed

clinical prediction model will perform well in new individuals from the same population as was used for model

development.
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Background
Clinical prediction models (CPMs) aim to predict the risk of an event-of-interest occurring given an individual’s set of
predictor variables.1,2 CPMs have many practical uses in healthcare such as aiding in treatment planning, underpinning
decision-support, or facilitating audit and benchmarking. To support such uses, the process of CPM development requires
careful consideration, and has correspondingly received large attention in both the statistical and medical literature.3–6

A primary concern in prediction modelling is to ensure that the developed CPM remains accurate in new (unseen) obser-
vations. However, predictive accuracy of a CPM often drops between development and validation.7,8 Using data that have
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insufficient observations (i.e. small sample size) for CPM development often contributes to this reduction in predictive
performance, and leads to models that are overfitted. Overfitting results in predicted risks that, on average, are
too extreme in new individuals and thereby the model may not perform well at the time of model validation or
implementation.

Sample size justification for CPM development studies was historically based on having an events per predictor para-
meter (EPP, also known as events per variable) of 10 or more.9–11 This rule-of-thumb has been shown to be overly sim-
plistic and has weak evidence to support its use,12 with formal sample size formula recently proposed by Riley et al.13–15

Appealingly, the criteria outlined in these sample size formulae aim to reduce the potential for a developed CPM to be
overfitted to the development data set.

Correspondingly, the use of penalisation methods, which reduce variance but introduce bias into parameter estimation
through shrinking parameter estimates towards zero, have previously been recommended to develop CPMs in smaller
sample sizes.11,16–18 Such techniques include LASSO regression, ridge regression and Firth’s correction.19–21

Compared with unpenalised estimation methods (such as traditional maximum likelihood estimation, MLE), several
studies have found that predictive performance can be improved through penalisation methods, especially when the
EPP is small.12,16,17,22 Nevertheless, such methods do not themselves justify developing CPMs in data of insufficient
size.23 Recent work by Van Calster et al.24 and Riley et al.23 found that while parameter shrinkage improved prediction
accuracy on average, the between-sample variability of predictive performance metrics was high, especially in small
EPP. Additionally, these studies found a negative correlation between the estimated shrinkage and the ‘true’ shrinkage,
meaning that the level of penalisation was lower in scenarios where it was most needed; this finding supported earlier
work by van Houwelingen.25

However, it remains uncertain whether the previously observed between-sample variability of predictive performance
metrics persists in data that meet, or surpass, the recently proposed Riley et al. criteria.13–15 If such variability does persist,
then examining this as part of the model development processes would be crucial; we aimed to investigate this concept
here. In particular, it seems prudent to use penalisation methods to derive a CPM, but only in data that meet minimum
sample size requirements.13–15 Theoretically, such a combined approach would expose the CPM to the benefits of pena-
lisation, while avoiding development on insufficient data. For example, penalisation methods such as LASSO can aid in
variable selection,19 while penalisation through a Bayesian perspective26 would allow the modeller to incorporate prior
knowledge directly into the CPM derivation (e.g. from expert opinion or existing CPMs).27

Therefore, the aim of this study is two-fold. First, to examine the characteristics of CPM performance metrics, upon
validation, of models developed using a range of penalisation methods compared with unpenalised maximum likelihood
estimation, in derivation data that satisfy formal sample size criteria. Second, to explore the importance of quantifying
variability in predictive performance as part of the model development processes, for example through bootstrap
internal validation. We investigate these aims through a simulation study and real-world clinical example of critical
care data. Note, we are interested in variability in overall performance, rather than stability of individual risks as
studied recently.28

The remainder of the paper is structured as follows: section ‘Shrinkage and penalisation methods to developing predic-
tion models’ describes the common approaches to develop CPMs using penalisation; section ‘Riley et al. sample size cri-
teria’ gives a brief overview of the Riley et al. sample size criteria; section ‘Simulation study’ describes the methods and
results of our simulation study; while section ‘Empirical study’ reports the results from the real-world critical care example.
Finally, concluding remarks are given in section the ‘Discussion’ section.

Shrinkage and penalisation methods to developing prediction models
Throughout, we consider the development of a CPM to estimate the probability of a binary outcome, Y, conditional on a set
of P predictors, which we denote X1, . . . , XP. We assume that we have i = 1, . . . , Ndev observations in a development
dataset, where Ndev is (at least) the minimum required sample size as determined by the Riley et al. sample size cri-
teria.13–15 This development dataset is used to fit a logistic regression CPM of the form:

P(Yi = 1) = g−1(β0, β1, . . . , βP) = 1+ exp − β0 +
∑P
p=1

βpXi,p

( )( )[ ]−1

(1)

for logit-link-function, g(), and where the unknown parameters, β0, β1, . . . , βP, are log-odds, which are estimated within
the development data using either unpenalised or penalised approaches to inference. In this paper, we consider the follow-
ing estimation methods.
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Unpenalised maximum likelihood estimation (MLE)
This is the standard unpenalised approach to developing a logistic regression CPM, whereby the regression coefficients are
estimated by maximising the following log-likelihood (LL) function:

LL(β0, β1, . . . , βP) =
∑Ndev

i=1

yilog(g
−1(β0, β1, . . . , βP))+ (1− yi)log(1− g−1(β0, β1, . . . , βP)).

Closed-form uniform shrinkage
This approach applies a post-estimation uniform shrinkage factor to all the coefficients estimated using the unpenalised
MLE approach, where the shrinkage factor is calculated based on the likelihood ratio statistic.13,14,29 The shrinkage
factor (S) is calculated as

S = 1+ P

Ndevlog 1− 1− exp
−LR

Ndev

( )( )( )

where LR is the likelihood ratio statistic of the fitted model (estimated by unpenalised MLE), compared with a null
(intercept-only) model. The shrunken coefficients are then calculated by multiplying each of the regression coefficients
estimated through MLE by S (i.e. S × βp for p = 1, . . . , P). The intercept, β0 is then re-estimated to ensure the overall
outcome proportion is accurate.

Uniform bootstrap shrinkage
This is similar to the closed-form uniform shrinkage, except that the shrinkage factor is calculated through the following
steps: (i) take bootstrap samples from the development data, (ii) fit a (MLE) model in this bootstrap sample replicating all
modelling steps, (iii) calculate the linear predictor of this model on each observation in the original development data and
(iv) fit a logistic model to the observed outcomes with the linear predictor from step (iii) as the only covariate. In this study,
we repeated this process 500 times and took the shrinkage factor to be the average of the corresponding coefficient from
step (iv). In essence, this shrinkage factor is an estimate of the in-sample optimism of the calibration slope, as calculated
using a bootstrap internal validation.6,29

Firth’s correction
Here, we implement bias-reduced penalised logistic regression, as proposed by Firth.21 This approach is equivalent to
penalising the LL by a Jeffrey’s prior of a logistic regression model. In particular, if we denote I(β̂0, β̂1, . . . , β̂P) as the
Fisher information matrix, then Firth’s correction maximises a penalised LL of the form:

LL(β0, β1, . . . , βP)+
1

2
log(|I(β̂0, β̂1, . . . , β̂P)|).

As with closed-form uniform shrinkage and uniform bootstrap shrinkage, the intercept, β0 is re-estimated to ensure the
overall outcome proportion is accurate, as suggested previously.30

Penalised logistic regression using LASSO
LASSO penalises the (log-)likelihood of the logistic regression model, such that the coefficients are shrunk towards zero
and some coefficients might be shrunk to exactly zero (thereby performing variable selection).19 Explicitly, LASSO max-
imises a penalised LL of the form:

LL(β0, β1, . . . , βP)− λ
∑P
p=1

|βp|

where λ is a tuning parameter that controls the degree of penalisation. In this study, we selected λ using 10-fold
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cross-validation to minimise the deviance. We also considered repeated 10-fold cross-validation, whereby the 10-fold
cross-validation procedure was repeated 100 times and we selected the λ that minimised the deviance averaged across
the 100 replications (i.e. minimizes the averaged error curves across λ).

Penalised logistic regression using ridge
This approach is similar to LASSO, except that coefficients are shrunk towards zero but none will be exactly zero.20

Explicitly we maximise the penalized LL

LL(β0, β1, . . . , βP)− λ
∑P
p=1

β2p

Again, we selected λ using both single 10-fold cross-validation to minimise the deviance, and repeated 10-fold
cross-validation.

Riley et al. sample size criteria
In this section, we give an overview of the sample size criteria proposed by Riley et al.13–15 However, we refer readers to
previous publications13–15 for a detailed explanation and example illustrations for how to calculate these criteria.

The Riley et al. criteria13 for calculating minimum sample sizes for logistic regression CPMs are based on satisfying all
of the following criteria: (i) a uniform shrinkage factor of >0.9, (ii) ensuring a small absolute difference in the apparent and
adjusted Cox-Snell R-squared, R2 and (iii) ensuring a precise estimate of the model intercept. For example, the required
minimum sample size required to satisfy criteria (i) can be calculated by

Ndev = P

(S − 1)log 1− R2

S

( )

where P is the number of candidate predictor variables, S is the pre-specified required maximum level of shrinkage (e.g.
usually set to 0.9), and R2 is the pre-specified anticipated Cox-Snell R2. Hence, to calculate the minimum sample size
required to meet these criteria, one needs to pre-specify a sensible value for the Cox-Snell R2. Where possible, Riley
et al.13 recommend that this is based on existing prediction models developed for similar outcomes and similar populations.
In this study, we consider two ways of doing this, which are outlined below in section ‘Data-generating mechanism and
simulation scenarios’.

Mathematical details for criteria (ii) and (iii) are given in Riley et al.13 The minimum required sample size is then taken
as the maximum required to meet criteria (i)–(iii). In this study, we used the ‘pmsampsize’31 R package to estimate the
minimum required sample size.

Simulation study
We now describe the design and results of our simulation study, which aimed to investigate the predictive performance of
CPMs developed using MLE, post-estimation shrinkage (closed-form uniform shrinkage and uniform bootstrap shrinkage)
and penalised regression (Firth’s, LASSO and ridge) approaches (section ‘Shrinkage and penalisation methods to devel-
oping prediction models’), on data that meet minimum sample size requirements.13–15 We designed the simulation follow-
ing best practice guidelines.32

Data-generating mechanism and simulation scenarios
Throughout all simulations, we begin by generating a large (N= 1,000,000 observations) population-level dataset, which
aims to mimic an overarching population that one subsequently obtains random samples from to develop a CPM. We gen-
erated P = 10 predictors, each from a standard normal distribution. Additionally, each observation (reflecting an individual
participant) had a binary outcome, Y, which we simulated conditional on their simulated predictor values according to the
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following data-generating model (based on equation (1)):

P(Yi = 1) = 1+ exp − β0 +
∑10
p=1

βpXi,p

( )( )[ ]−1

.

Here, β1, . . . , β10 represent ‘true’ log-odds ratios, which were varied across two different specifications. First, we consid-
ered scenarios where all ten covariates were truly associated with Y, such that β1 = . . . = β6 = log(1.1), β7 = β8 =
log(1.5) and β9 = β10 = log(2). Second, to consider situations where the data had more ‘noise’, we also considered sce-
narios where only the first five covariates where truly associated with Y, such that β1 = . . . = β3 = log(1.1), β4 = log(1.5),
β5 = log(2) and β6 = . . . = β10 = 0. These values of β1, . . . , β10 aim to mimic values that one might expect to find in ‘real
data’. The functional form of all covariates were specified as linear (i.e. non-linear associations were not considered).
Additionally, β0 was chosen in each simulation to give an overall outcome proportion of either 20% or 50%, which
was varied across simulation scenarios.

Following generation of this population-level data, we randomly sampled (without replacement) a development cohort
of size Ndev, to represent a dataset available to the analyst/ modeller to develop their CPM. The value of Ndev was taken as
the minimum sample size required to satisfy the criteria outlined by Riley et al.13–15 (section ‘Riley et al. sample size cri-
teria’), and was calculated in each simulation iteration across all simulation scenarios. For these sample size calculations,
we used the anticipated event proportion in a given simulation scenario (i.e. either 20% or 50%). Additionally, as outlined
in section ‘Riley et al. sample size criteria’, one needs to pre-specify a sensible value for the Cox-Snell R2. In this simula-
tion study, we considered two different approaches for pre-specifying the Cox-Snell R2. Firstly, we fitted a logistic regres-
sion model in the population-level data, that included all 10 covariates, and calculated the following Cox-Snell R2 for use in
the sample size calculations, as outlined in Riley et al.:13

R2 = 1+ P

nlog 1− 1− exp
−LR

n

( )( )( )
⎛
⎜⎜⎝

⎞
⎟⎟⎠ × 1− exp

−LR

n

( )( )
(2)

where, in this case, P = 10, n = 1, 000, 000, and LR is the likelihood ratio statistic of the full- and null-model in the
population-level data.

Secondly, given that in practice such information might not be available a priori, we also considered the recommenda-
tion of Riley et al.15 to calculate

R2 = 0.15 × max(R2) (3)

where max(R2) = 1− (ϕϕ × (1− ϕ)1−ϕ)2, with ϕ denoting the observed outcome proportion. This second approach cor-
responds to proposing a CPM that can explain 15% of the variance and is relatively conservative, as it leads to larger
required sample sizes. Note, for logistic regression models with outcome proportions of 0.5, 0.4, 0.3. 0.2, 0.1, 0.05 and
0.01, the corresponding max(R2) values are 0.75, 0.74, 0.71, 0.63, 0.48, 0.33 and 0.11, respectively.

The above data-generating processes were implemented across all combinations of {β1, . . . , β10}, outcome proportions
(20% or 50%), and using equations (2) and (3) to pre-specify Cox-Snell R2 in calculating Ndev. This resulted in eight simu-
lation scenarios, each of which were run across 500 iterations of the above data-generating processes. The simulation sce-
narios are overviewed in Table 1. The simulation scenarios aim to cover a range of possible model development settings,
but we recognise this is not an exhaustive list.

Table 1. Overview of each simulation scenario.

Simulation scenario Prevalence of Y R2 for sample size calculation Beta

1 0.2 Sample size based on population R2 All 10 predictors

2 0.2 Sample size based on population R2 5 predictors and 5 noise terms

3 0.5 Sample size based on population R2 All 10 predictors

4 0.5 Sample size based on population R2 5 predictors and 5 noise terms

5 0.2 Sample size based on max R2 All 10 predictors

6 0.2 Sample size based on max R2 5 predictors and 5 noise terms

7 0.5 Sample size based on max R2 All 10 predictors

8 0.5 Sample size based on max R2 5 predictors and 5 noise terms
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Methods considered
Within each sampled development cohort (of size Ndev), we fitted a logistic regression model using equation (1). The
unknown parameters (i.e. β0, β1, . . . , β10), were estimated under the following inference methods, each as described in
section ‘Shrinkage and penalisation methods to developing prediction models’: (i) unpenalised maximum likelihood esti-
mation (MLE), (ii) closed-form uniform shrinkage, (iii) uniform bootstrap shrinkage, (iv) Firth’s correction, (v) penalised
logistic regression using LASSO, and (vi) penalised logistic regression using Ridge. For (v) and (vi) we used both single
10-fold cross-validation and repeated 10-fold cross-validation.

Performance measures
We quantified the predictive performance of each analysis model using calibration (agreement between the observed
and expected outcome proportions, across the full risk range) and discrimination (ability of the model to separate those
who have the outcome from those that do not have the outcome) within an independent validation set. This validation
set was formed in each simulation iteration by including all observations from each simulated population-level dataset
that were not sampled into the development cohort. This represents extremely large-sample independent validation
(i.e. N= 1,000,000 minus Ndev), and helps ensure that the standard error of estimated performance metrics was low, and
hence that any observed variability was due to sampling from the population-level data, rather than uncertainty in estimat-
ing the performance metrics.

In each of the samples from the validation set, calibration was quantified with the calibration-in-the-large and calibration
slope. Calibration slope was estimated by fitting a logistic regression model to the observed outcomes in the validation data
with the linear predictor of each analytic method as the only covariate, alongside an intercept. Calibration-in-the-large was
obtained by the intercept estimate when fitting the same model but with the slope fixed at unity. A calibration-in-the-large
less than 0 implies the model overestimates the overall outcome proportion in the validation data, while a calibration slope
less than 1 implies model overfitting. Discrimination was quantified using the area under the receiver operating character-
istic curve (AUC). Additionally, we estimated the Cox-Snell R2 and the Brier score of each method within the validation
set.

Alongside investigating the distribution of the estimated calibration-in-the-large, calibration slope, AUC, Cox-Snell R2

and Brier score across the 500 iterations, for each estimation method, we also calculated the associated median and the 2.5–
97.5% quantile to summarise average predictive performance. Root-mean-square deviation in the calibration-in-the-large
and calibration slope was also calculated for each model by taking the square root of the mean squared-difference between
the estimated calibration-in-the-large/calibration slope and the corresponding reference value (0 or 1, respectively) across
the 500 iterations per simulation scenario.

Software
R version 4.0.2 was used for all simulations,33 along with the packages ‘tidyverse’,34 ‘pROC’,35 ‘glmnet’,36 ‘logistf’37 and
‘pmsampsize’.31 The ‘glmnet’ package was used to fit the LASSO and Ridge models (using the default cross-validation
selection procedure for λ; that is, a grid of 100 λ values from 0.0001 to λmax – the smallest value for which all coefficients
are zero), the ‘pmsampsize’ package was used to estimate the minimum required sample size based on Riley et al.13 and the
‘logistf’ package was used to fit logistic regression models with Firth’s correction. All other code was written by the authors
and is available via the first author’s GitHub page (https://github.com/GlenMartin31/Penalised-CPMs-In-Minimum-
Sample-Sizes), along with the full data on which the results of this simulation study are based. Note, we also re-ran the
aforementioned simulations with a pairwise correlation of 0.5 between the 10 predictors; the results are quantitatively
similar to those presented here, so we do not discuss these further (the data is available on the GitHub repository for
exploration).

Simulation results
Minimum required sample size
The minimum required sample sizes across simulation iterations are summarised in Supplemental Table 1, for all simula-
tion scenarios (i.e. Table 1). For each of the simulation scenarios where the sample size calculation was based on equation
(3) – that is, based on 15% of maximum Cox-Snell R2 – the minimum required sample size was Ndev = 898 for an overall
outcome proportion of 20%, and was Ndev = 749 for an overall outcome proportion of 50%. In all of these scenarios, the
required sample size was driven by meeting criteria 1 of Riley et al. (i.e. a uniform shrinkage factor of >0.9).13
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Supplemental Figure 1 shows the scatter of the Cox-Snell R2 that was used within the sample size calculations, against
the Cox-Snell R2 achieved for the prediction models estimated by (unpenalised) MLE, upon validation, across simulation
scenarios (similar results for each other estimation method). In all scenarios where the sample size calculation was based on
15% of maximum R2 and all ten predictors were truly associated with Y (i.e. scenarios 5 and 7), the Cox-Snell R2 of the
derived CPMs (upon validation) was higher than that used to calculate the minimum sample size requirements in all 500
iterations. Supplemental Figure 1 shows that the reverse was true where the sample size calculation was based on the popu-
lation R2, thereby representing cases where the developed CPMs never achieve what was expected a priori in terms of
Cox-Snell R2.

Average performance upon validation
Table 2 shows the median (taken across the 500 iterations for each scenario) of the calibration slope, where we find that the
median calibration slopes were close to 1 for all methods, but in absolute terms the median calibration slope was closer to 1
for uniform closed-form shrinkage, uniform bootstrap shrinkage, Firths correction, LASSO, and Ridge compared with
unpenalised MLE. As expected, the calibration slope of the unpenalised MLE was >0.9, on average, for the scenarios
where the pre-specified Cox-Snell R2 used to calculate the minimum sample size was met (or surpassed) by the derived
model – this is an expected property of the Riley et al. criteria.13–15 Any scenarios where the median calibration slope
for the unpenalised MLE was slightly lower than 0.9 (e.g. 0.87–0.89) represent those where the where the Cox-Snell
R2 used to calculate the minimum sample size was not subsequently achieved by the model (see Supplemental
Figure 1). This demonstrates the need to carefully consider how one pre-specifies the Cox-Snell R2 when applying the
sample size criteria. Supplemental Table 2 shows the corresponding results of the calibration-in-the-large for each analyt-
ical method, upon validation. In all cases, the median calibration-in-the-large was close to zero for all models, indicating
accurate calibration-in-the-large (i.e. estimates of overall outcome proportion) on average.

The median (across the 500 iterations for each simulation scenario) of the AUC and Cox-Snell R2, upon validation, were
almost identical across methods within each simulation scenario (Supplemental Tables 3 and 4).

Distribution of estimated performance upon validation
Figure 1 depicts the distribution of the calibration slope, upon validation, across iterations. The median interquartile range
for calibration slope (across iterations and methods) was approximately 0.12 (with this varying slightly by simulation sce-
nario). The degree of variability in calibration slope (across all methods) was slightly higher in simulation scenarios where
the model development sample size calculation was based on the population R2, compared with using 15% of maximum R2

(simulation scenarios 1–4 vs 5–8). This was likely driven by the fact that the required sample size using 15% of maximum
R2 was higher than that based on the population R2.

As discussed above, the penalisation/shrinkage methods further mitigate the risks of overfitting on average (e.g. Table 2)
compared with maximum likelihood. However, by also examining variability in predictive performance, we see from
Figure 1 that this comes at the cost of slightly higher variability in predictive performance, upon validation, for LASSO
and Ridge compared with maximum likelihood. Specifically, the root-mean-square deviation in calibration slope for the
LASSO or Ridge regression was usually slightly higher than (or in some situations equal to) that of maximum likelihood.
This is due to the added uncertainty in the underlying shrinkage factor/penalisation estimate (Figure 2). Interestingly, the
root-mean-square deviation (variability) in calibration slope for uniform bootstrap shrinkage was consistently lower than
that for maximum likelihood, likely because the variability in the estimated shrinkage factor of this method was generally
quite low (Figure 2).

These results show the added information that is supplied by exploring variability in performance (and tuning para-
meters) over just examining average performance. The results suggest that if there is larger uncertainty in the estimates
of shrinkage factors or penalisation terms then this corresponds to a higher chance that the model will be miscalibrated,
upon independent validation. Therefore, even in data that meet minimum sample size requirements, in practice it will
be important to examine the potential uncertainty of penalisation, and therefore predictive performance when developing
a CPM (e.g. using bootstrapping; see section ‘Empirical study’). Presenting boxplots as illustrated in this paper would be an
informative way of reporting such variability.

Similarly, there was some variability in other performance metrics (calibration-in-the-large, AUC, Cox-Snell R2 and
Brier score), upon validation, although this was mostly modest and was similar between the estimation methods
(Supplemental Figures 2–5). As with calibration, the variability in AUC, Cox-Snell R2 and Brier score was generally
higher in simulation scenarios where the sample size calculation was based on the population R2 (equation (2)), compared
with 15% of maximum R2 (equation (3)), and where there was more uncertainty in the shrinkage factor/ penalisation esti-
mate (Figure 2).
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Comparisons in variability of shrinkage and penalisation estimates across methods
As discussed above, investigating the variability across iterations (or, in practice, across bootstrap samples – see section
‘Empirical study’) in the estimates of shrinkage factors or penalisation terms (tuning parameters) is important. Figure 2
shows how the variability compares between methods to conduct each type of shrinkage/penalisation method.
Specifically, Figure 2, Panel A shows that the uniform bootstrap method generally resulted in lower variability in the
shrinkage factor than the uniform closed-form approach. Figure 2, Panel B compares approaches to undertaking
LASSO regression, where the use of repeated 10-fold cross-validation reduced the variability in the penalisation term
(λ) compared with single 10-fold cross-validation. Similar findings where observed for Ridge regression (Figure 2,
Panel C). These findings agree with previous work.23

Across all methods, variability was generally lower when all 10 predictor terms ‘truly’ associated with the outcome or
when the sample size calculation was based on maximum R2 (i.e. equation (3); that is, simulation scenarios 5–8).
Variability was generally higher in scenarios where only five of the predictors ‘truly’ associated with the outcome, espe-
cially for LASSO regression.

Figure 1. Boxplot and violin plot showing the distribution, across iterations, of the calibration slope, upon validation. The numbers

above each plot show the root-mean-square deviation of the calibration slope. Random jitter has been applied to each point to aid

visual clarity. The numbering of simulation scenarios is given in Table 1.
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Empirical study
In this section, we apply the estimation methods to a real-world critical care example and use bootstrap internal validation
to illustrate how one should obtain an indication of variability (uncertainty) in predictive performance in practice, by
repeating each modelling step including estimation of the tuning parameters (where relevant).

Data source, study population and outcomes
De-identified critical care data were obtained from the Medical Information Mart for Intensive Care III (MIMIC-III) data-
base.38 MIMIC-III contains information from the Beth Israel Deaconess Medical Center in Boston, Massachusetts,
between 2001 and 2012. For this case study, we considered the development of a prediction model for in-hospital mortality
after admission to an intensive care unit (ICU). Note the aim was not to develop a CPM for clinical use in this setting, but to
illustrate the estimation methods on a real-world dataset, and how one should obtain an indication of variability (uncer-
tainty) in predictive performance in practice.

Figure 2. Boxplot and violin plot showing the distribution, across iterations of each simulation scenario, of the shrinkage factor or

penalisation terms. Random jitter has been applied to each point to aid visual clarity. The numbering of simulation scenarios is given in

Table 1. The colouring on the plot differentiates simulation scenarios where all 10 variables where true predictors (red) or where only

5 of them where true predictors (blue).
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We defined an ICU admission to be any admission that lasted at least 24 h, and we took the end of day 1 on ICU as the
time point at which a prediction is made. We extracted a cohort of patients over 18 years of age, who were admitted to ICU
for any cause for at least 24 h. We excluded any ICU admission of less than 24 h. For simplicity, we only included a
patient’s first ICU admission and first recorded hospitalisation within MIMIC-III.

For the included patients, we extracted information on their age, gender, ethnicity, type of admission, and mean of the
lab tests recorded over the first 24 h. Lab tests included measures of the following: bicarbonate, creatinine, chloride,
haemoglobin, platelet count, potassium, partial thromboplastin time, international normalized ratio, prothrombin time,
blood urea nitrogen and white blood count.

The SQL code to extract the data from the MIMIC-III database is available at https://github.com/GlenMartin31/
Penalised-CPMs-In-Minimum-Sample-Sizes.

Model development and bootstrap internal validation
We developed CPMs for the binary outcome of in-hospital mortality using each of the methods outlined in section
‘Shrinkage and penalisation methods to developing prediction models’. We did not consider predictor selection (with
the exception of LASSO, where this is implicit in the method), and all of the models included the following candidate pre-
dictors: age (categories of 10-year increments available in MIMIC-III), sex (male vs female), admission type (elective vs
non-elective), ethnicity (categorical), and the 24h mean of each of the aforementioned lab tests (all continuous). We con-
sidered a total of 23 predictor parameter (accounting for multiple factor levels, where applicable). We undertook a complete
case analysis to develop the models; while in practice one should consider alternative approaches to handle missing data,
we consider complete case here for illustrative simplicity and computational ease.

We calculated the minimum required sample size to develop a logistic regression model for in-hospital mortality, using
the Riley et al. criteria.13 The pre-specification of the Cox-Snell R2 was made based on 15% of the maximum R2 (i.e. equa-
tion (3)) using the observed outcome proportion.

We undertook two analyses: first, developing each of the CPMs in the whole MIMIC-III cohort; second, developing
each of the CPMs in a random subset of the MIMIC-III cohort with size equal to the minimum required sample size accord-
ing to the Riley et al. criteria.13 Here, the second analysis (hereto called the sub-analysis) is mimicking a situation where the
available data exactly matches minimum requirements. In both cases, we applied bootstrap internal validation to assess
adjusted calibration and discrimination. Specifically, we took 100 bootstrap samples (with replacement) of the develop-
ment dataset (either the full cohort or the sub-analysis), applied the exact same modelling steps in each bootstrap
sample, and calculated the optimism for each performance statistic: that is, the difference between the predictive perfor-
mance of the models within each bootstrap sample and the predictive performance of each bootstrap CPM applied to
the original development data. We then subtracted each of the 100 optimism estimates from the apparent performance (per-
formance of the models developed on MIMIC-III, within the MIMIC-III data) to give 100 optimism-adjusted performance
estimates. From these, we summarised both the mean optimism-adjusted performance and visualized the distribution across
the 100 bootstraps (to investigate variability, mimicking the simulation above). Bootstrap corrected 95% confidence inter-
vals for each optimism-adjusted performance metric were calculated as the 2.5th and 97.5th percentiles (across the 100
optimism-adjusted performance estimates); an alternative (computationally expensive) approach has been described
previously.39

Empirical study results
After applying the inclusion and exclusion criteria, our extracted cohort included 28,859 patients, of which 3316 (11.5%)
died in-hospital. Using this observed outcome proportion and 15% of the maximum R2, resulted in a minimum required
sample size of 2590, which was driven by criteria 1 of Riley et al.13 Thus, the whole MIMIC-III development cohort sub-
stantially surpassed the minimum required sample size. A random 2590 samples were selected from the full MIMIC-III
dataset for the sub-analysis.

Table 3 shows the mean (taken across the 100 bootstrap samples) optimism-adjusted performance results for each mod-
elling approach, for both the main analysis and the sub-analysis. As expected, each of the models are well calibrated, with
the exception of ridge regression which is slightly over-shrunk (calibration slope slightly higher than 1); importantly, the
mean calibration slope of the unpenalised MLEmodel was≥ 0.9, as expected based on the Riley et al. criteria.13–15 As with
the simulation study, the use of penalisation methods further mitigated against potential overfitting, on average, in these
data that met (or surpassed) minimum requirements.

Figure 3 shows the distribution of the estimated shrinkage factors/penalisation terms (tuning parameters) across boot-
strap samples. We found that there was larger variability in the shrinkage factors/penalisation terms for the subset analysis
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than the main analysis (due to the smaller sample size in the former).23 Larger variability in the shrinkage factors/penalisa-
tion terms resulted in corresponding larger variability in the calibration slope of these methods (Figure 4). For this empirical
study, we considered choosing the penalisation term based on the 1-standard-error method for LASSO and Ridge; we
found that this generally resulted in larger variability and also lead to underfitting (Figure 4). The width of the 95% boot-
strap confidence intervals of each performance metric was larger for the sub-analysis compared with the main analysis
(Table 3), caused by larger variability in the distribution of the apparent performance minus optimism across the 100 boot-
strap samples (Figure 4). For the main analysis, we found very low levels of variability across bootstrap samples, which is
because of the large sample size for model development (relative to the minimum required sample size based on the Riley
et al. criteria). For example, in the main analysis, the majority of (adjusted) calibration slope estimates for unpenalisedMLE
were between 0.95 and 1.05; this gives strong reassurance that the developed CPM will perform well when applied to new
individuals from the same population as was used for model development. In contrast, the majority of (adjusted) calibration
slope estimates for unpenalised MLE were between 0.8 and 1.1 in the sub-analysis, demonstrating wider variability and
hence less reassurance that the developed CPM will perform well when applied to new individuals from the same popula-
tion as was used for model development.

Discussion
This study has investigated the predictive performance of CPMs developed in sample sizes that adhere to minimum
requirements. We found that, on average, all of the methods resulted in well-calibrated CPMs within an independent
dataset, with penalisation/shrinkage further reducing the level of overfitting compared to unpenalised methods.
However, this benefit of the penalisation methods came at the cost of slightly increased variability in the performance
metrics across simulated/bootstrap datasets; this was often marginal but may still be important in practice. Models that
exhibit less variability (uncertainty) in their predictive performance (and their estimated penalty and shrinkage factors)
are more likely to correspond to robust CPMs when applied in new individuals. Given these findings, we recommend
the use of penalisation/shrinkage methods to develop a CPM within data that (at least) meet minimum sample size cri-
teria,13–15 to further help mitigate overfitting, while also examining/reporting the variability in predictive performance
(and tuning parameters) as part of the model development process, to help gauge the model’s stability, and thus its relia-
bility in new data. This can be achieved by deriving confidence intervals via bootstrap internal validation39 and/or plotting
the distribution of predictive performance (and tuning parameters) in a similar way to shown in this study.

Table 3. The mean (95% bootstrap confidence interval) of the optimism-adjusted performance results in the MIMIC-III example for

each estimation method. Main study corresponds to model fitting on the whole MIMIC-III dataset, while subset corresponds to the

sub-analysis on the minimum required sample size.

Study Model Calibration-in-the-large Calibration slope AUC Brier score

Main MLE 0.00 (−0.04, 0.04) 0.99 (0.94, 1.03) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main Uniform closed-form 0.00 (−0.04, 0.04) 1.00 (0.95, 1.04) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main Uniform bootstrap 0.00 (−0.04, 0.04) 1.00 (0.96, 1.05) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main Firths 0.00 (−0.04, 0.04) 0.99 (0.95, 1.03) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main LASSO 0.00 (−0.04, 0.04) 0.99 (0.95, 1.04) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main Repeat CV LASSO 0.00 (−0.04, 0.04) 0.99 (0.95, 1.04) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main Ridge 0.00 (−0.04, 0.04) 1.05 (1.00, 1.10) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main Repeat CV ridge 0.00 (−0.04, 0.04) 1.05 (1.00, 1.10) 0.74 (0.73, 0.75) 0.09 (0.09, 0.09)

Main LASSO1SE 0.00 (−0.04, 0.04) 1.21 (1.15, 1.27) 0.74 (0.73, 0.75) 0.09 (0.09, 0.10)

Main Ridge1SE 0.00 (−0.04, 0.04) 1.26 (1.20, 1.32) 0.74 (0.73, 0.75) 0.09 (0.09, 0.10)

Subset MLE −0.01 (−0.14, 0.12) 0.90 (0.74, 1.05) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset Uniform closed-form −0.01 (−0.13, 0.11) 0.99 (0.82, 1.16) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset Uniform bootstrap −0.01 (−0.13, 0.11) 1.02 (0.84, 1.19) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset Firths −0.01 (−0.13, 0.11) 0.92 (0.78, 1.06) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset LASSO −0.01 (−0.13, 0.11) 0.98 (0.83, 1.12) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset Repeat CV LASSO −0.01 (−0.13, 0.11) 0.99 (0.84, 1.14) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset Ridge −0.01 (−0.13, 0.11) 1.06 (0.91, 1.21) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset Repeat CV ridge −0.01 (−0.13, 0.11) 1.04 (0.89, 1.19) 0.74 (0.71, 0.76) 0.10 (0.09, 0.10)

Subset LASSO1SE −0.01 (−0.12, 0.10) 1.40 (1.14, 1.67) 0.73 (0.71, 0.76) 0.10 (0.09, 0.11)

Subset Ridge1SE −0.01 (−0.12, 0.10) 1.83 (1.53, 2.13) 0.74 (0.71, 0.77) 0.10 (0.09, 0.11)
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This study builds upon, and supplements, previous work in this area.12,16,17,22–24 Most of the previous literature has
focused on the effect of penalisation methods to develop CPMs in terms of varying EPP values. However, following
the publication of formal sample size requirements for CPMs,13–15 investigating the effect of penalisation methods in
data that meet such minimum requirements is crucial. Indeed, contrary to common beliefs, penalisation approaches are
not a solution to insufficient sample sizes (or low EPP), especially given the high variability in the effect of penalisation
in low sample size settings.23,24 This study is the first to investigate variability of performance in data that meet (or surpass)
formal minimum sample size requirements.

Some of the findings of this study are, perhaps, unsurprising. Given that we focused on the case of development data that
(at least) adhered to minimum sample size requirements, it is unsurprising that MLE resulted in CPMs that were reasonably
well calibrated, on average. For example, our use of the Riley et al. sample size criteria targeted a shrinkage of 0.9, so we
would naturally expect the mean calibration slope to be ≥ 0.9. Nevertheless, one important finding from this study is
that the average calibration slope was closer to one for the CPMs developed using penalisation/shrinkage methods, as com-
pared with standard (unpenalised) MLE. These findings illustrate that there are still benefits to applying post-estimation
shrinkage or penalised regression methods, within data that meet/surpass minimum sample size requirements, to further
help mitigate the risk of overfitting. However, this potentially comes at the price of increased variability in predictive per-
formance for these shrinkage/penalisation methods, compared with MLE, because of the uncertainty in estimating shrink-
age factor/penalisation term (e.g. λ).23 As such, one needs to show the variability/uncertainty in the shrinkage factor/
penalisation term (λ), across bootstrap samples. In practice, higher levels of variability should cause greater concern
that the model might not work in particular instances within new individuals. Variability (in both predictive performance
and estimated shrinkage/penalisation terms) is rarely reported when developing a CPM. Since average performance can be

Figure 3. Boxplot showing the distribution, across bootstrap iterations of the MIMIC-III analysis, of the estimated shrinkage factor or

penalisation terms. Random jitter has been applied to each point to aid visual clarity. Main study corresponds to model fitting on the

whole MIMIC-III dataset, while subset corresponds to the sub-analysis on the minimum required sample size.
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suitable, but could have wide variability, reporting the level of variability adds additional information to supplement the
average (optimism-adjusted) performance that is commonly reported.

We found that the level of variability in performance metrics was lower than in previous work,23,24 but was still rela-
tively high in some situations. For example, we found that variability was higher in the simulation scenarios where only 5
of the 10 simulated predictor variables where ‘truly’ associated with the outcome (i.e. simulation scenarios 2, 4, 6 and 8),
likely caused by the increase ‘noise’ within the dataset. This was particularly apparent for LASSO compared with the other
methods we considered, which might be explained by the fact that this is the only method (out of those considered) that
incorporates variable selection into the estimation process. We also observed more variability in performance results in the
situations where we used the ‘true’ (population-level) Cox-Snell R2 (equation (2)) to calculate the minimum sample sizes in
the simulation study (i.e. simulation scenarios 1–4). As discussed above, this is a result of the smaller sample sizes (due to
larger anticipated Cox-Snell R2), thereby leading to the larger variability in predictive performance (and estimates of
shrinkage factor/penalisation terms), as shown previously.23

In this paper, we have illustrated how one can use bootstrap internal validation to understand the likely variability in
performance metrics, within the given population. Specifically, each modelling step is repeated during bootstrap internal

Figure 4. Boxplot and violin plot showing the distribution, across bootstrap iterations, of the (bootstrap) optimism-adjusted

performance results in the MIMIC-III example for each estimation method. Random jitter has been applied to each point to aid visual

clarity. Main study corresponds to model fitting on the whole MIMIC-III dataset, while subset corresponds to the sub-analysis on the

minimum required sample size.
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validation process, including estimation of the tuning parameters (where relevant). When bootstrap internal validation
is implemented (as recommended6,29), it is common for the point estimates of predictive accuracy to be adjusted by
the bootstrap-based optimism estimate, but confidence intervals are not usually corrected.39 We recommend that future
CPM studies should show the distribution of ‘apparent performance minus each bootstrap optimism estimate’ alongside
average (optimism-adjusted) performance. To do so, one can create boxplots of the distribution of adjusted predictive per-
formance (and shrinkage factors/penalisation terms, as relevant) across the bootstrap samples, similar to the graphics pre-
sented in this paper. If such plots show that the developed CPM exhibits ‘large’ variability/scatter in calibration (across
bootstrap samples), then this would indicate caution about using the CPM within the given population, and flag the
need for additional validation (and potential model updating or recalibration), even if average (optimism-corrected) per-
formance is deemed satisfactory in the bootstrap process. What is considered to be ‘large’ variability in predictive perfor-
mance will be context specific, but (for example) if one finds that average (optimism adjusted) calibration slope is
approximately 1 (e.g. using penalisation methods within data that meet minimum requirements), but the (adjusted) calibra-
tion slope estimates across bootstrap samples are commonly outside of 0.9–1.1, then this would indicate caution.
Moreover, the number of bootstrap samples will affect the amount of variability; hence, we recommend that bootstrap inter-
nal validation is undertaken with a large number of samples (e.g. 500, and certainly ≥ 100) and should equally follow best
practice recommendations.6,29

Our simulation study and the sub-analysis of the empirical study considered development data that met, but did not
surpass, minimum sample sizes, while our main empirical study illustrated a case where the size of the development
data clearly surpassed minimum requirements. We note that usually one would strive for larger samples than a
minimum threshold. In the main empirical study, the larger sample sizes (relative to minimum requirements) reduced
the variability in tuning parameters and in predictive performance compared with the simulation and empirical sub-
analysis. Thus, if one wished to strive for narrower variability, then larger-than-minimum sample sizes would be required,
or one would need to calculate the sample size formula under more stringent criteria (e.g. increase the shrinkage factor from
0.9 to 0.9513,14). Similarly, the findings from our simulation study where we used the ‘true’ (population-level) Cox-Snell R2

(equation (2)) to calculate the minimum sample sizes, showed that if this a priori value was not achieved by the model upon
validation, then this can cause the average calibration slope to drop below the targeted 0.9. This is an expected analytical
property of the sample size formula13,14 and indicates that it can be beneficial to be conservative when selecting the antici-
pated Cox-Snell R2 for the sample size calculations. Indeed, our results indicate that being more stringent with the sample
size formula (i.e. increasing minimum sample size requirements) would likely lead to reduced variability in predictive per-
formance upon validation (and estimates of shrinkage factor/penalisation terms23,24), which in turn would increase confi-
dence that the model will perform well upon validation in new data from the same population as was used to develop the
model. Such information is shown explicitly through our recommendations to report/visualise the variability when devel-
oping a CPM (additional to only reporting mean performance, which will be adequate if minimum sample size calculations
have been adhered to). However, larger sample sizes will not always be achievable in all clinical contexts, which gives
further motivation for the need to report variability in predictive performance to supplement average (optimism-adjusted)
performance results.

A number of limitations should be considered when interpreting the findings of this study. First, while our empirical data
illustrated situations where development data met or surpassed minimum requirements, the generalisability of the empirical
findings needs to be considered. Second, we did not consider choices that modellers might need to make when developing a
CPM (e.g. variable selection, missing data imputation or consideration of interaction terms), which might increase the level
of variability in performance within independent data. This practical point adds further emphasis for the need for those
developing CPMs to report/show the variability in performance. Third, we only considered CPMs developed using logistic
regression, and continuous or time-to-event outcomes were not explored; however, we would not expect the results to differ
substantially. Finally, all of the models in our simulation and empirical analyses had AUC values between 0.7 and 0.8. In
practice, CPMs might have AUC values lower than this. We note, however, that if the ‘true’ AUC was lower than those
considered in the study, then this would effectively mean the ‘true’ R2 was lower (e.g. see Riley et al.40), which in turn
would increase the minimum required sample size. Despite this being sample size being larger in absolute terms, it
would still be the minimum required for that particular situation, so there will still be variability; again, reporting this varia-
bility will directly show this, irrespective of the (average) performance of the CPM.

In conclusion, the use of penalisation methods can further mitigate risks of overfitting even within datasets that adhere
to, or surpass, minimum suggested sample sizes. However, although this might resolve overfitting on average, in a parti-
cular dataset it may still not be perfect, and indeed because of the need to estimate tuning parameters (that define shrink-
age), it comes at the costs of slightly higher variability in predictive performance. Thus, we recommend the use of
penalisation/ shrinkage methods to develop a CPM within data that (at least) meet minimum sample size criteria,13–15

to further help mitigate overfitting, while also investigating (and reporting) variability in predictive performance
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through robust bootstrap internal validation, including accounting for the uncertainty in estimating shrinkage/tuning para-
meters. Those models that exhibit less variability (uncertainty) in their predictive performance (and their estimated tuning
parameters/shrinkage factors) are more likely to correspond to robust CPMs when applied in new individuals.
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