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Interleaved Deep Artifacts-aware Attention
Mechanism for Concrete Structural Defect

Classification
Gaurab Bhattacharya, Bappaditya Mandal, and N. B. Puhan

Abstract—Automatic machine classification of concrete struc-
tural defects in images poses significant challenges because of
multitude of problems arising from the surface texture, such as
presence of stains, holes, colors, poster remains, graffiti, marking
and painting, along with uncontrolled weather conditions and
illuminations. In this paper, we propose an interleaved deep
artifacts-aware attention mechanism (iDAAM) to classify multi-
target multi-class and single-class defects from structural defect
images. Our novel architecture is composed of interleaved fine-
grained dense modules (FGDM) and concurrent dual attention
modules (CDAM) to extract local discriminative features from
concrete defect images. FGDM helps to aggregate multi-layer
robust information with wide range of scales to describe visually-
similar overlapping defects. On the other hand, CDAM selects
multiple representations of highly localized overlapping defect
features and encodes the crucial spatial regions from discrimi-
native channels to address variations in texture, viewing angle,
shape and size of overlapping defect classes. Within iDAAM,
FGDM and CDAM are interleaved to extract salient discrimi-
native features from multiple scales by constructing an end-to-
end trainable network without any preprocessing steps, making
the process fully automatic. Experimental results and extensive
ablation studies on three publicly available large concrete defect
datasets show that our proposed approach outperforms the
current state-of-the-art methodologies.

Index Terms—Fine-grained dense module, concurrent dual
attention module, concrete structural defect, convolutional neural
network, multi-target multi-class classification.

I. INTRODUCTION

The rapid development of concrete infrastructures, such
as bridges, highways, stadiums, tunnels, buildings and pave-
ments attributes to the requirement of accurate, large-scale,
automated and rapid inspection/monitoring methodologies.
Otherwise, this leads to acceleration of the deterioration of
damaged/unhealthy regions, raising potential threat of acci-
dental collapse and large number of casualties (one example
[1]). Image/video based inspection and monitoring of the
unhealthy/defective regions involving automatic classification
is very popular towards emerging and futuristic technological
solutions for civil infrastructure management.

However, immense real-world challenges exist in obtaining
automatic classification of defects because of the appear-
ance of a wide variety of concrete surface textures as well
as uncontrolled weather conditions, illumination, occlusion
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and capturing methodologies/devices. For damaged structures,
this is exacerbated by inaccessibility and turbulent weather;
making the visual inspection process dangerous, inaccurate,
tedious and commonly surveyor-biased in nature [2]. The
concrete defects come in large variants and are typically
found in an overlapping manner, for example, an exposed
bar defect might coexist with spallation and corrosion de-
fects, which make the problem even more challenging for
large concrete structures. The organisations managing civil
infrastructures face immense challenges in maintaining the
inspection along with their predictive analysis and monitoring
of civil infrastructures. The task of inspection thus requires
new innovative solutions incorporating computer vision and
machine learning algorithms in conjunction with unmanned
aerial vehicles (UAVs) to address overlapping defects with
large unconstrained variations.

Over the last decade, deep convolutional neural networks
(CNN) have been considered to achieve state-of-the-art perfor-
mance for image classification using large multi-class datasets
[3]–[9]. Inspired from this development, automatic concrete
defect classification problem has become an active area of
research over the last decade [10]–[14]. However, [10], [12]
considered cracks as the only defect category in the images,
thereby excluding all other important defect categories in
structural health monitoring. Similarly, authors in [11], [13],
[14] considered non-overlapping multi-class defects which
do not address the real-world issue of having overlapping
structural defects. Another common shortcoming to all these
methods is that they are unable to apportion higher importance
to the defective region from the healthy region within an
image plane. Thereby, they process the entire image as a
whole, emphasizing similar importance to both the defective
and healthy regions of the image. The literature search dictates
that the researchers have rarely worked with overlapping
defect classes (such as spallation leading to exposed bar,
which often leads to/co-exist with corrosion), which are often
encountered in real-world applications with the challenging
appearance variations, as discussed earlier. Recently, [16],
[47] analyzed overlapping multi-class defects in CODEBRIM
dataset using reinforcement learning and attention augmented
CNN, respectively.

In this work, we aim to address the challenges mentioned for
real-world concrete structural defect classification problems
using an interleaved artifacts-aware deep CNN architecture
which effectively encapsulates the variations in degradation
and unwanted inclusions. To accomplish this, a novel inter-
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leaved deep artifacts-aware attention mechanism (iDAAM) is
proposed to classify both multi-target multi-class and single-
class structural defect images. iDAAM architecture consists
of interleaved fine-grained dense modules (FGDM) and con-
current dual attention modules (CDAM) to extract salient
discriminative features from multiple scales to improve the
classification performance. Experimental results and ablation
studies show that the newly proposed architecture achieves
significantly better classification performance than the state-
of-the-art methodologies on three large datasets. Below we
summarize our main technological contributions:

• We proposed fine-grained dense module to aggregate
feature maps from multiple layers using identity mapping
to obtain finer discriminative information from visually-
similar overlapping concrete defect classes. The variation
of relevant information can be captured by salient feature
reuse at different layers which aids to efficient feature
selection in subsequent attention modules.

• We proposed concurrent dual attention module that uti-
lizes two new modules: firstly, a committee of multi-
feature attention module to obtain multiple representa-
tions of highly localized features to address the overlap-
ping defect classes occupying small regions and ensuring
selection of more features using the parallel configuration
to influence the classification performance. Secondly, the
simultaneous excitation module which separately investi-
gated the channel and spatial information to address the
part deformation and shape variation present in overlap-
ping defect classes. These two modules are aggregated
to increase the ability of selecting relevant discriminative
features among concrete defect classes.
Finally, the fine-grained dense and concurrent dual at-
tention modules are interleaved to obtain the iDAAM
network, which does not require any preprocessing step
and produces a focused feature selection mechanism on
relevant defect regions.

• Ablation studies and extensive experimental evaluations
for concrete defect classification on three state-of-the-
art large datasets show the superiority of our iDAAM
network over other state-of-the-art methods.

In the next Section, we describe the related work, Section III
describes the proposed iDAAM architecture, Section IV and V
present experimental results and ablation studies, respectively;
Section VI provides the analysis and discussions on multiple
datasets before drawing conclusions in Section VII.

II. RELATED WORK

A. CNN for Image Classification

Large-scale image classification has become a pivotal prob-
lem in computer vision which observes exemplary success
due to the deep CNN architectures such as AlexNet [3],
VGG [4], GoogLeNet [5], etc. GoogLeNet incorporates multi-
path feature extraction with filters of different kernel sizes,
although considering large number of parameters [5]. ResNet
[6] introduces skip connections from the previous layers to
alleviate the vanishing gradient problem with a deeper archi-
tecture. Similarly, DenseNet [7] extends the skip connection
addition to all previous layers to encapsulate larger variations

in equivalent features. In our fine-grained dense module, we
proposed to exploit feature reuse by creating identity mappings
across multiple residual blocks to encapsulate defect variations
with wide range of scales. The residual blocks inside this
module performs feature extraction with filters of different
kernel sizes, ensuring a deeper network with the ability to
capture wide range of defect features. Also, the feature reuse
strategy enables the network to aggregate fine-grained features
with less parameters, as evident in Table V.

In literature, several multi-scale architectures such as Hour-
glass [49], feature pyramid network (FPN) [50], HR-Net
[48], etc. are reported. In Hourglass architecture [49], multi-
scale feature representation is obtained using the pooling
layers and residual units involving large number of param-
eters compared to FGDM. In FPN [50], bottom-up top-down
pathway is used to obtain multi-scale features by varying
the spatial dimensions. In both Hourglass and FPN, each
spatial plane is aggregated with the features having the same
spatial resolution; however does not provide aggregation of
responses across large range of scales, as provided by FGDM.
On the other hand, HR-Net [48] uses multi-scale feature
extraction and provides high resolution representations which
are desirable for semantic segmentation, action recognition and
pose estimation where precise spatial estimation is necessary.
However, such high-resolution representations are not needed
with the availability of small image patches for concrete defect
classification.

B. Concrete Structural Defect Classification

Multiple research initiatives have been undertaken to clas-
sify concrete structural defects, although mostly involving sin-
gle defect per image. Shi et al. [10] proposed a methodology
using random structured forest to detect road cracks. Ye et al.
considered the use of ZFNet architecture for touch panel glass
surface having defects classes such as tilt, bubble and scratch
[26]. In [20], [21], deep belief networks were incorporated
for concrete defect prediction. Yang et al. performed single-
target defect classification using AlexNet and VGG-based
CNN models [11]. Dorafshan et al. used deep CNN for
classification of defects appearing in concrete bridge decks,
walls and pavements (SDNET-2018) [12]. Multi-class single-
target defect classification operation were performed using
AlexNet and transfer learning in [13], [14]. Recently, Mundt
et al. proposed reinforcement-learning based methodology
for classification of five overlapping defect classes: crack,
spallation, efflorescence, exposed bars, corrosion in the new
CODEBRIM dataset [16].

C. Attention Mechanism

In recent years, attention mechanism with CNN frame-
work has been proposed for extracting local discriminative
features to achieve state-of-the-art performance. Initially, such
networks are used for analysing sequential data [17] and
also for general image classification [19]. Park et al. [22]
and Woo et al. [23] investigated the impact of channel and
spatial attention modules for discrimination of features. At-
tention modules have been applied for object detection [24],
[25], multi-label classification [57], action recognition [27]–
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Fig. 1. (a) Architecture of iDAAM. Here Conv block represents convolutional operation with first number representing the number of filters and the next two
numbers give the filter dimension for each channel. Dense represents the dense layer, where first number gives the number of nodes and the second number
is the dropout value. (b). Proposed concurrent dual attention module composed of committee of multi-feature attention module and simultaneous excitation
module. The number denoted in (a) with the concurrent dual attention module represents filter size, explained in Fig. 2.(a) and Fig. 2.(c). (c). Proposed
fine-grained dense module. The numbers denoted in (a) with the fine-grained dense module represent number of filters for convolution. The max pooling
operation uses pool size of (2,2) and stride 2.

[29], image captioning [30]–[32], re-identification [33], [34],
saliency prediction [35], pedestrian attribute recognition [36],
etc.

Use of visual attention in concrete defect classification is
however limited; except a recent work [47] involving residual
attention mechanism. However, the considerable amount of
parameters and computations involved in parallel feature ex-
traction make the network inferior for real-time applications.
Contrary to only using residual attention, in our iDAAM
architecture, we have proposed concurrent dual attention mod-
ule, which consolidates several types of attention for better
discrimination. The committee of multi-feature attention mod-
ule in our network aggregates multiple feature representation,
rather than obtaining a single representation as in [17]. Sim-
ilarly, we perform spatial squeezing operation inside simulta-
neous excitation module using 1× 1 convolution, rather than
using the pooling operation in [22], [23] to adaptively generate
local spatial descriptors. Moreover, the iDAAM architecture
attributes to significant reduction in the number of parameters
compared to the state-of-the-art [47] due to the absence of
explicit multi-branch feature extraction.

III. PROPOSED METHODOLOGY

The proposed iDAAM architecture is composed of inter-
leaved fine-grained dense modules (FGDM) and concurrent
dual attention modules (CDAM), which jointly helps to extract
salient discriminative features from multiple scales to improve
both multi-target multi-class and single-class classification per-
formance. The structure of the proposed iDAAM architecture
is shown in Fig. 1, and we describe these modules in detail and
summarize their roles at the end of their respective subsections.

A. Fine-grained dense module

To obtain robust discriminative features from similar-
looking defect classes such as spallation and efflorescence
within a small region in the image, we need finer information

which can be aggregated by employing a deep network. How-
ever, experimental results suggest that in a deep network, the
weights in a particular layer could not update due to the small
value of the gradient. This is known as the “vanishing gradient
problem” and it results in the downfall of performance. This
problem can be alleviated by using short paths from the
former layer to later layer using the residual connection
without extra parameters and computations [6]. Different from
[6], we propose fine-grained dense module which enhances
the potential of residual connections by exploiting feature
reuse using identity mappings across multiple residual blocks
to capture the variations present in concrete defects. Such
aggregation of salient features from similar-looking defect
classes at different layers makes the relevant feature selection
of subsequent attention modules easy and efficient, as shown
in Fig. 1.

In the fine-grained dense module, the output of Lth residual
block is added with the feature-maps extracted by all previous
residual blocks, i.e. x1,..,xL−1, resulting in the final response
of Lth residual block xL.

x1 = H1(I),

xL = HL(x1 + x2 + ..+ xL−1), L ∈ [2, 4].
(1)

Here, HL is the function performed by the residual block and
I is the input to this module. The proposed fine-grained dense
module is designed by interconnecting four residual blocks,
where each residual block is considered to be a three-layer
convolutional network with the identity mapping as shown in
Fig. 1 (c). The residual block operation,

Res(I) = Conv(Conv(Conv(I))) + I. (2)
Finally, the outcome of the dense interconnection passes
through a Conv layer followed by max pooling operation to
reduce computations in extracting finer features. Overall, fine-
grained dense module helps to aggregate multi-layer robust
information to describe visually-similar overlapping defects.
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Fig. 2. (a) Proposed committee of multi-feature attention module. (b). Concurrent dual attention module. (c). Simultaneous excitation module.

B. Concurrent dual attention module

The novel concurrent dual attention module incorporates
multiple attention operations (self, spatial and channel atten-
tion) in parallel manner and aggregates their outcomes to make
discriminative features more prominent for multi-target defect
classes [17], [22], [23]. Fig. 1 (b) describes the block diagram,
which consists of (a) committee of multi-feature attention
module, and (b) simultaneous excitation module. Committee
of multi-feature attention module has been designed to encode
multiple representations of highly localized features which
enable the network to learn minute defect classes. The spatial
and channel information for artifacts are encoded in a paral-
lel manner using the simultaneous excitation module which
concurrently highlights the relevant features and reduces the
impact of weak or unimportant features. The outputs of these
two attention modules are aggregated to achieve greater impact
for the concurrent dual attention module.

1) Committee of multi-feature attention module

To encode salient information from visually-similar, over-
lapping variable-sized concrete structural defects, we exploit
multiple representations of highly localized parallel feature ex-
traction mechanism using committee of multi-feature attention
module. This module helps to encapsulate highly localized
feature selection mechanism to distinguish between concrete
defects and various uncontrolled artifacts such as graffiti,
poster remains, small holes, etc. The parallel configuration
enables the detection of overlapping defect classes (such as
corrosion, efflorescence and spallation), which usually occupy
very small regions to influence the classification performance.

In this proposed module, the attention operations are per-
formed multiple times to ensure that maximum important
features are attended. Each attention module performs par-
allel operations using three dense layers to obtain parallel
non-linear projections in feature space. Here the input I is
considered with height, width and number of channels as H,
W, C, respectively.
I(H,W,C)→ Dense(C)→ Ti(H,W,C), ∀i ∈ [1, 3]. (3)

Thereafter, the outputs T2 and T3 are multiplied element-wise,

passed through a softmax function to generate the attention
mask, and is then multiplied with T1 to highlight the important
features. Next, the identity mapping is performed by the
addition of input tensor to the output.
attk = T1×softmax(T2×T3)+I(H,W,C), k ∈ [1, 4]. (4)

Finally, all the four outputs obtained by attention operations
att1, att2, att3 and att4 are added; giving the output of
the CMFA module which aggregates attentive features from
multiple representations.

M(I) = att1 + att2 + att3 + att4. (5)

2) Simultaneous excitation module

The convolution layer captures local spatial features across
all the channels and thus jointly encodes relevant spatial and
channel information [6], [42]. However, for our case, the
overlapping concrete defect classes attribute to viewing angle
variations and part deformation due to variation in texture and
shape of structures. Also, we need to selectively highlight the
channel-wise discriminative defect features while suppressing
others [22], [23], [42]. To address these problems, simulta-
neous excitation module separately investigates the relevant
spatial and channel information to improve the performance.

One part of this proposed module performs the squeezing
of the spatial plane of the input tensor using global average
pooling and then exciting it channel-wise to obtain channel
information. The squeezing operation across the channels
enables the module to implicitly embed the global channel
description, providing channel-wise statistics of the entire
image. The following dense layers exploit contextual channel
information with non-linear adaptive re-calibration and their
inter-relationship helps to extract discriminative channels with
crucial features. The channel information is multiplied with the
input for highlighting the features relevant for discrimination
along the channels, Ch(I). In channel attention, if we consider
the input to be I(H, W, C) = [I1, I2, . . ., IC], then the output
of this operation U(C) can be written as in (6).

U(k) =
1

W ×H

W∑
i=1

H∑
j=1

Ik(i, j),∀k ∈ [1, C]. (6)

Hence by this operation, the global spatial information from
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I is embedded in U, which is further connected to the dense
layers. Finally, the outcome of two layers are activated using
sigmoid function and then multiplied with the input to obtain
channel attention feature map Ch(I).

Ch(I) = sigmoid(W1 × (ReLU(W2 × U)))× I. (7)
Here W1 and W2 represent the weights used in the two dense
layers to generate channel attention.

Similarly, other part of the simultaneous excitation module
squeezes the channels using the convolution blocks which
capture the spatial features predominant across all channels.
The extracted features are spatially excited and then the output
is multiplied with the input tensor to give prominence to
relevant spatial information Sp(I).

Sp(I) = sigmoid(Conv(ReLU(Conv(I))))× I. (8)
Unlike [23], where the spatial attention was performed using

average and max pooling operation; in our proposed module,
the global channel features are squeezed to extract relevant
spatial information to generate spatial statistics by shrinking
the input through its channel dimension. We anticipate that
the proposed usage of 1 × 1 convolution across all channels
can be interpreted as a collection of local spatial descriptors.
To aid to the efficient feature extraction, another convolution
block is added before the application of 1× 1 convolution for
aggregation of spatial information, rather than using directly
for feature aggregation. Furthermore in our case, the input is
added using skip connection to avoid missing important dis-
criminative cues and alleviate the vanishing gradient problem.
Thereby, the total response C(I) is given by:

C(I) = Sp(I) + Ch(I) + I. (9)
Finally, we add the outputs M(I) and C(I) to aggregate

highly localized parallel features from committee of multi-
feature attention module and spatial and channel information
from simultaneous excitation module. The output for the
concurrent dual attention module Y (I) is given by:

Y (I) = M(I) + C(I). (10)
To increase the receptivity and chance of getting relevant

local discriminative features, the concurrent dual attention
modules are stacked with fine-grained dense modules. We
hypothesize that it is difficult for a single attention module
to extract all discriminative local features from the complex
multi-target multi-class structural images.

IV. EXPERIMENTAL RESULTS

The performance of the iDAAM architecture for concrete
defect classification is evaluated using three large structural
defect image datasets [12], [16], [37].

A. Results on CODEBRIM dataset

We conduct our experiments on the current state-of-the-
art and most challenging dataset with overlapping defects:
COncrete DEfect BRidge IMage (CODEBRIM) [16], obtained
for non-commercial research and educational purpose. This
dataset was prepared using multi-target multi-class concrete
defect images with varying ranges of illumination, humidity
and resolution by investigating 30 bridges with different de-
grees of deterioration, surface roughness and weather condi-
tion to capture the possible changes for real-world application.

A total of 5354 annotated overlapping defect images and 2506
background images are generated, which include 2507 images
with crack, 1898 images with spallation, 833 images with
defect as efflorescence, 1507 images with exposed bars and
1559 images with corrosion stain.

TABLE I
COMPARISON OF MULTI-TARGET VALIDATION ACCURACY (%) AND BEST
VALIDATION MODEL’S MULTI-TARGET TEST ACCURACY (%) BY VARYING
THE INPUT IMAGE SIZES AND BATCH SIZES FOR IDAAM ARCHITECTURE

USING CODEBRIM DATASET.

Input
image
size

Batch size: 16 Batch size: 32

Train
accuracy

Val.
accuracy

Test
accuracy

Train
accuracy

Val.
accuracy

Test
accuracy

96 99.98 91.82 89.54 99.93 89.94 88.46
128 99.94 90.93 88.23 99.89 90.52 88.16
160 99.87 89.74 88.04 99.83 89.95 87.84
192 99.49 88.35 87.72 99.37 88.05 86.93

The validation and test images are selected by following the
implementation protocol in [16], where we perform “precise
estimate of a model’s performance in a multi-target scenario,
a classification is considered as correct if, and only if, all
the targets are predicted correctly”. Also, this dataset provides
image sizes with large variations. Hence, the network is
trained using different input image and mini-batch sizes for
200 epochs with learning rate 0.001 and momentum 0.9. To
perform multi-target multi-class classification, we use sigmoid
activation function for every class in the final dense layer
and the loss function is considered to be binary cross-entropy.
From Table I, it is evident that the iDAAM network achieves
its highest test accuracy of 89.54% with the input image
dimension of 96× 96× 3 and batch size of 16.

The convergence curves are generated during the training
of iDAAM network considering image dimensions 96 & 128
with mini-batch sizes 16 & 32 and are shown in Fig. 3.
It can be observed that image dimension 96 achieves faster
and more stable convergence when trained using mini-batch
size 16 and also obtains better classification accuracy; hence
indicating the best possible choice to investigate the network
for CODEBRIM dataset.

Table II shows the comparative performance analysis of
the proposed iDAAM architecture with the state-of-the-art
methods, as reported in [16]. It is evident from the table that
the iDAAM architecture outperforms all the existing state-of-
the-art methods by a significant amount, i.e. 89.54% compared
to 84.29% given by MDAL [47]. The CODEBRIM dataset
contains diverse ranges of images with variations in scale,
aspect ratio, resolution and uncontrolled artifacts and hence
the training, validation and test subsets have large variations in
defect deformation which impact the test performance in spite
of having very high training accuracy. However, from Table
II, we can observe that the efficient utilization of attention
modules interleaved within the iDAAM architecture helps to
alleviate these problems and thus significantly outperforms the
current state-of-the-art methodologies.

B. Results on concrete crack image dataset

This dataset is a collection of 40000 images of 20000 crack
and 20000 non-crack images of dimension 227×227×3 [37],
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Fig. 3. Convergence curves during training using the iDAAM architecture on CODEBRIM, concrete crack image and SDNET-2018 datasets. Here blue and
orange curves represent training data and validation data accuracy over the epochs, respectively. Top row, from left to right (CODEBRIM): (a) Curves for
batch size 16 and image dimension 96, (b) Curves for batch size 16 and image dimension 128, (c) Curves for batch size 32 and image dimension 96, (d)
Curves for batch size 32 and image dimension 128. Bottom row, from left to right: (e) Curves for concrete crack image dataset, (f) Curves for bridge deck
images from SDNET-2018, (g) Curves for wall images from SDNET-2018, (h) Curves for pavement images from SDNET-2018.

TABLE II
COMPARISON OF THE CLASSIFICATION ACCURACY (%) OF IDAAM

ARCHITECTURE WITH THE STATE-OF-THE-ART METHODS ON CODEBRIM
DATASET.

Architecture Multi-target accuracy Parameters
in million

Best validation Best val-test
AlexNet [3] 63.05 66.98 57.02
T-CNN [8] 64.30 67.93 58.60
VGG-A [4] 64.93 70.45 128.79
VGG-D [4] 64.00 70.61 134.28

WRN-28-4 [9] 52.51 57.19 5.84
Densenet-121 [7] 65.56 70.77 11.50

SE-ResNet-50 [42] 72.86 70.71 28.13
ResNeSt [43] 75.92 73.46 27.50
ENAS-1 [40] 65.47 70.78 3.41
ENAS-2 [40] 64.53 68.91 2.71
ENAS-3 [40] 64.38 68.75 1.70

MetaQNN-1 [41] 66.02 68.56 4.53
MetaQNN-2 [41] 65.20 67.45 1.22
MetaQNN-3 [41] 64.93 72.19 2.88

MDAL [47] 86.15 84.29 10.43
iDAAM 91.82 89.54 4.89

obtained under a Creative Commons Attribution 4.0 Interna-
tional license. To evaluate the iDAAM architecture, 32000
random images are considered for training, 4000 for validation
and rest 4000 for testing with equal numbers of crack and non-
crack images in every subsets, following the protocol in [38].
The network is trained with batch size 16, learning rate 0.001
and momentum 0.9 for 200 epochs. To make the iDAAM
architecture suitable for concrete crack image and SDNET-
2018 datasets for single-target crack defect classification, two
nodes are used in the output classification layer with softmax
activation and categorical cross-entropy loss function is used
for training purpose. Table IV shows the performance of the
iDAAM for this dataset which outperforms many state-of-
the-art methods and gives very similar performance of [47],
achieving the performance with 2.13× less parameters than
[47]. The convergence curve of iDAAM using this dataset is
shown in Fig. 3 (e). From this curve, we can observe that

the network converges faster which is mainly due to the less
variations of concrete crack image dataset than CODEBRIM
dataset and the presence of only crack defects, which helps to
achieve very high testing accuracy due to the robust feature
selection mechanism.

C. Results on SDNET-2018 dataset

SDNET-2018 dataset was presented by Dorafshan et al.
[12], obtained under Attribution 4.0 International licensing.
This dataset is made up of more than 56000 annotated crack
and non-crack images of dimension 256×256×3. These image
patches are segmented from 230 images of different concrete
structures (72 wall images, 54 bridge deck images and 104
pavement images) with varying crack widths and obstacles
such as clutter, illumination, shadows and unwanted inclu-
sions.

In our work, for a fair comparison with other methods,
we have followed the implementation protocol given in [12].
During the execution, the dataset split is performed and for
each training, 200 epochs are considered with mini-batch size
of 16 and learning rate 0.001 and momentum 0.9. From the
experimental results shown in Table III, it is evident that our
proposed iDAAM architecture achieves superior performance
as compared to the previous methods for bridge and wall
images with higher accuracy. For the pavement images, the
performance is very similar to [47] with 2.13× reduction in
parameters. The convergence curves of iDAAM architecture
for the bridge deck, wall and pavement image subsets from
SDNET-2018 dataset are depicted in Fig. 3 (f), (g) and (h),
respectively, which demonstrate that the network converges
slower than the concrete crack image dataset, due to the
variation in surface textures and uncontrolled artifacts present
in SDNET-2018 dataset. However, they converge faster than
the network in case of CODEBRIM dataset due to the presence
of single crack defects and no variations in scale, resolution
and aspect ratio as found in CODEBRIM dataset.

For iDAAM architecture, the average training time in each
epoch for batch size 16 is 67.2 seconds and average testing
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TABLE III
COMPARISON OF CRACK DEFECT CLASSIFICATION ACCURACY (%) OF IDAAM ARCHITECTURE WITH THE STATE-OF-THE-ART METHODS FOR CONCRETE

BRIDGE DECK, WALL AND PAVEMENT ON SDNET-2018 DATASET.

Model
Description Bridge image result Wall image result Pavement image result

Train
accuracy

Val.
accuracy

Test
accuracy

Train
accuracy

Val.
accuracy

Test
accuracy

Train
accuracy

Val.
accuracy

Test
accuracy

Alexnet, fully trained [12] 98.25 94.43 91.86 97.52 90.26 87.88 98.48 97.15 95.22
Alexnet, Transfer learning [12] 98.78 95.84 92.07 98.34 92.59 90.16 99.06 97.54 95.85

VGG16, without image
augmentation [39] 98.55 86.45 85.19 97.25 88.24 84.29 99.14 89.79 88.56

VGG16 with augmentation [39] 96.35 90.15 87.76 94.55 91.24 86.29 97.59 94.37 89.33
VGG16 with augmentation and

transfer learning [39] 94.22 90.25 88.59 93.89 91.86 87.46 97.58 93.45 92.13

VGG16 with transfer learning,
augmentation,fine tuning [39] 98.59 94.36 92.79 97.28 93.88 91.48 99.12 97.59 96.78

Inception [5] 98.76 94.58 92.86 97.58 94.83 92.75 99.32 97.89 97.31
ResNet-50 [6] 98.49 95.88 93.15 97.96 95.08 92.36 99.15 98.11 97.28

Densenet-121 [7] 98.85 96.03 93.58 98.12 97.49 93.19 99.46 98.27 97.59
SE-ResNet-50 [42] 98.96 96.25 94.18 98.36 97.58 93.79 99.32 98.29 97.36

ResNeSt [43] 99.03 96.32 93.96 98.41 97.46 94.22 99.19 98.35 97.61
MDAL [47] 99.91 98.56 94.35 98.79 98.12 93.76 99.94 98.92 98.26

iDAAM 99.15 97.23 95.38 98.92 96.72 95.16 99.48 98.76 98.12

TABLE IV
COMPARISON OF THE CLASSIFICATION ACCURACY (%) OF THE IDAAM
ARCHITECTURE WITH THE STATE-OF-THE-ART METHODS ON CONCRETE

CRACK IMAGE DATASET.

Model name Training
accuracy(%)

validation
accuracy (%)

Testing
accuracy (%)

VGG [4] 97.25 97.00 96.80
Inception [5] 98.00 97.85 97.60

Resnet-50 with
transfer learning [38] 98.40 98.00 97.80

Deep CNN with
adaptive threshold [15] 99.75 99.16 98.70

DenseNet-121 [7] 98.85 98.45 98.00
SE-ResNet-50 [42] 99.75 99.70 99.60

ResNeSt [43] 99.80 99.65 99.55
MDAL [47] 99.99 99.84 99.81

iDAAM 99.98 99.84 99.78

time per image is 0.135 ms on CODEBRIM dataset. For the
implementation, we have used Python keras 2.3.1 api with
Tensorflow 1.13.2 in the backend on a system with Intel Core
i7 processor, 16 GB RAM, and NVIDIA GeForce RTX-2070
8GB GPU card. The codes for the proposed modules can be
accessed in [58].

V. ABLATION STUDIES

A series of ablation study experiments are carried out on
three datasets to understand the importance of fine-grained
dense modules and concurrent dual attention modules. Due
to the vast nature of the ablation analysis, we have divided
the experiments in two parts, one for the fine-grained dense
module and another for the concurrent dual attention module.
In Tables V, VI, VII and VIII and in the following discussion,
FGDM stands for fine-grained dense module, CDAM stands
for concurrent dual attention module, CMFA represents com-
mittee of multi-feature attention and SEM means simultaneous
excitation module.

A. Ablation experiments on fine-grained dense module

We perform an extensive set of experiments on FGDM to
analyze its impact under various alterations and report the
results on CODEBRIM and concrete crack defect datasets
in Table V and Table VI. Firstly, the proposed network is
trained without using any fine-grained dense module, i.e.

only considering the concurrent dual attention modules, which
consumes less parameters (1.58 million). However, the absence
of the fine-grained dense module leads to poor classification
performance due to the unavailability of fine-grained informa-
tion, as evident in Tables V and VI. Moreover, we can observe
a significant drop in performance for CODEBRIM dataset due
to its complex nature and large variations in appearance.

Secondly, to show the generality of our proposed FGDM,
we replace the residual block present in FGDM with inception
module [5], which increase the number of parameters to 19.65
millions as compared to 4.89 millions in iDAAM, although
producing reduced classification performance.

Thirdly, we experimented the impact of FGDM by replacing
it with the Res2Net module [18]. The FGDM considers
the entire input feature maps to undergo feature extraction
operation in residual blocks to extract the local features across
all the channels, resulting in a deeper network. On the other
hand, the Res2Net module divides the entire feature map
into mutually exclusive sub-parts, where each part undergoes
feature extraction operation, resulting in a granular network. In
FGDM, each residual block aggregates features across all pre-
vious responses to capture multi-scale feature representation.
However, in Res2Net, each part aggregates features only from
the previous part of the input instead of capturing all previous
responses. Furthermore, in FGDM, multi-scale feature repre-
sentation is performed using the identity mapping, which does
not involve extra parameters. In Res2Net, multi-scale feature
representation is performed using the 3× 3 convolution oper-
ation. The result shows that by replacing the FGDM module
with Res2Net, we obtain reduced performance (88.38% test
accuracy compared to 89.54% by iDAAM on CODEBRIM)
with large increment in the number of parameters (12.35
million compared to 4.89 million); which shows the efficacy
of a deeper network such as FGDM to obtain robust features
for overlapping defect recognition. Similarly, we extend the
same operation by replacing FGDM with several state-of-the-
art multi-scale feature extraction units, such as HR-Net [48],
Hourglass [49] and FPN [50]. Unlike these modules, FGDM
focuses on long-range representation and the interconnected
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TABLE V
ABLATION STUDIES ON FINE-GRAINED DENSE MODULES ON THE CLASSIFICATION ACCURACY(%) IN THE IDAAM ARCHITECTURE ON CODEBRIM

AND CONCRETE CRACK IMAGE DATASET.

Model
Description

Parameters
in million CODEBRIM Dataset Concrete Crack Image dataset

Training
accuracy

Val.
accuracy

Test
accuracy

Training
accuracy

Val.
accuracy

Test
accuracy

iDAAM without FGDM 1.58 97.45 80.45 73.89 99.14 98.27 97.88
CDAM + Inception within FGDM 19.65 98.75 87.56 86.14 99.97 99.75 99.18

Res2Net [18] replacing FGDM 12.35 99.25 89.87 88.38 99.97 99.79 99.25
HRNet [48] replacing FGDM 11.95 99.48 90.84 88.12 99.97 99.75 99.45

Hourglass [49] replacing FGDM 16.29 99.39 89.25 87.96 99.97 99.65 99.15
FPN [50] replacing FGDM 10.56 99.26 88.98 87.59 99.96 99.45 99.10

iDAAM 4.89 99.98 91.82 89.54 99.98 99.84 99.78

TABLE VI
ABLATION STUDIES ON FINE-GRAINED DENSE MODULES ON THE CLASSIFICATION ACCURACY(%) IN THE IDAAM ARCHITECTURE ON CONCRETE

BRIDGE DECK, WALL AND PAVEMENT FROM SDNET-2018 DATASET.

Model
Description Bridge image result Wall image result Pavement image result

Training
accuracy

Val.
accuracy

Test
accuracy

Training
accuracy

Val.
accuracy

Test
accuracy

Training
accuracy

Val.
accuracy

Test
accuracy

iDAAM without FGDM 94.81 93.11 91.25 95.68 92.79 90.57 97.62 95.76 93.89
CDAM + Inception within FGDM 98.67 96.67 94.29 98.61 96.17 94.23 99.27 98.28 96.94

Res2Net [18] replacing FGDM 98.92 96.85 94.89 98.82 96.35 95.02 99.38 98.46 97.19
HRNet [48] replacing FGDM 98.76 96.91 94.85 98.49 96.26 95.11 99.27 98.46 97.09

Hourglass [49] replacing FGDM 98.21 96.34 94.16 98.29 96.06 94.89 99.11 98.20 96.75
FPN [50] replacing FGDM 98.03 95.86 93.49 98.13 95.85 94.38 98.86 97.25 96.40

iDAAM 99.15 97.23 95.38 98.92 96.72 95.16 99.48 98.76 98.12

residual blocks further fine-tune the features. Also, these
networks focus on precise spatial feature estimation; however
for structural defect classification, we require rich long-range
discriminatory information. Moreover, the identity mappings
across the residual units enable the network to alleviate van-
ishing gradient problem with generalized performance. These
characteristics of FGDM help in the improved performance
for all three concrete defect datasets.

B. Ablation experiments on concurrent dual attention module

Similar to FGDM, we evaluate various aspects of CDAM
with an extensive ablation study and report the results on
CODEBRIM and concrete crack image datasets in Table
VII and SDNET-2018 in Table VIII. Firstly, we train the
network keeping only FGDM, i.e. removing all CDAMs. Here
the performance drop is experienced due to the absence of
attentive feature extraction mechanism. Similar to the previous
result, we can observe worse performance for the CODEBRIM
dataset due to large variations and presence of uncontrolled
artifacts, which could have been properly discriminated using
the entire attention mechanism.

Secondly, we try to analyze the importance of different
attention operations present in the iDAAM architecture. To
investigate this, the SEMs are removed, while keeping all
the FGDMs. Experimental results (in Tables VII and VIII)
illustrate drop in performance for CODEBRIM and SDNET-
2018 datasets due to the absence of spatial-channel attention
mechanism to encode deformed defects and texture variation.
Then the same operation is replicated by removing all the
CMFA modules and keeping others same, which shows that
the CODEBRIM dataset produces less accuracy due to the
absence of highly localized feature selection required to dis-
criminate between similar-looking overlapping defects.

Thirdly, we remove one of the channel and spatial attention
parts of the SEM sub-network at a time keeping other modules
intact to analyze the impact of individual attention operations
in the recognition performance. Tables VII and VIII give
the concrete defect recognition performance by dropping one
of the attention sub-networks which demonstrates reduced
performance in both cases, further re-instating the reason for
using both channel and spatial attention parts.

Fourthly, we perform multiple experiments to obtain design
justification of CMFA sub-network. For this, we first conduct
an experiment by replacing the CMFA module containing
four layers with only one such layer. The experimental re-
sults depict a decline in performance due to the absence of
aggregation of multiple discriminative feature representation.
However, incorporation of five such layers in CMFA gives
similar performance with added parameters and hence is not
reported. Then, we alter the additive operation in the CMFA
modules with the dot product and concatenation operation
to obtain the best aggregation method to be used for the
attention. From the results in Tables VII and VIII, we observe
that the use of dot product reduces the testing accuracy on
CODEBRIM (88.58% compared to 89.54%) without change
in the number of parameters, whereas the use of concatenation
operation gives similar performance (89.21% compared to
89.54%), but with extra parameters required in the dense layers
for linear projection. Hence, we infer that addition attention
is most suited for this application.

Furthermore, we perform a series of experiments to realize
the impact of channel attention part present in SEM. For
this, we first replace the channel attention part in SEM with
several state-of-the-art channel attention mechanisms such as
hierarchical SE-ResNet (h-SE-ResNet [44]), CI-BCNN [45]
and CSAR [46]. From the results in Tables VII and VIII, we
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TABLE VII
ABLATION STUDIES ON CONCURRENT DUAL ATTENTION MODULES ON THE CLASSIFICATION ACCURACY(%) IN THE IDAAM ARCHITECTURE ON

CODEBRIM AND CONCRETE CRACK IMAGE DATASET.

Model
Description

Parameters
in million CODEBRIM Dataset Concrete Crack Image dataset

Training
accuracy

Val.
accuracy

Test
accuracy

Training
accuracy

Val.
accuracy

Test
accuracy

iDAAM without CDAM 4.61 94.55 78.24 69.74 98.26 97.89 97.25
FGDM + Only CMFA 4.87 99.26 89.29 83.56 99.96 99.73 99.21
FGDM + Only SEM 4.63 99.15 90.11 84.27 99.97 99.69 99.17

Only spatial attention in SEM 4.88 99.89 91.35 88.93 99.97 99.75 99.70
Only channel attention in SEM 4.88 99.92 91.68 89.01 99.97 99.81 99.75

CMFA with one layer 4.85 99.12 88.56 82.98 99.95 99.45 99.25
CMFA with dot product operation 4.89 99.75 91.12 88.58 99.97 99.65 99.50

CMFA with concatenation operation 4.93 99.89 91.56 89.21 99.98 99.75 99.50
h-SE-ResNet [44] replacing channel attention 5.14 99.94 91.68 88.58 99.98 99.80 99.76

CI-BCNN [45] replacing channel attention 4.91 99.91 90.88 87.63 99.97 99.70 99.60
CSAR [46] replacing channel attention 4.93 99.93 90.78 88.46 99.96 99.65 99.55

iDAAM with 2x channels 18.76 99.51 91.35 88.38 99.97 99.65 99.35
Self-attention replacing CMFA 4.93 99.26 87.46 85.11 99.97 99.75 99.25
Self-attention replacing SEM 4.93 99.53 90.12 84.23 99.96 99.78 99.32

Self-attention replacing CDAM 4.62 95.16 81.25 75.86 98.35 98.20 97.85
iDAAM 4.89 99.98 91.82 89.54 99.98 99.84 99.78

TABLE VIII
ABLATION STUDIES ON CONCURRENT DUAL ATTENTION MODULES ON THE CLASSIFICATION ACCURACY(%) IN THE IDAAM ARCHITECTURE ON

CONCRETE BRIDGE DECK, WALL AND PAVEMENT FROM SDNET-2018 DATASET.

Model
Description Bridge image result Wall image result Pavement image result

Training
accuracy

Val.
accuracy

Test
accuracy

Training
accuracy

Val.
accuracy

Test
accuracy

Training
accuracy

Val.
accuracy

Test
accuracy

iDAAM without CDAM 94.63 92.58 91.06 95.79 93.04 90.24 97.88 94.89 93.56
FGDM + Only CMFA 98.64 95.59 93.76 97.52 94.29 93.86 98.67 97.53 97.08
FGDM + Only SEM 98.59 96.48 92.89 97.18 94.56 92.49 98.92 97.66 95.48

Only spatial attention in SEM 98.92 97.05 95.16 98.46 96.35 94.92 99.13 98.27 97.68
Only channel attention in SEM 99.08 97.14 95.21 98.55 96.41 95.00 99.31 98.32 97.93

CMFA with one layer 98.75 96.42 93.89 98.26 95.78 94.69 98.37 97.21 96.18
CMFA with dot product operation 98.89 96.97 94.74 98.35 96.21 94.89 99.05 98.17 97.56

CMFA with concatenation operation 98.95 97.13 94.98 98.58 96.67 95.02 99.23 98.49 97.86
h-SE-ResNet [44] replacing channel attention 98.91 97.08 94.81 98.46 96.55 95.03 99.19 98.46 97.88

CI-BCNN [45] replacing channel attention 98.46 96.83 94.31 98.05 96.12 94.75 98.96 98.19 97.49
CSAR [46] replacing channel attention 98.86 96.87 94.58 98.34 96.27 94.79 99.12 98.30 97.69

iDAAM with 2x channels 99.06 96.89 95.12 98.53 96.25 94.76 99.26 98.24 97.49
Self-attention replacing CMFA 98.74 96.12 93.27 97.31 95.27 93.66 99.15 97.83 96.42
Self-attention replacing SEM 98.76 96.12 94.09 97.84 95.27 94.21 98.91 97.83 97.39

Self-attention replacing CDAM 95.49 93.26 91.78 96.38 93.27 91.42 98.05 95.17 94.39
iDAAM 99.15 97.23 95.38 98.92 96.72 95.16 99.48 98.76 98.12

observe that h-SE-ResNet gives the maximum performance
among all cases when replaced by our proposed channel
attention (88.58% test accuracy on CODEBRIM compared
to 89.54% by the proposed iDAAM), however it considers
more parameters due to its hierarchical nature (5.14 million
compared to 4.89 million by iDAAM), which reflects the
superiority of the proposed channel attention mechanism for
concrete defect recognition.

Finally, we double the number of channels in each modules
(i.e. 64 in first conv, and so on) to observe the change in
performance when dimension of shrinkage across channels
is changed for the global average pooling operation. The
experimental results provide similar performance, although
considering more number of parameters; thereby showing that
the performance of iDAAM does not vary much with the se-
lection of channel dimensions. Similarly, we replace different
attention modules with the self-attention block to observe the
impact on a self-attention in place of the proposed attention.
For all these cases, we obtain reduced performances in Tables
VII and VIII, which further demonstrate the importance of the

proposed modules.
VI. ANALYSIS AND DISCUSSIONS

A. Analysis using attention maps

Sample images from three datasets are applied on the
iDAAM architecture to generate the attention maps by revis-
iting the global average pooling layer which helps to interpret
the decision-making process of the proposed network, as
shown in Fig. 4. These attention maps are used to visu-
ally illustrate the efficient feature selection mechanism using
the proposed modules by highlighting the defective regions,
thereby, helping the network to automatically focus on these
regions.

Referring to Fig. 4, we can observe that the iDAAM
architecture highlights the relevant overlapping defect regions
by selecting robust features by the fine-grained dense and con-
current dual attention modules. For example, in Fig. 4 (a), the
exposed bars are highlighted with the regions with spallation,
efflorescence and corrosion in a sample CODEBRIM image.
The crack regions in sample images from concrete crack image
dataset have been localized, as shown in Fig. 4 (e)-(h). Crucial
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Fig. 4. Attention maps obtained from the proposed iDAAM network for sample images from CODEBRIM, concrete crack image and SDNET-2018 datasets
and are given in top, middle and bottom row, respectively. Original images are followed by their respective attention maps, placed side-by-side. Here, red
color denotes highest attention, while blue denotes the lowest attention. Top row from left to right: (a) Exposed bars with mild corrosion, efflorescence and
spallation, (b) Corroded bar with spallation, (c) advanced spallation with efflorescence and corrosion, (d) Crack surface with spallation. Middle row from left
to right: (e)-(h) Images with crack defects from concrete crack image dataset. Bottom row from left to right: (i) Crack surface in a bridge deck, (j) Cracked
wall region, (k) Pavement region with crack, (l) Cracked pavement region.

TABLE IX
IMPACT ON RECOGNITION PERFORMANCE BY GRADUALLY STACKING
MULTIPLE MODULES AND SUB-NETWORKS ON CODEBRIM DATASET.

Model
Description

Training
accuracy

Val.
accuracy

Testing
accuracy

FGDM + Only spatial attention 98.57 87.68 82.56
FGDM + Only channel attention 98.97 88.59 83.69

FGDM + Only SEM (i.e. channel + spatial) 99.15 90.11 84.27
FGDM + Only CMFA 99.26 89.29 83.56

FGDM + CMFA + Only spatial attention 99.89 91.35 88.93
FGDM + CMFA + Only channel attention 99.92 91.68 89.01

1 FGDM + 1 CDAM 92.58 85.49 75.26
2 FGDM + 2 CDAM 99.94 90.59 88.38

iDAAM 99.98 91.82 89.54

regions containing cracks in sample images from bridge deck,
wall and pavements of SDNET-2018 dataset are highlighted
in Fig. 4 (i)-(l).

B. Impact of stacking multiple modules for concrete defect
recognition

The robust defect feature extraction of iDAAM is attributed
to the hierarchy of feature extraction units and concurrent
operations of multiple attention architectures. To understand
the impact of each modules and the sub-networks, we perform
a series of experiments and tabulate the results in Table IX for
CODEBRIM dataset. We also generate the attention maps for
each case, which are provided in Fig. 5.

We begin the experiments by keeping only the spatial
attention part from CDAM with the FGDM and the same has
been reciprocated by keeping only channel attention. Figs. 5
(b) and (c) show the attention maps obtained for these cases,
respectively. Here, we observe reduction in performance for
both cases due to the absence of other attention modules, as
found from the attention maps which could not highlight the
exposed bars properly. Then we modify iDAAM by keeping
both channel and spatial attention with FGDM and removing
the CMFA part; resulting in better localization of exposed bars

as given in Fig. 5 (d). Then, we replace the CDAM with the
CMFA; however, it still couldn’t attend to spatial and channel
locations due to the absence of SEM, reflected in the attention
map in Fig. 5 (e).

Then, we modify the CDAM by keeping only one of the
spatial and channel attention part in SEM, keeping CMFA
unaltered and present the generated attention maps for the
same in Fig. 5 (f) and (g), respectively. Here, we observe that
the exposed bars are getting more highlighted, whereas the
redundant regions are getting darker than the previous ones.
Finally, we obtain the attention maps using the full iDAAM ar-
chitecture in Fig. 5 (h) showing precise localization of defects
and successfully suppressing redundant region information.
Similarly, we report the results of gradually stacking the blocks
and the corresponding attention maps in Table IX and Figs. 5
(j) and (k), respectively. Here, we observe that local features
cannot be attended by placing only one FGDM and CDAM,
whereas the localization performance substantially increases
with stacking.

Furthermore, we show the attention maps generated by
training several state-of-the-art models, such as Deep CNN
with adaptive thresholding [15], Inception [5], ResNet-50 with
transfer learning [6] and DenseNet-121 [7] in Fig. 5 (l)-(o),
respectively. Here, we observe that the exposed iron bars are
getting moderately noticed using inception [5]; however, the
discriminative ability is increased by using deeper networks
such as ResNet-50 [6] and DenseNet-121 [7]. Finally, we
present the attention map obtained using iDAAM in Fig. 5 (p)
which is by the far the best in localization and highlighting
defects.

C. Analysis of single-class classification ability

To understand the network’s ability to extract individual
class information, experiments are carried out to check the
percentage of correctly classifying single class defect out
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Fig. 5. Attention maps obtained by gradually adding different sub-networks and using well-known CNN architectures on CODEBRIM dataset. First row,
from left to right: (a). Defect image, (b). Only spatial attention, (c). Only channel attention, (d). Only SEM, (e) Only CMFA, (f). CMFA + spatial attention,
(g). CMFA + channel attention, (h). iDAAM. Second row, from left to right: (i). Defect image, (j). 1 FGDM + 1 CDAM, (k) 2 FGDM + 2 CDAM, (l). Deep
CNN with adaptive thresholding, (m). Inception, (n). ResNet-50, (o). DenseNet-121, (p). iDAAM.

TABLE X
CLASSIFICATION ACCURACY (%) OF

SINGLE-CLASS DEFECTS ON
CODEBRIM DATASET.

Type of defect Accuracy
Crack 90.15

Spallation 93.56
Efflorescence 88.49
Exposed bars 97.35

Corrosion 89.26

TABLE XI
SINGLE AND MULTI-CLASS

CLASSIFICATION ACCURACY (%)
ON CODEBRIM DATASET.

Number of classes
correctly classified

Test
accuracy

At least one 100
At least two 99.12

At least three 98.35
At least four 92.78

of total five classes. Class specific accuracies are shown in
Table X. Experimental results show that the classification
accuracy of the exposed bar is higher than other classes,
while efflorescence has the lowest tendency to get correctly
classified. Table XI shows the performance of model to detect
at least one class correctly, then up to 2 classes correctly and
so on, up to 4 classes. It is evident from Table XI that up to
three classes, the performance is very high and then it degrades
when visually-similar small overlapping defect classes (such
as efflorescence, spallation and corrosion) are included.

D. Impact of iDAAM on retinal vessel segmentation

The retinal vessel segmentation is of paramount importance
for early diagnosis of several eye-related diseases such as dia-
betic retinopathy, hypertension, arteriosclerosis, etc. However,
several aspects of this problem make it a challenging task, in-
cluding the presence of small blood vessels, similar appearance
in the blood vessel and background and susceptibility towards
background lighting and noise. For our case, we have analyzed
the impact of the proposed fine-grained dense module and
concurrent dual attention module for accurate segmentation of
retinal blood vessels.

For this operation, we have considered the U-Net [51] as a
backbone network and replaced the second convolution oper-
ation at each level with a fine-grained dense module followed
by another concurrent dual attention module. We compare the
performance of the resulting network to the recent methods in
Table XII. For the analysis, we have considered the DRIVE
[52] and STARE [53] datasets with image augmentation. Here
the proposed network gives better F1-score and AUC than the
existing methods in DRIVE dataset. The recent state-of-the-
art method [56] uses channel attention in U-Net, whereas the

Fig. 6. Examples of failure cases: Attention maps are followed by the original
images, placed side by side.

proposed method incorporates multiple attention mechanisms
for this purpose, thereby achieving high vessel segmentation
performance. For STARE dataset, it gives better F1-score
than the recent works while achieving very similar AUC
performance.

TABLE XII
PERFORMANCE OF IDAAM ARCHITECTURE ON DRIVE [52] AND STARE

[53] RETINAL VESSEL SEGMENTATION DATASETS.

DRIVE STARE
Method AUC F1-score AUC F1-score

U-Net [51] 0.9752 0.8174 0.9710 0.7595
DUNet [54] 0.9778 0.8190 0.9758 0.7629
IterNet [55] 0.9813 0.8218 0.9881 0.8146

SA-UNet [56] 0.9864 0.8263 0.9837 0.8175
iDAAM 0.9875 0.8351 0.9876 0.8458

E. Discussion on example failure cases

We conclude the analysis of the iDAAM architecture with
some examples of failure cases given in Fig. 6 and their
probable reasons. To illustrate the failure cases, we have
considered two examples, each having all five defect categories
being present on the images. The attention maps shown could
not localize all defect classes and primarily highlights the most
dominant defects of all. This happens where the minute defects
get obscured by another dominant defect class. However, we
can observe that iDAAM still recognizes the more dominant
classes; hence the unhealthy concrete region will not be
completely overlooked by iDAAM.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we have proposed a solution for automatic
multi-target multi-class and single-class classification of de-
fects found in civil concrete infrastructures. Our proposed deep
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iDAAM architecture is constructed using FGDM and CDAM,
which are interleaved to extract robust salient discriminative
features from multiple scales to improve the classification
performance with less parameters. Extensive experimental
results and ablation studies show that the proposed iDAAM
architecture outperforms many state-of-the-art methods on
three large datasets: CODEBRIM, Concrete crack image
dataset and SDNET-2018. In particular, for the difficult multi-
target multi-class classification problem, it achieves multi-
target accuracy in CODEBRIM dataset as high as 89.54%,
compared to 84.29% by the current state-of-the-art method.
The effectiveness of the proposed iDAAM architecture can
be effective for classification of other types of defects within
and outside concrete and steel structures. Also, the iDAAM
solution can be utilized in conjunction with unmanned aerial
vehicles (UAVs) for fast and accurate damage detection, health
prediction and monitoring of massive concrete structures.
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