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Abstract: One of the leading forms of cancer is colorectal cancer (CRC), which is responsible for
increasing mortality in young people. The aim of this paper is to provide an experimental modification
of deep learning of Xception with Swish and assess the possibility of developing a preliminary
colorectal polyp screening system by training the proposed model with a colorectal topogram dataset
in two and three classes. The results indicate that the proposed model can enhance the original
convolutional neural network model with evaluation classification performance by achieving accuracy
of up to 98.99% for classifying into two classes and 91.48% for three classes. For testing of the model
with another external image, the proposed method can also improve the prediction compared to the
traditional method, with 99.63% accuracy for true prediction of two classes and 80.95% accuracy for
true prediction of three classes.

Keywords: deep learning; Xception; convolutional neural network; Swish activation function;
colorectal polyps; preliminary screening; image classification; topogram image

1. Introduction

Colorectal cancer (CRC) is a form of cancer that occurs globally and is one of the most common
forms of cancer among both men and women in terms of the causes of human mortality [1,2]. Recently,
reports have identified that the number of people with CRC younger than 50 years old is increasing,
which means cancer screening is a more essential process than ever [3,4]. Cancer features unlimited
division and appears in living anomalous cells in various organs, as well as when abnormal cells
appear and grow in the colon, which is the case with CRC [4]. The beginning of CRC involves 70%
growth from adenomatous polyps, which can develop inside the colon lining. It grows slowly over
a period of approximately 10 to 20 years [4–6]. Evaluation of CRC diagnosis is critical [4] because
the survival rate is increased by timely detection, which is considered a significant process in cancer
diagnosis. The main tools for diagnosis include medical imaging [1], which can realistically display
patients’ internal organs in order to enable more rapid screening and diagnosis by health care experts
for continued planning and subsequent treatment procedures [7].
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Topograms are 2D overview images obtained from a tomographic machine. Topogram images are
generated for screening and planning before advancing to the next procedural step, such as computer
tomography (CT) scanning [7]. These kinds of medical images easily and conveniently capture anterior,
posterior, and lateral views of patients’ bodies [7,8]. With an identical process of colorectal polyp
identification, colonography utilizes a scanning machine to acquire an overview image of the colorectal
area to identify abnormalities of polyps so they can be removed before developing or spreading into
severe cancer [9]. However, the diagnostic process has several limitations, including that manual
interpretation of medical images can be tedious, require a lot of time, and be subject to bias and human
error [1]. Medical imaging involves digital images that can be used for analysis by a computer. Therefore,
image analysis based on computer-aided diagnosis (CAD) systems for medical image classification
is essential in disease detection, screening, and diagnosis [10]. Applying computer-aided screening
for colorectal polyp classification and screening with multimedia summarization techniques [11,12]
has advantages in increasing the capability of diagnosing colorectal polyps [13]. Figure 1 illustrates
the preliminary screening system concept for colonoscopy diagnosis to help physicians’ inspections.
This screening system can be helpful for preliminary classification of colorectal topogram images,
which can be used to plan the next step in diagnosis.
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Deep learning has been popularly used since 1998 [14], when an early deep learning method
named LeNet was created with a convolutional neural network (CNN) for recognizing digitized
handwriting. In 2006 [15], deep learning became more powerful with fine-tuning, and was used to
generate a better model of digitized handwritten image classification than the discriminative learning
technique. Dimensionality reduction by adopting deep learning is also described in [16]. The proposed
method was an improvement compared to the traditional method of principal component analysis
(PCA). More recently, deep learning in the development of CNN architecture has been joined with
image classification by ImageNet [17]. Since then, there has been development and application of
deep learning in various fields, including in medical processes. Deep learning can assist health care
experts by requiring less time for the screening process and improving the efficiency of diagnosis [10].
The deep learning technique, especially in terms of CNN, has become widely applied in a variety
of medical procedures, such as medical image reconstruction [18], clinical report classification [19],
diagnosis [20], identification of disease [21], cancer detection [22], disease screening [23], and medical
image classification [24]. The success of CNN has increased in medical image analysis [25], especially
for colorectal polyp diagnostic procedures [26,27]. Several studies applied CNN as a solution for
problems in medical images with CRC and colorectal polyps. Some studies used CNN for segmentation
with magnetic resonance imaging (MRI), such as [28], in which the combination of 3D CNN and 3D
level-set for automated segmentation of colorectal cancer yielded segmentation accuracy of 93.78%.
In addition, [29] proposed a CNN with hybrid loss for automatic colorectal cancer segmentation and
outperformed with an average surface distance of 3.83 mm and mean Dice similarity coefficient (DSC)
of 0.721.

For CT imaging [30], applications of CNN by transfer learning for electronic cleansing may
improve accuracy from 89% to 94% for visualization of colorectal polyp images. Furthermore, the CNN
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developed by [31] showed improved colorectal polyp classification performance by area under the
curve (AUC) of 86 and accuracy of 83% on CT image datasets.

Several studies focused on endoscopic image datasets, such as [32], which developed a CNN for
detecting polyps in real time and validating a new colonoscopy image collection with detected polyps,
obtaining AUC of 0.984%, sensitivity of 94.38%, and specificity of 95.92%. [33] Creating a CNN for
polyp detection enabled precise detection at 88.6% and recall at 71.6%. A polyp segmentation method
with full CNN for different sizes and shapes of colorectal polyps used as ground truth images for
evaluation was developed in [34]. Segmentation accuracy of 97.77% was achieved. A CNN for real-time
evaluation of endoscopic videos was proposed in [35] to identify colorectal polyps, with achieved
accuracy of 94%. Modified region-based CNN training on wireless capsule endoscopy images in [36]
provided detection performance precision of 98.46%, recall of 95.52%, F1 score of 96.67%, and F2 score
of 96.10%.

Utilizing tissue image datasets, [2] developed an experimental CNN with transfer learning and
fine-tuning for histology in CRC diagnosis, in which the CNN provided good testing classification
accuracy up to 90%. In [37], large image sizes were applied with CNN and evaluated for colorectal
cancer grading classification, achieving accuracy for two classes of 99.28% and three classes of 95.70%.
In [38], a CNN was trained by transfer learning, with achieved accuracy of 94.3% using an external
testing dataset in nine classes. Many of the above studies obviously showed that CNN can be
used for colorectal polyp classification in the context of screening to generate highly accurate and
excellent results when using different kinds of medical image datasets, including MR, CT, tissue,
and endoscopic images. However, a CNN method has not yet been utilized with colorectal topogram
images, which could possibly be used to assist physicians in preliminary screening and rapid diagnosis.

There have been many improvements of CNN architecture since 2012. The classic architecture,
called AlexNet [39], demonstrated essential improvements over the previous architecture for image
classification. More recently, several CNN architectures have been developed to enhance image
classification performance, such as in VGGNet in 2014 [40], GoogleNet, also known as Inception [41],
and ResNet [42], established in 2015. These CNN architectures were developed under six main
improvements: convolutional layer, pooling layer, activation function, loss function, regularization,
and optimization [43]. In 2017, Extreme Inception, also known as Xception, was developed, a version in
the Inception family from the Xception architecture developed by Chollet [44] at Google. The Xception
architecture concept is based on the Inception module [41], with modifications and a combination of
convolutional layers, inception modules, depth-wise separable convolutions, and residual connections
to improve CNN performance. The results of Xception indicate that classification performance was
improved compared to VGGNet, ResNet, and Inception v3 [45]. The original Xception architecture
used rectified linear unit (ReLU) [46] for the activation function. The recent activation function, named
Swish [47], can enhance the image classification accuracy of NASNet-Mobile (established in 2018) [48]
and InceptionResNet v2 (released in 2016) [49]. There has not been a study on the application of Swish
with Xception. Replacing the ReLU with Swish [47] inside Xception may enhance the classification
performance compared to the original Xception and other CNN architectures.

The purpose of this study is to provide a novel modification of Xception by applying the Swish
activation function to determine the possibility of developing a preliminary screening system for
colorectal polyps, by training our proposed Xception with Swish model with a colonography topogram
image dataset. The proposed system screens colorectal polyps into two classes: found and not found.
In addition, we also classify polyps in three categories: small size, large size, and not found. Moreover,
we compare the results with the original Xception architecture and other established modern CNN
architectures that are also modified with Swish, and the performance of Xception with Swish indicates
excellent results compared to other CNN methods.

The remainder of the paper is structured as follows: the Xception architecture, Swish activation
function, and modification of Xception with Swish for preliminary screening of colorectal polyps are
described in Section 2. In Section 3, we provide the materials and methods, including topogram image
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dataset, image augmentation method, specification of hardware and software, programming language,
and colorectal polyp classification method, and compare the experimental results. Section 4 presents
more details on the experimental results and a discussion of the image classification models in the
context of a preliminary colorectal polyp screening system. The conclusion of this study is presented
in Section 5.

2. Xception Architecture, Swish Activation Function, and Model Modification

The continuous development of deep learning of CNN has improved the architecture for more
accurate image classification techniques. Similarly, Xception architecture was developed under several
important concepts, including convolutional layer, depth-wise separable convolution layer, inception
module, and residual connections. Also, CNN architecture for the activation function is necessary,
in which Swish is a new activation function created to improve the traditional activation function.
This section proposes the theoretical Xception architecture, as well as the Swish activation function and
a new modification of the Xception with Swish image classification model for preliminary colorectal
polyp screening.

2.1. Xception Architecture

Xception [44] is defined as a hypothesis based on the Inception module, which creates correlations
of cross-channels and spatial relations within feature maps of CNN able to be completely decoupled.
Figure 2a illustrates the general Inception module [41] from Inception v3 [45], the module using
cross-channel correlations by separating the input data in four ways to convolution size of 1 × 1
and average pooling, then maps correlations via convolution size of 3 × 3 and forwards them for
concatenation. According to Inception, the idea is transformed to the Xception module, as shown in
Figure 2b. After input, data using only one size of 1 × 1 convolution create separate convolution sizes
of 3 × 3 without average pooling, which proceed in nonoverlapping sections of the output channels to
then be fed forward for concatenation. The Xception module is robust, stronger than the Inception
module, and can operate correlations of cross-channels and spatial relations with maps fully decoupled.
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Figure 2. Comparison of Inception module [41] and Xception module [44]: (a) module of Inception
v3 [45] on separate 1 × 1 convolution and average pooling; (b) Xception module uses one 1 × 1
convolution to output channels and separates to 3 × 3 convolutions without average pooling.

After obtaining the notion of the Xception module, the previous theory of depth-wise separable
convolution is used to design the neural network [44] and major composition inside the Xception
architecture, as described below.

2.1.1. Convolutional Layer

In applying convolutional layers inside the Xception architecture, there is layer after the input
layer, generating convolutional kernels to calculate different feature maps to show the features of the
input data. The new feature map will be collected by a first convolution operation with detection
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results from convolutional kernels, which then feed the result to the calculation of the activation
function. To produce each feature map, the convolution kernels are divided into all areas of the input
data. The different convolution kernels create the absolute results of the feature maps; mathematically,
the position (i, j) upon feature value in the feature map as the kth layer determines the lth, computed as

Sl
i, j,k = Wvl

kCl
i, j + Bvl

k (1)

where the weight vector is defined as Wvl
k and Bvl

k, set for the bias value of the kth filter of the lth
layer, for Cl

i, j as the center of input patch on (i, j) position of the lth layer. In sharing the feature

map of Sl
i, j,k, it creates the calculation of the Wvl

k kernel. The advantages of the weight sharing
process include reducing complications and improving the network for effortless training of the model.
Every convolutional layer of Xception will be inserted with batch normalization [50] and the activation
function, and the original activation function is ReLU in the following equation:

ReLU(d) = max(d, 0) (2)

where d represents the input data. It is linear for all positive values and zero for all negative values.
ReLU is not complex math with nonlinearity of the network, which is essential in CNN for identifying
the nonlinear features that make faster convergences and better predictions, with less overfitting.

2.1.2. Depth-Wise Separable Convolution Layer

The significant layers of Xception are the depth-wise separable convolutions. These can reduce
the computation and model parameters, which are organized in the spatial dimensions and depth
dimensions of color channels. This is done by dividing from the traditional convolution process more
deeply with depth-wise convolution linked to point-wise convolution [51] by creating a convolution
kernel size of 1 × 1, which operates the depth-wise separable convolution illustrated in Figure 3.
The depth-wise convolution generates a filter to each channel of input data set to M, and produces
the feature map to determine DF × DF ×M and depth-wise convolution using one filter of the input
channel computed by the following equation:

Ĝk,p,m =
∑
i, j,m

K̂i, j,m × Fk+i−1,p+ j−1,m (3)

where Ĝ substitutes the output of feature maps generated by F, which is the feature map input.
K̂ indicates the depth-wise convolution kernel size of Dk × Dk ×M. The mth filter in K̂ is utilized to
channel the mth in F for an estimate of the feature map output. The pixel position of the convolution
kernel imposes to i, j and the pixel position of the feature map defines k, p.

Figure 3 shows that the three color channels of red, blue, and green (RBG) are collected by a
separation of the depth-wise convolution 3× 3 filters. After the convolution operation, an image appears
in multiple channels and the image can be interpreted in every color channel. Then, the point-wise
convolution by learning of 1 × 1 convolution filters give the output to forward to the next layer
operation. For Xception, after the depth-wise separable convolution layer utilizes batch normalization,
the next layers employ the max-pooling layer to reduce the cost of computation and help to interpret
invariance by assigning an equation as

Fm = MaxPooling(Fi, v) (4)

where v assigns the filter of max-pooling. The output feature map defines Fm, which is arranged in
shape size, where each Fm stores the maximal value of Fi in the input feature map.
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2.1.3. Residual Connection

The residual connection was established under another CNN architecture called ResNet [40],
in which the internal network applies identity shortcut connections directly to the latest layers.
The residual block determines the parameters as Pi, which can be written in a function as

Ov = f (Iv, {Pi}) + Iv (5)

where Iv represents the input vectors and Ov the output vectors of the layers. The calculation of f (Iv,
{Pi}) gives the residual mapping to be learned. The advantage of residual connection is that it can
prevent signal extenuation by the transformation of multiple stacked nonlinearities. It is also faster for
training the model. The residual shortcut connection of ResNet is shown in Figure 4a, and an example
of adopting Xception is shown in Figure 4b.Mathematics 2019, 7, x FOR PEER REVIEW 7 of 22 
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Figure 4a shows that the input of X can direct a late layer by a shortcut of identity blocks. Figure 4b
demonstrates applying the shortcut of residual connection directly to a late layer via 1 × 1 convolution
operation with a step of 2 × 2. All of the main components above the convolutional layer, activation
function, depth-wise separable convolution layer, max-pooling layer, and residual connection can
be assembled.

Xception architecture has 36 convolutional layers to generate feature extraction for image
classification, which creates 14 modules that punctuate with residual connections excluding the first
and last modules. The input image, by requirement size and channels of 299 × 299 × 3, begin the entry
flow section in the first module with two convolutional layers by determining the 32 and 64 filters on a
kernel size of 3 × 3, and, for the second to fourth modules, employs a kernel size of 3 × 3 and separable
convolution filters of 128, 256, and 728, in which the entry flow produces a feature map of 19 × 19 × 728
and goes through loops eight times (fifth to twelfth modules) in the middle flow section by separable
convolution filters of 728. After that, the feature map from the middle flow forwards to the final section
of the exit flow, in which the thirteenth module employs two size separable convolution filters of 728
and 1024. A final module employs two size separable convolution filters of 1536 and 2048, with added
global average-pooling [52] and the fully connected layer before logistic regression as the last layer.

2.2. Swish Activation Function and Modification of Xception with Swish

CNN can improve image classification tasks with appropriate activation functions [47]. Presently,
there is widespread use of the activation function known as ReLU, which is also used in the Xception
architecture. CNN with ReLU is easy and effective to optimize when the input flow to the ReLU function
is positive. However, development of the Swish activation function in recent years has an activation
function consequence in cooperated techniques between exhaustive and the searching techniques of
reinforcement learning. Swish can improve the CNN of image classification over ReLU [47] in the
following function:

Swish(d) = d · Sigmoid(βd) (6)

where β represents a per-channel trainable parameter, d indicates the input data, and Sigmoid(βd) is
the calculation of the sigmoid function [47], in which the Swish activation function can rewrite the
position of the ReLU activation function in the CNN architecture. The proposed image classification
model by modification of Xception with Swish is shown in Figure 5.

Figure 5 indicates that in the Xception with Swish architecture, every module stands identically to
the original Xception, only ReLU is replaced with Swish in the activation function position. In a minor
modification, we add one more Swish after the global average-pooling and before logistic regression.
The original Xception model is excellent for image classification. However, improving classification
performance is essential for continuous development. We investigated the Swish activation function in
order to improve performance. Thus, our new model is based on the original Xception architecture but
with applying the Swish activation function to potentially enhance the image classification performance.
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3. Materials and Colorectal Polyp Classification Methods

3.1. Colorectal Topogram Image Dataset Preparation and Image Augmentation

The benchmark colonography image datasets in this study were collected from CT_COLONOG
RAPHY [53] and the Cancer Genome Atlas of colon adenocarcinoma (TCGA-COAD) [54]. Both datasets
were gathered from the public access Cancer Imaging Archive (TCIA) [55], which provides spreadsheet
description files of polyps, consistent with prone and supine 3D CT images and 2D topogram images
in the Digital Imaging and Communications in Medicine (DICOM) format. Our study focuses on
utilizing 2D topogram images, as shown in Figure 6, for training of the image classification model
to investigate the potential development of preliminary screening in colorectal diagnosis. For the
CT_COLONOGRAPHY dataset, the main dataset, images of 825 colonography patients were collected.
However, the dataset actually used a total of 347 patients, divided into three categories. The first
category, containing 6 to 9 mm polyps, comprises 69 patients with small size polyps in 125 topogram
images. The second category is large, 10 mm polyps, containing 106 topogram images from 35 patients,
while the third category consists of 224 topogram images from 243 patient cases of polyp not found.
For TCGA-COAD assigned for the extended dataset, 25 patient cases with 30 topogram images were
obtained in the second category, large size polyps. In addition, we also classified two classes of polyps
for preliminary screening, found from the merging of 106 images of large size and 125 images of small
size, resulting in a sum of 231 topogram images in the first category, and using polyp not found for the
second category.
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However, we considered that our colorectal topogram images were quite small in number and not
sufficient for training the image classification model or examining its effect on the overfitting problem.
As a solution, several studies suggested the image augmentation method to increase the image dataset
and avoid overfitting [1,23,33,43]. We applied the image augmentation method by transformations
from 0 to 10 of rotation of left and right, shifting up–right, shifting down–left by 0.5, and cropping the
center. After augmentation, the image dataset was increased from 455 images to 2730 images, including
the original images. For the two categories, there were 1386 polyp found images and 1344 polyp not
found images. For the three categories, there were 798 images of small size polyps, 588 images of large
size polyps, and 1344 images of polyp not found, the same as in the two categories.

3.2. Training CNN Image Classification Models

The final colorectal topogram image dataset consisted of 2730 images. We divided the dataset
for testing by 10%, or 273 images. The 2457 remaining images were separated into 80% training
data, or 1965 images, and 20% validation data, or 492 images. All CNN models in the experiment
utilized 50 epochs to perform the training and validation of the dataset, employing a desktop computer
comprising an NVIDIA GeForce GTX 1070 graphical processing unit (GPU) with 11 gigabytes of RAM.
Training with the GPU is much faster than training without the GPU. The training and validation
processes use the deep learning model of transfer learning, which can be run from the Keras [56] library
of the GPU version by a backend of the Tensorflow [57] GPU. The implementation was written using
Python [58] as the main programming language on a Windows operating system. The specifications
of the hardware and software utilized in the experiment are detailed in Table 1. The proposed
CNN of Xception with Swish and other CNN models have different requirements for configuration,
such as image input size, batch size, optimizer, and learning rate, which reduce the learning rate
every three epochs when performance has not improved. CNN model configuration for this work is
indicated in Table 2 by the original CNN architecture applying the Swish activation function as an
identical configuration.
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Table 1. Specification of hardware and software in the experiment. API—application program interface.

Hardware Software

Processor: i7-6700, 3.40 gigahertz Operating System: 64-bit Windows 10
Primary memory: 28 gigabytes RAM Deep learning API: Keras GPU 2.2.4 [56]
Graphical processing unit (GPU):
NVIDIA GeForce GTX 1070, 11 gigabytes RAM Backend: Tensorflow GPU 1.13.1 [57]

Storage drive: solid state, 250 gigabytes Language: Python 3.7.3 [58]

Table 2. Convolutional neural network (CNN) model configurations. SGD—stochastic gradient descent.

CNN Input Size Batch Size Optimizer Initial Learning Rate

VGG16 224 × 224 18 SGD 0.01
ResNet50 224 × 224 24 SGD 0.01

InceptionV3 299 × 299 24 RMSprop 0.045
InceptionResNetV2 299 × 299 12 RMSprop 0.045

NASNetLarge 331 × 331 4 SGD 0.01
NASNetMobile 224 × 224 24 SGD 0.01
MobileNetV2 224 × 224 48 RMSprop 0.045

Xception 299 × 299 12 SGD 0.045

The configuration in Table 2 was devised based on suggestions from each model’s original paper,
since these models can generate excellent performance with the appropriate configuration, depending
on the architecture and dataset characterization. However, a significant component of CNN is the
optimizers, which need to be defined. Stochastic gradient descent (SGD) [59] and RMSprop [60] are
both optimizers that use gradient descent techniques, which are widely used because of their ability to
improve CNN performance while generating rapid learning [59,60].

3.3. Comparison of Experimental Results for CNN Image Classification Models

CNN architecture training in this study compared the experimental results between original
CNN models and CNN models with the Swish activation function on colorectal polyp classification
in the context of preliminary screening. For the two categories of polyp found and polyp not found,
classifying was done in three categories, small size, large size, and polyp not found. After finishing
training, all CNN model estimations of classification performance in terms of accuracy, precision, recall,
and F1 measure can be computed using the following equations:

Accuracy =
TP + TN

TP + FN + FP + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1measure = 2×
Precision×Recall
Precision + Recall

(10)

where TP defines true positive, or the number of input images for each category correctly classified; FP
is false positive, indicating the number of incorrectly classified images in the class; TN is true negative,
representing number of images correctly classified as not belonging in the class; and FN is false
negative, representing images from the class that are incorrectly classified. The experimental results
compare two classes without Swish, shown in Table 3, and two classes with Swish, shown in Table 4.
Results of three classes were compared: without Swish, as shown in Table 5, and three classes with
Swish, shown in Table 6.
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Table 3. Experimental results of different CNN models without Swish for two classes.

CNN Model
without Swish

Accuracy Precision Recall F1 Measure Training Time
(%) (%) (%) (%) (min:sec)

VGG16 48.17 24.09 50.00 32.51 29:24
ResNet50 97.15 97.15 97.15 97.15 25:17

InceptionV3 68.70 68.68 68.57 68.58 34:07
InceptionResNetV2 51.99 52.53 52.28 51.88 52:08

NASNetLarge 93.29 93.27 93.31 93.29 309:48
NASNetMobile 76.71 76.71 76.64 76.66 28:43
MobileNetV2 69.72 69.68 69.68 69.68 16:07

Xception 97.97 97.95 97.99 97.97 62:50

Table 4. Experimental results of CNN models with Swish in two classes.

CNN Model with
Swish

Accuracy Precision Recall F1 Measure Training Time
(%) (%) (%) (%) (min:sec)

VGG16 48.17 24.09 50.00 32.51 30:50
ResNet50 97.15 97.14 97.15 97.15 33:20

InceptionV3 67.28 67.29 67.09 67.09 36:05
InceptionResNetV2 51.83 51.07 50.54 44.09 60:19

NASNetLarge 93.09 93.08 93.14 93.09 319:35
NASNetMobile 77.64 77.69 77.72 77.64 31:27
MobileNetV2 71.75 71.71 71.69 71.70 17:40

Xception 98.99 98.98 99.00 98.99 67:17

Table 5. Comparison of experimental results for three classes without Swish.

CNN Model
without Swish

Accuracy Precision Recall F1 Measure Training Time
(%) (%) (%) (%) (min:sec)

VGG16 48.17 16.06 33.33 21.67 28:25
ResNet50 87.60 86.03 84.56 85.22 25:07

InceptionV3 56.10 53.23 43.71 40.95 30:27
InceptionResNetV2 46.05 35.65 34.68 24.88 63:14

NASNetLarge 82.12 81.13 80.22 80.96 315:22
NASNetMobile 67.68 63.34 62.56 62.72 27:33
MobileNetV2 57.32 53.97 52.17 52.69 15:38

Xception 90.36 88.17 88.15 88.12 77:43

Table 6. Comparison of results for classification into three classes by applying Swish.

CNN Model with
Swish

Accuracy Precision Recall F1 Measure Training Time
(%) (%) (%) (%) (min:sec)

VGG16 48.17 16.06 33.33 21.67 28:08
ResNet50 90.06 89.85 88.96 89.38 27:14

InceptionV3 55.94 52.92 43.46 40.67 32:16
InceptionResNetV2 45.58 35.23 33.92 23.39 67:02

NASNetLarge 84.05 83.43 80.60 81.99 332:58
NASNetMoblie 67.28 63.24 61.94 62.36 29:24
MobileNetV2 56.50 52.96 49.03 48.54 16:16

Xception 91.48 91.19 90.33 90.73 80:34

A comparison of experimental results was done for the original CNN without Swish to classify
two classes, polyp found and polyp not found. Table 3 shows that Xception is the top CNN for the
two classifications, producing accuracy of 97.97%, precision of 97.95%, recall of 97.99%, and F1 of
97.97, while spending 62:50 min of training time. Table 4 shows the original CNN with Swish, and the
results show that Xception with Swish had improved accuracy of 98.99%, increased precision of 98.99%,
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recall up to 99.00%, and F1 measure of 98.99% with training time of 67:17 min. The CNN model
with the lowest score is VGG16 for both original and with Swish; they produced the same results,
with accuracy of 48.17%, precision of 24.09, recall of 50.00%, and F1 measure of 32.51%.

Swish also assisted NASNetMobile and MobileNetV2 with improved performance.
NASNetMobile had increased accuracy from 76.71% to 77.64%, precision from 76.71% to 77.69%,
recall from 76.64% to 77.72%, and F1 measure from 76.66% to 77.64%. MobileNetV2 had improved
accuracy from 69.72% to 71.75%, precision from 69.68% to 71.71%, recall from 69.68% to 71.69%, and F1
measure from 69.68% to 71.70%. In another CNN model, the classification performance was not
improved when the Swish activation function was applied. Furthermore, all CNN models had more
time consumption than the original.

The comparison of classification performance of the three classes of small size, large size, and polyp
not found by the original CNN models is shown in Table 5, which shows that Xception still had the
best performance, with accuracy of 90.36%, precision of 88.17%, recall of 88.15%, and F1 measure
of 88.12%, with training time of 77:43 min. In Table 6, two classes, including Xception with Swish,
had improved classification performance in three classes, achieving accuracy of 91.48%, precision of
91.19%, recall of 90.33%, and F1 measure of 90.73%, with increased training time of 80:34 min. All CNN
models also spent more training time for three classes when Swish was applied. For the lowest score,
the VGG16 model had accuracy of 48.17%, precision of 16.06%, recall of 33.33%, and F1 measure of
21.67%, meaning the scores are identical for the original and Swish activation function.

For classification into three classes, Swish had improved performance in the CNN models of
ResNet50 and NASNetLarge. ResNet50 had increased accuracy from 87.60% to 90.06%, precision
from 86.03% to 89.85%, recall from 84.56% to 88.96%, and F1 measure from 85.22% to 89.38%.
For NASNetLarge, accuracy increased from 82.12% to 84.05%, precision from 81.13% to 83.43%,
recall from 80.22% to 80.60%, and F1 measure from 80.96% to 81.99%.

Considering time consumption for classification performance in the context of the computational
complexity of this study, the various models completed the experiment in a short time, but could
not generate all evaluation indices (VGG16, InceptionV3, InceptionResNetV2, NASNetMobile,
and MobileNetV2) well. After the experiment, some models established good results, but used
a lot of time (NASNetLarge). ResNet50 training in a short time produced good results, but not
as good as Xception. While the experiment with Xception with Swish required suitable time
consumption, it achieved better performance results compared with the other approaches. Therefore,
it is observed that Xception with Swish is feasible for preliminary screening of colorectal polyps with
high classification performance.

4. Discussion

According to the experimental results, it seems that the original Xception and our proposed model
of Xception with Swish can give the probability of classification performance results in both two classes
and three classes to develop an image classification system in the context of preliminary colorectal
polyp screening. The classification performance of our proposed Xception with Swish model is better
than the original Xception model, which is explained in this section, including training and validation
history, receiver operating characteristic (ROC) estimation, area under the curve (AUC) generation,
confusion matrix, and testing model classification.

4.1. Colorectal Polyp Classification in Two Classes

Regarding training and validation history, 50 epochs seemed good enough for our
experiment [61,62], as illustrated in Figure 7. Both the original Xception and Xception with Swish
raised training accuracy up to 100%, as shown in Figure 7a, and decreased training and validation loss
very low, down to 0.0001% and 0.0002%, respectively, as shown in Figure 7b. However, Xception with
Swish generated validation accuracy of 98.99% with validation loss of 3.12%, which is better than the
accuracy of 97.97% with validation loss of 5.71% for Xception. When considering the validation history,
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we found that the validation accuracy of Xception with Swish had higher scores and was approximately
stable above the Xception validation history at nine epochs until the final epochs. In other words,
validation loss of Xception with Swish started lower than Xception at the same nine epochs to the
final epochs.
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A comparison of ROC curves and AUC generated by TP and FP rates in the classification
performance of two classes is illustrated in Figure 8a for Xception, and in Figure 8b for Xception with
Swish. Although the curves of Xception for both classes are close to 100%, creating an AUC of 99.78%,
Xception with Swish generated more, with an AUC of 99.96% in both classes, polyp found and polyp
not found.Mathematics 2019, 7, x FOR PEER REVIEW 14 of 22 
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In describing the model classification performance on the validation data, which was determined
as 20%, or 492 images, for classifying into two classes, a confusion matrix of true class and predicted
class for Xception was drawn, as shown in Figure 9a; the confusion matrix of Xception with Swish
is shown in Figure 9b. The validation set of 492 images was split into two, 255 images of polyp
found, and 237 images of polyp not found. Xception correctly classified polyps found in 248 images,
with mistakes in seven images, and polyp not found in 234 images, with three images misclassified.
Comparing the confusion matrices, our proposed Xception with Swish model generated better



Mathematics 2019, 7, 1170 14 of 21

classification of polyps found in 251 images, with four images misclassified, and polyp not found in
236 images, with one image incorrectly classified.
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Figure 9. Classification performance with confusion matrix for two classes with (a) Xception and (b)
Xception with Swish.

The trained and validated Xception and Xception with Swish models for colorectal polyp
classification in two classes were ready to compare the testing for classification of 273 external images
(10% of all images), excluding training and validation processes. The comparison results are shown
in Table 7.

Table 7. Results of testing for classification of two classes with Xception and Xception with Swish.

Model Classes Testing Images True Predicted
Images

False Predicted
Images

Xception
Polyp found 138 (100%) 136 (98.55%) 2 (1.45%)

Polyp not found 135 (100%) 133 (98.51%) 2 (1.48%)
Total 273 (100%) 269 (98.51%) 4 (1.47%)

Xception with Swish
Polyp found 138 (100%) 138 (100%) 0 (0%)

Polyp not found 135 (100%) 134 (99.25%) 1 (0.74%)
Total 273 (100%) 272 (99.63) 1 (0.37%)

Table 7 presents a total of 273 testing images, divided into 138 images of polyp found and
135 images of polyp not found. The original Xception model generated true predictions of polyps in
136 images, or 98.55%, and polyp not found in 133 images, or 98.51%, and false predictions of polyp
found in two images, or 1.45%, and polyp not found in two images, or 1.48%. Xception with Swish
produced true predictions of polyp found in 138 images, or 100%, and polyp not found in 134 images,
or 99.25%, with false prediction of one image, or 0.74%.

According to the total true predictions of 269 images by Xception, at 98.51%, with total false
predictions of four images, or 1.47%, compared to the true predictions of Xception with Swish,
272 images, at 99.63%, and false prediction of only one image, or 0.37%, the results from testing data
show that Xception with Swish improved classification compared to Xception alone by three images,
accounting for 1.12%.

4.2. Colorectal Polyp Size Classification for Three Classes

The historical training and validation of accuracy in Figure 10a and loss in Figure 10b for classifying
three classes show that Xception and Xception with Swish are still outstanding, with high training
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accuracy of 100% and the lowest loss rates of 0.0001% and 0.0004%, respectively. Nevertheless, when
determining validation accuracy and loss of Xception with Swish, it still gives high accuracy of 91.48%
with low loss of 23.53%, while Xception generates accuracy of 90.36% with validation loss of 38.84%.
By adding a class to the validation accuracy and loss, classification performance will drop compared to
two classes.
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Figure 10. Training and validation history of original Xception and Xception with Swish for classifying
into three classes: (a) accuracy history and (b) loss history.

Similar to the results of classification performance, the ROC curve and AUC, illustrated in
Figure 11a for Xception, for the three classes show an AUC of 98.04% for small size polyps, 97.47%
for large size polyps, and 99.80% for polyp not found. The Xception with Swish model had better
classification performance, shown in Figure 11b: AUC of 98.22% for small size polyps, 97.85% for large
size polyps, and 99.89% for polyp not found.Mathematics 2019, 7, x FOR PEER REVIEW 16 of 22 
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The confusion matrix of classification performance on validation data with three classes for
Xception is shown in Figure 12a, and the confusion matrix of Xception with Swish is shown in Figure 12b.
The validation images were divided for the three classes as follows: small size polyps in 154 images,
large size polyps in 101 images, and polyp not found in 237 images. Xception correctly classified
small size polyps in 135 images and incorrectly in 19 images, correctly classified large size polyps in
83 images and incorrectly in 18 images, and correctly classified polyp not found in 230 images and
incorrectly in seven images. The proposed model of Xception with Swish had better classification than
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Xception in the three classes: in the first class, it correctly classified 140 images and incorrectly classified
14 images, in the second class it correctly classified 83 images and incorrectly classified 18 images,
and in the third class it correctly classified 232 images and incorrectly classified five images. The testing
for classification of both models employed another 273 images for the three classes. The results are
illustrated in Table 8.
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Table 8. Results of testing with three classes of Xception and Xception with Swish.

Model Classes Testing Images True Predicted
Images

False Predicted
Images

Xception

Small size polyp 79 (100%) 48 (60.75%) 31 (39.24%)
Large size polyp 59 (100%) 37 (62.71%) 22 (37.28%)
Polyp not found 135 (100%) 134 (99.25%) 1 (0.74%)

Total 273 (100%) 219 (80.21%) 54 (19.78%)

Xception with Swish

Small size polyp 79 (100%) 49 (62.02%) 30 (37.97%)
Large size polyp 59 (100%) 37 (62.71%) 22 (37.28%)
Polyp not found 135 (100%) 135 (100%) 0 (0%)

Total 273 (100%) 221 (80.95) 52 (19.04%)

The comparison of results of testing for classification in Table 8 shows that the testing data
were separated into three classes: 79 images for small size polyps, 59 images for large size polyps,
and 135 images for polyp not found. The original Xception achieved true prediction of small size polyps
in 48 images, accounting for 60.75%, with false prediction of 31 images, or 39.24%; true prediction
of large size polyps in 37 images, or 62.71%, with false prediction of 22 images, or 37.28%; and true
prediction of polyp not found in 134 images, or 99.25%, and false prediction of one image, or 0.74%.
The proposed Xception with Swish had true prediction of small size polyps in 49 images, or 62.02%,
and large size polyps in 37 images, or 62.71%. In the class of polyp not found, it obtained 135 images,
or 100%, without false any predictions.

In the experimental results of testing for classification in three classes, we observed that Xception
with Swish classified better than the original Xception. The total true prediction of Xception obtained
219 images, accounting for 80.21%, and total false prediction was 54 images, accounting for 19.78%,
compared to total true prediction by Xception with Swish of 221 images, or 80.95%, with total false
prediction of 52 images, or 19.04%. Thus, Xception with the Swish activation function enhanced
the classification performance for the three classes by more two images, or 0.38%, compared to
Xception alone.
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The results of this work may be further improved in future work, which may focus on reducing
the false negative (FN) results. Patients in some cases have colorectal polyps that the model does
not identify or predicts incorrectly. Also, the model in this study produced false predictions for
both two and three classes, which may result in false predictions that also include false negatives.
In this case, we investigated some FN reduction techniques that could be adopted with our proposed
method in future studies, such as combining with other kinds of medical images [63] such as CT, MRI,
and ultrasound. Another method applies the texture descriptor technique to identify local image
patterns [64] and train the model, which may reduce the number of FN results.

5. Conclusions

CRC is a form of cancer that is a leading cause of human mortality and is increasing among
younger generations. Thus, people without data should undergo CRC screening. A 2D topogram
image can be generated for screening and planning before advancing to the next procedure. The deep
learning technique of CNN is being used to generate effective models of image classification, especially
in medical tasks for colorectal polyp diagnosis. However, it has not yet been utilized in the CNN
method with colorectal topogram images, which could be used to assist physicians in preliminary
screening and rapid diagnosis.

The use of an activation function, Swish, can improve the classification accuracy of CNN. There
has never been a study about applying Swish with CNN of Xception architecture. Replacing the ReLU
inside Xception with Swish may enhance the performance of image classification when compared to
the original Xception and other CNN architectures. The purpose of the paper was to apply a new
modification of Xception with the Swish activation function and discover the possibility of developing
a novel preliminary screening system for colorectal polyps in the training of our proposed model with
benchmark colonography of topogram image datasets and using an image augmentation method to
enhance the image dataset. The proposed method was used in the context of colorectal screening
to classify two classes of polyps, found and not found, and three size classifications of small, large,
and polyp not found. Furthermore, the experimental results were compared with the original Xception
and other CNN architectures using the modified architecture with Swish.

In the comparison of experimental results of classifying the two classes of polyp found and polyp
not found, Xception was the best in the original CNN group, with an evaluation performance of 97.97%.
However, the results show that Xception with Swish was improved, achieving increased classification
performance of 98.99%, using more training time with the Swish activation function. The experimental
results in the classification performance of two classes were also explained by ROC curve and AUC.
Xception with Swish created ROC curves of nearly 100% with AUC of 99.96%, which is greater than
the original Xception, with an AUC of 99.78%. With validation image data of 492 images split into
two classes of polyps, 255 images were found, while 237 images were not found. The classification
performance for validation demonstrated that Xception with Swish generated better classification
than the original Xception in the class of polyp found, with 251 images correctly classified and four
images misclassified, and in the class of polyp not found, with 236 images correctly classified and one
image misclassified. Summarizing the validation image data for Xception with Swish, 487 images were
correctly classified from a total of 492 images, while there were only five incorrectly classified images.
For testing classification of two classes by applying 273 external images at 100%, the testing data
show that Xception with Swish had true predictions for a total of 272 images, accounting for 99.63%,
with false prediction of one image, or 0.37%, compared to true prediction by Xception of 269 images,
or 98.51%, with false prediction of four images, or 1.47%.

The three classes were defined as small size polyps, large size polyps, and polyp not found. In a
comparison of evaluation classification performance, the Xception with Swish model was still improved,
but more training time was needed for classification of added classes, increasing the accuracy to 91.48%.
Another evaluation score also increased to 90%, while the original Xception produced accuracy of
90.36% by other evaluation indices based on 88%. For the ROC curve and AUC of classification in



Mathematics 2019, 7, 1170 18 of 21

three classes, Xception showed an AUC of 98.04% for small size polyps, 97.47% for large size polyps,
and 99.80% for polyp not found. Xception with Swish showed improved classification performance,
with an AUC of 98.22% for small size polyps, 97.85% for large size polyps, and 99.89% for polyp
not found.

The confusion matrix of classification performance on validation data was divided into three
classes, with 154 images of small size polyps, 101 images of large size polyps, and 237 images of
polyp not found. The proposed Xception with Swish model correctly classified small size polyps in
140 images, with misclassification of 14 images; correctly classified large size polyps in 83 images,
with 18 images misclassified; and correctly classified 232 images of polyp not found, with five images
misclassified. Xception with Swish correctly classified a total of 455 images, and incorrectly classified
a total of 37 images. In comparison, the original Xception correctly classified a total of 448 images,
with 44 images incorrectly classified. The totals of correctly and incorrectly classified images of the
three classes indicate that Xception with Swish achieved better image classification than the original
Xception, with many correctly classified and few incorrectly classified images. For testing classification
of three classes, Xception with Swish still showed better classification, with total true predictions of
221 images, or 80.95%, and false predictions of 52 images, or 19.04%, compared to Xception, with total
true predictions of 219 images, or 80.21%, and false predictions of 54 images, or 19.78%.

According to all of the experimental results in this study, the proposed Xception with Swish model
achieved better image classification performance than several original CNN techniques, providing a
reasonable basis and possibility for further development of a novel preliminary screening system for
colorectal polyps to assist physicians in preliminary screening and rapid diagnosis.
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