

This work is protected by copyright and other intellectual property rights and
duplication or sale of all or part is not permitted, except that material may be
duplicated by you for research, private study, criticism/review or educational

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation
may be published without proper acknowledgement. For any other use, or to

quote extensively from the work, permission must be obtained from the
copyright holder/s.

 Declaration Part 1. To be bound in the thesis

Annex B1, Declaration v2, 200911

SUBMISSION OF THESIS FOR A RESEARCH DEGREE

Part I. DECLARATION by the candidate for a research degree. To be bound in the
thesis

Degree for which thesis being submitted Doctor of Philosophy in Music

Title of thesis An evaluation of digital interfaces for music composition and improvisation.

This thesis contains confidential information and is subject to the protocol set down
for the submission and examination of such a thesis.
NO
Date of submission 23 Dec. 2015 Original registration date 26 Sep. 2011
(Date of submission must comply with Regulation 2D)

Name of candidate Konstantinos Vasilakos
Research Institute Humanities Name of Lead Supervisor Mike Vaughan

I certify that:

(a) The thesis being submitted for examination is my own account of my own research
(b) My research has been conducted ethically. Where relevant a letter from the

approving body confirming that ethical approval has been given has been bound in
the thesis as an Annex

(c) The data and results presented are the genuine data and results actually obtained
by me during the conduct of the research

(d) Where I have drawn on the work, ideas and results of others this has been
appropriately acknowledged in the thesis

(e) Where any collaboration has taken place with one or more other researchers, I
have included within an ‘Acknowledgments’ section in the thesis a clear statement
of their contributions, in line with the relevant statement in the Code of Practice (see
Note overleaf).

(f) The greater portion of the work described in the thesis has been undertaken
subsequent to my registration for the higher degree for which I am submitting for
examination

(g) Where part of the work described in the thesis has previously been incorporated in
another thesis submitted by me for a higher degree (if any), this has been identified
and acknowledged in the thesis

(h) The thesis submitted is within the required word limit as specified in the Regulations

Total words in submitted thesis (including text and footnotes, but excluding references and
appendices) …22.525……………

Signature of candidate ………………………… Date 26 Jan. 16……………

Note
Extract from Code of Practice: If the research degree is set within a broader programme of work
involving a group of investigators – particularly if this programme of work predates the candidate’s
registration – the candidate should provide an explicit statement (in an ‘Acknowledgments’ section) of
the respective roles of the candidate and these other individuals in relevant aspects of the work
reported in the thesis. For example, it should make clear, where relevant, the candidate’s role in
designing the study, developing data collection instruments, collecting primary data, analysing such
data, and formulating conclusions from the analysis. Others involved in these aspects of the research
should be named, and their contributions relative to that of the candidate should be specified (this
does not apply to the ordinary supervision, only if the supervisor or supervisory team has had greater
than usual involvement).

An evaluation of digital interfaces for music composition and
improvisation

Konstantinos Vasilakos

F o r t h e d e g r e e o f D o c t o r o f P h i l o s o p h y i n M u s i c

M a r c h 2 0 1 6

K e e l e U n i v e r s i t y

08 Fall$

ii

Abstract

This PhD reports research on current representative performance paradigms using various

interfaces for real time interaction with computer-based musical environments. Each

device was selected to cover a particular range of interfaces. Research covers the following

areas: hardware interfaces (tangible & game devices); live coding; optical devices, and

hardware prototyping.

The projects highlight affordances, comparative strengths and weaknesses, and provide

suggestions for further improvements for each paradigm. Particular focus is given to the

importance of mapping. Each project comprises corresponding software that was

developed to facilitate each performance paradigm.

The work is not intended to provide an exhaustive evaluation of the technology used in

this research; instead, it aims to examine its feasibility for artistic and musical context. The

outcomes of the examinations include a series of musical performances employing

improvisation as the basis for composition. These paradigms are examined in a live context

as well as fixed media that uses material originating in live performances.

iii

Contents

ABSTRACT ... II!

CONTENTS ... III!

LIST OF FIGURES .. VII!

LIST OF TABLES ... VIII!

SUBMITTED MEDIA .. IX!

SUBMITTED SOFTWARE ... X!

ACKNOWLEDGEMENTS .. XI!

OVERVIEW ... 1!

INTRODUCTION .. 4!

1.! LIVE CODING .. 7!

1.1.! INTRODUCTION!..!7!

1.2.! ROUTES!..!9!

1.3.! ENVIRONMENTS!FOR!LIVE!CODING!...!11!

1.4.! PERFORMING!WITH!BEER!...!11!

1.5.! THE!MANY!FACES!OF!CODE!...!12!

1.5.1.! Code(as(interface(...(12!

1.5.2.! Code(as(communication(medium(..(14!

1.6.! LIVE!CODING!AND!THE!AUDIENCE!..!15!

1.7.! MUSIC!COMPOSED!WITH!LIVE!CODING!...!17!

1.8.! MAPPING!IMMUTABILITY!AND!HYBRID!ENVIRONMENTS!...!19!

1.9.! LIVE!CODING!IN!STUDIO:!FROM!CODE!TO!TAPE!...!25!

1.10.! OTHER!ASPECTS!OF!LIVE!CODING!...!27!

1.11.! CONCLUSION!...!28!

iv

2.! HARDWARE PROTOTYPING ... 31!

2.1.! INTRODUCTION!..!31!

2.2.! OVERVIEW!OF!POP!...!31!

2.3.! CALIBRATION!AND!SCALING:!SENSORS!MAKING!SENSE!...!33!

2.4.! MAPPING!OF!POP!..!34!

2.5.! MODES!OF!INTERACTION!OF!POP!..!35!

2.6.! CONTROL!AND!STRUCTURE!...!35!

2.7.! MUSIC!COMPOSED!WITH!POP!..!36!

2.8.! REMARKS!ON!POP!..!38!

2.9.! CONCLUSION!...!41!

3.! TANGIBLE INTERFACES ... 43!

3.1.! INTRODUCTION!..!43!

3.2.! DIGITAL!MUSICAL!INSTRUMENTS!(DMI)!...!44!

3.3.! OVERVIEW!OF!BIGRAIN!...!46!

3.3.1.! Mapping(of(BiGrain(...(47!

3.4.! OVERVIEW!OF!STAY!ON!THIS!GESTURE!..!49!

3.4.1.! Mapping(of(Stay(On(This(Gesture(..(49!

3.5.! MUSIC!COMPOSED!WITH!THE!WIIMOTE!...!50!

3.6.! CONCLUSION!...!53!

4.! OPTICAL INTERFACES .. 56!

4.1.! INTRODUCTION!..!56!

4.2.! OVERVIEW!OF!GREAP!...!58!

4.2.1.! Scene(handling/snapshots(..(59!

4.3.! MAPPING!VARIABILITY!...!60!

4.4.! INTERACTION!AFFORDANCES!OF!GREAP!..!62!

4.5.! EFFORT!AND!VISUALISATION!OF!MUSICAL!TENSION!...!63!

v

4.6.! TANGIBLE!SOUND!...!63!

4.7.! METAPHORS!...!64!

4.8.! MUSIC!COMPOSED!WITH!GREAP!...!64!

4.9.! CONCLUSION!...!67!

5.! CONCLUSIONS – DISCUSSION OF MUSICAL IMPLICATIONS 70!

5.1.! ENCORE!..!77!

6.! FURTHER RESEARCH ... 77!

REFERENCES ... 79!

APPENDIX – ATARAXIA ... 88!

INSTRUCTIONS AND TECHNICAL REQUIREMENTS ... 89!

HOW TO LAUNCH GREAP ... 89!

TROUBLESHOOTING ... 90!

INSTRUCTIONS FOR THE PERFORMANCE OF ATARAXIA .. 90!

SCORE OF ATARAXIA .. 92!

APPENDIX – BLIND DATE .. 99!

INSTRUCTIONS AND TECHNICAL REQUIREMENTS ... 99!

FAIR ALGO ... 100!

TROUBLESHOOTING ... 102!

INSTRUCTIONS FOR THE PERFORMANCE OF BLIND DATE 102!

FAIR ALGO CODE ... 103!

APPENDIX – POP ... 104!

INSTRUCTIONS AND TECHNICAL REQUIREMENTS ... 104!

vi

AUDIENCE GUIDELINES .. 105!

POP HARDWARE OVERVIEW .. 107!

POP SCHEMATIC DIAGRAM AND ASSEMBLY LIST ... 108!

TROUBLESHOOTING ... 109!

APPENDIX – STUDY II ... 111!

INSTRUCTIONS AND TECHNICAL REQUIREMENTS ... 112!

INSTRUCTIONS FOR THE PERFORMANCE OF STUDY II .. 113!

TROUBLESHOOTING ... 113!

APPENDIX – THE SONG HAS SUNG .. 115!

INSTRUCTIONS AND TECHNICAL REQUIREMENTS ... 116!

INSTRUCTIONS FOR THE PERFORMANCE OF THE SONG HAS SUNG 117!

TROUBLESHOOTING ... 117!

ACCOMPANYING DVD INCLUDES SUBMITTED MEDIA AND SOFTWARE

((

vii

List of figures

FIGURE!1.1!MANIPULATING!SYNTHESIS!PARAMETERS!WITH!PATTERNS!IN!SUPERCOLLIDER.!.......................!13!

FIGURE!1.2!LIVE!CODING!THE!MAPPING!OF!HARDWARE!DEVICES.!..!21!

FIGURE!1.3!CONTROL!NAMES!AND!TRAJECTORIES!OF!WIIMOTE.!IMAGE!TAKEN!FROM!OSCULATOR!USER’S!

MANUAL!VERSION:!20120123!(TROILLARD,!2012,!P.53).!COPYRIGHT!WILDORA$2012.!REPRODUCED!

WITH!PERMISSION.!...!24!

FIGURE!1.4!ALTERING!THE!MAPPING!OF!SYNTHESIS!PARAMETERS!AND!WIIMOTE.!......................................!25!

FIGURE!2.1!MAPPING!SNIPPET!IN!POP.!...!34!

FIGURE!3.1!A!MAPPING!BLOCK!IMPLEMENTED!IN!STAY!ON!THIS!GESTURE.!..!50!

FIGURE!4.1!EXAMPLE!OF!A!SCENE!IMPLEMENTED!IN!GREAP.!...!60!

FIGURE!4.2!GROUPS!OF!MAPPING!IMPLEMENTED!IN!GREAP.!..!62!

FIGURE!4.3!MATRIX!OF!THE!MAPPING!IN!FUTURE!VERSION!OF!GREAP.!IMAGE!PRODUCED!USING!IXIVIEWS!

QUARK!IN!SUPERCOLLIDER.!..!69!

! !

viii

List of tables

TABLE!1.1!PARAMETERS!OF!THE!GRANULATOR!IMPLEMENTED!IN!FORMATIONS.!..!22!

TABLE!3.1!PARAMETERS!IN!BIGRAIN.!..!47!

TABLE!3.2!MAPPING!WIIMOTE!TO!BIGRAIN.!...!48!

TABLE!4.1!PARAMETERS!IMPLEMENTED!IN!GREAP.!..!58!

TABLE!4.2!DEVIATION!PARAMETERS!IN!GREAP.!..!59!

TABLE!4.3!METAPHORS!IN!GREAP.!..!64!

! !

ix

Submitted media

Study II (08’26”) 2011

The Song Has Sung (07’32”) 2012

Glitchy (14’26”) 2013

Formations (08’14”) 2013

Blind date (12’26) 2013

It All Starts with Noise (09’00”) 2013

It All Ends with Noise (13’08”) 2013

Ataraxia (09’34”) 2014

Power of People (excerpt 02’50”) 2014

! !

x

Submitted software

Glitchy (preamble code*)

Blind date (preamble code* and Fair Algo: projection utility)

Formations (preamble code*)

PoP

Stay On This Gesture

Greap

*Preamble code acts as a basis for live coding performance.

xi

Acknowledgements

I would like to express my special appreciation to my supervisors, professors Mike

Vaughan and Rajmil Fischman for their constructive criticism throughout my PhD. I would

like to thank you for allowing me to grow as a researcher, an independent thinker.

I would like to thank Angeliki, her help and encouragement have been a strong wind in my

musical sails…

A special thanks to Mark Summers, Kostas Kartasidis, and Kostas Theocharis for their

invaluable support.

Most importantly, thank you to my mother. Words cannot express how grateful I am for all

sacrifices that she has made on my behalf.

1

Overview

This thesis comprises a portfolio of original compositions created during my PhD project.

The text that follows is a commentary on the compositions, elaborating on aesthetic and

technical concerns that underpin their creation.

During my PhD research I investigated representative approaches of performance practices

aided by diverse interfaces. The selected interfaces each represent a particular family of

hitherto available devices. It is commonly known that appropriate mapping1 is an integral

part of performing with interfaces and computers (Winkler, 1995; Rovan, Wanderley,

Dubnov and Depalle, 1997; Hunt, Wanderley and Kirk, 2000; Hunt and Wanderley, 2002;

Hunt, Wanderley and Paradis, 2003), therefore particular attention was given to this topic.

Mapping is the part that lies between the interface and the musical environment and

connects the performer with the latter.

I carried out individual projects using available hardware suitable for musical creation

integrated with custom made software that explored various mapping strategies. During

these projects I investigated affordances of each interface as well as strengths and

weaknesses for each performance practice. Although the projects often included the

examination of technology, the objectives of my research are not oriented towards an

exhaustive technical appraisal, but rather to evaluate the feasibility of each performance

paradigm in terms of musical and artistic use.

Primary studies included the evaluation of live coding as a performance paradigm, where

the performer interacts through the implementation of generative data in order to

communicate with the sound synthesis software. One of the strengths of live coding is that

the relationships between human agency and sound creation are established on the fly.

Contrary to the norm of developing a system in advance of the performance, ‘leaving only

1 ‘Mapping refers to the liaison or correspondence between control parameters (derived from
performer actions) and sound synthesis parameters.’ (Hunt, Wanderley and Kirk, 2000, p.209)

2

the finished program to “go live” ’ (Wang and Cook, 2004, p.138), live coding offers the

ability to explore various levels of affordances with the musical environment where the

relationships between the performer and sound are established in real time. In other

words, ‘Code becomes a real time, expressive instrument’ (Wang and Cook, 2004, p.138).

Wilson et al. (2014, p.63) state that:

Live coding does not free us from the limitations of our “instruments” (these

instruments are arguably just more flexible and less specified; thus, not necessarily

a strength). It does afford us, however, the opportunity to avoid the narrowly

conceived instrumentality that typifies much interface design for live

electroacoustic performance, particularly within the context of laptop ensembles.

The next project investigated in the field of hardware prototyping. Using the Arduino2

micro-controller board I developed an interactive installation using environmental sensors

to control the parameters of a sound synthesis system. Objectives of this project included

the participation of the audience to interact with the parameters of the sound synthesis

environment, as opposed to my former investigation into single performer interaction: in

other words I attempted to expand my focus on mapping and use data that is generated by

more than one performer. In addition to the sensory capabilities, the system uses the

internal microphone to analyse diverse information of the produced sound in real time,

this information is then coupled to other control parameters of the system. The system also

acts as a model for wider interpretation of sonification data.

Further studies included the investigation of performing with tangible interfaces, for

example a Nintendo Wii Remote (Wiimote)3 video game controller and joysticks. In recent

years many artists, researchers, and digital musicians focused on the development of

software components (plug-ins, programming objects, and third party applications) to

2 See https://www.arduino.cc
3 See http://wiibrew.org/wiki/Wiimote

3

integrate the Wiimote with many programming environments for musical creation (Paine,

2009, p.148).

Given the nature of the sensors that the Wiimote offers, such as accelerometers and

orientation sensors to track physical gestures, the performer can create mapping strategies

that enable physicality and a causal relationship with the sound. Hyper-instruments also

fall in this category, as technological similarities can be seen between the sensory

capabilities of these and of the Wiimote. Devices such as the Wiimote are made for game

interaction, thus offering robust communication and stability of the gestural data that can

be useful during a live performance.

Finally, the last chapter investigates the use of optical interfaces including wireless body

sensing. For this project I used a Leap Motion4 sensor. In considering expressivity as the

primary aim of this project, mapping being the means to achieve this, particular interest

was given to the mapping strategies that are informed by gestural metaphors to foster

transparency of sound manipulation (Fels, Gadd and Mulder, 2002; Wessel, Wright and

Schott, 2002; Fischman, 2013).

Findings and conclusions are presented at the end of each chapter and summary

conclusions are presented at the end of this commentary.

All software was developed using the open source SuperCollider programming language

(McCartney and Others, 2014).

4 See Leap Motion https://www.leapmotion.com

 4

Introduction

The most important question that a digital instrument tackles is interactivity. This

interactive paradigm has undergone extensive examination over the past years in the field

of interactive computer music.

… an indeterministic instrument outputs a substantial amount of unpredictable

information relative to a performer's controls. In working with such an instrument,

a performer shares control of the music with algorithms as virtual co-performers

such that the instrument generates unpredictable information to which the

performer reacts, the performer generates control information to which the

instrument reacts, and the performer and instrument seem to engage in a

conversation. Interaction means “mutually influential”. Since the instrument is

influenced by the performer's controls, and the performer is influenced by the

instrument’s output, I have called such instruments “interactive instruments”.

(Chadabe, 2002, p.2)

According to Chadabe, interactivity means a mutual intervention of performer and the

machine. Here the performer is building a relation; communicating his or her ideas to the

computer, in turn the computer transforms it in sound. To facilitate interactivity some

important conditions need to be established. These are created when one devises the

connections between the human gestures and the parameters of the synthesis engine

known as mapping (Hunt, Wanderley and Kirk, 2000, p.209). At this point an important

distinction should be made. The sound producing body is separate from the interaction

interface in contrast with the traditional instrument in which the interaction device is

embodied with the sounding object (Miranda and Wanderley, 2006, p.4). This disjunction

creates the need for mapping, a vital part of a digital instrument. Through mapping we

establish the relationships between the external device and the control inputs of the

musical environment; hence our gestures are translated to sound via these notional

 5

connections. Additionally, the appropriate mapping enhances expressivity of a

performance environment (Winkler, 1995; Rovan, Wanderley, Dubnov and Depalle, 1997;

Hunt, Wanderley and Kirk, 2000; Hunt, Wanderley and Paradis, 2002; Hunt and

Wanderley, 2002).

Since the implementation of real time devices in electronic music it is possible to interact

with technology in the same way that a musician interacts with his or her instrument and

influence the output dynamically. Personally, I am interested in using improvisation and

real time interactivity working with electronic media. Improvisation in electroacoustic

music could be viewed as a process of constant evaluation by the performer of the

resulting sound and responding back to it. A sort of cause and effect situation. Pressing

(2001, p.130) states that:

To begin with, improvisation (or any type of music performance) includes the

following effects, roughly in the following order

1. complex electrochemical signals are passed between parts of the nervous system

and on to endocrine and muscle systems

2. muscles, bones, and connective tissues execute a complex sequence of actions

3. rapid visual, tactile and proprioceptive monitoring of actions takes place

4. music is produced by the instrument or voice

5. self-produced sounds, and other auditory input, are sensed

6. sensed sounds are set into cognitive representations and evaluated as music

7. further cognitive processing in the central nervous system generates the design of

the next action sequence and triggers it.

- return to step 1 and repeat –

 6

Pressing argues further that the differences between a fixed performance and

improvisation are in step 6 and 7, with ‘important differences’ in step 3 (Pressing, 2001,

p.130).

To support and maintain this interactive process an interface must be stable and provide

accurate data generated by the performer. The environment then must be able to

implement the mapping that will allow this interactivity to take place and will enable the

performer to experiment with its affordances in real time.

 7

1. Live Coding

1.1. Introduction

Live coding is the real time building or modification of the source code of software that

produces either music or visuals. Live coding uses the act of programming in a live context.

The performer writes algorithms in a programming environment whereby they interact

with the produced sound by altering the code on the fly. This live process is usually

projected onto a screen to let the audience follow the changes and the development of the

code in conjunction with the musical outcome. Live coding is a paradigm of performance

in computer music, but not limited to this genre’s characteristics, as it extends to other

electronic music examples which use the computer as their main medium such as

electronica, glitch and rave.

In contrast with other contemporary electronic music genres such as the acousmatic

tradition, live coding performance shows the audience the moment when the music is

being created. Through the projection of the code, which is shown on the screen during a

performance, the listener is able to watch the performer’s manipulations and to presume

how his or her actions are influencing the overall sound. From this perspective, the

audience can understand the presence of the live performer through the code and its

development as the musical discourse unfolds. This is something that in acousmatic music,

for example, is absent, although this absence is an essential characteristic of the

acousmatic tradition.

In the post digital era the computer is integral to the arts. Computers are at the core of

contemporary electronic music and are fundamental in performance practice. Hugill

(2012, p.5) states that:

A digital musician is one who has embraced the possibilities opened by new

technologies, in particular the potential of the computer for exploring, storing,

 8

manipulating and processing sound, and the development of numerous other

digital tools and devices which enable musical invention and discovery. This is the

starting point for creativity of a kind that is unlike previously established musical

practice in certain respects, and requires a different attitude of mind.

Computer or digital musicians and laptop artists employ the computer as the main

medium when creating and manipulating sonic material. Real time sound synthesis, signal

processing and sound diffusion are realised through the computer. Digital musicians

amalgamate various roles when creating music. Some of the tasks they need to fulfil are

computer programming and software development as well as composition and

performance of their works, blurring the borders and distinctions between technical,

oriented practitioners and artists. One could argue that live coding leads to the collapse of

the separation between programmers who designed the musical software and artists who

for many years were considered as two distinct entities.

The performers are almost exclusively the same people who have designed and

written the software instruments in countless hours. The traditional separation into

composer, instrumentalist and instrument maker is not valid for them anymore.

And since these people spend most of their time at the design of their instruments

(which, due to the power of general purpose machines, are not “just” instruments

but can also hold scores and algorithms, which will eventually form the

“composition”), it is only logical that this is the field where they gain the greatest

skill and virtuosity: the design of algorithms and their implementation in source

code. (Zmölnig and Eckel, 2007, p.295)

Live coding embodies live programming but its essential priority is music; this is illustrated

by the fact that live coders are music practitioners and not necessarily programmers. The

first known performance of live coding was realised by Ron Kuivila who was a sound artist

 9

with a background in live electronics and circuit bending at the Studio for Electro

Instrumental Music (STEIM) in Amsterdam in 1985 (Blackwell and Collins, 2005, p.122).

In live coding programming becomes the instrument of the performer and serves as an

extension of his or her mind and body just as the bow of a violinist serves as an extension

of his or her hand. Live coding is a post-digital art form, where the improvisation of

algorithms and code is the core of its ethos. The following list is a selection of excerpts

from the manifesto of Toplap5 to illustrate this concept further:

We demand:

• Programs are instruments that can change themselves.

• Live coding is not about tools. Algorithms are thoughts. Chainsaws are tools.

That’s why algorithms are sometimes harder to notice than chainsaws. (Toplap,

2010)

1.2. Routes

According to Nilson (2007, p.112) live coding performances can be viewed as a process of

problem solving that is similar to the early days of mathematicians who were challenging

other mathematicians to solve complicated and unsolved problems in public.

Some Authors [...] argue that the tournament on cubic equations between the two

Italian mathematicians Nicolo Fontana Tartaglia and Antonio Maria Fior about

1539 might be considered an early Live Coding performance (albeit it lasted for

several weeks and is thus not directly comparable to today’s short-lived

performances). (Zmölnig and Eckel, 2007, p.295)

It can be argued that live coding emerges out of the tradition of circuit bending, as both

follow the idea of hacking sound modules in real time. Circuit bending, the process of

5 A website dedicated in live coding. See http://toplap.org

 10

hacking an electronic component, is characterised by the act of someone trying to modify

its original construction. This has a relationship to the modification and hacking of the

source code of a running application. During this process there may be a sort of

detachment with the sonic output, arising from the interaction of the running algorithms

as a consequence of being tweaked. The relationship between circuit bending and live

coding is strengthened when comparing the ethos and the procedural circumstances of live

coding and circuit bending practices, where improvisation is the predominant mode of

performer interaction. In both cases the performer is focused on the live modification of

sound modules in pursuit of musical artistry.

Another parallel that can be drawn between live coding and other earlier musical

paradigms is to the genre of live electronics, for example, the work of Musica Elettronica

Viva who put an emphasis on the hacking of electromechanical devices and other non-

musical objects on stage. (Manning, 2004, p.161)

A characteristic work of MEV is the realisation of Variations IV (1966), which was

composed by John Cage, and it was scored for instruments and other unconventional

sounding objects such as transistor radios, a Volkswagen bus, a garden hose and wooden

chairs. MEV also used a range of more traditional electronic devices including tape-delay

systems, contact microphones, Moog synthesiser modules, and alpha waves decoders. The

idea of hacking hardware sound modules on stage, as demonstrated by these examples, is

closely connected with the idea of modifying the software source code in real time, using

improvisation as the main driving force. From this perspective, live coding can be viewed

as a logical extension of the live electronics tradition.

The works of MEV focused more on the individual motivations of the players, rather than

the interpretation of an overall plan (Manning, 2004, pp.157–162). MEV’s performances

illustrate the idea of a collective improvisation act rather than prioritising the performer as

an individual. Similarities in approach can be seen in the methodology adopted by many of

 11

the current laptop ensembles who make use of live coding as their performance practice,

to name but a few, Benoit and the Mandelbrots, Cybernetic Orchestra, Birmingham

Ensemble for Electroacoustic Research (BEER), and the PowerBooks Unplugged.

1.3. Environments for live coding

There are many environments used for live coding; some of them include the broader and

well known environments for sound synthesis and algorithmic composition in real time,

whereas others have a more idiomatic nature created by the artists themselves, and reflect

their idiosyncratic preferences. Some of these environments are text oriented languages

such as SuperCollider, and Chuck (Wang, 2008) as well as the graphical environments

such as the open source environment Pure Data (Puckette, 1996), and its commercial

version Max/MSP (Cycling74, 1998). Typical idiomatic languages include Impromptu

(Sorensen, 2005), and IXI Lang (Magnusson, 2011). For an extensive list of programming

environments as well as events and topics covering live coding see Toplap’s website6.

1.4. Performing with BEER

My personal work includes an affiliation with BEER. The ensemble researches collective

improvisation using live coding and network performance. Personal experience with the

ensemble over the past three years has proven very helpful in regard to developing skills in

live coding within the context of an ensemble, as well as raising my awareness of

collaborative and networked performance.

BEER repertoire includes original compositions, often with bespoke software developed

for specific pieces. Each piece comprises a set of interaction affordances, which are

defined in the development of the software, the performers learning to improvise within

these constraints. During the performance the members of the ensemble contribute by

6 http://toplap.org/category/software/

 12

modifying synthesis code in real time following a set of instructions that come with each

piece.

The ensemble embraces the ethos of free improvisation strategies ingrained in post-free

jazz groups as well as the structural models found in John Zorn’s musical piece named

Cobra (1984) (Wilson et al., 2014, p.54).

Creative outcomes of this collaboration include a series of concerts7 around the UK and

rest of Europe, as well as the co-authorship of a paper published by the Computer Music

Journal in a special edition on live coding (Wilson et al., 2014).

1.5. The many faces of code

1.5.1. Code as interface

The idea of the code as an interface is well demonstrated by the BEER ensemble.

According to the ensemble ‘live coding provides one fertile solution to the problem of

interface design for musical performance, with rich implications for improvisational

practice.’ (Wilson et al., 2014, p.54)

The ensemble uses Julian Rohrhuber’s Just In Time library (JITLib)8 in SuperCollider. One

of the fundamental ideas of live coding is that the performers can modify the source code

of a program while it is running in order to manipulate or to intervene in the sonic

outcome. With this in mind, the JITLib provides some additional enhancements

(programming classes) for live coding that allow an intervention without the need to stop

and re-evaluate after the modification of their content. This is vital for the improvisational

discourse.

7 A selection of concerts include: Network Music Festival, 2012, UK; Live Code Festival, 2013,
Germany; Akou Festival, 2014, Greece; Brno, 2015, Czech Republic. A selection of recordings of live
performances of BEER can be found at this link: https://soundcloud.com/beer-ensemble
8 See http://doc.sccode.org/Overviews/JITLib.html

 13

Pdef(\a,

Pbind(\instrument, \synth,

 \dur, Prand([4/4, 4/8, 4/16, 4/32], inf),

 \rate, Prand([0.2, 0.4, 0.6, 0.8, 1, 3], inf),

 \buf, ~sounds[0]

);

);

Figure 1.1 Manipulating synthesis parameters with patterns in SuperCollider.

Figure 1.1 shows a way to interact with a synthesiser in real time and intervene in the

sound without interrupting the performance using patterns in SuperCollider. Particularly,

the above example illustrates the coupling of synth parameters with patterns implementing

a Prand that comes with SuperCollider. In this example the rate variable of the synth is

controlled by some random values that are defined as an argument inside the Prand.

Using the patterns the performer may achieve interactivity with the sound by modifying

the enclosed values of a pattern while the streams run. A selection of patterns is available

in SuperCollider, from which the performer can select either random or sequential data

streams. A combination of patterns is also possible by embedding patterns within other

patterns.

Once the patterns are defined the performer is able to map these streaming data to any

parameter and control the variables of a synthesiser dynamically. Consequently, it is hard

to ignore that this is similar to the use of a hardware interface that one would employ to

manipulate the parameters of a digital instrument(s) externally. De Campo et al. (2007,

p.4) states that:

While such a phrase evolves, one can listen to it, read its code, make changes to it,

and replace it with a new variant at an appropriate moment. This can be seen as a

continuation of motivic development as in western classical music, as a form of

genetic algorithms with the performers’ aesthetic preferences as fitness functions,

or as multi-path looped version of the surrealist technique cadavre exquis.

 14

1.5.2. Code as communication medium

Whether the code is the medium to describe the sound that a composer wants to design

through a programming environment or acts as the interface for creating musical phrases

and controlling musical extents, it can also act as a dynamic medium that enables the

performers to communicate with each other. For example, using the code as a documented

body for further introspection. De Campo et al. (2007, p.3) states that: ‘The music we play

is highly communicative group improvisation, based on a body of code created in

rehearsals and concerts (collected later), rewritten on the fly, and communicated back and

forth continuously.’

The code can be seen as the creative link between the performers of a laptop ensemble. In

the case of BEER for example, the code is available through the communication platform

called Utopia (Wilson and de Campo, 2013) that the ensemble uses to communicate with

each other. The code is available to share, edit, and send back through this platform. The

coherence of the group is strengthened by the ability of the system to devise dynamic

connections between the performers implemented in each piece specifically. For example,

triggering cues of synthesis nodes and controlling the general tempo of the ensemble from

a master computer. The coders can copy, change or evolve the code of the others

dynamically on their computers, enacting collaboration between each other, and giving

consistency to the overall musical outcome. Through this communication the group is able

to explore structural attributes and characteristics during network performance. Finally,

the communication between the members of the group is aided by a chatting window

provided by Utopia; through chatting the members are able to communicate whether they

are going to start and stop or suggest further directions of the performance.

In this context the group not only enables the communication between the performers’

actions during the performance but also enacts communication characteristics similar to

the collective improvisation found in jazz ensembles, for example, using eye contact or

 15

head nodding to let the others know that their solo part is ending or to return to the theme

of the piece, but in a much more explicit manner.

1.6. Live coding and the audience

Live coding is a growing paradigm of computer music performance. Live coding

performances are often witnessed at academic events (conferences, symposiums etc.) as

well as in smoke-filled noisy bars and festivals. The audience usually consists of people

who come from both programming and non-programming backgrounds, some of whom

have little understanding in the process. ‘It was the first live coding performance I ever

seen, and that was live coding yeah? It is quite bewildering watching it. I can’t say I

understand in the slightest what was going on.’ (McCallum and Smith, 2011)

In response to the above, I believe that while watching a live coding performance there is

no need to understand or to acknowledge the programming language. For example, when

people listen to a large ensemble performing a particular classical work, they are not

expected to know the specifics of what is going on, but they can still thoroughly enjoy

classical concerts. The following statement is included in the Toplap’s manifesto: ‘It is not

necessary for a lay audience to understand the code to appreciate it, much as it is not

necessary to know how to play guitar in order to appreciate watching a guitar

performance.’ (Toplap, 2010)

De Campo et al. (2007, p.3) state that:

A pianist in classical setting makes decisions on details that bring out the structure

and the subjective emotional meaning of a piece; the “text” of the composition itself

is usually not touched. Even if the pianist’s hands are not seen, an audience can

follow and appreciate these aspects quite well.

Taking this into account, live coding is not aimed exclusively at audiences with knowledge

of programming. As in every kind of musical performance, regardless of its genre, the

 16

intention of the audience is not to examine the technicalities of what they hear and to

analyse it, but to enjoy the quality of the music itself.

The live projection of the code reveals the theatricality created by the dynamic

modification of the code while performing. The audience may relate the changes between

the sound and the code accordingly. In addition to the projection of the code as a way to

enhance theatricality while performing it is also crucial to consider the location of the

performers in respect to their positioning and in respect to the audience.

To reflect on this topic I will provide an insight from a personal experience while giving a

performance with the BEER ensemble in a club in Corfu9. For this concert we decided to

place our laptops in the middle of the room where the audience would sit around us

creating a circle and facing each other. The loudspeakers were placed behind the audience

creating a circle. Each performer had two speakers placed behind him/her accordingly. As

the performance evolved I looked around the room and thought: if a person entered the

room in that particular time s/he would experience mystical scene comprised three

persons who were focusing solely on their laptops creating sounds; the audience tried to

decode (or not) the actions of the performers and relate to the music they were listening.

The drones and ambient sounds that the group was creating at that moment in

conjunction with our location in the room and the way we were sitting enacted an

atmosphere similar to a musical liturgy. As a result of the set up and the position of the

audience in relation to the performers (i.e. immersing the latter) it enacted theatricality,

and a sense of intuitive communication between the performers and the audience.

9 The performance took place during the summer academy Akou 2014 of the music department of
the Ionian University in Greece.

 17

1.7. Music composed with live coding

Working with live coding I have created a series of live performances and fixed media

pieces that comprise material from live sessions. Material includes videos of the computer’s

screen recordings with code manipulation and its sound. Additionally some annotations

were applied on the video in order to describe the process and explain how the

modification of the code changes the state of the running software.

Glitchy10 (2013) is a live performance created with SuperCollider using live coding. It was

created to explore the idea of the real time modification of a running program. The

software consists of the implementation of a sound sampler, which uses audio files stored

in the computer’s hard disk11 . Instead of starting from a clean slate, I created some

preamble code12 through which I interact throughout the musical performance. This code

sets out various strategies and includes the following:

1. Rhythmic interaction based on a tempo clock. This is achieved through the

Implementation of a tempo-clock through which I can change the speed of the

manipulation of the sound and vary the rhythm of the piece. Some other code

implemented the allocation of the buffers for the audio samples.

2. Manipulation of the sound in a higher level. Implementation of post-production

effects. In addition to the sampler some effects are added in order to manipulate

the output of the sampler. The effects provide their own parameters that I can

manipulate in real time.

3. Real time mapping of generative processes with parameters. Interaction with the

sampler takes place through the implementation of patterns, and the performance

10 A video with the full performance of the piece is included in the accompanying DVD and online at
this link:
https://www.youtube.com/watch?v=jRC0kpEpPUc&list=PLMmfcbi0xjDlZXjTsmJ7jy5sAYYi6SCOG
&index=2
11 Included in the root folder of the project in the accompanying DVD.
12 Included in the accompanying DVD.

 18

mainly elaborates by tweaking them on the fly. The patterns are grouped in

different sets of pattern definitions that contain the couplings between the

parameters of the sampler and the corresponding patterns. During the performance

I am able to start and stop these definitions as well as change their internal

structure and control the form of the piece.

4. Expansion of interaction by introducing new controls. This is mainly achieved

through the implementation of more couplings between the patterns and the

parameters of the sound system; these parameters must exist and pre-defined to the

synth before the performance using default values until they receive continuous

control from the pattern definitions.

The performance evolves through the interaction with code in a fully improvisational way.

There is no initial or pre-conceived idea of the piece or its structure. All decisions are made

based upon the free manipulation of the sound and the attempt to keep a musical

coherence within the improvisational discourse. Glitchy is compelling both from audience

and performer point of view. The audience can visualise the implication of the code and its

correspondence with the sound manipulation in real time. It also explores the idea of the

code as interface, investigating the interaction affordances provided by this performance

paradigm. My approach focuses in the mapping aspect and its musical implications during

the performance showing the ability of live coding to create complex mappings without

being constraint to fixed parameter mapping compared to other performance paradigms.

A screen and audio recording of the performance is provided. At the left of the screen is

located the post window through which SuperCollider returns messages about the

executed commands or errors that occur during the performance. Timings refer to the

documented performance. At the beginning of the video the post window shows the

 19

process of booting the server13 of SuperCollider. At 00’50” I execute a line of code that

loads the audio samples on the server, the paths and the names of the samples appear in

the left of the post window. At 00’53” I run a tempo clock, through which I will be able to

control the tempo of the piece. At 00’55” I run the code that is the implementation of the

sampler and at 01’03” I load more samples. At 01’05 I run the first chunk of code that

contains the patterns, which control the parameters of the sampler and its delay effect. At

01’09” I start the first pattern set, which causes the sound turn on. In the next seconds I

evaluate and start the rest of the pattern sets. At 01’54” I introduce a new control

parameter in the pattern definition. Note that this parameter already exists in the sampler.

In this case this parameter is the decay argument of the delay effect, I set it initially to a

value of 0.2. At 02’03” I substitute the value with a pattern that implements a random

sequence of embedded values, thereby I experiment with this by inserting more values to

be used by the random generator. At 03’07” I switch off one of the pattern definitions. In

the next seconds I start it again. At 03’54” I restart them as well as I introduce new sounds

and improvise substituting values that correspond to the parameters of the delay effect. As

the performance evolves I am introducing new arguments by copy and paste instead of

hard coding them all the time. At 05’29” I am slowing down the tempo by replacing its

current value and I experiment with it until 06’08”. The rest of the performance involves

tweaking and replacing the values of the parameters of the sampler and the delay effect

through the pattern definitions.

1.8. Mapping immutability and hybrid environments

Programming environments such as SuperCollider can allow the dynamic alteration of its

running processes without the need to recompile or restart the software. Thus it is

becoming increasingly difficult to ignore the desire for live tweaking of the mapping while

performing with hardware interfaces. Following this performance strategy the performer is

13 Server is the synthesis engine of SuperCollider, see:
http://doc.sccode.org/Guides/ClientVsServer.html

 20

able to achieve greater possibilities of interaction and drift between various interaction

possibilities when performing with computer-based musical environments. This is not to

say that by changing the mapping one eliminates the limitations of a musical environment,

instead the performer moves to different interactivity features and expressivity possibilities

while improvising with the performance environment. Additionally, it could be

hypothesised that changing the mapping while performing with external interfaces

releases the performer from fixed decisions and raises the possibility for a wider

improvisational discourse. The unpredictability of the environment and the non-

deterministic possibilities that emerge by the hacking of its mapping will create

unpredictable, yet potentially interesting musical results, and will lead the performer to

paths otherwise unexplored. Particularly, changing the mapping will avoid the human

gestures resulting in repetitive sound manipulations. On the light of these objectives I

followed the following strategies outlined as follow:

1. Implementation of boiler code, something to start-up with. Before the performance, I

create some initial mappings, which I can change them live, this eliminates the time

that it might take in order to prepare the code live in front of the audience.

2. New interaction possibilities with the performance environment. This is achieved by

the introduction of new control inputs on my performance environment. That is,

although a performance may start with a set of parameters, I am able to introduce

(or amend) new synthesis parameters and implement their mappings on the fly14.

3. Musical implications, expansion of musical articulation. Modifying the performance

environment to change the musical outcome, and adapt the environment to new

musical requirements while improvising. This is achieved by coupling a control

variable of a joystick with a control parameter of the synth, and experimenting its

14 Examples of this strategy will be discussed in the next paragraphs.

 21

range specification or change the source of a synth that I am controlling externally,

e.g. replace sine oscillators with saws etc.

The combination of these two powerful performance paradigms seems fruitful, particularly

in the context of musical articulation and real time exploration of interaction affordances

as it releases the performer from previous decisions that were taken before the

performance. Examples of this approach were explored in Formations and Blind date

performance, as discussed in the next paragraph.

Formations15 (2013) is a live piece created using the method of improvising the mapping in

real time. Listening to the piece it becomes apparent that changing the mapping

relationships between the hardware device and the synthesis parameters can lead to

structural variations and musical articulation.

OSCdef(\dens, {|msg| // line 1.
 ~playbuf.set(\dens, msg[1].linexp(0.1, 1.0, 0.5, 20.0)); //line 1.1
 ~playbuf.set(\mod, msg[1].linexp(0.1, 1.0, 0.1, 20.0)); //line 1.2
}, '/max_y');

OSCdef(\scroll, {|msg| // line 2.
~playbuf.set(\start, msg[1].linlin(0.1, 1.0, 1.0, 0.1)); // line 2.1
~playbuf.set(\mod, msg[1].linlin(0.1, 1.0, 0.1, 40.0)); // line 2.2
}, '/max_x');

Figure 1.2 Live coding the mapping of hardware devices.

An example of the live modification of the mapping is illustrated in Figure 1.2, which

shows a preamble snippet16 that was developed to fluctuate the parameters of a granular

synthesiser using a joystick.

15 The piece is included in the accompanying DVD and online at this link:
https://soundcloud.com/konstantinos_p_vasilakos/formations
16 Preamble code of Formations is included in the accompanying DVD.

 22

The granular synth used pre-recorded samples stored in the hard disk of the computer, and

it was implemented in SuperCollider. Table 1.1 illustrates the parameters that were

implemented in the granular synth.

Parameter Control

Buf Sample selection from folder.

Dens Grain density.

Start Start (reading) position of the grain.

Mod Frequency.

Table 1.1 Parameters of the granulator implemented in Formations.

In order to map the joystick in SuperCollider I used a programming class named OSCdef,

which is a higher-level implementation of the Open Sound Control17 (OSC) communication

protocol in SuperCollider.

The interaction takes place within the OSCdefs, through which I alter their mappings in

real time. The incoming control signal of the hardware device is denoted by the word msg.

During the improvisation I am able to change range specifications of the control signal

using linlin for linear and linexp for exponential scaling that come with SuperCollider. The

first two arguments of the scaling functions are the initial low and high values of the input

signal; the next two are the lower and higher values of the desired range. Lines 1.1, 1.2

and 2.1, 2.2 of Figure 1.2 illustrate a way to scale continuous control signals in

SuperCollider.

Given the nature of code manipulations and complex alterations of each bit of code it is

impossible to describe in detail what is happening throughout the piece. However, a

description of the performance regarding the changing of the mapping revolves around the

following example illustrated in Figure 1.2.

17 See http://opensoundcontrol.org/introduction-osc

 23

I initially begin with line 1.1, which maps the Y-axis of the joystick with the density (dens)

parameter of the granulator. Later I add line 1.2, which maps the Y-axis with the

amplitude modulation (mod) parameter. As the performance evolves I add another

OSCdef, line 2, which uses the X-axis of the joystick. In line 2.2 the mod parameter is

controlled by the X-axis. Line 2.1 introduces a new parameter that is implemented on the

fly, and controls the start position of the grain.

Additionally, I created various effects to process and enrich the sound output. These

included the live implementation of a reverb processor, a comb-filter, a resonator, and

pitch shifting. During the performance I improvise by changing the balance between dry

and wet signals of the effects and I experiment by routing the signals to each other.

Blind date18 (2013) is a live piece using the same strategy that is changing the mapping

dynamically during the performance. It took place in Chisenhale Dance Space, curated by

Agony Art in London. The performance was made jointly with another laptop artist Shelly

Knotts, and a team of dancers. The plan of the performance was based on blind date idea,

i.e. meet with the dancers only at the day of the performance without any prearranged

structure or agreed parts, except sharing a common philosophical concept, that of

causality; I approached this concept by creating links of the input data and the resulted

sound, a sort of cause and effect relationship between the dancers and the music. Figure

1.3 illustrates the control names and trajectories of the Wiimote that were used in the

Blind date performance.

18 A video of the performance is included in the accompanying DVD and online at this link:
https://www.youtube.com/watch?v=2Pk1nmIAoQs&list=PLMmfcbi0xjDlZXjTsmJ7jy5sAYYi6SCOG
&index=1

 24

Figure 1.3 Control names and trajectories of Wiimote. Image taken from OSCulator user’s manual

version: 20120123 (Troillard, 2012, p.53). Copyright Wildora 2012. Reproduced with permission.

Figure 1.4 shows an example of the mapping that was implemented in order to map the

Wiimote (used by the dancers) and the synthesis engines run on my computer. To receive

the data from the device I used OSCulator (Troillard, 2011), a third party application to

convert the data of the device to OSC. The control signals of the device were mapped to a

granular synthesiser named granular19. The code uses the X and Y-axes of the device as

well as its accelerator sensor and couples it to various synthesis parameters of the sound

engine implemented during the performance.

Wiimote provides three control variables regarding its orientation angles; these are pitch,

roll and yaw (see Figure 1.3). In line 2 of Figure 1.4 the pitch angle of the device given in

line 1, controls the perceptual pitch (rate) of the grain. As the performance evolved I

improvised with the mapping of the pitch and roll angles of the Wiimote and the

parameters of a pitch shifter effect named pitchShift. This was implemented during the

performance to process the output of the granular synthesiser. The pitch shifter included

two parameters controlling the pitch deviation (rateDev) and the time deviation (timeDev)

of the output, which were both controlled by the pitch angle of the Wiimote, lines 3 and 4.

19 Preamble code is included in the Blind date folder in the accompanying DVD.

 25

OSCdef(\wii_pitch, {|msg|
 ~pitch = msg[1]; // 1.
 Ndef(\granular).set(\rateDev, ~pitch.linlin(0.1, 1.0, 0.5,
1.0)); // 2. (line starts from Ndef to semi colon).
 Ndef(\pitchShift).set(\rateDev, ~pitch.linlin(0.1, 0.5,
1.0, 5.0)); // 3. (line starts from Ndef to semi colon).
 Ndef(\pitchShift).set(\rateDev, ~pitch.linlin(0.1, 1.0,
0.1, 2.0)); // 4. (line starts from Ndef to semi colon).
}, '/wii/1/accel/pry/0'); // 5.

Figure 1.4 Altering the mapping of synthesis parameters and Wiimote.

In addition to the pre-developed code I created a projection utility20 in SuperCollider,

which was able to pick the name of a performer and project it (see Appendix – Blind

date/Fair Algo). The name appears on a projection screen that was placed in a corner of

the dance floor. The order of the names as well as the handling timing was made based on

an algorithm embedded in the projection utility.

This was used to apply structure and equality in respect of the time that each performer

was able to use the device. Once the name of the next performer appeared on the

projection the dancer had to hand it over. Finally, the utility uses the vibration of the

Wiimote in order to provide tactile feedback to inform the performer to pass the device to

the next dancer. Given the nature of code manipulations and complex alterations of each

bit of code it is impossible to describe in detail what is happening throughout the video.

1.9. Live coding in studio: from code to tape

Live coding is often witnessed in performances of live electronics and computer music

events. However, there is no reason to keep live coding practice limited only to a live

context. It All Starts with Noise21 and It All Ends with Noise (2013), are two fixed

compositions that use material that originated from live coding performances. Once I

created the material I manipulated it further and organised it in the studio, the

20 Included in Blind date folder in the accompanying DVD.
21 Included in the accompanying DVD.

 26

manipulations included the transposition of the original pitch of the sounds as well as

editing of their durations. Other processing included spectral manipulation, such as

harmonisation and layering.

It All Ends with Noise22 was premiered in SoundThought festival in 2014 organised by

Glasgow University. The video shows the making of a tape piece using live coding in the

studio. It begins with an explanation of various parts of the coding performance and

proceeds with the music piece.

Timings refer to the documented video. The performance starts by implementing a sample

player (0’21” – 0’40”), which uses sound samples that were stored in the hard disk of the

computer. Once the samplers are implemented and running I add some postproduction

effects, for example reverb, and pitch shifting processors (0’41” – 0’45”). As the

performance evolves I improvise by fluctuating the values of the parameters of the

samplers and the effects (1’31” – 2’09”). At 2’12” – 2’33” I improvise the mixing of the

samplers with the effects. The performance lasted for approximately 40 minutes. The video

continues with the final fixed version of the piece. It comprises the juxtaposed processed

sound layers, for 2 and 8 speakers.

The strategy that was followed during the composition of these pieces was to create the

material live, in line with structuring the composition. For example, while I was organising

and editing the piece I wanted a specific passage or a layer of sonic gesture, thus I went

back to compose it through live coding. The plan of the performance of this new layer was

totally informed and (notionally) instructed by the structure of the piece. This way of

composing resembles to the procedure of assembling a puzzle, in the case of the music

however, its bits and pieces are created in the same time of forming it. This pre-conception

of composition however, did not exclude improvisation. If I created a sound, which I did

22 The piece was included in the journal’s creative work section and can be found at this link
http://www.soundthought.co.uk/journal2014/konstantinos-vasilakos-live-coding/

 27

not plan I made it fit to the rest of my piece. To that end, although these pieces were

created in an offline way, their initial structure was improvised and performed in studio in

using similar rules and strategies I use to build my live pieces on stage.

1.10. Other aspects of live coding

Other forms of live coding include sonification design and the creation of sound synthesis

for films. One example of live coding used for film sound is the experimental documentary

Alles was wir haben (Alles was wir haben, 2004) where the sound is created in real time

by performers interacting live with the visual footage.

In the development of this soundtrack almost all real sounds were created in a

process of interactive programming, where the two artists tried to find ways toward

a certain sound impression from their memory. The collaborative process was only

possible in this way because the textual description of this purely synthetic,

algorithmic sound could be modified while active. (Rohrhuber, de Campo and

Wieser, 2005, p.294)

This example of live coding as a real time sound for film is similar to the music making for

the film Ascenseur pour l'échafaud (Elevator to the Gallows, 1958) where Miles Davis and

his band improvised to the visual footage of the film to create the soundtrack.

Demonstrating the live process of this musical act by Davis and his ensemble, Boris Vian

wrote about this session:

Miles had hurt his lip, Boris claimed, and a piece of skin had come off and stuck to

the mouthpiece, producing “a strange sonority” during the recording of “Diner au

motel”: “And as some painters owe the plastic quality of their work to some

accident, in the same way, Miles willingly greeted this “unheard of” element of

music (“unheard of” in the literal sense of the word).” (Szwed, 2002)

 28

With this extract I want to highlight the “unheard” elements that take place during

improvisation. Regardless of the medium or the genre, these extra “unheard” musical

aspects of the performance shape and form the overall outcome of the music. Similarly,

live coding as a pure live act features some similar characteristics of live music making.

Relating a live coding act to conventional or established and found forms of improvisation

one could argue that a crash, a typo, or a misplaced and inappropriate hack of the active

software while this runs could destroy the flow of the performance. Although a crash or a

glitch caused by a fault might sound inappropriate during a performance, live coding

ingrains them as essential parts of its main ethos. Additionally, these elements add tension

to a performance, as the performer tries to overcome and solve these in front of the

audience. A common misconception is that driving a computer to or beyond its limits is the

sign of a great coder, however, crashing is not an indication of quality.

Finally, some live coding environments provide to the performer some artificial risk

functions, as an attempt to create more tension while improvising. For example the IXI

Lang’s suicide function (Magnusson, 2011) shows this extra element of risk during the

performance.

1.11. Conclusion

Live coding is a growing paradigm of laptop performance. The initial idea is to hack the

source code of running software or improvise a new one on the fly by tweaking algorithms.

It provides multiple roles within the performance; it may serve the role not only of the

interface where generic data is imposed, but also as the communication bridge through

which the members of an ensemble communicate with each other.

The performer needs to integrate roles of programmer and performer at the same time,

and to be competent musically as well. Improvisation is at the fore throughout the

performance.

 29

Using live coding to modify the source code of a running digital instrument broadens

possibilities of interactivity while performing. Integrating live coding and gestural

controllers helps extend the improvisational discourse. The idea of modifying and

extending the mapping of an instrument on stage using live coding not only enacts broader

interactivity and builds diverse affordances, but also creates wider compositional and

structural variations leading to musical richness and greater articulation, as observed in

paradigms of performing with hardware controllers.

During the process of building and modifying the synthesis software, glitches, crashes, and

unintentional clicks seem to add to the musical outcome due to the real time tweaking of

the source code of the running software shaping the musical outcome of the performance.

The form of the piece when improvising with code is open to the experimentation of the

performer. They can start with a very simple idea and evolve, as seen in Formations, or

they can prepare snippets of code that provide the initial platform to improvise and

elaborate with a specific musical idea, seen in performances such as Blind date. However,

most of the changes during the performance will require to type new code or amend the

current one, consequently, this will lead to a sonic inertia. In other words, it will take some

time to change radically textures and sounds or music moods if there are no snippets of

code to create these changes, which were developed before the performance.

Moreover, contrary to other genres of electronic music, the live projection of the code

shows the source from which the sound is created allowing the audience to establish a

rough connection between the changes of the sound and the code. This enhances the

aspect of theatricality in live coding.

In the case of performing with large ensembles, for example in BEER sharing the code with

the rest of the performers through a network can sustain an immediate sense of collective

improvisation by allowing the use of the same bits of code. By improvising common

 30

snippets of code the group creates unified and consistent sound entities where each

performer is able to intervene as well as to contribute.

In addition to the connection of the performers through sharing what each one creates in

their computer by exchanging bits of code, the structure of the performance is aided by the

communication that the performers have through their chatting windows. This allows

them to align their actions during improvisation, e.g. decide how to end the performance.

This way of performing brings to the fore the way of communication found in other

improvisational paradigms such as jazz; for example, eye contact or head nodding as the

sign to internal cues, but arguably in a more powerful way because it can be very specific.

 31

2. Hardware Prototyping

2.1. Introduction

Developing interactive environments for musical creation has a long history as well as a

significant number of on-going showcases, however the question of how to translate the

physical to the digital domain still appears to perplex artists and software developers.

Power of People (PoP) is a sound installation created to explore new approaches in

electroacoustic composition using representative interfaces for musical creation. The

installation uses environmental data captured in real time such as temperature, light, and

motion to control a sound synthesis system developed in the SuperCollider programming

environment. More specifically, the project focuses on the mapping of more than a single

performer, expanding the scope of my research into man/machine relationships. Work for

this project included hardware prototyping as well as software development to build an

interactive sound installation. Finally, the project also acts as a model for bigger

installations able to implement sonification of various data.

Sonification is an interdisciplinary field in sonic art utilising all sorts of information into

processing, information that ranges from statistical data to continuous signals (Walker and

Kramer, 2005; de Campo, Rohrhuber, Bovermann and Frauenberger, 2011; Hermann,

Hunt and Neuhoff, 2011).

2.2. Overview of PoP

As mentioned above PoP includes both hardware and software23 development. Hardware

includes a series of sensors that track environmental conditions such as light, temperature,

and motion accumulated into an Arduino Uno micro-controller board. For a complete

overview of the system including schematic diagram and other information see Appendix

of PoP. The Arduino board communicates with the synthesis software through the

23 Included in the accompanying DVD.

 32

Firmata 24 protocol, which includes an implementation of the Firmata 25 protocol for

SuperCollider that was used in this project. One of the benefits of following this approach

is that it does not require the ability to program an Arduino. To establish the

communication between the hardware and the computer the user has to upload the

Firmata firmware onto the Arduino board. In order to read the pins of the board and the

sensors’ data in SuperCollider, the user must implement the classes that are provided from

the Firmata implementation. These classes are used to read the digital and analog pins of

the board using the protocol.

In the PoP system each sensor is represented by a variable. The system includes the

following variables: ~light, ~light2, ~temp, ~motion. In this way the user can create

arbitrary mappings of these variables anywhere inside the program. These names illustrate

the on-going values of the sensors attached to the board, except for the motion sensor,

which has a binary state of 1 or 0 and works only as an On - Off switch.

For better readability of the code and ease of debugging, the system was developed in two

separate parts, the interface and the synthesis engine. The interface includes the

implementation of the mapping, and the treatment of the sensors’ data (explained in

section 2.3). The sound synthesis engine consists of a sine wave generator constrained by

an envelope. The temperature controls the duration (release parameter) of the envelope.

Depending on the temperature of the space that the installation is hosted in the sonic

output varies from overlapping short grains to long drones. The frequency of the sine

waves is influenced by a chaotic generator that creates variations on its fundamental pitch

controlled by the ~light sensor. Next in the synthesis chain is a feedback processor that

uses the sine waves for input.

24 See Firmata http://www.firmata.org/wiki/Main_Page
25 See an implementation of Firmata in SuperCollider https://github.com/blacksound/SCFirmata

 33

2.3. Calibration and scaling: sensors making sense

The digital and analog sensors that were used in the project have different ranges. The

motion sensor is digital and appears in SuperCollider in binary range of 0 – 1. The analog

sensors (light and temperature26) have a 0 - 5 voltage range, the micro-controller board

converts it to a range of 0 - 1024 using an analog to digital converter27 which is applied to

the analog inputs of the board. Finally, a preamble calibration to a convenient range of 0.0

– 1.0 was applied to all sensors, excluding the motion sensor.

Having done all the calibration the sensor is ready to bind with the desired parameter. At

this point some additional scaling may be necessary in order to adapt to the appropriate

range of a synthesis parameter. Most parameters use diverse range, for example a

frequency parameter would range between 220 – 1220.0 as opposed to amplitude, which

usually ranges between 0.0 – 1.0 in most digital environments. This creates the need for

adjustment i.e. constraining or expanding the control signal. Once the sensory input is

converted into a convenient standard i.e. 0.0 – 1.0 it is ready to be adjusted according to

the desired range of the corresponding parameter.

26 The temperature sensor required additional conversion to degrees Celsius.
27 This conversion is made via a circuit embedded in the Arduino board, and is applied when using
the analogRead command in Arduino language, which is used to read the analog pins of the board.
The Firmata implementation uses this command when reading an analog pin of the board and thus
is applying this conversion automatically.

 34

2.4. Mapping of PoP

Figure 2.1 shows the mapping that was implemented in PoP system.

Pdef(\x,

 Pbind(

 \instrument, \blip, // line 1.

 \nodes, Pfunc{~light2.linlin(0,1, 1,14)}, // line 2.

 \fund, Pfunc{~light.linlin(0,1, 120,1220)}, // line 3.

 \switch, Pfunc{~motion.asInteger}, // line 4.

 \granRelease, Pfunc{~temp/100 +0.1}, // line 5.

 \delta, 1); // line 6.

).play;

Figure 2.1 Mapping snippet in PoP.

Each line begins with the name of the parameter coupled with the sensor, followed by the

configuration of the desired range, except lines 1 and 6. Line 1 shows the name of the

synth, which the pattern definition controls. In line 2, nodes is the number of the generated

sine waves controlled by the second ~light2 sensor. In line 3, fund is the fundamental pitch

of the sine wave controlled by the first ~light sensor. In line 4, switch is the on/off switch

controlled by the motion sensor. In line 5, granRelease manipulates the release argument of

the envelope, using the ~temp sensor. The delta value in line 6, schedules the reiteration of

the mechanism, which in this case this is set to every second. The mapping of the

environment is implemented through this mechanism that couples the sensor variables

with each parameter of the synthesis engine. This mechanism can be seen as a

communication bridge between the sensors and the synthesis where some additional

treatment is taking place. At the same time the mechanism is re-evaluating its content

every second and assigns the current value of the sensors with the parameters. It is possible

to manipulate the timing of this evaluation in order to make the system more or less

responsive. Additionally, it is also possible to re-arrange all the mappings and tweak the

scaling of the sensors or apply mathematical expressions on the fly in order to setup or

tune the whole system.

 35

2.5. Modes of interaction of PoP

PoP offers two modes of interactivity: Serene and Agitate. Serene is the primary state of

the system. It senses light conditions of the room to control the pitch, and the temperature

to manipulate the duration of the grains. The system switches to Agitate as a result of lack

of mobility inside the interaction area leading to the sonic distortion of Serene.

The sound is influenced by the environmental conditions, however it is the mobility of the

people that create the tranquillity or distortion of the sound output, switching

incrementally between the two modes. People are invited to move freely inside the

interaction area of the system. The participants are also able to interfere with the sensors

and shade over the light sensors in order to alter the pitch of the sound. Most importantly,

people are strongly encouraged to collaborate in order to alter the states of the system i.e.

move or stay idle. Some observations regarding theatricality in PoP: people entering the

installation’s area try to interact with the system by moving their hands and twisting their

bodies. Thus, the audience is not only experiencing the installation as a fixed musical

spectacle but they are also able to intervene in the musical outcome.

2.6. Control and structure

The motion detector stimulates the system whenever it senses movement, swapping

between the unprocessed and the feedback signal, if no motion occurs the system defaults

to the Serene state. However, the system provides the option to merge the two states into

one mode and deactivate the motion sensor. When the system is in Agitate mode an

attenuator following the microphone’s input signal manipulates its amplitude. This signal

picks all the sounds in the space including the output of the system. Moreover, the system

implements a pitch detector that analyses the signal of the microphone and uses this value

to control the frequency parameter of a frequency modulator embedded in the feedback

synth.

 36

Adopting this ‘ecosystemic approach’ (Di Scipio, 2003, 2011, 2014; Anderson, 2005;

Waters, 2007) it became apparent that the sonic result is a self-organised composition

comprising wet and dry signals, although the sensors control the sound, it is finally

structured by the environmental occurrences. The microphone picks the assembly of the

sound coming from the speakers and the concurrent environmental sounds, and the

response of the space as well as the sounds caused by the people. This approach is well

documented in the work of Di Scipio and his Audible Ecosystemics pieces (Di Scipio, 2003,

2011, 2014; Anderson, 2005; Waters, 2007).

2.7. Music composed with PoP

PoP is created to explore collective interactions using various control inputs, such as

human and space where the installation is hosted. The space is explored through a set of

sensors that track environmental data (light and temperature). PoP shares similarities with

the ‘ecosystemic’ approaches of Agostino Di Scipio, in that it uses attributes of its signal in

conjunction with the responses and influences of the ambience to manipulate some

parameters of the synthesis engine. The strategies that were followed are outlined below:

1. Collective interactions, bringing people together. Main rule of the project was that the

participants have to engage in collective interactions in order to stimulate the

sound installation. For example, to align their movements inside the field of view of

the installation.

2. Individual interactions. The participants are also encouraged to play with the light

sensor, for example shade it with their hands or cover it. The result of the

installation was that it was creating a playground where people could joyfully

collaborate with each other. The morphology of the sound was constantly changing

according to the input of the space and the people’s movement.

 37

3. Mapping more than one performer. The system investigates the interaction

possibilities that are offered by the multiple interaction, that is beyond the single

performer/machine interaction paradigm, and it imposes the live interaction of the

audience as active agents28 instead of spectators during the musical event, as

opposed with other paradigms examined in this research.

Although the system uses a small amount of sensors the sound manipulation was strong in

terms of timbre variation due to the feedback manipulation of the signal and the influence

of the real time analysis of the sound and the mapping of some of its attributes to the

parameters of the system, creating evolving musical articulation. There is no preconceived

plan or form since the system reacts to the actions of the people (and space) it is hard to

predict the structure of the musical outcome.

This section includes a video29 that demonstrates the interactivity between the system and

environmental conditions, and how the former responds to the changes that occur in the

space, for example the brightness of the room is translated sonically into the pitch of the

sound and fluctuates based on the changes of the light conditions where the system is

hosted. The temperature in contrast, doesn’t change too rapid or radically as in real life,

resulting to more stable fluctuations of the duration of the sine waves.

Timings refer to the documented video. The video starts in complete darkness, the system

generates low frequency sine waves; after a while it culminates in feedback. At 0'32” I

switch on one of the two lights, turning the pitch higher. At 0’37” the system tracks my

movement and switches to feedback mode. At 0'51” I switch on the second light, turning

the pitch higher. While I am moving inside the interaction area of the system the motion

sensor turns on and off according to the movement. At 1'23” - 1'43” I experiment using a

28 This explains the reason why the project was named Power of People.
29 The video is included in the accompanying DVD and online at this link:
https://www.dropbox.com/s/c340binrkaui3xt/videoRec1.avi?dl=0

 38

mini torch to project some light over the sensors, turning the system's pitch to its peak. At

1'48” and onwards the sound fades out due to the lack of movement.

What becomes obvious to the spectator is that the pitch of the sound is linked with the

light, for example the brighter the space is the higher the pitch of the sound will be. This

link becomes apparent making clear the mapping between the light sensors and the way

they are connected with the parameter that controls the pitch of the sine waves.

2.8. Remarks on PoP

A video of the system describing its functioning as an installation is provided at the

following link30 . The following description refers to the corresponding video. In the

beginning of the video the system creates low frequency drones due to the dark conditions

of the room stimulated by the appearance of the participants. At 0’09” the pitch of the

sound is higher caused by the increase of the light. At 0’13” - 0’38” the system switches to

Agitate (distortion state) caused by the participants. At 0’30”- 0’41” the participants

engage with the system by shading its light sensor to change the pitch of the sound. At

0’45” - 0‘56” the system culminates in silence due to lack of mobility inside its interaction

area. At 0’58” the system is stimulated again switching to Agitate. At 1’10” the participants

engage in collective interactions by moving and staying idle inside the interaction area of

the system as well as interacting with the light sensor. The system continues to swap

between the two states of interaction caused by the mobility of the people 2’30” - 2’45”.

Observing the installation at work led me to the following idea, I am able to perform the

installation in a similar way to a performer interacting with a computer-based

environment. Di Scipio (2014, p.51) states that:

30 The video is included in the accompanying DVD and online at this link:
https://www.dropbox.com/s/7t2wjwz5mgx18gk/VID_20151102_180406.mp4?dl=0

 39

This work was born as an installation project. However, I eventually devised ways

to use it in performative contexts. Indeed, a performer can look for places or

surfaces in the total infrastructure that lend themselves to be efficiently acted upon,

searching the affordances that allow for possible gestures and for actions enabling

her/him to enter the sonic process and to affect it, to some extent. That turns the

“installation” into a kind of “instrument”, or better a sound generating device that

includes the environment as a part of it — the same environment where the

performer acts as part of the sound generation process. The form of presentation

becomes uncertain: is it installation or performance? Or is it an instrument that one

can play with?

In the same paper Di Scipio states that ‘the task of composition becomes not so much one

of interactive composing, but one of composing the interactions.’ It is worth highlighting:

‘composing the interactions’ is based on mapping. In this context mapping could be seen as

a framework that encloses all the interaction ideas implemented at this exact moment of

development. One could argue that this defines the context of the interaction as well as

forming the affordances of the system; in turn, through this the composer is able to

instruct people on how to ‘play’ the installation. Furthermore, the music that results from

this interaction forms the showcase of the idiomatic decisions and preferences of the

composer that were established during the design of the mapping.

Inside this framework the participant understands how the work perceives his or her

actions and creates a sort of performance through listening and experimentation. This is

similar to what a performer does when s/he tries to learn a computer-based environment,

for example performing with open air interfaces e.g., Leap Motion, Kinect, and other

optical devices, where there are no visual or physical cues. It is through hearing that a

performer understands how the system interprets his or her gestures or whatsoever one

uses to interact with the environment. This is also observed in the Leap Motion project

(see chapter 4).

 40

However, one distinction from the single user interaction model where the performer is

most of the time also the developer of the system, is the unpredictability that the system

provides. This is because the participant has no previous knowledge of how his or her

actions will be perceived and interpreted, compared to the former case where usually the

designer/performer has an intrinsic idea about the behaviour of the system. This quest of

the unknown is something that the designer needs to be aware of while developing the

system and provide some generic concepts about the system explaining easily the

behaviour of the system to novel users.

One way to enhance the accessibility and explain the affordances of a performing

environment is with the use of metaphors. Through the implementation of metaphors one

is able to explain the mapping as well as make it transparent to the audience. Metaphors

are also examined in my Greap project (see chapter 4).

Evidently, metaphors are used widely when implementing mappings for auditory display

and sonification projects. Walker and Kramer (2005, p.409) state that ‘Mappings that are

based on stronger or more natural metaphors should result in faster and more accurate

control reactions. They should also be learned faster, which would lead to a greater

improvement in performance across the blocks of the experiment.’

Some of PoP’s control parameters were conceived to provide some metaphorical

meaning31. The pitch of the sine waves is controlled by the brightness of the space i.e. the

darker the room the lower the frequency of the sine waves, whereas brighter spaces will

result in higher pitch, this will correlate to higher frequencies, thus brighter sounds. The

current version of the system implements only this metaphor.

Another finding that arose while working with PoP was the problem of directing people

inside the field of view of the system in order to stimulate the installation. When someone

31 Also noted and demonstrated in the attached video.

 41

enters a site-specific installation that requires some input by the participant, s/he is not

aware of any physical constraints or borders (unless these are defined by the creator of the

installation). One way to limit the interaction area and guide the people inside the active

area of the system is through the use of bespoke immersive physical platforms, which will

facilitate the installation and will define the space of interaction of system and people.

Some examples include Flowspace (Bisig, Schacher and Neukom, 2011), the installation

employs a platform in the shape of a dodecahedron where the participant can enter and

experience the installation.

2.9. Conclusion

The music that is created with the PoP system is a result of an on-going process of trial and

error and experimentation through hearing, where the participants facilitate their actions

within a given range of affordances formed by the composer.

In the case of PoP this trial and error process does not only include someone interacting

with it and trying to do something musically meaningful within a given range of

interaction affordances, but the system is constantly trying to tune itself through its

listening abilities adopting ‘ecosystemic’ approaches.

To provide a more refined way and direct the participants towards a proper interaction

with the system the composer may use a physical platform.

This trial and error and functional glitches create an unpredictable musical outcome

generated by the random responses of the people while interacting with the system.

Therefore, it is difficult to define the structure of the musical outcome. However, the

system revolves around long drones and short sounds depending on the temperature of the

space whose the installation is hosted whereas the pitch of the sound is influenced by the

brightness of the space, consequently providing an aural link between the brightness of the

room and the pitch of the sound.

 42

Finally, the installation appeared to provide theatricality, by people trying to interact with

the installation and playing it by moving their hands and bodies within the interaction

area, leading to an impromptu musical staging.

 43

3. Tangible Interfaces

3.1. Introduction

‘Humanising technology’ refers to an anecdotal statement by Simon Emmerson in a recent

interview (Studer, 2010). In the video he mentions his ‘turning view on live music’

generated by computers and how technology is approached nowadays stressing ‘the

importance of the human factor within the process of live generated computer music.’ He

also describes the creative artefacts of live coding and circuit bending in the musical

discourse, which, according to him ‘may be seen as an unpredictable process.’

There is a wide range of hardware controllers available for the design, transformation and

triggering of sound for a variety of musical applications, e.g., composition, sound design,

virtual-reality environments etc. Controllers that follow human gesture and transform

physical energy to input data are generally categorised as gestural controllers. Of these,

there is a sub-class of interfaces that involve the use of physical objects to interact with

software environments known as tangible controllers. This chapter provides an evaluation

of tangible controllers in an improvisational context. I describe the advantages and

disadvantages of various approaches followed through my compositional process and

experimentation, with particular reference to their use in performance and their potential

for expressivity both in a live context and as a compositional tool in the studio.

Work presented here includes custom-built performance environments using a bank of

unedited and heavily edited sound samples, and using a Wiimote to perform and

improvise their manipulation live. This chapter will also describe the implementation of

SuperCollider patterns (see section 1.5) to control the parameters of a synthesis engine

and live fluctuation of their internal arguments via a Wiimote.

When performing with tangible interfaces the musician does not have to learn to play this

instrument and go through a learning curve in a traditional manner; instead s/he may

 44

focus on a wider range of performance affordances and avoid physical constraints that an

acoustic instrument may present such as the difficulty of making a traditional instrument

produce tones that are outside of its capabilities32. This view appears to be well supported

since the very beginning of the advent of computers in musical discourse:

Even a beautiful and cleverly designed instrument is constrained by inescapable

mechanical limitations. Simply obtaining a good basic sonority on many

instruments requires a long period of practice and expert counsel. Some

instruments are more physically difficult to play than others. For example, the large

instruments of the lower registers (bass and baritone saxophones, double bass, and

tuba) require more strength to play and may necessitate stretching to achieve the

proper note selection. (Roads, 1996, p.619)

3.2. Digital musical instruments (DMI)

These bespoke performance mediums that I am going to elaborate in the following

chapters are often described as Digital Musical Instruments (DMI): ‘An instrument that

uses computer generated sound can be called a digital musical instrument (DMI) and

consists of a control surface or gestural controller, which drives the musical parameters of

a sound synthesizer in real time.’ (Miranda and Wanderley, 2006, p.1)

The choice of a controller is usually a result of a performer’s personal ergonomic and

idiosyncratic preferences. A wide variety of gestural input devices and controllers can be

found in order to serve various body movements; a classification has been proposed by

Miranda and Wanderley (2006, pp.20–21) consisting of ‘instrument-like’ (controllers that

resemble the shape of traditional instruments), ‘augmented instruments’ (instruments with

attached extra sensory capabilities), and ‘alternate controllers’. According to the same

32 It is worth mentioning at this point that this distinction does not aim to undermine the
unsurpassed beauty of the traditional instruments, rather to illustrate one of the key concepts of
computer-based instruments.

 45

authors an ‘alternate gestural’ controller may be roughly classified as one that does not

share its characteristics with the previous two classes; thus a Wiimote could fall in the class

of the ‘alternate’ controllers. Furthermore, ‘alternate controllers allow the use of other

gestural vocabularies in contrast to those of acoustic instrument manipulation’

(Wanderley, 2001, p.638).

Improvisation benefits from the use of devices that follow the rapid alterations of human

movement33, providing high level of resolution of tracking in fulfilling some basic criteria

of ergonomics for musical use; for example being easy to handle and manipulate its

buttons. For this purpose the Wiimote appears sufficient to cover these needs, due to the

variety of sensor technology included in one single device. Its features include:

• Multi directional gesture tracking.

• Satisfactory level of tracking precision.

• Ergonomic suitability for musical performance.

• Economic affordability.

This provides the following interaction affordances:

• Real time manipulation of multiple synthesis parameters and totally independent.

• Accurate musical expression.

To expand the tracking capabilities of the device I used its additional accessory called

Nunchuck34. This extra attachment offers the same gestural tracking abilities as well as a

small joystick placed on the top of it. In addition, the device offers the tracking of its

spatial position if combined with an external infrared sensor, called Wiibar. This was not

33 See improvisation steps (Pressing, 2001, p.130) in the introduction of this thesis.
34 See http://wiibrew.org/wiki/Wiimote/Extension_Controllers/Nunchuck

 46

used in the projects to avoid dependency on the spatial location of the performance.

Instead, the mappings were focussed only on the orientation sensors and the

accelerometer of the device. To examine the device in terms of its performance and

compositional feasibility I developed two environments that allow manipulating sonic

material in real time, named BiGrain, and Stay On This Gesture (2011).

3.3. Overview of BiGrain

BiGrain implements granular synthesis using pre-recorded audio samples stored in the

hard disk of the computer. It comprises four granular processors through which the system

is able to create simultaneous manipulation of four separate samples. The granulated

signals are mixed using a morphing processor that sums the output of the signals into two

channels. Although the system supports separate processing of the material, the mapping

of the parameters was summed into two groups35. The variable names of the Wiimote refer

to Figure 1.3, section 1.8. The pitch angle of the Wiimote controls the perceptual pitch of

the grain of the first two granulators in the same time. The same variable of the Nunchuck

controls the perceptual pitch of the other two. Table 3.1 illustrates the parameters that

were implemented in BiGrain.

Group A Group B Control

Rate

Dur

bRate

bDur

Pitch of the grain.

Duration of the grain.

RateDev bRateDev Deviation of the pitch.

Dens bDens Amount of grains.

Stretcher Stretching rate of the grain.

Offset Offset of the grain.

X_morph Mix of the first two

35 There are two groups, which include the granular processors; each group contains two granular
processors.

 47

granulated signals.

Y_morph Mix of the second two

granulated signals.

Table 3.1 Parameters in BiGrain.

3.3.1. Mapping of BiGrain

The communication of the device with the environment was made via OSCulator. A one-

to-one mapping strategy was implemented to connect the device’s variables with the

control parameters. Table 3.2 shows the Wiimote’s control variables36, and their mapping

to the parameters of the environment. The implementations of the granular parameters are

identical for both granulators, thus the names of the parameters refer to both pairs of

granulators. Both the Nunchuck and Wiimote devices implement the same mappings i.e.

same control signals manipulate the same synthesis parameters. All the parameters that

are connected with the Nunchuk prefix the letter b, e.g. bDensity. The following

description of the mapping refers to both groups.

Wiimote Nunchuck BiGrain parameters

Pitch Pitch Pitch of the grain(s)

Roll Roll Duration of the grain(s)

Yaw Yaw Pitch deviation of the

grain(s)

Accelerometer Accelerometer Density of the grain(s)

Accel. X-axis Stretching rate of the

grain(s)

Accel. Y-axis Offset of the stretch effect

 Joystick X-axis Morphing balance

36 Illustrated in Figure 1.3, section 1.8.

 48

 Joystick Y-axis Morphing balance

Table 3.2 Mapping Wiimote to BiGrain.

The pitch angle of the device controls the perceptual pitch (rate) of the grain while roll

angle controls the duration (dur); yaw angle of the device controls the deviation (rateDev)

of the pitch parameter whereas the accelerometer controls the density (dens); increasing

effort to shake the device increases the number of the grains. X and Y data of the

accelerometer are coupled with a post-production effect that implements a time stretching

effect to the granulator. Specifically, the X-axis controls the rate of stretching and the Y-

axis controls the offset parameter of the effect. When the joystick is at its default position

(midpoint) the system mixes the four signals equally balanced. Finally, the joystick of the

Nunchuck controls the mix of the morphing effect between the granulated signals.

The decisions of the mapping were made to enable lucid connections between gestural

input and the control parameters of the system. For example, when the performer lowers

the device downward the perceptual pitch of the grains falls and vice versa, whereas

rolling the device horizontally affects the duration of the grains, sloping the device to the

left decreases whereas sloping right increases the duration of the grains.

Accordingly, the number of the grains was controlled by the accelerometer sensor enacting

a physical relation between the effort of the performer and the density of the grains.

Moreover, the accelerometer influenced the amount of the stretch of the grains increasing

the physical connection with the sound. In addition to the continuous controls, I have also

used some of the buttons embedded in the device to switch or select various momentary

parameters. Buttons A, B, C, and Z of the device were used to toggle the selection of the

samples used by the first two granulators incrementally. Each time the button is pressed

the granulator picks the next sample in queue. Buttons minus and plus were used as

simple switch to turn on and off the synthesiser.

 49

3.4. Overview of Stay On This Gesture

 Stay On This Gesture37 implements granular synthesis using pre-recorded audio samples

stored in the hard disk of the computer. Instead of using a one-to-one mapping strategy,

this time the development of the environment focussed on the elaboration of the

interaction through the implementation of patterns in order to expand sonic manipulation

and to advance the improvisation discourse.

3.4.1. Mapping of Stay On This Gesture

The implementation of the mapping employs patterns instead of creating a one-to-one

mapping strategy. The Wiimote was used to fluctuate the parameters of the patterns,

which are grouped in separate blocks. The performer is able to use diverse kinds of

patterns, thus the manipulations of the sound material occur largely due to the structure of

the patterns, implementing Brownian motion38 and probabilistic methods. In terms of

interaction with the patterns, the performer can influence their continuous progression, for

example, while the patterns run the performer is able to fluctuate the step size argument

of the Brownian motion. Figure 3.1 shows an example of a block in Stay On This Gesture.

The environment comprised four blocks. In line 1, the pitch of the grain (rate) is controlled

by a pattern that implements Brownian motion. The first argument of this pattern is the

lower value of the range of the stream, in this case 0.1; the second argument is the higher

value, which is controlled by the pitch variable of the Wiimote. In line 2, the position of the

grain (starting point that is read from the buffer/sound sample) is controlled by the roll

variable of the Wiimote. In line 3, the release arguments of the envelope are controlled by

another Brownian motion pattern, which is multiplied by the yaw variable of the device.

Finally, in line 4, the duration of the re-evaluation of the block39 is controlled by a

37 Software is included in the accompanying DVD.
38 http://www.wolframalpha.com/input/?i=Brownian+motion
39 Evaluation of the block’s contents. This process is described in Mapping of PoP chapter.

 50

Brownian motion pattern; its step size argument is controlled by the yaw variable of the

Wiimote.

Pbind(\instrument, \grains,

 \rate, Pgbrown(0.1, Pfunc{~specs[\rate].map(~pitch)}), // line 1.

 \startPos, Pfunc{~specs[\start].map(~roll)}, // line 2.

 \release, Pgbrown(0.2, 2.0,

0.1)*Pfunc{~specs[\release].map(~yaw)}, // 3.

 \dur, Pgbrown(0.01, 0.1, Pfunc{~yaw}) // line 4.

).asStream;

Figure 3.1 A mapping block implemented in Stay On This Gesture.

Using the cross button of the Wiimote the performer is able to advance to the next pattern

set, and plus and minus buttons of the device are used to start and stop the performance.

Moreover, s/he is able to precompile any arrangement of pattern definitions or mappings

in advance of a performance. Therefore the performance evolves by using these sets of

patterns and move between them dynamically while interacting with the continuous

progression of the patterns.

3.5. Music Composed with the Wiimote

To explore the compositional viability of BiGrain I created a piece named Study II40 (2011).

The musical characteristics of the piece depict the physical energy of the gestures in the

sound. At 0’48” – 1’30” the spectrum content of the sound is radically transformed due to

the fast fluctuations of the perceptual pitch (rate) and density parameters, which are

controlled by the pitch angle and the data of the accelerometer of the device respectively.

Instead of rapid movements that change the sound radically, the performer achieves some

refined manipulations of the sound by performing small and accurate gestures. This yields

slow evolving long drones that are controlled by the micro movements, affecting the

microstructure of the sound: 1’29” – 2’31”. These lesser movements could be viewed as

similar to the slight movements while performing with a fretless instrument where the

40 Recordings can be found at the accompanying DVD and online at this link:
https://soundcloud.com/konstantinos_p_vasilakos/study-2-byegrain-v-1

 51

performer slides its finger around the note in order to cultivate its sound. The character of

the piece ranges between noise bursts, short grains, and long drones according to the

movements of the performer.

The reasoning behind Study II was to make a piece that illustrates the gestural

characteristics of a performance. The strategies that were followed are outlined below:

1. Enhancing expressivity. The performer enacts a transparent relationship between his

or her gestures and the sound. This is achieved by the one-to-one mapping strategy

that was followed.

2. Virtuosity, built sonic manifestations of the gestures. During the performance I am

constantly monitoring and refining my gestures according to the sonic output.

Similar to the performance with an acoustic instrument.

3. Use of specific sounds, defining an order of sound manipulation. The performance

includes the use of specific sounds provided in the root folder of the project, which

were used to compose the piece and build the context of the composition. These

were placed in the folder in a specific order, thus following a specific cue of the

sound manipulations that took place during the performance; this helped to build

the structure of the piece and organising the material.

Both from the performer and audience point of view, the piece was successful to create

links between my movements and the resulted sound, which was the primary aim of the

project. The physical relation between my gestures and sound helped to provide a

transparent mapping enacting expressivity during the performance. However, the one-to-

one mapping strategy that was followed appeared to yield to repetitive sounds and

iterated gestures, leading to a sort of predictability throughout the performance.

Song has Sung (2012) is composed using Stay On This Gesture. I wanted to explore the

real time performance with an autonomous system, which it would be able to respond to

 52

my input and influence my decisions. The performer acts as a humanising mediator

between the sound and the computer's processes, sharing equally the stage with the

computer, enacting mutual intervention (also described by Chadabe). The performer

engages in an infinite loop between his or her input and the response of the environment,

which in turn it shapes the sound. Some strategies included the following:

1. Versatile manipulation of the material live. This is achieved by using patterns in

SuperCollider, which implement random processes to control and create a complex

network of versatile manipulation of the samples in real time, instead of following

the one-to-one mapping strategy described in section 3.3.1. Additionally, the

performer is able to control their internal parameters in real time. One reason I

became interested in using patterns was to create multi-timbre organisms that

evolve in respect of the continuous progression of arbitrary calculations creating

complex sound-spectra, not in the comfort of a studio but in a live and real time

situation. Therefore, the music consists of juxtaposed and independent layers of

sound, which create complex textures and contrasting rhythms.

2. Mutual intervention on stage, dialog with a semi-autonomous system. While the

system is partly autonomous, the interaction affordances of the system allow the

performer to give a direction rather than have total control of the musical outcome.

Thus the performer is influencing the overall sound rather than controlling

(thoroughly) the output of the system (as opposed to BiGrain, section: 3.3.1).

3. Organising the patterns, structuring the form of the piece. The music created with this

environment is an illustration of the complex sequences of data generated by the

patterns enclosed in individual blocks, therefore the composition relies on the

structure and the scheduling of these. Once the blocks are created, the performer

triggers them during the performance constructing the overall form of the piece

emerged from the scheduling of the blocks within a given timeline.

 53

4. Use of specific sounds, defining an order of sound manipulation. The performance

includes the use of specific sounds provided in the root folder of the project, which

were used to compose the piece and build the context of the composition. These

were placed in the folder in a specific order, thus following a specific cue of the

sound manipulations that took place during the performance; this helped to build

the structure of the piece and organising the material.

My intention was not to create an instrument, which it would translate all my actions to

sound depending to the effort that was employed, but to create a system that the

performer would be able to influence, and built a sort of dialog on stage. The performer is

not manipulating the sound directly, but s/he intervenes with the patterns while they

unfold in time influencing the sonic outcome in a similar way as Xenakis described in

Formalised Music:

With the aid of electronic computers the composer becomes a sort of pilot: he

presses the buttons, introduces co-ordinates, and supervises the controls of a cosmic

vessel sailing in the space of sound, across sonic constellations... now he can

explore them at his ease… (Xenakis, 1992, p.144)

Due to the arbitrary manipulations of the sound and the vast number of controlling

sequences it is impossible to describe the piece by explaining each movement. Instead, a

representative recording41 shows how a typical performance might progress.

3.6. Conclusion

Tangible interfaces provide stable communication for interacting with performance

environments for real time manipulation of sonic material. Specifically, the Wiimote

41 A recording of the piece is included in the accompanying DVD and online at this link:
https://soundcloud.com/konstantinos_p_vasilakos/the-song-has-sung

 54

(including its additional accessory), designed for game interaction, provides a fruitful

solution to interact with computer-based environments.

Comparing the musical pieces Study II and The Song has Sung created using Wiimote it

became apparent that mapping has a great impact not only to the interaction affordances

of a system but also to the musical characteristics of each piece. In both pieces, the

Wiimote was used as an extension of my body, which in conjunction with its accelerometer

and the appropriate mapping to the synthesis engine avoided counter intuitive

relationships between the gestures and the sound, enhancing the musical tension and

theatricality throughout the performance.

Specifically, the one-to-one mapping strategy allowed me to achieve refined manipulation

of the sound using my gestures in an accurate manner, however there is a trade off

between accuracy and the variety of interaction possibilities; the same gestures resulted in

the same sonic manipulations.

To investigate this I developed another environment emphasising on mapping strategy and

employed patterns in SuperCollider.

Mediating mapping with patterns I created a wider range of sonic manipulations due to

the complex sequences implementing random generators that offered complex and

versatile sound processing influenced by the performer. Using Stay On This Gesture I was

able to compose a piece by organising the patterns into separate blocks. Therefore, the

microform of the piece derived from the continuous progression of the patterns, whereas

the overall form of the piece emerged from the scheduling of the blocks within a given

timeline.

This appeared to offer more flexibility in terms of musical variation, providing possibilities

to orchestrate a piece by using the idea of blocks containing diverse sonic manipulation, as

 55

well as offering the means to develop a sort of discussion connection between me and the

system or a mutual intervention.

 56

4. Optical Interfaces

4.1. Introduction

Performance practices with interfaces that use gestural movement to interact with a

computer-based musical environment are integral to the investigation of present

representative approaches to digital musical interfaces. A significant amount of

investigation has been pursued over that past years by dedicated organisations in this field,

such as the Studio for Electro-Instrumental Music (STEIM), and the New Interfaces for

Musical Expression (NIME) community or individual artists and researchers who created

pioneering work in this area such as Michael Waisvisz’ The Hands (1984), and Radio

Baton (1985) by Max Mathews and Robert Boie (Manning, 2004, pp.379 – 381).

This investigates the field of optical interfaces using a Leap Motion (LM) device. In

considering expressivity as the primary aim of this project, particular attention was given

to mapping strategies that are informed by gestural metaphors in order to foster

transparency42 (Fels, Gadd and Mulder, 2002; Gadd and Fels, 2002; Wessel, Wright and

Schott, 2002; Fischman, 2013).

It is not long since LM became available to the public and some projects have already

shown its potential for musical applications, showcasing the device as an interface to

facilitate intuitive, expressive performances. Some use it as their main interface whilst

others combine it with other controllers. In some other projects the device is used to

trigger pre-developed sound material or to control effects of post-production software, to

name a few: Touchless (Ma, 2013), and Human Electro (Fujimoto, 2013). In some other

cases the device is used as an interface to emulate traditional instruments such as the

piano – e.g. Crystal Piano (Silva et al., n.d.), Drumactica 2.0 (Bertelli, 2013), and Gesture

Control Jam (Hoenig, 2014).

42 Transparency of mapping refers to the ability of the instrument to create clear links between the
actions of the performer and the resulting sound.

 57

Although all these projects are successful in exploiting LM’s ergonomic possibilities for

intuitive musical interactions, they do not demonstrate the potential of the device to be

used to shape sounds, not only from a purely aural point of view, but also in the creation

of a causal connection between gesture and sound. To do this, it is necessary to design an

efficient mechanism that will facilitate this functionality through mapping. Therefore,

significant care and consideration over this issue was given throughout the development of

Greap, a real time music environment built for the manipulation and improvisation with

sonic material.

Greap -, Gr(ain) + (L)eap (Vasilakos, 2014) was designed to create computer music

that exhibits audible transparency of real time gestural manipulation of sonic material. It

consists of a software environment 43 integrated with the LM hardware device. The

performer is able to pre-design the mapping blocks before a performance according to the

interaction s/he wants to achieve. The mapping can then be changed dynamically,

allowing the performer to shift between different sets of gestures and sonic manipulations,

and to explore diverse interaction affordances offered by Greap.

From the perspective of both audience and performer it is hard not to see a resemblance to

the Thérémin (1924) performance paradigm. This pioneering electronic sound device,

consisted of ‘two capacitor-based detectors, one a vertical rod, the other a horizontal loop.

These controlled pitch and amplitude, respectively, by generating electrical fields that

altered according to the proximity of the hands of the performer’ (Manning, 2004, p.5).

In the case of Greap however, although the performer uses his or her hands in similar

manner, controls the spectrum of the sound (i.e. the gestures manipulate the timbre of the

sound). Therefore, this resemblance is only relevant to the kinesiology of the performance

and not to the sonic outcome, since in the case of the Thérémin ‘the morphology (the

relationship between pitch, timbre and time) – remains fixed’ (Paine, 2009, p.143).

43 Included in the accompanying DVD.

 58

Furthermore, the affordances of Greap are significantly different from the Thérémin due to

the multidimensional tracking possibilities it provides, and thus it allows controlling many

synthesis parameters simultaneously and totally independently, which can help to

manipulate sonic material in a more intuitive way.

4.2. Overview of Greap

The main sound generator in Greap is a granular synthesiser that uses audio samples

stored in the hard disk of the computer. It supports standard granular synthesis parameters

including: transposition, duration, amplitude, and panning (stereo) position of each grain.

In addition, the user is able to set the start and the end point of each grain, as well as the

reading speed of the grains. Table 4.1 provides a summary of the main parameters of the

environment.

Parameter Control

Pos Initial position of the grain

PosRate (posRateM, posRateE) Reading speed

Rate

Bufnum

Pitch of the grain

Sample index to manipulate

Amp Volume of each grain

GranDur Duration of the grain

PanMax Panning position of each grain (stereo)

TrigRate Trigger of new grain

PosHi End position of the grain

Table 4.1 Parameters implemented in Greap.

Although the above parameters are very powerful on their own, some auxiliary parameters

are implemented. These are used to affect the main controls by creating slight fluctuations

 59

to current values, and are controlled by the user via the LM. Table 4.2 provides a summary

of the deviation parameters.

Parameter Deviate

PosDev Position of the grain

PitchDev Pitch of the grain

DurDev Duration of the grain

AmpDev Volume of the grain

Table 4.2 Deviation parameters in Greap.

LM communicates the synthesis parameters via GECO (Bevin, 2014), a third party

application that communicates data from the device to any application able to receive

MIDI or OSC data. It provides a fixed set of control signals, including up and down, and

vertical positioning of the hands, as well as the inclination values of both palms separately.

Then, for example, the user can map the vertical position of the left hand to the duration

of an event and the pitch to the upward/downward position of the right hand. GECO also

provides a visual representation of the values for each control signal.

4.2.1. Scene handling/snapshots

In Greap, specific configurations of parameters within the system that can be planned in

advance by the performer are called scenes. A scene may include information about

mapping, audio sample, and parameter initialisation values. The user is able to shift

dynamically between various scenes by using an external interface (for example, a MIDI

foot switch) or change them natively via a selection menu implemented in the graphical

interface of Greap. There is no limit to the number of the scenes.

When the performer switches to a scene, s/he has continuous control over a group of

parameters included in the mapping. The parameters that are left out of the scope of the

mapping will jump to a given value that the user decides not to alter. In this way, s/he

 60

may set highly contrasting scenes and switch between them either instantly or in a gradual

manner by means of a fading function implemented to enable smoothness of changes.

~presetMenu.addItem(\Scroller, { // line 1.
 args a, rate=1.0,rateDev=0.0,posLo=0.01,posHi=0.99, //line 2.
trigRate=100,bufnum=0,posRateM=1,posRateE=0,granDur=0.3;
 ~i=0; // line 3.
 x.set(\rate, rate, \rateDev, rateDev, // line 4.
 \bufnum, bufnum, \posLo, posLo, \posHi,
 posHi, \trigRate, trigRate,\posRateM,
 posRateM, \posRateE, posRateE,
 \granDur, granDur
);
sl[\bufnum].value_(bufnum).doAction; // line 5.
sl[\rateDev].value_(rateDev).doAction;
sl[\rate].value_(rate).doAction;
sl[\posLo].value_(posLo).doAction;
sl[\granDur].value_(granDur);
sl[\posHi].value_(posHi).doAction;
sl[\trigRate].value_(trigRate).doAction;
sl[\posRateM].value_(posRateM).doAction;
sl[\posRateE].value_(posRateE).doAction
 });

Figure 4.1 Example of a scene implemented in Greap.

Figure 4.1 shows an example of a scene. In line 1, is the name of the scene. Line 2, shows

the values of parameters that the user has no access for continuous control; Line 3, is the

index of the mapping that acts as a pointer to an array of mappings (in this case, this,

points to the first one in the order of the cueing mappings). Line 4, is the synthesiser

parameter values (taken from line 2 above). Line 5 sets the faders of the graphical

interface (values again taken from line 2).

4.3. Mapping variability

The prime motivation of this project was to create mapping strategies that foster

transparency between the gestural action of the performer and the resulting sound in

 61

order to enhance expressivity while performing with a computer-based musical

environment. Instead of using single mapping Greap employs an embedding mechanism

that hosts various mappings that change dynamically while performing, without

interrupting the musical flow of the performance. While in other systems this principle is

implemented as an external library44, in Greap it is implemented as an internal mechanism,

avoiding dependency on third party software, which might affect the maintainability of the

system in the long run.

Greap allows the user to pre-configure the mapping relationships before the performance

according to the interactions s/he wants to achieve. Changing the mapping during the

performance offers multiple interaction possibilities and allows exploration of the system’s

inherent affordances. The most important aspect of this feature is that the same gestures

can control different parameters throughout the performance. Therefore, the performer

can build blocks of interactions, which will result in diverse sonic outcomes, and most

importantly without having to stop the flow of the piece. This type of functionality has also

been explored in MAES (Fischman, 2013, p.334). In the current version of Greap, the

variable mapping is implemented in a textual format. The user needs to couple the control

signals coming from GECO with the synthesis parameters of Greap. For example, if the

performer wants to control the duration of a grain with the horizontal position of the left

hand then a MIDI number is assigned and coupled with the duration parameter of the

grain. Greap allows an unlimited number of mappings, making it easy to create versatile

combinations.

Figure 4.2 shows the code for two individual groups of mappings that the performer can

switch on incrementally. Each group includes the parameters that the user will have

access. Each group is enclosed in parentheses; the numerical values are the MIDI numbers

that correspond to GECO’s variables. In the first group, the number 0 couples the

44 For instance, Libmapper (Malloch, Sinclair and Wanderley, 2013).

 62

performer’s left hand to the gate argument, 1 and 2 respectively couple the horizontal

trajectory of each hand to the low & high read position in the grain, 3 couples the vertical

trajectory of the left hand to the deviation of the read position of the grain, and finally, 9

couples the horizontal position of the right hand to the panning (panMax) parameter. In

this version, a MIDI foot pedal controls the amplitude using number 7.

~cc = ([
 (0:\gate, 1:\posLo, 2:\posHi, 3:\posDev, 9:\panMax, 7:\amp),
 (0:\gate, 3:\rateDev, 2:\posRateE, 1:\posLo, 9:\panMax)
]);

Figure 4.2 Groups of mapping implemented in Greap.

4.4. Interaction affordances of Greap

Optical interfaces such as LM can provide a high degree of expressivity, letting the

performer move his or her hands in any direction freely and effortlessly, yet with no visual

cues and tactile feedback or restrictions relative to its tracking area. However, this

openness does have limitations since the performer must always consider the appropriate

position of the hands within the tracking range of the device. In Greap, this is partly solved

by visualising the values of each parameter in its graphical user interface, using graphic

faders and number boxes. However, monitoring range through the computer screen during

performance might lead to the isolation of the performer from the audience, affecting eye

contact, and leaving less room for theatrical and musical expression.

A way to avoid this, which was followed while learning Greap, suggests that by ignoring

the visual display and relying merely on the sound outcome, the performer can learn and

become skilful. Following this practice a gradual increase of gestural dexterity and

virtuosity became apparent.

Some other issues regarding environmental conditions seem to influence the performance

of the device. Reflective surfaces and external infrared light can reduce the precision of

 63

tracking of the device. In addition, long sleeves may also detract from its accuracy to

isolate hands.

Compared to other performance paradigms outlined in previous chapters, Greap offers the

ability to shape sounds in a more immediate way. The ability to set mappings and state the

values of selected parameters provides faster transitions between diverse states of sound

manipulation. This is almost impossible to achieve with other performance paradigms. For

example, in live coding these transitions tend to be time consuming due to the time taken

to type in the code and change the state of the running program. In addition, Greap

provides a very real sense of the shaping of sounds, giving the sonic medium an almost

tangible physicality.

4.5. Effort and visualisation of musical tension

Devices like LM require no contact or physical effort. The user can interact within the

tracking area of the interface without having to change or manipulate any physical state or

mechanism of the controller. Although Greap does not require any physical effort or

mechanical manipulation during performance, the bodily motion employed to shape

sounds expresses ‘effort’ (Vertegaal, Ungvary and Kieslinger, 1996, Fischman, 2013, p.330)

and musical tension.

4.6. Tangible sound

Although optical interfaces are intangible, Greap creates a potentially tangible connection

with the sound – the hands move in such a way that the audience may experience a direct

shaping of the sonic material correlated with the gestural movements, in a similar manner

to pottery where the potter gives shape to clay with manual dexterity. To explore further

this concept, future directions for Greap’s development will include real time manipulation

of a virtual object that the performer will be able to shape with his or her hands.

Similarities can be seen with ‘sound sculpting’ (Mulder and Fels, 1998, pp.15–16).

 64

4.7. Metaphors

Metaphors, in the context of computer music performance, are acts of gestural mimesis of

everyday movements. ‘A good mapping metaphor will help performers and the audience

understand the effects of gesture on sound’ (Sapir, 2000, p.3).

A metaphor is an effective way to enhance expressivity and mapping transparency while

performing with a gestural controller. The system supports a series of gestural metaphors

that are implemented through mapping. Table 4.3 provides an explanation of the

metaphors implemented for the work Ataraxia, presented below.

Metaphor Description

Scroll Scroll within the range of the sound file.

Bend Bending the pitch of the grain.

Stretch Stretch the sample. Imitate stretching by

moving hands in opposite directions.

Supress Step in and out when sound occurs,

supress the grain with the left hand.

Table 4.3 Metaphors in Greap.

4.8. Music composed with Greap

Ataraxia45 (2014) is the first musical work composed with Greap. It is a semi-improvised

composition structured in five scenes, each consisting of five separate metaphors. Although

this structure is fixed, the actual interpretation of the indicated gestures within a scene

depends on the performer’s approach. Ataraxia enacts the proliferation of magic or

augmenting reality. The performer appears to be a conjurer that shapes the sound, as it

was an immutable object while this object is connected to the characteristics of the

resulting sound. It is worth mentioning however, that even following accurately the

45 A video with the full recording of the piece is included in the accompanying DVD and online at
this link: https://vimeo.com/87510975

 65

instructions that are provided in the score, the performer must keep in mind that in order

to perform magic efficiently depends on the ability to sustain theatricality/dramaturgy

throughout the performance, and thus this is the main priority and rule that the performer

must comply with. Some strategies that appeared to be helpful for the successful

realisation of Ataraxia are outlined below:

1. Technological discretion. The hardware must be hidden, for example cables, audio

interfaces, and computers must not be apparent to the audience. From the

audience’s point of view people witness a clear/lucid connection between the hand

movements and the resulting sound without being able to see the medium that

creates it implying that the sound is being created by the bear hands of the

performer, augmenting mysticism. This however, is also depended on the visual

aspect of the performance. For example, the performer must not only be focussed

on the control of the parameters of the environment, but s/he must be also able to

employ the appropriate body language that demonstrates tension and effort of the

whole body, this is totally depended on the next strategy.

2. Listening to the sound, trust your ears. Providing that there is no computer on stage

that provides visual feedback from the responses of the system, the performer

learns to adapt his/her movements through listening to the outcome of the sound.

3. The ability of the performer to be theatrically vigorous. Assessing numerous

performances of Ataraxia show that in order the piece to be compelling and the

performer is able to perform magic successfully, s/he needs to be able to impose

some acting ability. For example, employing the whole body and create tension, as

well as keeping eye contact with the audience. This is crucial to maintain

theatricality and expressivity throughout the performance. In case the performer

fails to sustain this there is a risk of spoiling the appearance of magic that is

intended for the piece.

 66

4. Preservation of the guidelines of the score. To keep the form of the piece intact the

performer needs to preserve the instructions of the score, including the sound

material that was selected for the piece. The performance instructions are provided

in a graphical score that serves as a guide to the performer (attached in the

Appendix – Ataraxia, Score of Ataraxia). Each movement contains instructions

about durations of each scene, rests, hand gestures and their trajectories, names of

the audio samples and mappings. However, within these constraints, the performer

has the freedom to improvise. The instructions given by the score ensure that the

piece is repeatable and recognisable.

5. Performance through metaphors. The piece implements a series of metaphors that

the performer has to perform. Complete details about the metaphors implemented

in Ataraxia are discussed later in this section.

6. Scenes, grouped interaction affordances and structured improvisation. As already

noted Ataraxia is divided in separate scenes, providing specific directions and

information that help to build the context of the piece. These include trajectories of

the hands, specific sounds that are used in scenes, durations of the scenes, and the

execution of rests during the performance. This information helps to guide the

performer in certain paths throughout the performance rather than block his/her

imagination. The scenes including all information that comes with them create

diverse sets of interaction affordances; the performer is practising them, which

helps them to display a sort of virtuosity while playing with the environment. The

implementation of scenes allows building the context of the piece using directed

improvisation following the guidelines that were devised for Ataraxia.

According to some confessions of the audience the performance of Ataraxia enacts a sense

of conjuring. On the light of these confessions, it allows me to suggest that this

 67

composition is successful according to my personal ambitions and research objectives,

including expressivity and theatricality.

In order to enhance expressivity and create transparency of mapping, the following

metaphors were implemented. Timings refer to the documented performance.

Scroll (0’10” - 1’30”) the performer places the hands over the LM and moves them in a

vertical trajectory controlling the lower and higher read positions of the grain. This

corresponds to a visual metaphor of the reading position within the granulated sample.

Bend (1’30” - 2’54”) uses the left hand to manipulate the pitch deviation of the grains. The

higher the position of the hand the greater the deviation of the rate will be.

Stretch (2’55” - 4’25”) the performer moves the hands in a vertical trajectory where both

hands move in opposite directions in order to control time stretching: the wider the

distance between the two hands the greater the stretch factor.

Suppress provides a dramatic scenario. The performer acts as if scared of the sound grains

and trying to reach them (6’18” - 6’25”). Once s/he becomes familiar with this reaction,

s/he tries to interact with the grains by increasing and decreasing their density as well as

their pitch deviation and duration using the horizontal position of the hands (6’31”).

4.9. Conclusion

For many years there has been a trade-off between complexity and timbre versatility, and

the possibility of manipulating sound on the fly. Greap addresses this problem by

switching to different mappings without interrupting a performance. Furthermore, the

performer can develop and manipulate versatile timbre structures similar to those that are

made in the studio: with dynamic changes of multiple settings and configurations, the

composer/performer is able to access a wider range of sonic manipulation. Therefore,

while Greap was mainly developed for live use, complexity is not sacrificed.

 68

The musical result is the creation of idiomatic pieces that are consistent with the interface

and the medium that was used to create it. Thus, the music that is created using an

interface such as LM is highly gestural – the movements of the performer are reflected in

the sounds, leading to a causal relationship between the former and the latter. Moreover,

sound morphology is depicted by the fast changes that the performer may achieve due to

the ability to make rapid manipulations of the main synthesis parameters (as well as of the

auxiliary controls), as opposed to other performance paradigms examined in this research.

Additionally, by using scenes the user may store multi-parameter functions such as

mappings and other pertinent information, in order to create more complex pieces.

Using optical interfaces provides a large degree of freedom in regard to the performer’s

gestures and movements. However, this is possible only when the performer keeps the

hands within the appropriate range of the device. There is neither a specific framework

nor physical constraints that the user is aware of during the performance, thus the only

way to make sure that the system is responding properly is through the produced sound. A

strategy that relies solely on the sonic output of the system while performing was followed

in this project.

Although there is no requirement for physical effort, mapping was developed to enhance

expressivity by implementing a series of metaphors.

While Greap is fully functional, there is still some room for development, and this has

become apparent through composition and performance, requiring a constantly evolving

process of metaphor development and adaptation to new musical requirements. Some

future refinements of the system will include its modification of the system to facilitate a

more flexible mechanism for mapping which will be more accessible to novel users. This

will be possible through the implementation of a matrix where the user will be able to bind

LM’s variables with the synthesis parameters of Greap. It will provide a visual

 69

representation of the mapping and will help to build it without the need to deal with code.

A similar approach is implemented in MAES (Fischman, 2013, p.334).

Figure 4.3 shows an under development implementation of the mapping in future version

of Greap environment.

Figure 4.3 Matrix of the mapping in future version of Greap. Image produced using ixiViews46 quark

in SuperCollider.

46 See https://github.com/supercollider-quarks/ixiViews

 70

5. Conclusions – discussion of musical implications

In order to shed light on the background and processes that underpin the music systems in

this thesis, this commentary has reported on research on current representative

performance paradigms using various interfaces for real time interaction with computer-

based musical environments. A number of studies were carried out to investigate the

musical feasibility of readily available interfaces, using these to develop performance

environments that employ improvisation as the basis for real time composition, with an

emphasis on interactive features.

Each environment was optimised for different forms or variants of musical practice.

Looking at the musical outcomes of each performance paradigm it becomes apparent that

the medium that is used to drive or interact with the environment has a great effect on the

characteristics of composition. This view is also supported by Vaughan (1994).

The music I have composed during my PhD is created by the need to express human

spontaneity through computer-based environments that are able to provide intuitive

communication with sound. Whether this is through the employment of physical gestures

or via text-based interfaces such as code, my vision was to create the means to employ

spontaneity, imagination and dexterity while improvising with computer environments.

Similarities can be seen with the paradigm of a dexterous improviser performing on his or

her acoustic instrument.

The musical environments I developed throughout my PhD helped me to investigate

improvisation in various ways including free improvisation using the Wiimote as extension

to my body, or structured improvisation following a set of instructions and the

organisation of gestural affordances. Creating instruments and musical environments from

scratch or redefine their structure as a performance strategy; conjoining various control

inputs such as environmental conditions, and human agencies to interact with computer-

based environments optimised for real time composition and improvisation. Further, my

 71

research concerned a lot about how to interact with the sound in an accurate manner.

Micro gestures corresponding to fine grains of sound that create a link between the minor

movements and the sound outcome.

In one of his lectures, Varese stated that “I dream of instruments obedient to my thought

and which with their contribution of a whole new world of unsuspected sounds, will lend

themselves to the exigencies of my inner rhythm” (Wen-chung, 1966, p.11).

To achieve this the performer has to create the means to translate imagination to the

digital domain, a sort of humanising technology. Thus, whilst the current exploration

concerned technology, however my purpose was not to create state of the art computer

environments, but rather to examine readily available means and use them to fulfil my

artistic and musical needs.

Through the use of various interfaces and musical environments I was able to express

myself according to the various strengths and competences that each environment offered.

Therefore, the systems provided me with the means to stream my performance and

manifest my musical imagination in different ways47 i.e. using the expression of my

gestures to interact with the music media. The most suitable path for me to achieve this is

through improvisation, using it as a means to express myself in a direct way similar to an

instrumental improviser. While I improvise I build a sort of conversational relation with

the digital environment, for example, using patterns in SuperCollider I can implement

generative processes that evolve on their own which then I am able to intervene and

change their structure while I am introducing new elements of sound gradually building a

climax. The occurrences during this conversation influence my next movements. When

something unexpected occurs, which potentially distracts coherence, I use it and make it

fit in the general outcome, embracing the unexpected.

47 According to their idiosyncratic features.

 72

Thus, my approach in improvisation deals solely with sound through which I explore

myself and expose my thoughts to the audience at the same time, a sort of mirroring of my

inner world through the digital environment I am using. I have explored improvisation in

various ways through which I composed a series of pieces that were created live or

composed later in a studio using material that originated from live performances.

I personally believe that a performance environment must be compelling and engage its

user musically and make them like to play48 it. When I was starting my PhD (and before),

as a performer, I did not feel musically stimulated by a performing environment that

required merely waving my hands and making sounds freely, while nodding my head in

front of the audience. I felt this would put me in a situation of demonstrating the musical

environment rather than expressing my artistic idiosyncrasies. As a performer I believe that

improvising without a basic structure can lead to the blocking of imagination of the

improviser during the performance. On the contrary, by following some trivial rules while

improvising, not only I felt more comfortable on stage, my performance could benefit

much more establishing a territory of specific goals and musical qualities or criteria that

need to be fulfilled. Such clear intention will help the audience to judge if the performance

was successful or not.

Therefore, I started importing into my pieces some basic performance scenarios and help

to organise my improvisation in order to go a step beyond simply wandering on stage. An

example of this approach was used first in Stay On This Gesture, followed by a more

refined realisation of this later in Greap. It allowed me to structure improvisation in

separate blocks consisting of separate improvised parts to build the composition in real

time. Each part allowed a certain degree of free interpretation of the guidelines, which I

48 Used with the literal meaning of the word, i.e. engaging, interesting to explore or investigate
various aspects of something. In the context of a musical environment this could be translated to
something that inspires the user with its sound qualities while interacting with it, but also
unpredictable, for example, some nice occurrences of textures that the performer had not
preconfigured while designing it, but it happened through the interrelation/correlation of the
parameters that comprise the musical environment, or even an interesting glitch.

 73

was able to interpolate in a given timeline. While I did not want to constrain myself with

certain fixed rules, I needed something to guide me throughout the performance. Boden

states that constraints are “far from being the antithesis of creativity, constraints on

thinking are what make it possible. Constraints map out a territory of structural

possibilities which can then be explored, and perhaps transformed to give another one”

(Magnusson, 2010, p.63). I find this true of my own performances.

Although the majority of the current work was created live, I have also created a series of

fixed media pieces composed in the studio. These pieces helped me to reflect on my live

practice through a detailed examination of the material afterwards in the studio. This

retrospection helped me to take a step back, gain control over the material and inform my

live performance. For example, while composing a piece in the studio and needing a

specific musical passage or texture, I created it using live coding, sometimes combined

with a gestural controller if I needed to convey a specific gesture49 in the morphology of the

sound. Once the material was created I processed it further, using filtering, pitch-shifting

or edit duration of the sounds in order to fit in the composition. This approach resembled

the assembly of a puzzle, which specific pieces shape the general image, but in the case of

the music these pieces had to be created.

As stated previously diverse paradigms of performance formed the ground to investigate

various aspects of improvisation and instigate various modes of musical practice. PoP

allowed me to create a real time composition based on the response to the spontaneity of

the multiple participants in conjunction with the influence of the environment. Using PoP

allowed me to investigate affordances that were not possible in the other paradigms

examined in this research, these included multiple control agencies rather than single

performance interaction. Through PoP I was also able to approach the composition in a

49 In fixed media composition this word is used to express a sound that is characterised by gestural
quality.

 74

more relaxed way rather than having to perform in a formal manner in front of an

audience.

Alternatively, using the Wiimote and the Nunchuk enacted a causal relationship between

my physical gestures and the resulting sound. The devices were used as prosthesis to my

body rather than a separate device, similar to the bow of a violinist. BiGrain allowed me to

build an interaction relationship similar to the performance with a traditional instrument

e.g. hearing the responses of the system caused by my actions, and constantly trying to

adjust them while improvising. Thus, every movement of my hands created a sonic

manifestation emerging from my imagination.

The Song has Sung was composed following a different mapping strategy than the one

followed in BiGrain. Instead of translating my gestures directly to sound using one-to-one

mapping with the synthesis parameters, I engaged in an interactive loop enacted by the

complex calculations of the system and the human input. System and performer are

equally influenced by the responses of each other, creating a mutual intervention on stage.

The question that arose was who is in control of the performance, is it the system that

encourages the performer with its complex sound layers that conjoin to each other, or is it

the performer trying to influence the system and inject the human input in this endless

continuum. Whichever way, performing with Stay On This Gesture led me to paths

otherwise unexplored. The patterns extended my compositional imagination; by

employing their complexity within my live performance I broadened my improvisational

exploration.

Evidently, ‘live coding provides one fertile solution to the problem of interface

design…with rich implications for improvisational practice’ (Wilson et al., 2014, p.54). It

allows synthesising sounds from scratch or improvising source code on stage. In my

personal practice I have used and demonstrated live coding as a tool to define and create

interaction affordances that are detached from previous decisions by creating hybrid

 75

environments employing hardware devices, which then I improvised their mapping live.

This allowed me to explore a wider range of interaction possibilities and led me to

compose pieces liberated from previous constraints and limitations. Most importantly, live

coding allowed me to engage in collective improvisation with others. Through sharing

code to the rest of an ensemble I was able to interact and express my musical imagination

while contributing to a generic sonic outcome in a very coherent and specific manner,

something that in other laptop performances is absent.

However, one of the main limitations that I felt during live coding was the inability to

translate all the sounds that I had in my mind during improvisation, and the relatively

slow speed reaching the kinds of the sound that I was imagining. Thus, while live coding is

an unlimited interface that potentially lets me implement every possible sound live, it

requires a sort of expertise in programming. I approached this by exercising every day. I

experimented with various implementations of synthesis code and other generative

processes, and I created an arsenal of tricks50 that I could vary live according to the needs

of the performance. This could be viewed as similar with the paradigm of the practice of

an acoustic instrumentalist.

For many years there has been a trade-off between complexity and timbre versatility, and

the possibility of manipulating sound on the fly. In Greap, using scenes I am able to pre-

compose the interaction affordances and plan my improvisation in advance of the concert

without sacrificing complexity on stage. Ataraxia, composed with Greap, illustrates the

accurate representation of my decisions taken prior to the performance, which the

environment allows me to store them and use repeatedly. Most importantly, while

performing with Greap I was able to translate same gestures to result in diverse sound

manipulations and organise the piece, something that in other performance paradigms

examined in this research was not possible. Finally, using a specific score that I created for

50 Some are available online at this link: https://github.com/KonVas/Ionio-liveCode-workshop new
comers in live coding might find those interesting to experiment and adapt according to their needs.

 76

the piece I managed to keep the form of the piece intact, maintaining the repeatability and

recognisability of the composition even after many performances. Thus, the piece can be

distributed and performed by other laptop artists.

Another aspect of the projects was theatricality. Each performance paradigm provided a

degree of spectacle that emerged from the nature and the characteristics exhibited by each

interface. For example, theatricality in live coding is enacted by the projection of the code.

The audience can follow the implication of the code and how this affects the sonic

outcome. In the case of tangible interfaces the theatricality is apparent by the appearance

of effort using physical energy to manipulate the sensors of the interface and change of the

mechanical state of the device.

Performing with optical interfaces, I achieved a high degree of expressivity enacted by the

lucid connection between the gestures and the resulted sound. Adopting the use of

metaphors (i.e. gestures that convey universal meaning, such as rub, spin, and twist)

translating these into sound advanced the dramatic spectacle and theatricality. Ataraxia

highlights this by adopting two approaches: avoiding any technological and hardware

devices (including the computer) around the interaction area creating a magical/mystical

representation of gestures to sound, and keeping an air of mystery. This is partly achieved

by my decision to rely only to the sound outcome instead of looking at graphical

representations on a screen, thus to monitor the systems’ responses through the sound.

This also allows eye contact with the audience, which is paramount to enhance the

dramatic aspect during performance.

In the case of PoP, the movements and the actions of the people to stimulate and interact

with the installation are the theatre. To interact with the installation the people wander

around in order and play with the system. During this interaction some cumbersome

elements were apparent since the affordances of the system were unknown to the

participant appear to create an impact on the sonic outcome. This theatrical scenery

 77

appeared to offer musical unpredictability due to the awkward interaction of the people

and the system. Observing the installation it came to me that people approached the sound

installation as a sort of a playground, where people stimulated the system and interacted

with the sound with a playful but exploratory mood in the same time. Judging the joyful

engagement of the people with the system, I consider the installation successful.

5.1. Encore

To conclude, during one of his lectures Varese stated that:

“We should also remember that no machine is a wizard, as we are beginning to

think, and we must not expect our electronic devices to compose for us. Good

music and bad music will be composed by electronic means, just as good and bad

music have been composed for instruments. The computing machine is a

marvellous invention and seems almost superhuman. But, in reality, it is as limited

as the mind of the individual who feeds it material. Like the computer, the

machines we use for making music can only give back what we put into them.”

(Wen-chung, 1966, pp.18-19)

Embracing this idea, in my performance practice during this PhD, I did not expect the tools

to compose the music on their own, by using their cerebral aptitudes without a sort of

human touch. I wanted to exploit and take advantage of the modern media in order to

explore new leads in improvisation and music composition using interactive media.

6. Further research

I will continue to refine the digital environments by adapting them to the constant

compositional challenges as I expand my musical practice. Further research may elaborate

in the investigation of digital environments that will provide intelligent approaches

optimised for improvisation and real time composition. For example, systems that will be

able to take decisions and adapt their behaviour according to the input data using gesture

 78

recognition or feature extraction of control signals is worth exploring. Finally, I will refine

the current digital environments in order to be used by other musical practitioners with

diverse technical background.

 79

References

Alles was wir haben. 2004. [video] Directed by V. Kamensky. Available at:

<http://swiki.hfbk-hamburg.de/MusicTechnology/491> [Accessed 2 Aug. 2015].

Anderson, C., 2005. Dynamic Networks of Sonic Interactions: An Interview with Agostino

Di Scipio. Computer Music Journal, [online] 29(3), pp.11–28. Available at:

<http://www.mitpressjournals.org/doi/abs/10.1162/0148926054798142> [Accessed 2

Aug. 2015].

Szwed, J.F., 2002. So what: the life of Miles Davis. New York: Simon & Schuster.

Bertelli, E., 2013. Drumactica 2.0. [online] Available at:

<https://www.youtube.com/watch?v=zMkoQMTWUeY> [Accessed 8 Aug. 2015].

Bevin, G., 2014. GECO. [MacOSX] UWYN. Available at: <http://uwyn.com/geco/>.

Bisig, D.,, Schacher, J., and Neukom, M., 2011. Flowspace – A Hybrid Ecosystem. In:

Proceedings of the International Conference on New Interfaces for Musical Expression.

[online] NIME2011. Oslo, Norway, pp.260–263. Available at:

<https://www.zhdk.ch/fileadmin/data_subsites/data_icst/Publikationen/2011_NIME11_

Hybrid_Ecosystem_Bisig.pdf> [Accessed 2 Aug. 2015].

Blackwell, A., and Collins, N., 2005. The programming language as a musical instrument.

In: P. Romero, J. Good, A. Chaparro and S. Bryant, eds., Proceedings of Psychology of

Programming Interest Group. [online] PPIG2005. pp.120–130. Available at:

<http://www.ppig.org/papers/17th-blackwell.pdf> [Accessed 2 Aug. 2015].

Chadabe, J., 2002. The Limitations of Mapping as a Structural Descriptive in Electronic

Instruments. In: Proceedings of the International Conference on New Interfaces for

Musical Expression. [online] NIME2002. Dublin, Ireland, pp.38–42. Available at:

<http://www.nime.org/proceedings/2002/nime2002_038.pdf> [Accessed 2 Aug. 2015].

 80

Cycling74, 1998. Max/MSP. [MacOSX] California, USA: Cycling74. Available at:

<https://cycling74.com/> [Accessed 2 Aug. 2015].

De Campo, A., Rohrhuber, J., Bovermann, T., and Frauenberger, C., 2011. Sonification and

Auditory Display in SuperCollider. In: S. Wilson, D. Cottle and N. Collins, eds., The

SuperCollider Book. Cambridge: MA: MIT Press.

De Campo, A.,, Vacca, A.,, Hoelzl, H.,, Ho, E.,, Rohrhuber, J., and Wieser, R., 2007. Code

As Performance Interface - A Case Study. In: Proceedings of the International Conference on

New Interfaces for Musical Expression. NIME. New York: Unpublished.

Elevator to the Gallows. 1958. Directed by L. Malle. Lux Compagnie Cinématographique de

France. Available at: <http://rialtopictures.com/elevator.html> [Accessed 11 Aug. 2015].

Fels, S., Gadd, A., and Mulder, A., 2002. Mapping transparency through metaphor:

towards more expressive musical instruments. Organised Sound, [online] 7(02). Available

at: <http://www.journals.cambridge.org/abstract_S1355771802002042> [Accessed 2

Aug. 2015].

Fischman, R., 2013. A Manual Actions Expressive System (MAES). Organised Sound,

[online] 18(03), pp.328–345. Available at:

<http://www.journals.cambridge.org/abstract_S1355771813000307> [Accessed 2 Aug.

2015].

Fujimoto, R., 2013. Humanelectro × Leap Motion. [video online] Available at:

<https://www.youtube.com/watch?v=-W_NYbPpkPQ&feature=youtube_gdata_player>

[Accessed 8 Aug. 2015].

Gadd, A., and Fels, S., 2002. MetaMuse: metaphors for expressive instruments. In:

Proceedings of the 2002 conference on New interfaces for musical expression. [online]

 81

NIME2002. Dublin, Ireland: National University of Singapore, pp.1–6. Available at:

<http://dl.acm.org/citation.cfm?id=1085206> [Accessed 2 Aug. 2015].

Hermann, T., Hunt, A. and Neuhoff, J.G. eds., 2011. The sonification handbook. First ed.

[online] Berlin: Logos Verlag. Available at:

<http://sonification.de/handbook/index.php/downloads/> [Accessed 2 Aug. 2015].

Hoenig, U., 2014. Leap Motion gesture control jam (Geco, Reaktor, Live). [video online]

Available at: <https://www.youtube.com/watch?v=Q8AxhbCL-rM> [Accessed 8 Aug.

2015].

Hugill, A., 2012. The digital musician. Second edition ed. New York!; London: Routledge.

Hunt, A.,, Wanderley, M., and Kirk, R., 2000. Towards a model for instrumental mapping

in expert musical interaction. In: Proceedings of the 2000 International Computer Music

Conference. [online] ICMC2000. Berlin, Germany, pp.209–212. Available at:

<http://www.ircam.fr/equipes/analysesynthese/wanderle/Gestes/Externe/Hunt_Toward

s.pdf> [Accessed 2 Aug. 2015].

Hunt, A., and Wanderley, M.M., 2002. Mapping performer parameters to synthesis

engines. Organised Sound, [online] 7(02). Available at:

<http://www.journals.cambridge.org/abstract_S1355771802002030> [Accessed 2 Aug.

2015].

Hunt, A., Wanderley, M.M., and Paradis, M., 2003. The importance of parameter mapping

in electronic instrument design. Journal of New Music Research, [online] 32(4), pp.429–

440. Available at:<http://www.tandfonline.com/doi/abs/10.1076/jnmr.32.4.429.18853>

[Accessed 2 Aug. 2015].

Ma, 2013. Touchless at NIME show 2013 Live. [video online] Available at:

<https://vimeo.com/81973975> [Accessed 3 Aug. 2015].

 82

Magnusson, T., 2010. Designing constraints: Composing and performing with digital

musical systems. Computer Music Journal, [online] 34(4), pp.62–73. Available at:

<http://www.mitpressjournals.org/doi/pdf/10.1162/COMJ_a_00026> [Accessed 13

Aug. 2015].

Magnusson, T., 2011. ixi lang: a SuperCollider parasite for live coding. In: Proceedings of

International Computer Music Conference. [online] ICMC2011. Huddersfield, UK:

University of Huddersfield, pp.503–506. Available at: <http://sro.sussex.ac.uk/46869/>

[Accessed 2 Aug. 2015].

Malloch, J.,, Sinclair, S., and Wanderley, M.M., 2013. Libmapper: (a library for connecting

things). In: Extended Abstracts on Human Factors in Computing Systems. [online] CHI.

Paris, France: ACM Press, p.3087. Available at:

<http://dl.acm.org/citation.cfm?doid=2468356.2479617> [Accessed 2 Aug. 2015].

Manning, P., 2004. Electronic and computer music. Rev. and expanded ed. Oxford!; New

York: Oxford University Press.

McCartney, J., and others, 2014. SuperCollider. [MacOSX] Available at:

<http://supercollider.github.io> [Accessed 2 Aug. 2015].

Miranda, E.R., and Wanderley, M.M., 2006. New digital musical instruments: control and

interaction beyond the keyboard. The computer music and digital audio series. Middleton,

Wis: A-R Editions.

Mulder, A., and Fels, S., 1998. Sound sculpting: Manipulating sound through virtual

sculpting. In: Proceedings of the 1998 Western Computer Graphics Symposium. [online]

WCGS1998. pp.15–23. Available at: <http://www.xspasm.com/x/sfu/vmi/ss/WCGS98-

p.pdf> [Accessed 2 Aug. 2015].

 83

Nilson, C., 2007. Live coding practice. In: Proceedings of the 7th international conference

on New interfaces for musical expression. [online] NIME2007. ACM Press, p.112.

Available at: <http://portal.acm.org/citation.cfm?doid=1279740.1279760> [Accessed 2

Aug. 2015].

Paine, G., 2009. Towards Unified Design Guidelines for New Interfaces for Musical

Expression. Organised Sound, [online] 14(02), p.142. Available at:

<http://www.journals.cambridge.org/abstract_S1355771809000259> [Accessed 2 Aug.

2015].

Pressing, J., 2001. Improvisation: methods and models. In: J. Sloboda, ed., Generative

Processes in Music. The Psychology of Performance, Improvisation, and Composition. [online]

Oxford!; New York: Oxford University Press, pp.129–178. Available at:

<http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198508465.001.000

1/acprof-9780198508465> [Accessed 14 Aug. 2015].

Puckette, M., 1996. Pure Data. [online] Available at: <http://puredata.info/> [Accessed 2

Aug. 2015].

Roads, C., 1996. The computer music tutorial. Cambridge, Mass: MIT Press.

Rohrhuber, J., de Campo, A., and Wieser, R., 2005. Algorithms today notes on language

design for just in time programming. In: Proceedings of the ICMC 2005. [online] ICMC

2005. Barcelona, Spain, pp.291-294. Available at:

<http://web.cecs.pdx.edu/~dreeder/site/nysc/doc/rohrhuber,etal--jit.pdf> [Accessed 11

Aug. 2015].

Rovan, J.B.,, Wanderley, M.M.,, Dubnov, S., and Depalle, P., 1997. Instrumental gestural

mapping strategies as expressivity determinants in computer music performance. In:

Kansei, The Technology of Emotion. Proceedings of the AIMI International Workshop.

[online] Genoa, Italy, pp.68–73. Available at:

 84

<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.4788&rep=rep1&type=

pdf> [Accessed 2 Aug. 2015].

Sapir, S., 2000. Interactive digital audio environments: gesture as a musical parameter. In:

Proceedings COST-G6 Conference on Digital Audio Effects. [online] DAFx’00. Verona,

Italy, pp.25–30. Available at: <

http://www.researchgate.net/publication/246498426_INTERACTIVE_DIGITAL_AUDIO_E

NVIRONMENTS_GESTURE_AS_A_MUSICAL_PARAMETER > [Accessed 2 Aug. 2015].

Studer, A., 2010. Simon Emmerson on live computer music. [online video] 28 Apr. Available

at: <https://www.youtube.com/watch?v=78z1_8J8oVE> [Accessed 2 Aug. 2015].

Di Scipio, A., 2003. ‘Sound is the interface’: from interactive to ecosystemic signal

processing. Organised Sound, [online] 8(03). Available at:

<http://www.journals.cambridge.org/abstract_S1355771803000244> [Accessed 2 Aug.

2015].

Di Scipio, A., 2011. Listening to Yourself through the Otherself: On Background Noise

Study and other works. Organised Sound, [online] 16(02), pp.97–108. Available at:

<http://www.journals.cambridge.org/abstract_S1355771811000033> [Accessed 2 Aug.

2015].

Di Scipio, A., 2014. The place and meaning of computing in a sound relationship of man,

machines, and environment. In: Proceedings of ICMC|SMC|2014. [online] ICMC2014.

Athens, Greece, pp.47–53. Available at: <http://www.smc-conference.net/smc-icmc-

2014/papers/images/VOL_1/0047.pdf> [Accessed 2 Aug. 2015].

McCallum, L., and Smith, D., Show Us Your Screens. 2011. [video] Available at:

<https://vimeo.com/20241649>.

 85

Silva, E.S., de Abreu, J.A.O., de Almeida, J.H.P., Teichrieb, V., and Ramalho, G.L., 2013. A

preliminary evaluation of the leap motion sensor as controller of new digital musical

instruments. [online] Centro de Informática – Universidade Federal de Pernambuco

(UFPE). Available at: <http://compmus.ime.usp.br/sbcm/2013/pt/docs/art_tec_1.pdf>

[Accessed 3 Aug. 2015].

Sorensen, A., 2005. Impromptu: An interactive programming environment for composition

and performance. In: Proceedings of the Australasian Computer Music Conference 2009.

[online] ACMC 2005. Brisbane, Australia, pp.149–153. Available at:

<http://eprints.qut.edu.au/31056/> [Accessed 3 Aug. 2015].

Toplap, 2010. ManifestoDraft. [Wikipedia] Toplap. Available at:

<http://toplap.org/wiki/ManifestoDraft> [Accessed 19 Aug. 2015].

Troillard, C., 2011. OSCulator. [computer program] Wildora. Available at:

<http://www.osculator.net/> [Accessed 3 Aug. 2015].

Troillard, C., 2012. OSCulator user’s manual. [online] OSCulator’s User’s Manual. Available

at: <http://s3.amazonaws.com/osculator/doc/OSCulator+2.12+Manual.pdf> [Accessed

9 Aug. 2015].

Varese, E., and Wen-chung, C., 1966. The Liberation of Sound. Perspectives of New Music,

[online] 5(1), p.11. Available at: <http://www.jstor.org/stable/832385?origin=crossref>

[Accessed 13 Aug. 2015].

Vasilakos, K., 2014. Sculpting Sound in Real Time with SuperCollider. [blog] Leap Motion

Blog. Available at: <http://blog.leapmotion.com/sculpting-sound-real-time-

supercollider/> [Accessed 5 Aug. 2015].

Vaughan, M., 1994. The human-machine interface in electroacoustic music composition.

Contemporary Music Review, 10(2), pp.111–127.

 86

Vertegaal, R.,, Ungvary, T., and Kieslinger, M., 1996. Towards a musician’s cockpit:

Transducers, feedback and musical function. In: Proceedings of the International Computer

Music Conference. [online], pp.308–311. Available at:

<http://www.cs.queensu.ca/~roel/publications/ICMC96/paper.html> [Accessed 11 Aug.

2015].

Walker, B.N., and Kramer, G., 2005. Mappings and metaphors in auditory displays: An

experimental assessment. ACM Transactions on Applied Perception, [online] 2(4), pp.407–

412. Available at: <http://sonify.psych.gatech.edu/publications/pdfs/2005TAP-

WalkerKramer-ICAD1996paper.pdf> [Accessed 3 Aug. 2015].

Wanderley, M.M., 2001. Gestural control of music. In: International Workshop Human

Supervision and Control in Engineering and Music. [online] Kassel, Germany, pp.632–644.

Available at: <http://kkothman.iweb.bsu.edu/oldTeaching/mumet440/papers/wanderly-

gestcontrol.pdf> [Accessed 3 Aug. 2015].

Wang, G., 2008. A Strongly-Timed, On-the-fly, Environ/mentality. [online] Princeton

University. Available at:

<http://www.researchgate.net/publication/259326122_The_ChucK_Programming_Langu

age_A_Strongly-Timed_On-the-fly_Environmentality> [Accessed 3 Aug. 2015].

Wang, G., and Cook, P.R., 2004. On-the-fly programming: using code as an expressive

musical instrument. In: Proceedings of the 2004 conference on New interfaces for musical

expression. [online] NIME 2004. Singapore: National University of Singapore, pp.138–

143. Available at: <http://dl.acm.org/citation.cfm?id=1085915> [Accessed 3 Aug.

2015].

Waters, S., 2007. Performance Ecosystems: Ecological approaches to musical interaction.

EMS: Electroacoustic Music Studies Network, [online] pp.1–20. Available at:

 87

<http://webuser.fh-furtwangen.de/~friedm/PerformEcosystems.pdf> [Accessed 3 Aug.

2015].

Wessel, D., Wright, M., and Schott, J., 2002. Intimate musical control of computers with a

variety of controllers and gesture mapping metaphors. In: Proceedings of the 2002

conference on New interfaces for musical expression. [online] NIME 2002. Singapore:

National University of Singapore, pp.1–3. Available at:

<http://dl.acm.org/citation.cfm?id=1085213> [Accessed 3 Aug. 2015].

Wilson, S., Lorway, N., Coull, R.,, Vasilakos, K., and Moyers, T., 2014. Free as in BEER:

Some Explorations into Structured Improvisation Using Networked Live-Coding Systems.

Computer Music Journal, 38(1), pp.54–64.

Wilson, S., and de Campo, A., 2013. Utopia. [computer program] Available at:

<https://github.com/muellmusik/Utopia> [Accessed 3 Aug. 2015].

Winkler, T., 1995. Making motion musical: Gesture mapping strategies for interactive

computer music. In: ICMC Proceedings. [online] International Computer Music

Conference. Banff Centre for the Arts, Canada, pp.261–264. Available at:

<http://www.brown.edu/Departments/Music/faculty/winkler/papers/Making_Motion_M

usical_1995.pdf> [Accessed 2 Aug. 2015].

Xenakis, I., 1992. Formalized music: thought and mathematics in composition. Rev. ed.

Harmonologia series. Stuyvesant, NY: Pendragon Press.

Zmölnig, Io., and Eckel, G., 2007. LIVE CODING: AN OVERVIEW. In: ICMC Proceedings.

[online] International Computer Music Conference. Copenhagen, Denmark, pp.295–298.

Available at: <http://quod.lib.umich.edu/i/icmc/bbp2372.2007.063/1> [Accessed 3 Aug.

2015].

88

Appendix – Ataraxia

Software SuperCollider 3.6 (or above)

GECO

Files Greap.scd

Audio files BasClar.aiff

bell.aiff

bidding.aiff

isThatYou.aiff

seaRoaring.aiff

triangle.aiff

Resources Subduct.scd

GECOMapSC.geco

BEERfers.scd

Hardware Leap Motion

MIDI foot pedal (optional).

 Computer GECO Greap

 Leap Motion

89

Instructions and technical requirements

Instructions about how to set up Greap environment are as follows. In order to connect the

Leap Motion device to the computer you require the software of the device, which is

provided by the manufacturer, and can be installed when purchasing the device. To run

the environment you will need SuperCollider and a third party application called GECO,

which is used to tap the Leap Motion data in SuperCollider.

Current version of Greap has a stereo output. The system may be connected directly to a

pair of self-amplified speakers using a mini jack (3.5mm) cable via the line output of the

computer’s sound card. GECO communicates the data of Leap Motion using MIDI protocol;

future versions of Greap will use Open Sound Control (OSC) protocol as current version of

GECO supports it.

To perform Ataraxia you will need a selection of sounds that were used for the piece,

which are placed in a folder called ‘sounds’ in the root folder of the project. Additional files

of the environment can be found in a folder named ‘resources’ inside the Greap51 folder.

Move both files Subduct.sc and BEERfers.sc from the resources folder to the SuperCollider

extensions52 folder. On a Mac, it is in the following path name:

Username/Library/Application Support/SuperCollider/Extensions

How to launch Greap

Open Greap.scd with SuperCollider. To run the environment press (Mac) ⌘"+"A,"and"then"

⌘"+"Enter. Greap will launch GECO by loading the GECOMapSC.geco file automatically,

which contains configuration for the mapping of Leap Motion to SuperCollider. If

everything has gone as expected SuperCollider must be running the environment and you

51 Included in the accompanying DVD.
52 In case this file does not exist you have to create it.

90

are looking to a graphical user interface (GUI). It provides some faders and buttons, which

can be used for testing purposes. Providing that you are in the first scene, movement along

the x-axis of the left hand is controlling the start of the reading position of the sound

sample and movement along the x–axis of the left hand is controlling the end of the

reading position of the sound. The rest of the parameters of the synth remain fixed until

you switch to the next scene, which provides interaction with other parameters. For

complete details about the mapping of the environment see score below.

Troubleshooting

In the event that SuperCollider fails to start GECO you may launch the application and

load the GECOMapSC.geco file manually. It is recommended to start GECO before

SuperCollider.

For accurate realisation of Ataraxia you must use the sounds that were selected for the

piece. Should you want to create your own version and use other sounds, replace the

current ones with yours. If SuperCollider fails to produce any sound, make sure that these

are monophonic sounds and are placed in the correct location, that is inside the root folder

of the project.

If Leap Motion is functioning erratically, for example it fails to track your hands accurately,

it is worth calibrating the device, to do so follow the instructions of the Leap Motion

software in your computer or consult the official website53.

Instructions for the performance of Ataraxia

Ataraxia is composed in five scenes or movements; each scene uses a different sound, and

the environment will select it automatically by using the name of the audio file, denoted in

each scene. The performance involves the use of gestural metaphors, which need to be

53 It is worth visiting this page especially if this is the first time you are using the device:
http://blog.leapmotion.com/troubleshooting-guide-vr-tracking/

91

performed as instructed in the score. This is crucial for the accurate realisation of the

piece. For details about the implementation of the metaphors see Table 4.3 and section

4.8.

Configuring the performer: this score is to assist the performer to perform the piece

Ataraxia. It contains figures and instructions as well as information about the mappings,

audio samples, duration of the scenes, and hand trajectories. The performer is advised to

make rests in each scene. This can be achieved by keeping Leap’s interaction area54 clear.

The notated rests given in the score are crucial and help to preserve the structure of the

piece intact after various performances. To maintain the structure of the composition the

performer has to sustain the connection between the scenes: when a rest sign is not

notated in the score the performer has to keep the flow of the sound without interrupting

the sound. It is important that the transitions between the scenes are performed without

interruption where required.

To enable versatile interactivity, each scene enables different mappings i.e. the same

gesture(s) may be coupled to other parameters; therefore the same gestures result in

various sonic manipulations. However, some mappings remain fixed during the

performance. These include gate, which is activated by the left hand. Panning: in the

stereo image, which is coupled with the vertical trajectory of the left hand, and volume:

that is controlled via an external foot switch, or with any other viable means (i.e. the

mouse of the computer). Although the duration of the scenes is fixed, the performer is free

to improvise, however, the duration of each scene must not be less than 2 seconds or

exceed 2.5 minutes, and rests must not exceed 6 seconds.

54 According to the official website of Leap Motion the field of view of the device is two feet above
the controller, by two feet wide on each side.

92

Score of Ataraxia

Scene: 1

Sound: is that you

Duration: approx. 2 minutes.

! Leap Motion

Scroll inside the sound file: both hands move on the vertical position over the Leap’s

interaction area. Left hand controls the lower position (grain’s reading position); right

hand controls the end position of the grain. Create rests where appropriate. Move to the

next scene without interrupting the sound.

93

Scene: 2

Sound: sea roaring

Duration: approx. 2 minutes.

!

Leap Motion

This scene includes the movement of both hands in the vertical position. In addition, it

uses the left hand to create an upward & downward motion in order to deviate from the

pitch of the grain. If the left hand is down and close to the device, the grain will have its

original pitch, moving the hand upward the pitch starts to fluctuate from its original

position. Create rests where appropriate. Move to the next scene without interrupting the

sound.

94

Scene: 3

Sound: bell

Duration: approx. 2 minutes.

!
Leap Motion

This scene implements a stretching metaphor. The performer has to open and close his

hands over the horizontal axis of the Leap, (like s/he tries to stretch the sound with

hands). This scene maps the left hand with the number of the grains and the density of the

sound. The right hand controls the duration of the grain. Fade out by removing hands

slowly.

95

Duration: 5 seconds.

Rest. Keep Leap's interaction area clear.

!

96

Scene: 4

Sound: triangle

Duration: approx. 2 minutes.

!

Leap Motion

Place the left hand over Leap and trigger the sound; causing the triangle to play for 4

times. Moving the left hand towards the left direction deviates from the current position of

the pitch. Moving the right hand diagonally towards the right direction manipulates the

grain duration. Move up and down to control the pitch. Remove hands rapidly and finish

this scene with tenacity, move to next one after the following rest.

97

Duration: 5 seconds.

!

Rest. Keep LM’s interaction area clear.

98

Scene: 5

Sound: BasClar

Duration: approx. 2 minutes.

!

Leap Motion

This scene uses only the up and down positions of hands. Pretend that you are afraid of

the sound; place slowly left hand in the interaction area, remove it when the sound is

triggered and repeat this for couple of times but not more than three times. Then try to

suppress the grain by moving the left hand downward. The left hand controls the density

of the grains, moving it upward increase the number of the grains. Focus on the thickness

of the sound by experimenting with the number of the grains for a while. The right hand

controls the pitch deviation of the duration of the grain. Create rests when desired.

99

Appendix – Blind date

Software SuperCollider 3.6 (or above)

OSCulator

Files Blind date.scd

Blind date.oscd

Fair Algo [projection util].scd

Hardware Wiimote (connectivity: Bluetooth).

Joystick (Logitech 3D Pro, connectivity:

USB)

Projector

Instructions and technical requirements

Blind date requires a Wiimote and a joystick game device. The piece is a live coding

performance for which I have created some preamble code 55 including basic

implementation of the mappings of the devices, and sound synthesis engines in

SuperCollider.

For the realisation of the piece you will need a third party application called OSCulator. It

is used to tap the data from Wiimote in SuperCollider via OSCulator. The device is

connected to the computer via Bluetooth, and OSCulator converts it in Open Sound

Control protocol (OSC), which can be mapped easily to any software that supports OSC

communication.

55 Included in the accompanying DVD.

100

If you are using the device for the first time you must pair it with the computer following

the instructions provided by OSCulator. Once you have completed the pairing procedure

successfully you must be able to see some controls at the OSCulator window illustrating

the control variables of the device.

The system has a stereo output. Ideally, the computer will be connected to a mixing board

via an audio interface using its main stereo out and two speakers. However, in case there

is no audio interface the computer may be connected directly to a pair of self-amplified

speakers using a mini jack (3.5mm) cable via the line out of the computer’s sound card.

Additional files can be found in the Blind date folder56. Open the Blind date.oscd and

follow the instructions provided by OSCulator to pair the device with your computer. Open

the Blind date.scd file with SuperCollider and press (Mac) ⌘"+"A,"and"then"⌘"+"Enter, and

wait until SuperCollider loads the environment. If everything has gone as expected, you

must be now receiving the data from the Wiimote in SuperCollider. The Blind date.oscd

contains boiler code sufficient to start the performance, which creates some connections

between the Wiimote and the synthesis engines to start the performance. The performance

elaborates in the alteration of the mappings of the device and parameters of the synthesis

engines, and the modification of the sound engines themselves. An example of this

includes the introduction of new parameters and its mapping with the device in real time

and replacing the sound source of a synth (i.e. amend a sine oscillator with a saw oscillator

etc.).

Fair Algo

The project uses a projection utility57, which is used to visualise the names of the dancers

that handle the Wiimote during the performance. It is developed in SuperCollider, thus no

third party software is needed. The code of the utility must be executed before the

56 Included in the accompanying DVD.
57 see Fair Algo code at the end of this appendix.

101

performance. Open the file named Fair Algo [projection util].scd58 in SuperCollider, on a

Mac press ⌘"+"A,"and"then"⌘"+"Enter to launch it.

58 Found in the Blind date folder included in the accompanying DVD.

102

Troubleshooting

It is recommended to launch OSCulator before SuperCollider to make sure that the

communication between the two software is successful. Sometimes there might be an OSC

port mismatch. In case you encounter this problem type the “NetAddr.langPort” command

in SuperCollider, the port number that appears in the post window must be the same with

the port number that OSCulator is sending the data. For complete details about how to set

this in OSCulator consult the user’s manual of the software.

Instructions for the performance of Blind date

 As mentioned already at the beginning of this appendix the SuperCollider file (Blind

date.scd) included in the folder of the project provides the initial implementation of

synthesis engines and mappings between the Wiimote and the parameters of the synths.

The performance focuses in the live modification of these mappings but also in the

alteration of the synthesis engines. Therefore, the plan is the hacking of the environment

in real time as a way to explore its interaction affordances and its musical implications.

103

Fair Algo code

(
v = NetAddr("KV.local", 8000);
v.sendMsg("/vibrate");
v.sendMsg("/blink");

var w, r, a;
w = Window.new("Pass the Wii to:", Rect(100, 100, 400,
200)).front;
a = StaticText(w, Rect(60, 60, 300, 60));
//w.alpha = 0.8;
a.font_(Font("Monaco", 50.0));
r = Routine({|time|
loop({
 var vary = 8.linrand;
 /*if (vary > 0)
 {
 (
 v.sendMsg("/vibrate");
 0.2.wait;
 v.sendMsg("/vibrate");
 v.sendMsg("/blink");
);
 };
 */
 (
 if (vary ==1) {a.string = "Antonio"; a.stringColor =
Color.red; };
 if (vary ==2) {a.string = "Petra"; a.stringColor =
Color.black; };
 if (vary ==3) {a.string = "Manou"; a.stringColor =
Color.green;};
 if (vary ==4) {a.string = "Evangelia"; a.stringColor =
Color.blue;};
 if (vary ==5) {a.string = "Mariana"; a.stringColor =
Color.yellow;};
 if (vary ==6) {a.string = "Martine"; a.stringColor =
Color.magenta};
 if (vary ==7) {a.string = "Annelie"; a.stringColor =
Color.cyan;};
);

 time = 0.5.wait;
 });
 a.string = "done,"; 5.wait; a.string = "Thank You,"; 3.wait;
a.string = "..Goodbye!";
 4.wait;
 w.close;
 r.yieldAndReset(reset:true);
});
AppClock.play(r);
)
//v.disconnect;

104

Appendix – PoP

Software SuperCollider 3.6 (or above)

Files: Interface.scd

synth.scd

Resources Firmata.sc

Notification.sc

Hardware See assembly list at the end of this

appendix

Instructions and technical requirements

Power of People (PoP) is an interactive sound installation that uses an Arduino Uno board

and a set of sensors to track motion, light and temperature. For a detailed list of the

hardware that is required to implement the system see the assembly list at the end of this

appendix.

The system has a stereo output. The computer may be connected directly to a pair of self-

amplified speakers using a mini jack (3.5mm) cable via the line out of the computer’s

sound card. In addition, the system uses the embedded microphone of the computer to

analyse its output, in case there is no microphone on the computer you must provide one

and change the code according to your configuration, for example, plug a microphone in

an audio interface and connect it to your computer.

All the necessary files and additional resources of the project are inside the PoP folder,

which is included in the accompanying memory stick. Before launching the system you

need to move the additional files named Firmata.sc and Notification.sc in the

105

Extensions folder, on a Mac computer the folder 59 is in the following path name.

Username/Library/Application Support/SuperCollider/Extensions

Once you have made all the connections (see hardware overview and assembly list below)

plug the Arduino board to the computer via USB. To run the system you will need

SuperCollider. Open the interface.scd file with SuperCollider and select the entire

document, on a Mac press ⌘ + A, and then ⌘ + Enter, and wait until SuperCollider

loads the environment. The sound engine of the system will be loaded automatically. If

everything has gone as expected you must now see a graphical user interface with faders

moving according to the input of the sensors. The first fader represents a light sensor,

which is mapped to the pitch of the sound, the lower the position of the fader (dark) is the

lower the fundamental pitch of the sine oscillators will be. The second fader represents

another light sensor, which is controlling the number of sine tones produced by the

system; the amount of light controls the density of the sine tones. The next fader (third

from left) is representing temperature and controls the duration of the envelope of the sine

oscillators. For example, low temperature creates grain sounds. When the motion detector

(last fader from left) tracks movement it will jump at the highest position 1 of the fader

whereas no motion occurs the fader will return to its lowest position 0. Finally, closing the

fader’s window will turn the system off.

Audience guidelines

The following paragraph is the explanation of the system to the participants describing

what is PoP and how to interact with it.

Power of People (PoP), is an interactive sound installation using a set of sensors to capture

light and temperature in order to control the parameters of a computer-based sound

engine.

59 In case this folder does not exist you have to create it.

106

A motion detector, which is capturing movement is used it to change the states of

interaction called Agitate and Serene. Although the sound is influenced by the

environmental conditions, it is the people who control which state will be executed by the

system:

1. Serene is capturing the light of the space to control the pitch of the sound, and the

temperature to control its duration.

2. Agitate is caused by stasis, or the lack of mobility inside the field of view of the

system causing Serene’ to be distorted.

If there is no movement for a long time, for example no audience or a passer-by to activate

the system, the sound will fade out. People are advised to move freely inside the tracking

area of the installation, and they are strongly encouraged to engage in collaborative

interactions in order to change the states of the system and play with it by moving or

staying idle.

107

PoP hardware overview

!

This image was created with Fritzing.60
.

60 See Fritzing http://fritzing.org/home/

108

PoP schematic diagram and assembly list

The schematic diagram below illustrates the connections of the hardware. For a complete

list of the hardware that was used in this project see table below.

!

109

Micro-controller board Arduino Uno Type Arduino Uno (Rev3)

PIR1 PIR sensor

R1 Photocell Variant pth; package

photocell

R7 10kΩ Resistor Tolerance ±5%;

resistance 10kΩ; package

THT; bands 4; pin spacing

400 mil

R8 Photocell Variant pth; package

photocell

R9 10kΩ Resistor Tolerance ±5%;

resistance 10kΩ; package

THT; bands 4; pin spacing

400 mil

T1 LM35 Temperature sensor Type LM35; package

TO92 [THT]

Troubleshooting

In case Arduino fails to connect with SuperCollider restart and run again the interface.scd

file.

110

111

Appendix – Study II

Software SuperCollider 3.6 (or above)

OSCulator

Files BiGrain.scd, BiGrain.oscd

Audio files bakersegment(een).aiff

BrechtSegmentMusic.aiff

BrechtSegmentSong.aiff

choirseqment(ohh).aiff

clickseq.aiff

crazyboy.aiff

door.aiff

fm4segment.aiff, goatbell.aiff

AdolfSegment.aiff

mboxmono.aiff,Leo.aiff

Hardware Wiimote (connectivity: Bluetooth)

Nunchuck

112

Instructions and technical requirements

Instructions to set up the BiGrain environment and perform Study II are as follow. To run

the environment you will need the latest stable version of SuperCollider and OSCulator. It

is used to tap the data from Wiimote in SuperCollider via OSCulator. The device is

connected to the computer via Bluetooth, and OSCulator converts it in Open Sound

Control protocol (OSC), which can be mapped easily to any software that supports OSC

communication.

If you are using the device for the first time you must pair it with the computer following

the instructions provided by OSCulator. Once you have completed the pairing procedure

successfully you must be able to see some controls at the OSCulator window illustrating

the control variables of the device.

The system has a stereo output. Ideally, the computer will be connected to a mixing board

via an audio interface using its main stereo out. However, in case there is no audio

interface the computer may be connected directly to a pair of self-amplified speakers using

a mini jack (3.5mm) cable connected to the line out of the computer’s sound card.

Additional resources of the environment including the OSCulator configuration file can be

found in a folder named BiGrain61.

61 Included in the accompanying DVD.

Wiimote is connected to the

computer via Bluetooth.

OSCulator converts Bluetooth

in OSC and maps the data

into SuperCollider. Wiimote

variables are directly

connected with the control

inputs of the digital musical

instrument (DMI).

113

Providing that you have already opened and running BiGrain.oscd file in OSCulator open

BiGrain.scd with SuperCollider and run it by selecting the entire file, on a Mac press ⌘ +

A, and then ⌘ + Enter, and wait until SuperCollider loads the environment. To begin the

performance simply press the plus (+) button, if you press minus (-) the environment

turns off. If everything has gone according to the plan you must now hear sound, and

moving the devices you must be able to manipulate the parameters of the sound synthesis

environment. Movement along the y-axis of the Wiimote and Nunchuck manipulates the

pitch of the grains and rolling along the x-axis of the devices manipulates the duration of

the grains. Shaking the devices increases the number of the grains.

Instructions for the performance of Study II

To perform the piece you will need a selection of sounds62 that were used to compose the

piece. The sounds will be loaded automatically as long as the folder exists in the root

folder of the project called BiGrain. There are no specific instructions to perform the piece.

It is at the performers’ liberty to improvise and synthesise the sound creating musically

meaningful and compelling sounds using his/her intuition and imagination.

However, it might be worth mentioning that the system is able to create noise bursts or

drone sounds depending on the physical effort of the gestures. For example, if the

performer is moving the device abruptly the system will create noisy sounds, whereas

smooth movements will create finer manipulations of the audio material.

Troubleshooting

It is recommended to launch OSCulator before SuperCollider to make sure that the

communication between the two programs is successful. Sometimes there might be an

OSC port mismatch. In case you encounter this problem type the “NetAddr.langPort”

command in SuperCollider, the port number that appears in the post window must be the

62 Included in the folder of BiGrain (sounds folder) in the accompanying DVD.

114

same with the port number that OSCulator is sending the data. For complete details about

how to set this in OSCulator consult the user’s manual of the software.

115

Appendix – The Song has Sung

Software SuperCollider 3.6 (or above)

OSCulator

Files Stay On This Gesture.scd

Stay On This Gesture.oscd

Audio files choir.aiff

compreser.aiff

crazydude.aiff

door.aiff

goatbell.aiff

Adolf.aiff

lcodeWaveformExamp.aiff

musbox.aiff

Leo.aiff

Hardware Wiimote (connectivity: Bluetooth)

Nunchuck

116

Wiimote is connected to the

computer via Bluetooth.

OSCulator converts Bluetooth

in OSC and maps the data

into SuperCollider. Wiimote

variables are connected with

patterns, fluctuating the

control inputs of the digital

musical instrument (DMI).

Instructions and technical requirements

Instructions to set up the Stay On This Gesture environment and perform Song has Sung

are as follows. To run the environment you will need the latest stable version of

SuperCollider and OSCulator. It is used to tap the data from Wiimote in SuperCollider.

OSCulator uses Bluetooth to establish the communication between the Wiimote and the

software, and converts it in Open Sound Control protocol (OSC), which can be mapped

easily to any software that supports OSC communication. For details regarding the

connections between the device and the environment see section 3.4.1.

If you are using the device for the first time you must pair it with the computer following

the instructions provided by OSCulator. Once you have completed the pairing procedure

successfully you must be able to see some controls at the OSCulator window illustrating

the control variables of the device.

The system has a stereo output. Ideally, the computer will be connected to a mixing board

via an audio interface using its main stereo out. However, in case there is no audio

interface the computer may be connected directly to a pair of self-amplified speakers using

a mini jack (3.5mm) cable via the line out of the computers’ sound card.

Additional resources of the environment including the OSCulator configuration file can be

found in a folder named Stay On This Gesture63. Providing that you have already opened

63 Included in the accompanying DVD.

117

and running the Stay On This Gesture.oscd file in OSCulator open Stay On This

Gesture.scd with SuperCollider and run it by selecting the entire file, on a Mac press ⌘ +

A, and then ⌘ + Enter and wait until SuperCollider loads the environment. If everything

has gone according to the plan you must now be able to control the environment.

Movement along the y-axis of the Wiimote controls the pitch of the grains, for example

moving the device upward increases the pitch, and rolling the device to the right increases

the duration of the grains. Shaking the device increases the volume of the grains.

Instructions for the performance of The Song has Sung

To perform Song has Sung you will need a selection of sounds64 that were used to compose

the piece. The sounds will be loaded automatically as long as the folder exists in the root

folder of the project called Stay On This Gesture. Stay On This Gesture, an autonomous

digital environment, which was used to perform the Song Has Sung was developed to

foster a mutual intervention between the performer and system employing patterns in

SuperCollider. To this end, the performer must let him (her)self at the liberty of the system

influence his or her imagination.

The piece is using four sets of diverse patterns; to initiate each pattern use the cross button

on the top of the device. Pressing the button up will begin the second pattern, given that

the first pattern set is initiated when starting the environment; pressing the button to the

left will begin the third pattern, the last pattern set is initiated by pressing the cross button

down. To begin the performance simply press the plus (+) button, pressing minus (-) will

turn the environment off.

Troubleshooting

It is recommended to launch OSCulator before SuperCollider to make sure that the

communication between the two programs is successful. Sometimes there might be an

64 Included in the folder of BiGrain in the accompanying DVD.

118

OSC port mismatch. In case you encounter this problem type the “NetAddr.langPort”

command in SuperCollider, the port number that appears in the post window must be the

same with the port number that OSCulator is sending the data. For complete details about

how to set this in OSCulator consult the user’s manual of the software.

119

Page left blank intentionally.

	etheses coversheet.pdf
	PhD final doc.pdf

