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Abstract: No pharmacological intervention has been shown convincingly to improve neurological outcome in stroke 

patients after the brain tissue is infarcted. While conventional therapeutic strategies focus on preventing brain damage, 

stem cell treatment has the potential to repair the injured brain tissue. Stem cells not only produce a source of trophic 

molecules to minimize brain damage caused by ischaemia/reperfusion and promote recovery, but also potentially turn to 

new cells to replace those lost in ischaemic core. Although preclinical studies have shown promise, stem cell therapy for 

stroke treatment in human is still at an early stage and it is difficult to draw conclusions from current clinical trials about 

the efficacy of the different treatments used in humans. This article reviews the potential of various types of stem cells, 

from embryonic to adult to induced pluripotent stem cells, in stroke therapy, highlights new evidence from the ongoing 

clinical trials and discusses some of the problems associated with translating stem cell technology to a clinical therapy for 

stroke. 
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INTRODUCTION 

 Despite recent advances in the diagnosis and treatment of 
acute stroke over the past two decades, stroke remains the 
third most common single cause of death in most parts of the 
developed world after ischaemic heart disease and neoplastic 
disease and the single leading cause of disability globally [1, 
2]. Current treatment for stroke, particularly thrombolytic 
therapy when given in the acute phase of ischaemic stroke 
improves outcomes, both in survival and residual disability 
[3]. However, despite the significant clinical benefit, only a 
minority of eligible patients receive thrombolytic treatment 
because it must be administered within about 4.5hrs of stroke 
onset [4]. 

 Once the brain tissue has been infarcted, further well-
established treatments including the use of aspirin and 
management on stroke units are used to prevent stroke 
recurrence and other complications, as well as to prepare 
patients for rehabilitation therapy [5-8]. The greatest impact 
of stroke is attributable to impairment of neurological 
functions [8].

 
These neurological deficits are greatest in the 

acute phase and generally show fairly rapid recovery over 
the first 4 to 6 weeks after stroke, followed by more gradual 
improvement for up to one year after stroke [8-11]. Although 
most patients show some spontaneous recovery after a 
stroke, which can be further improved by rehabilitation 
therapy, many patients are still left with neurological deficits 
that result in significant chronic disability [8]. 
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 Until recently, adult brain cells were thought to be unable 
to regenerate

 
after sustaining damage. However, in the last 

decade evidence has shown that neurons and
 
astrocytes can 

be generated from isolated cells of the adult
 
mammalian 

central nervous system (CNS) [12] and regeneration has 
been demonstrated in the dentate nucleus of the 
hippocampus and in the sub-ventricular zone of the human 
adult brain [13, 14]. The evidence for neurogenesis in the 
ischaemic penumbra in stroke patients has been shown, 
where the cells were found localized to the vicinity of blood 
vessels [15]. However, the capacity of neuronal replacement 
in the adult CNS is very low, with estimations between 0.2 
and 10% of the lost neurons [16-18]. Several factors which 
can increase adult neurogenesis by stimulating formation or 
improving survival of new neurons, such as, erythropoietin, 
brain derived neurotrophic factor (BDNF), epidermal growth 
factor (EGF), etc, have been investigated into clinical usage 
for stroke treatment (see below) [19]. 

 On the other hand, exogenous stem cell therapy has been 
explored as a treatment for various haematological diseases, 
vascular diseases (e.g. ischaemic heart disease and peripheral 
vascular disease) and neurological conditions (e.g. 
Parkinson’s disease (PD), Huntington’s disease, Alzheimer's 
disease, epilepsy, spinal cord injury). The most promising 
results have been obtained in treating PD, with encouraging 
findings in treatment of Huntington’s disease [20]. 
Compared to PD, where most prominent symptoms result 
from involvement of a specific (nigrostriatal doperminergic) 
neuronal type, in stroke all tissue elements are injured, and 
the damage caused by stroke may disrupt various anatomical 
pathways that must be restored for full recovery [21]. While 
conventional therapeutic strategies focus on preventing brain 
damage, stem cell treatment has the potential to repair the 
injured brain tissue. 
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 A growing number of experimental studies have shown 
that stem cell therapy can improve stroke recovery, however 
the mechanisms responsible for this remain a matter of 
considerable debate. It has been proposed that stem cell 

treatment induces a combined action via multiple cellular and 
molecular mechanisms to affect neurorestoration and 
neuroprotection rather than just a single mechanism [22, 23], 
and different cell type studied may have different 
mechanisms [24]. Stem cell treatment has shown to have 
various neuroprotective effects [25], including reductions in 
apoptosis [26, 27], inflammation [24, 28-30], and 
demyelination, as well as increased astrocyte survival rates 
[31-33] and enhanced structural plasticity & axonal transport 
in the ischaemic brain [34]. Stem cell treatment also appears 
to improve the control of cerebral blood flow and blood–
brain barrier permeability [24, 35, 36], as well as the 
activation of endogenous neuroprotection and 
neurorestoration pathways by the release of cytokines and 
trophic factors [19, 37-39]. It has been suggested the 
combination of improved neurogenesis, angiogenesis and 
synaptogenesis may lead to a more significant functional 
improvement in damaged areas as a result of stem cell 
treatment [32, 40, 41]. In addition to such neuroprotective 
and neurorestorative functions, stem cells have the capacity 
to self-renew and differentiate

 
into different cell types, 

including neurons, astrocytes, and
 
endothelial cells, which 

could replace the injured brain tissue and integrate into 
existing neural networks [42, 43]. However, both survival 
rate and differentiation rate of new-born or transplanted cells 
are low and therefore the contribution of stem cell 
integration to functional recovery is unclear after ischemic 
stroke [44]. 

TYPES OF STEM CELLS-BASED THERAPIES 

 Stem cell therapy in stroke patients can be broadly 
divided into endogenous and exogenous approaches [45, 46]. 
While the endogenous approach aims at activating already 
existing stem cells within the patient, the exogenous 
approach involves the transplantation of stem cells into the 
patient (Table 1) [45, 46]. 

 This review includes clinical trials for both endogenous 
and exogenous approaches. 

ENDOGENOUS APPROACH 

The endogenous approach to stem cell based therapy in 
stroke aims at stimulating

 
host stem cells to promote 

angiogenesis and neurogenesis, re-innervating the damaged 
brain and correcting neurologic impairments. Mobilizing the 
host stem cells has numerous advantages over cell 
transplantation. The endogenous approach is less 
cumbersome, free of the logistical and ethical complexities

 

associated with the use of embryonic or non-embryonic
 
stem 

cells, avoids problems
 
of graft rejection or uncontrolled graft 

cell proliferation and tumor formation, and does not require 
immunosuppression [47]. 

Preclinical Studies 

 Strategies which augment post-stroke angiogenesis and 
neurogenesis and neuroblast migration to the injured brain 
regions can result in rapid functional recovery and reduced 
infarct size [48]. Exogenous administration or genetic over-
expression of growth factors such as granulocyte-colony–
stimulating factor (G-CSF), BDNF, vascular endothelial 
growth factor (VEGF), insulin like growth factor (IGF), 
epidermal growth factor (EGF), have been shown to increase 
post-stroke subventricular zone stem cell proliferation in 
rodents [49]. Since G-CSF is the only approved agent (see 
below), the review is limited to the discussion of studies 
involving this agent. G-CSF is a secreted 20 kD growth 
factor that is responsible for the mobilization and maturation 
of bone marrow derived cells, resulting in the generation of 
mature neutrophilic granulocytes [50]. G-CSF can be 
released by neurones in response to cerebral ischaemia [51], 
while neurons themselves express the G-CSF receptor [52]. 
Administration of G-CSF mobilizes

 
stem and progenitor 

cells from the bone marrow into the peripheral blood, which 
could then help with brain repair processes after stroke [53-
56]. Although G-CSF is able to stimulate haematopoietic 
CD34+ stem cells from bone marrow to peripheral blood, it 
is not really clear if the effects of G-CSF are mediated by the 

Table 1. Stem Cell Types Proposed for Cell Replacement in the Human CNS 

 

Source Advantage Disadvantage 

Endogenous stem cells [47] Multimodal activity (neuroprotective and neurogenic effects) Potential harmful effects of G-CSF induced 
leukocytosis 

Exogenous stem cells 
 

   NPC/NSC 
         Adult brain-derived NPC [68-70] 

         ES-derived NPC [71-73, 84, 86] 
         Foetal tissue-derived NPC [87] 

 
   Cell lines 

         NT2N cells [92] 
 

   Human Bone marrow cells [102, 105]  
  

 
 

   iPS cells [131, 132] 

 
 

Potential to differentiate into neurons, astrocytes  
and oligodendrocytes, which is helpful as all three  

cell types are damaged following stroke 
 

 
Potential for unlimited expansion 

 
 

Ideal for autologous (precluding the need for 
immunosuppression) and allogenic use 

 
 

Ideal for autologous (precluding the need for 
immunosuppression) 

 
 

Unable to differentiate efficiently, 
particularly into specific neuronal phenotypes 

 
 

 
Risk of malignant transformation 

 
 

Poor survival when injected, due to either 
lack of trophic support or through triggering 

the inner immune system 
 

Risk of malignant transformation 
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mobilized CD34+ stem cells. G-CSF exhibits 
neuroprotective

 
and regenerative activity after stroke by 

mechanisms that include recruiting neural progenitor
 
cells, 

reducing cerebral oedema, improving cell survival, and 
enhancing

 
sensorimotor and functional recovery [51-56]. 

This multipotency makes G-CSF a suitable agent for stem 
cell based therapy

 
in neurological diseases or injuries 

associated with complicated disruptions
 
in neural circuitry, 

particularly stroke, where all tissue elements are damaged 
[47]. 

Clinical Studies 

Currently, only G-CSF has received Food and Drug 
Administration (FDA) approval among the many potential 
stem cell mobilizing agents. The use of G-CSF has been 
shown to be safe in phase 1 clinical trials when used in acute 
ischaemic stroke (within 7 days) [57, 58]. Neurological 
function was improved, and G-CSF

 
was well tolerated, with 

no severe
 
adverse effects being reported other than bone pain 

and headache,
 
which were tolerated by the patients [57, 58]. 

However, G-CSF may induce a transient hypercoagulable 
state, as some patients receiving G-CSF developed acute 
arterial thrombosis [59, 60]. G-CSF has also been used in the 
subacute phase (7-30days post-stroke), in the Stem Cell Trial 
of Recovery EnhanceMent After Stroke (STEMS). In this 
study G-CSF was shown to be effective at mobilizing bone 
marrow CD34

+
 stem cells into the peripheral bloodstream as 

well as being safe and well tolerated however no statistically 
significant neurological function improvement was observed 
[61]. This has led to STEMS II, a phase II trial which aims to 
further assess the safety of G-CSF. STEMS II has already 
recruited the targeted number of patients (60) and is 
currently in the follow-up phase [62]. Similarly, another 
phase II trial, Ax 200 (G-CSF) for the treatment of ischemic 
stroke (AXIS), showed with 44 patients that G-CSF was well 

tolerated even at higher doses in patients with acute 
ischaemic stroke [63]. There were no observed 
thromboembolic events or related serious adverse effects in 
the active treatment group. Based on the results from AXIS, 
a large phase II trial [AXIS –2] is currently underway to 
confirm the safety and efficacy of intravenous G-CSF in a 
larger number [328] of patients with ischaemic stroke [64]. 
The Granulocyte-Colony Stimulating Factor In Ischemic 
Stroke (GIST) study, another phase 1 randomized double 
blind trial to determine the effect of the drug neupogen on 
stroke recovery is currently on-going [65]. 

 Table 2 summarizes both the completed and on-going 
trials using endogenous stem cell therapies in stroke. 

EXOGENOUS APPROACH 

 In the exogenous approach to stem cell based therapy, 
one of several human cell types is transplanted into a stroke 
patient, either systematically (intravenous) or locally (direct 
intracerebral transplantation). 

 Examples of such cell types include neural 
stem/progenitor cells, immortalized cell lines and bone-
marrow-derived stem cells [66]. Exogenous stem cell based 
therapy may involve in vitro culture of cells for the 
expansion of cells numbers prior to administration [67]. 

Neural Progenitor Cells (NPCs) 

 NPCs can be derived from either adult brain [68-70] or 
embryonic/fetal tissues [71-73]. Both embryonic stem cell 
(ES)-derived and fetal-derived NPCs have the potential to 
develop into neurons, astrocytes or oligodendrocytes, which 
might be advantageous given that stroke injury damages all 
three-cell types [66, 69, 70]. ES cells can propagate in 
culture over many passages providing a virtually unlimited 

Table 2. Complete and On-Going Clinical Trials of Endogenous Stem Cell Therapy 

 

Study Study Design Stroke Type 
Stroke 

Location 

No. of 

Patients 

Timing of 

Delivery 

Route of 

Delivery 

Trial 

Outcome 
Trial Status Country 

Schabitz et al., 
2010 [63] 

Phase II 

R, DB 

Ischaemic 
stroke 

MCA-T 42 12 hours IV 
Safe and well 

tolerated 
completed Germany 

Sprigg et al., 
2006 [61] 

Phase II 

R, DB, DE, PC 

Ischaemic 
stroke 

MCA-T 36 
7 to 30 
days 

SC 
Safe and 
tolerated 

completed UK 

Shyu et al.,  

2006 [57] 

Phase I 

R, BC 

Ischaemic 
stroke 

MCA-T 10 7 days SC 
Safe, with 
improved 
function 

completed Taiwan 

Zhang et al., 
2006 [58] 

Phase I 

R 

Ischaemic 
stroke 

MCA-T 45 7 days  
Safe, with 
improved 

function 

completed China 

NCT00809549 
[65] 

Phase I 

R, DB 

Ischaemic 
stroke 

MCA-T 

(PACS) 
20 

3 to 10 
days 

SC 
Safety and 

efficacy 
On-going Canada 

ISRCTN00927
836 [64] 

Phase II 

R, TB, PC 

Ischaemic & 
haemorrhagic 

stroke 

Cortical or 

lacunar 
60 

3 to 30 
days 

SC Safety study 
In the 

following-up 
UK 

NCT00927836 
[64] 

Phase II 

R, DB, MC, PC 

Ischaemic 
stroke 

MCA-T 328 9 hours IV 
Safety and 
tolerability 

On-going Europe 

R= Randomised, PC- Placebo controlled, DE= dose escalating, BC=Blinded controlled, TB= Triple Blinded, MC= Multicentre, MCA-T= Middle cerebral artery territory, PACS = 
Partial anterior circulation stroke, IV= Intravenous, SC=subcutaneous. 
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supply of NPCs, however ES cells can be tumorigenic and 
therefore ES-derived NPCs may not be useful clinically 
unless removal of all residual ES cells could be guaranteed 
[74]. Compared to ES cells, fetal-derived NPCs have less 
potential of tumorigenicity as well as in vitro expansion [66]. 

Preclinical Studies 

 NPC transplantation into mice with collagenase-induced 
intracerebral haemorrhage [75], or into rats with middle 
cerebral artery occlusion (MCAO) [24, 34, 76], led to 
improved functional recovery and increased overall cell 
survival. The NPCs are mainly found in the perilesional area 
when injected systemically in MCAO mice, where they 
maintain an undifferentiated phenotype [77, 78], while 
grafted NPCs migrated to the haemorrhage core and also to 
the border of the lesion when given after collagenase-
induced intracerebral haemorrhage, differentiating mostly 
into astrocytes and to a lower extent into neurons [79, 80]. 
Interestingly, NPCs expressed BDNF, glial cell line derived 
neurotrophic factor (GDNF), fibroblast growth factor 2 
(FGF-2), VEGF, hepatocyte growth factor (HGF) and IGF, 
providing evidence that some of the protective effects were 
likely mediated by a combination of neurotrophic support 
[24, 79, 80]. Mouse and human NPCs share the expression 
of a variety of functional immune-like receptors [81] and 
have been shown to inhibit T cell activation and proliferation 
[82]. Transplanted NPCs skewed the inflammatory infiltrate 
of the injured spinal cord, in turn promoting the healing of 
the injured cord [83]. Similarly, murine ES cells were able to 
migrate and differentiate into neurons in the border zone of 
the lesion of rat brains following MCAO and improve the 
functional recovery as well as reducing the infarct volume 
[84-87], while in the homologous mouse brain these cells did 
not migrate, but produced highly malignant teratocarcinomas 
at the site of implantation [84]. It was suggested that 
transplantation should be avoided at the early stage of 
cerebral ischaemia as the formation of teratomas was limited 
to the ischaemia environment [88]. 

Clinical Studies 

 The Pilot Investigation of Stem Cells in Stroke study 
(PISCES), a Phase I non-randomized, uncontrolled safety 
trial of manufactured (fetal derived) neural stem cells (CTX 
cells), to be delivered by stereotactic injection in patients 
with ischaemic stroke has recently commenced [89]. The 
ReNeuron CTX cells are conditionally immortalized as they 
contain an inducible cMyc gene. In the presence of 
tamoxifen cMyc is expressed and the cells grow extensively, 
this can be shut off by removing tamoxifen from the media 
[90]. This strategy appears to be successful as no tumours 
have been reported to date and ReNeuron have been given 
permission to go to the next step of their clinical trial 
(www.reneuron.com). 

NT2 Cell Lines 

 NT2 is a teratocarcinoma cell line that can be 
differentiated to post-mitotic neuron-like cells (NT2N) with 
treatment of retinoic acid [91].

 
NT2N cells are post-mitotic, 

terminally differentiated and express morphological and 
molecular neuronal markers [92]. Being immortalized, these 
cells have the advantage of potentially unlimited expansion 

in culture as well as relative ease of preparation and long-
term maintenance. However, the disadvantages in their use 
are the risk of malignant transformation of immortalized 
cells and their potential divergence from neural 
stem/progenitor cells over time, which has been shown to 
occur in culture [67]. 

Preclinical Studies 

 NT2N cells have been shown to significantly improve 
functional and cognitive deficits

 
when transplanted into adult 

rats 4 weeks after MCAO [93]. After experimental stroke, 
animals that received a transplant of NT2N cells showed a 
significant 12-25% improvement in behavioral performance 
as well as a 25% reduction in ischaemic cell loss in the 
striatal penumbra compared to control stroke animals that 
received vehicle infusion alone [94-96]. 

Clinical Studies 

 In 1998, the FDA approved the first clinical trial of 
NT2N

 
cell transplantation in stroke patients. 

 The phase I open-label clinical trial involved 
transplantation of cultured human NT2N cells into 12 
patients with basal ganglia stroke along with an 
immunosuppressive regimen using cyclosporine-A for 8 
weeks post-transplantation. The trial demonstrated a trend 
towards improved functional outcome in four patients [97]. 
No cell-related serious adverse events or deaths attributed to 
the neuronal cell implantation were reported during a 12-
month follow up [97]. Autopsy of the only patient who died 
(myocardial infarction 27 months post-transplantation) 
revealed survival of NT2N cells in the brain with some 
evidence that these cells had neuronal identities, and that the 
grafted cells had caused no injurious effects or inflammation 
and no evidence of tumour formation [98]. A subsequent 
Phase II study, which included 18 patients with either 
ischaemic or haemorrhagic stroke, demonstrated the safety 
and feasibility of neuronal cell transplantation for stroke 
patients. Although some patients (6 of the 14 transplanted 
patients) showed improvement in functional outcome as 
measured by a standardized stroke scale, this was not 
statistically significant [99]. Similar to the phase I trial, no 
cell-related adverse effects were reported and no signs of 
tumorigenicity were found with NT2N cellular 
transplantation after a 2 year follow-up in stroke patients. A 
Phase II randomized controlled trial demonstrated some 
improvements in cognitive function after neuronal cell 
transplantation as a treatment for basal ganglia stroke [100]. 
In spite of these promising results using of NT2N cells in 
patients with ischaemic stroke, there remains a need for 
further feasibility studies with a larger number of patients in 
the acute stroke setting. 

Bone-Marrow-Derived Stem Cells (BMSCs) 

 BMSC give rise to a variety of hematopoietic lineages 
and repopulate the blood throughout adult life. Transplanted 
adult bone marrow cells have been shown to migrate into the 
brain in mice and differentiate into cells that express neuron-
specific markers [101]. However, it has been suggested that 
some induction methods produce cells with neuronal 
properties but that are not true neurons [102]. Indeed there is 
now wide agreement that transdifferentiation does not occur 
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[103], and evidence to suggest that neuronal phenotypes in 
vivo represent fusion of BMSCs with host cells [104, 105]. 
BMSC are ideal for autologous administration thus avoiding 
the need for immunosuppression as well as allogenic use. 
Similarly, their use is free of the ethical issues associated 
with destruction of embryos to produce embryonic- and 
fetal-derived cells [66]. 

Preclinical Studies 

 Much of the preclinical work examining the use of 
haematopoietic stem cells (HSCs) for stroke therapy has 
focused on potential mechanisms of functional recovery. 
CD34

+
 bone marrow-derived cells include populations of 

haematopoietic and endothelial stem cell and progenitor 
cells. Transplantation of CD34

+
 cells has been shown to 

increase angiogenesis in penumbral tissue following stroke 
[106, 107]. However, the application of HSCs is hindered by 
their expandability, as cell dose is a major determinant of 
survival after HSC transplantation [108]. Further 
characterisation of hemangioblasts will be critical for a better 
understanding of the molecular events involved in their stem 
cell properties, as well as for using this cell population for 
clinical applications. 

 In addition to HSCs, bone marrow contains mesenchymal 
stem cells (MSCs) which have been found to possess the 
capacity for self-renewal and multi-lineage potential [109-
111]. The minimum criteria for defining MSCs have been 
defined as bone marrow cells that are plastic adherent under 
standard culture conditions, express CD105, CD73 and 
CD90, but lack expression of CD45, CD34, CD14, CD11b, 
CD79, CD19 and HLA-DR and are able to differentiate into 
osteoblasts, chondroblasts, and adipocytes in vitro [112].

 

MSCs are probably the most widely studied cells in 
experimental models of neurotransplantation after ischaemic 
stroke. Transplantation of MSCs one day after ischaemia can 
improve functional recovery after MCAO in rats [113-115]. 
In addition, delayed delivery of MSCs, even up to one month 
after ischaemia, can improve long-term functional outcome 
[116]. However, after transplantation, very few MSC cells 
are actually found in the brain and even fewer of these cells 
express neuronal markers [117].

 
Therefore, it is thought that 

neuroprotective mechanisms, such as the secretion of growth 
factors, promotion of angiogenesis and inflammatory 
modulation, are responsible for the observed therapeutic 
effects. Nevertheless, despite possible confounding effects, 
the emerging picture is of an intertwined relationship 
between neurogenesis and angiogenesis which may be 
mutually supportive [118]. 

Clinical Studies 

 Based on preclinical studies using HSCs for stroke 
therapy and in particular the role of CD34

+ 
cells in 

angiogenesis-mediated neural plasticity post stroke, a 
number of clinical trials have been done using CD34

+
 

progenitor cells. A phase I clinical trial has demonstrated 
that transplantation of CD34

+ 
progenitor cells is safe and 

beneficial for stroke recovery. The CD34
+
 progenitor cells 

used in this trial were obtained from peripheral blood of 
patients with strokes occurring within the past 6 to 60 
months [119].

 
The encouraging findings from phase I has led 

to, a phase II trial, which is currently on-going to determine 

the potential efficacy of CD34
+ 

cell implantation in chronic 
stroke [120]. Two clinical studies are also underway 
investigating the role of autologous HSCs (CD34

+ 
cells) 

transplantation in acute ischaemic stroke patients (Table 3) 
[121, 122]. 

 The encouraging results from animal studies, which 
demonstrated that MSCs improve functional recovery post 
stroke, led to the first clinical trial using autologous, 
expanded MSCs in 5 patients with established ischaemic 
stroke (>1 month post-infarct). This phase I/II clinical trial 
demonstrated the safety of intravenous administration of 
autologous expanded MSCs in stroke patients during a short-
term follow-up period. The results of the study also showed 
a (statistically non-significant) functional improvement in 
treated patients up to 1 year follow-up. There was no 
reported immediate or delayed cell-related toxicity related to 
the use of MSCs [117]. A further study of I.V autologous 
MSCs transplantation involving 52 patients (MSC group 
[n=16] and the control group [n=36] ) demonstrated long-
term (up to 5 years) safety and efficacy as well as long-term 
functional outcome and survival [123]. A recently concluded 
study has demonstrated that intra-arterial bone marrow 
mononuclear cell transplantation is feasible and safe in 
patients both in the acute and sub-acute phase (> 3 and < 90 
days) of ischaemic cerebral infarct involving the middle 
cerebral artery territory [124].

 
There were no reported 

complication or adverse events during the procedure. An 
unblinded study [125] on 12 patients with ischaemic stroke 
that administered intravenous autologous mesenchymal stem 
cells 36-133 days after onset of stroke demonstrated the 
feasibility and safety of transplantation of autologous 
hMSCs expanded in autologous human serum in stroke 
patients. This is in contrast to the study that used autologous 
MSCs expanded in foetal calf serum [117]. There were no 
observed abnormal cell growths or malignancy and no 
reported complications like neurological deterioration, 
infections or venous thromboembolism [125]. More clinical 
trials are currently underway to further evaluate the safety, 
feasibility and tolerance of autologous bone marrow stem 
cells in ischaemic stroke patients (Table 3) [126]. 

CHALLENGES OF TRANSLATING PRECLINICAL 

STUDIES TO CLINICAL TRIALS 

 Stem cell therapy holds great promise as a novel 
therapeutic approach for stroke, but there are still some 
challenges in translating results from animal studies to the 
clinical setting. These include consideration of patient 
selection in terms patient variables (e.g. age, gender, 
underlying conditions), anatomical location, size and type of 
stroke, optimum timing of treatment relative to when the 
patient’s stroke occur, the appropriate choice of cell type and 
source (human or animal; embryonic, fetal or adult; from 
brain or other tissues), the route of delivery, translation of 
dosing with cell survival and the need for 
immunosuppression, and tracking of stem cells (66, 127-
129). The transplantation of cells between- and within-
species is faced with problems such as rejection, risk of 
malignancy and ethical considerations [130]. Recent 
development of techniques to generate ES-like cells via 
epigenetic reprogramming, termed "iPS cells" [131], opens 
the potential for autologous neural cell therapy, thereby 
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avoiding the need for immunosuppression. A recent pre-
clinical study suggests that human iPSCs survive and 
improve recovery in a rat model of stroke, acting both to 
increase angiogenesis and through neuronal differentiation 
[132]. Nevertheless, there are currently no clinical trials 
using iPS cells in stroke treatment. Safety concerns 
regarding the viral constructs used to reprogram iPS cells are 
being mitigated by the development of transient transfection 
techniques that leave cells genetically unaltered after 
reprogramming [133, 134].

 
The production of virus-free 

iPSCs will address a critical safety concern for the potential 
use of iPSCs in regenerative medicine [135]. 

 The effect of aging on neurogenesis and the response to 
stroke requires further study, as a large proportion of 
research has been carried out in young adult rodents [136].

 

Robust post-stroke neurogenesis has been observed in aged 
animals and humans following both endogenous and 
exogenous stem cell therapies [137, 138], suggesting that the 
stem cell based treatment is suitable for clinical stroke 
therapy as more than 80% stroke patients are the elderly 
[136, 139, 140]. These fundamental issues are critical for any 
transplantation success and would have to be addressed by 
scientists, industry partners and clinicians before the reality 
of such a therapy can be achieved for safe and effective use 
in the clinical setting. Hence the guidelines from both the 

Table 3. Some Complete and On-Going Clinical Trials of Exogenous Stem Cell Therapy 

 

Study Study 

Design 

Cell Type Cell Source Stroke Type Stroke 

Location 

No. of 

Patients 

Timing 

of 

Delivery 

Route of 

Delivery 

Trial 

Outcome 

Trial Status Coun-

try 

Kondziolka et al., 
2000 [97] 

Phase I 
NR, SB 

NT2N Immortalised 
cell line 

Ischaemic  
stroke 

Striatum 12 6 months 
to 6 years 

IC Safe, some 
function 

improvement 

Completed USA 

Kondziolka et al., 
2005 [99] 

Phase II 
R, SB 

NT2N Immortalised 
cell line 

Ischaemic & 
haemorrhagic 

stroke 

Striatum 18 1 to 6 
years 

IC Safe, but no 
function 

improvement 

Completed USA 

Stilley et al., 2004 
[100] 

Phase II 
R, OB 

LBS-N Immortalised 
NSC 

Ischaemic  
stroke 

Basal 
ganglia 

9 29 to 70 
months 

IC Functional & 
Cognitive 
improvement 

Completed USA 

Bang et al., 2005 
[117] 

Phase I/II 
R-OL 

MSC autologous Ischaemic  
stroke 

Striatum 
& cortex 

30 4 to 9 
weeks 

IV Safe but no 
functional 

improvement 

Completed S/Korea 

Savitz et al., 2005 
[141] 

Phase I LGE Xeno/swine Ischaemic  
stroke 

Striatum 5 3 months 
to 10 
years 

IC Terminated 
by FDA 

Discontinued USA 

Battistella et al., 
2011 [124] 

Phase I 
NR-0L 

BMNNC autologous Ischaemic  
stroke 

Striatum 
& cortex 

6 3 to 90 
days 

IA Safe and 
feasible 

Completed Brazil 

Lee et al. 2010 [123] 
 

 
Honmou et al. 2011 

[125] 
 

 
NCT01151124 [126] 

Phase III 
R-OL 

 
Unblinded 

 
 

 
Phase I 

NR-0L 

MSC 
 

 
MSC 

 
 

 
ReN001 

(CTX cells) 

autologous 
 

 
autologous 

auto-serum 
expanded 

 
Immortalised 

NSC 

Ischaemic 
stroke 

 
Ischaemic 

stroke 
 

 
Ischaemic  

stroke 

MCA 
 

 
Mixed 

lesions 
 

 
Striatum 

& cortex 

52 
 

 
12 

 
 

 
12 

within  
7 days 

 
36 to 133 

days 
 

 
6 months 

to 5 years 

IV 
 

 
IV 

 
 

 
IC 

Safe, feasible 
functional  

improvement 
Safe and 

feasible 
 

 
safety 

Completed 
 

 
Completed 

 
 

 
On-going  

S/Korea 
 

 
Japan 

 
 

 
UK 

NCT00859014 [126] Phase I 
NR-0L 

BMNNC autologous Ischaemic  
stroke 

NS 10 24 to 72 
hours 

IV Safety and 
feasibility 

On-going USA 

NCT00875654 [126] Phase II 
R-0L 

MSCs autologous Ischaemic  
stroke 

CIS 30 <6 weeks   IV   Safety and 
feasibility 

On-going France 

NCT01028794 [126] Phase I/II 
NR-0L 

BMNNC autologous Ischaemic  
stroke 

CE 12 7 to 10 
days 

IV   Safety and 
feasibility 

On-going Japan 

NCT00950521 [120] Phase II 
R-0L 

CD34+ autologous Ischaemic  
stroke 

MCA-T 30 6 to 60 
months 

IC Efficacy On-going China 

NCT00535197 [121] Phase I/II 
NR-0L 

CD34+ autologous Ischaemic  
stroke 

MCA-T 10 7 days IA Safety and 
tolerability 

On-going UK 

NCT00761982 [122] Phase I/II 
NR-SB 

CD34+ autologous Ischaemic  
stroke 

MCA-T 20 5 to 9 
days 

IA Safety and 
efficacy 

On-going Spain 

NCT00908856 [126] Phase I 
R, DB 

BMNNC 
&MSTC 

autologous Ischaemic  
stroke 

MCA-T 33 <72 hr IV Safety study 
of 2 cellular 
therapies 

Yet to start 
recruiting  

UK 

NR= Nonrandomised, R=Randomized,  OL= Open labelled, SB= Single blinded,  MSTC= Marrow stromal cells, CIS = Carotid Ischaemic Stroke, CE= Cerebral embolism, NS=not 

specified, MCA-T= Middle cerebral artery territory, TACS= Total Anterior circulation. IC=Intracerebral, IV=Intravenous, IA=Intraarterial. 
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original STEPS (Stem Cell Therapies
 

as an Emerging 
Paradigm in Stroke) and the recent STEPS II are set up to 
help with the fundamental problems [127, 128].

 

CONCLUSION 

 Despite encouraging results in using stem cell 
transplantation in experimental models of stroke, which have 
given evidence of significant functional benefits, translation 
to the clinical settings is still at an early stage. Conclusions 
about the efficacy of the different treatments used so far in 
humans are difficult to draw due to the small sample sizes 
used for the different trials. Although promising, cell 
transplantation for stroke treatment in humans is still in its 
infancy and there remains a need for much more work before 
it becomes a viable therapeutic approach to

 
stroke. 

ABBREVIATIONS 

AXIS = Ax200(G-CSF) for the treatment of ischemic  
   stroke 

BDNF = Brain-derived neurotrophic factor 

BMSCs = Bone marrow-derived stem cells 

CNS = Central nervous system 

EGF = Epidermal growth factor 

FGF2 = Fibroblast growth factor 2 

HGF = Hepatocyte growth factor 

HSCs = Haematopoietic stem cells 

ES = Embryonic stem cell 

FDA = Food and drug administration 

G-CSF = Granulocyte colony stimulating factor 

GIST = G-CSF in ischaemic stroke trial 

GNDF = Glial cell line derived neurotrophic factor 

IGF = Insulin like growth factor 

MCAO = Middle cerebral artery occlusion 

MSCs = Mesenchymal stem cells 

NPCs = Neutral progenitor cells 

PD = Parkinson’s disease 

PISCES = The pilot investigation of stem cells in stroke  
   study 

STEPS = Stem cell therapies as an emerging paradigm in  
   stroke 

VEGF = Vascular endothelial growth factor 
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