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A B S T R A C T   

The first-of-its-kind use of the active learning (AL) framework in thermal spray is adapted to enhance the pre-
diction accuracy of the in-flight particle characteristics. The successful AL framework implementation via 
Bayesian Optimisation is beneficial in, first, reducing the maximum uncertainty, which greatly improves the 
prediction accuracy and informativeness of the existing database. Second, it reduces local uncertainty around a 
contrived test point that offers the capability to find improvement in a limited search area, allowing an accurate 
prediction around a desired test point. The dataset for Machine Learning (ML) training consists of 26 atmospheric 
plasma spray (APS) parameters of silicon and a further six AL-guided spray runs carried out to reduce maximum 
uncertainty in the initial database. On average, a 52.9% improvement (error reduction) of RMSE and an R2 

increase of 8.5% were reported on the predicted in-flight particle velocities and temperatures after the AL-driven 
optimisation. Furthermore, the contrived test point optimisation to predict the best possible characteristics in a 
limited search space resulted in a three-fold increase in prediction accuracy compared to the non-optimised 
prediction. The AL-driven optimisation proved to be greatly beneficial for resource-intensive thermal spray-
ing, as the framework not only allowed an accurate prediction of the in-flight particle characteristics but also 
found expected improvement around a desired in-flight characteristic. Furthermore, the framework uses the 
Gaussian Process (GP) ML model as a surrogate that generalises a global solution without necessarily involving 
physical and underlying mechanisms, thus extending the framework to other thermal spraying methods.   

1. Introduction 

The performance and durability of critical components in high-value 
manufacturing sectors, such as those used in defence, aerospace, and 
automotive applications, are in a continuous drive to improve in the 
increasingly competitive global markets. Most Surface Engineering and 
Advanced Coatings (SEAC) technologies are under pressure to impart 
design iterations to converge a coating solution that can be rapidly 
incorporated in an agile end-user manufacturing environment with 
minimal optimisation. This is particularly challenging for complex 
processes, such as thermal spraying, that may involve nonlinear pro-
cessing stages and interdependent functions. For a standard commercial 
powder feedstock, over 27+ process parameters need to be optimised to 
achieve a coating with desirable microstructure and properties. 
Furthermore, there are more than 3000 companies in Europe with over a 

billion euros turnover that produce thermal spray coatings (Malamousi 
et al., 2022) and despite intense research and industrial efforts, only a 
few innovative/novel spray coating materials have earned commercial 
maturity in a reasonable timeframe. This is mainly due to the time 
constraints that come with the experimental nature and the efforts 
required to reduce variations and maximise performance for a given 
mode of operation. Machine Learning (ML) techniques are increasingly 
used to solve intricate and highly nonlinear processes without neces-
sarily utilising the underlying physical mechanisms (Qiu et al., 2021; 
Tao et al., 2021; Xu et al., 2022a) and from a machine-learning point of 
view, predicting the in-flight characteristics of thermal spray at given 
spray conditions for a desired coating can dramatically improve the 
experimentation throughput, thus, accelerating innovation and 
commercialisation. 

The ML applications in thermal spraying have been growing since the 
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last decade and have expanded to include the predictions of plasma 
sprayed in-flight particle temperature and velocities (Guessasma et al., 
2004a; Guessasma et al., 2003), particle diameters (Choudhury et al., 
2011), deposition yield and porosity (Kanta et al., 2009), and the 
melting of the particles (Kanta et al., 2010; Tejero-Martin et al., 2019). 
The in-flight particle characteristics define the final deposited coating 
and the fluctuations in these characteristics may adversely affect the 
deposition (Bai et al., 2013; Lee et al., 2021). The studies have also 
expanded to include high-velocity oxy-fuel (HVOF) sprayed feedstock to 
examine the effect of the in-flight particle behaviour on the final coating 
(Liu et al., 2021a; Meimei et al., 2018). The use of Artificial Neural 
Networks (ANNs) in thermal spraying has been the centre point of most 
of the ML-driven work (Liu et al., 2019, 2021a; Paturi et al., 2021; Wang 
et al., 2021), due to its capability to differentiate into layers within the 
thermal spraying environment and the ability to make predictions based 
on a limited dataset. A few studies also compared the predictive accu-
racy of linear and non-linear ANNs models with other machine learning 
models, such as gradient boosting regression, decision tree regression, 
random forest regression, logistic regression, support vector machine, 
and k-nearest neighbour (Canales et al., 2020; Liu et al., 2021b). Yang 
et al. (2022) trained a support vector machine model to help predict a set 
of optimised compositions of high-entropy alloys (number of features 10 
and 371 datapoints extracted from literature), which resulted in a 24.8% 
higher hardness, when synthesised, and the hardness value was higher 
than the original dataset. The studies indicated that the selection of an 
ANN model was tailored for the specific application and the availability 
and fitting of data may impact the accuracy of predictions. The predic-
tion accuracy of the ML models often depends on the diversity and 
quality of the dataset and an improvement in model predictability or 
generally the predictive performance of the model may be hampered 
when the data collection process is laborious, expensive, and 
resource-intensive, such as in the case of thermal spraying. Thus, there is 
a need for an ML approach capable of guiding more informative samples 
that may reduce overall uncertainty and be adapted to a wide range of 
thermal spray methods. For example, Xu et al. (2022c) implemented an 
AL framework to improve the design and composition optimisation of 
high entropy alloys, which resulted in a composition with a 9% higher 
optimal hardness as compared to the original quinary system. They 
indicated that the prediction accuracy of the ML model was significantly 
increased due to the AL optimisation. Thus, the targeted sampling using 
the AL framework aims to maximise the effectiveness of the database 
and, by extension, the predictive performance of the ML model. 

A more promising approach for thermal spraying is developing an 
active learning (AL) framework that can guide the search for data points 
to improve the predictive performance of a surrogate ML model. In other 
words, an informed thermal spray data collection will increase the 
informativeness of the initial, limited dataset by identifying search 
spaces to sample, which will in turn, reduce the overall uncertainty in 
the surrogate model. In this paper, the first-of-its-kind use of the AL 
framework in thermal spray was utilised to reduce the maximum un-
certainty and to improve the model predictability for desirable in-flight 
particle velocity and temperature characteristics. An initial dataset of 
the in-flight particle temperature and velocity of atmospheric plasma 
sprayed (APS) silicon particles over 26 different spray conditions were 
measured via an in-line thermal spray sensor. The dataset was then used 
to train two ML models (Random Forest (RF) and Gaussian Process (GP)) 
and the best model, in terms of their data fitting, prediction accuracy, 
and model stability, was employed as a surrogate (GP in this study) for 
the AL-based Bayesian optimisation framework. A total of 6 AL-guided 
thermal spray runs were carried out after the Bayesian optimisation. 
The guided data collection was used to reduce maximum uncertainty, or 
in other words, carry out sampling in unexplored regions within the 
dataset to improve the prediction accuracy. 

2. Materials and methods 

2.1. Materials 

Thermal spray grade silicon powder (Metco™ 4810, >99 wt % Si) 
was supplied by Oerlikon Metco, USA. The irregular shapes of Si parti-
cles are shown in Fig. 1a, with an inset magnified image of the same 
powder. Fig. 1b shows the particle size distributions (PSD) of the pow-
der, and the particles have d10, d50, and d90 of 26.1 ± 2.4 μm, 42.1 ± 3.6 
μm, and 84.2 ± 22.7 μm, respectively. The nominal PSD of − 75 + 15 μm 
advised by the manufacturer, measured via sieve analysis and laser 
diffraction (Microtac) analysis, correlates with the PSD measurements 
carried out in this study. 

2.2. Atmospheric plasma spraying 

All spraying trails were conducted using an SG-100 plasma spraying 
system supplied by Praxair Surface Technology, USA. The spray gun was 
fitted with a 03083-112 gas injector, a 02083–120 cathode, and a 
02083–175 anode. The plasma torch used a mixture of argon and 
hydrogen gases to generate plasma plume, with Ar used as the primary 
gas and H2 used as the secondary gas. A schematic of the plasma system 
is shown in Fig. 2. More details on the atmospheric plasma spraying can 
be found in our previous studies (Lynam et al., 2022; Tejero-Martin 
et al., 2019). 

2.3. In-flight particle characteristics measurement 

The in-flight particle temperature and velocity measurements were 
carried out using an Accuraspray 4.0 thermal spray sensor, supplied by 
Tecnar Spray Sensors, Canada. The system is an in-line thermal spray 
sensor that measures the spray plume temperature (>1000 ◦C at 3% 
accuracy), velocity (5–1200 m/s at 2% accuracy), and stability (plume 
intensity at 2% accuracy and position at ±0.1 mm accuracy) of the 
plume at a 400 mm field of view. The in-flight temperature and velocity 
are measured as an average of all the particles that pass through a large 
measurement volume of 750 mm3 (3 mm × 25 mm x 10 mm) (Fauchais 
and Vardelle, 2010). The temperature was measured using a two-colour 
pyrometer, whereas the velocity was calculated when the particles 
travel between the two slits in the sensor, generating differentiating 
pulses. The response time was set to 1 s. The measurements presented in 
this study are a mean value of 60 measurements, which were obtained 
over a period of 60 s following a stabilized plume. 

2.4. Machine learning models 

All models were implemented in Python (Version 3.7.7) using the 
machine learning library scikitlearn (Version 0.23.2) and on a machine 
with a hardware configuration of Intel Core i9-9900K, CPU 3.60 GHz, 
and 16 GB of RAM. The hyperparameter tuning was carried out using 
scikit-learn’s GridSearchCV, which performs an exhaustive search over a 
set of specified parameters. Two ML methods, Random Forest (RF), and 
Gaussian Process (GP), were studied to evaluate their applicability to the 
AL framework based on their data fitting, prediction accuracy, and 
model stability. Following evaluation, the GP model was selected as a 
surrogate model to implement the Bayesian optimisation framework. 
The AL using Bayesian optimisation iterations are detailed in a flow 
chart shown in Fig. 3. At first, the initial dataset (spray trails 1–26) was 
used to train the GP model and the uncertainty areas within the initial 
data were identified to reduce maximum uncertainty. A guided uncer-
tainty reduction was carried out using targeted further spray trails 
(spray trails 27–32), and the target processing parameter combinations 
were defined using the data search space. The new data was used to re- 
train the model, and the maximum uncertainty in the dataset was re- 
assessed. 

The original spraying conditions and in-flight characteristics data 
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were normalised between the values 0 and 1 to cast out any differential 
bias among the numerical features using the formula (Singh and Singh, 
2020; Sola and Sevilla, 1997): 

yi
′ =

yi − ymin

ymax − ymin
(1)  

where yi
′, yi, ymax and ymin are the normalised data, original data, 

maximal data, and minimal data, respectively. To account for any out-
liers, the mean values were calculated using the modified Thompson tau 
test on the raw data (Anbarasi et al., 2011). The modified Thompson tau 
technique is a statistical method that manages outliers for a single var-
iable, such as by either keeping or eliminating the outliers based on a set 
threshold. For example, the outliers that are more than two standard 
deviations away from the mean may be eliminated. In this study, the tau 
threshold was calculated based on the maximum and minimum standard 
deviations and as a function of the number of data points. 

2.4.1. Random forest 
Random forest (RF) is a supervised learning method that uses 

ensemble learning for regression. The method combines multiple model 
predictions to make a more accurate prediction. In other words, the 
method works by constructing several decision trees that run parallelly 
with no interaction amongst them and the predictions of these decision 
trees are governed in accordance with a random parameter, kRF (Biau, 
2012). In the past, this has been shown to be an effective way to get 
substantial gains in classification and regression accuracy (Jin et al., 
2020). 

Random forest, a collection of randomised base regression trees, can 
be expressed as {rn(XRF, Θm, D n), m≥ 1}, where n is the number of 
samples in the training sample D n and Θ1,Θ2,…,Θm are i. i.d. outputs of 
a randomised variable Θ. The aggregated regression from the random 
trees can be estimated by (Biau, 2012): 

rn(XRF,D n)=EΘ[rn(XRF,Θm,D n)] (4)  

Where EΘ denotes the expectation with respect to the randomised 
parameter, which is conditionally attached with XRF and the dataset 
D n. The optimal number of trees for this study was found to be 100, 
while the mean absolute error was used to determine the quality of a 

Fig. 1. (a) The SE SEM Images and (b) particle size distribution of the silicon powder.  

Fig. 2. The schematics of SG-100 plasma spraying system with an in-line Accuraspray 4.0 thermal spray sensor.  

Fig. 3. Schematic showing the AL-driven guided uncertainty reduction in the initial database.  
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split. For this study, a fixed random state (random_state = 42) was used, 
and the hyperparameters as max_depth = 2, min_samples_leaf = 2, 
n_estimators = 100. 

2.4.2. Gaussian Process 
The Gaussian Process (GP) Models are generic kernel-based super-

vised models designed to solve probabilistic and regression problems. In 
a multivariate case of the Gaussian process, there is a finite collection of 
random variables which have joint Gaussian (normal) distributions 
(Yom-Tov, 2004). The distribution over functions, 
f(XiG P )∼ G P (μ(XG P ),k (XG P ,XG P

′)), provided by the Gaussian pro-
cess, is fully defined by its mean function μ(XG P ) and the covariance is 
given by the kernel function k (XG P ,XG P

′) (Guidetti et al., 2021). In a 
case of considerable variability in the available data, noise measure-
ment, ϵiG P , within the distribution N (0, σ2

n) is included in the final 
equation (Ebden, 2015): 

yiG P = f (XiG P ) + ϵiG P (5)  

Where i is the i-th measurement corresponding to an input vector XiG P . 
By including some known points XG P of the dataset and by identifying 
some unknown points X∗G P for the estimation f(X∗G P ), the model 
processes the probability distribution p(f∗|X∗,X, f) with an assumption 
that the joint distribution p(f∗|f) is jointly Gaussian, leaving the mean μ∗

and covariance matrix k(X∗,X∗
′) that define the final distribution 

f∗∼ N (μ∗,Σ∗) (Berrar, 2019). By sampling from the final distribution, 
the desirable estimation can be obtained. 

The RBF and white kernel were used as the kernel for the GP model. 
The kernel hyperparameters were optimised by maximising the log- 
marginal-likelihood during the fitting of the Gaussian process model. 
The level of noise in the available dataset was found to be 0.01. The prior 
mean is initialised to be the training data mean. The default optimiser 
from the scikitlearn package Gaussian processor regressor, e.g. 
fmin_l_bfgs_b, and alpha parameter (1e-10) were used for the GP model. 

2.4.3. Stability of the models 
The stability of the models was ascertained by the relative change 

percentage in the evaluation metrics between the training and testing 
accuracies (Fan et al., 2018). The relative change percentage δi,j between 
the two datasets, the evaluation metric i and a model j, can be calculated 
using: 

δi,j =

⃒
⃒
⃒
⃒
δi,test − δi,train

δi,train

⃒
⃒
⃒
⃒x100% (6)  

Where δi,test and δi,train are the relative change percentages of testing and 
training datasets, respectively. 

2.4.4. Comparison of model and statistical error analysis 
To evaluate and compare the accuracy and performance of the 

studied models for predicting in-flight particle characteristics, three 
common statistical metrics were used. They were root mean square error 
(RMSE), mean absolute error (MAE), and the coefficient of determina-
tion (R2). The mathematical equations for the statistical metrics are 
shown below: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ΣN
i=1(yi − yi

∗)
2

N

√

(7)  

MAE=
1
N

∑N

i=1
|yi − yi

∗| (8)  

R2= 1−
ΣN

i=1(yi − yi
∗)

2

ΣN
i=1(yi − y)2 (9)  

Where yi, yi
∗, and y are the original values, predicted values, and the 

mean of original values, respectively. N is the total number of predicted 
values. For RMSE and MAE, lower values indicate a better model per-
formance, while for R2, the closer it gets to 1, the better the regression 
line will fit the data. 

2.4.5. K-fold cross-validation 
The k-fold cross-validation is a statistical evaluation method used to 

ascertain the suitability of a machine learning model to predict the 
outcome of unseen data. In other words, the cross-validation estimates 
the capability of the model to generalise/make predictions on the data 
that was not used during the training of the model (Berrar, 2019). The 
validation works by shuffling and splitting the data into 
non-overlapping kfold number of smaller sub-sample folds, that are equal 
in size and the number is less than or equal to the number of elements in 
the dataset. This ensures that all of the available data (not just the 
explored regions) is used for standard train-test splits, and the model is 
trained on the new training set. The model is trained with the first subset 
as the test data and the rest of the subsets as the training data. The total 
error rate is calculated when the trained model is used to predict the test 
data, and the training iterations of the model continue above the k-fold 
value (which means the k-number of error rates). The total error rate is 
averaged from the k-number of error rates, essentially validating the 
generalising capability of the model. For the cross-validation, k was set 
to 15, which is close to what is commonly suggested in the literature 
(Marcot and Hanea, 2021). 

Table 1 
The upper and lower bounds of each variable for the Bayesian optimisation 
function.  

Variable Lower bound Upper bound 

Argon (psi) 45 95 
Hydrogen (psi) 25 100 
Current (A) 25 650 
SOD (mm) 50 200  

Table 2 
Summarising the initial spray trials conducted in this study.  

Spray 
Run 

Ar 
(psi) 

H2 

(psi) 
Current 
(A) 

SOD 
(mm) 

Temperaturea 

(oC) 
Velocitya 

(m/s) 

1 65 30 500 120 2588.6 183.6 
2 85 30 2601.2 194.3 
3 65 35 2604.2 186.8 
4 85 35 2621.0 203.8 
5 65 30 600 2599.2 190.6 
6 85 30 2623.6 209.2 
7 65 35 2604.9 196.8 
8 85 35 2639.3 220.4 
9 65 30 500 150 2522.4 160.3 
10 85 30 2518.8 171.8 
11 65 35 2532.0 164.8 
12 85 35 2539.1 181.7 
13 65 30 600 2553.5 178.1 
14 85 30 2558.6 193.1 
15 65 35 2565.2 182.0 
16 85 35 2576.1 203.8 
17 85 30 350 50 2875.2 181.6 
18 85 30 75 2661.3 170.1 
19 85 30 100 2749.2 149.2 
20 85 30 125 2468.3 131.5 
21 85 30 150 2370.9 116.0 
22 65 25 600 50 2882.8 198.2 
23 65 25 75 2733.9 188.8 
24 65 25 100 2715.7 177.7 
25 65 25 125 2590.6 167.1 
26 65 25 150 2537.3 155.1  

a Measured using an in-line Tecnar Accuraspray 4.0 particle diagnostics. 
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2.5. Bayesian Optimisation 

Bayesian optimisation is a sequential search framework (AL) that 
incorporates both exploration and exploitation of the available dataset. 
The framework consists of two main components. (1) A surrogate model 
is used as a proxy for the statistical/probabilistic modelling of the 
objective function, which is in-flight particle characteristics in this 
study. Between GP and RF regression, the GP model was used as the 
surrogate model to explore and estimate the maximum certainty in the 
database. (2) An acquisition Function, as a metric function, programmed 
to generalise a parameter that will consistently return the best optimal 
value from the optimised database. The acquisition function uses an 
exploration vs. exploitation strategy to decide the optimal parameter. 
For example, while doing the hyperparameter space exploration, the 
framework searches for multiple optimal values in a given search area, 
and importance is given to the consistent optimal points (either high or 
low). Within these explore and exploit iterations, the surrogate model 
helps to get a simulated output of the function. By using the mean and 
variance for each point XBO, an acquisition function can compute the 
desirability of sampling at that location. More importantly, the goal is to 
find the maximum point using the minimum number of functional it-
erations. Given a function f(XBO) that estimates the coating quality in 
the form of a numerical value, the aim is to find the processing 
parameter combination X̂BO that maximises the output of the function, 
over some domain X that has finite upper and lower bounds on each 
variable. The function is written as: 

X̂BO = argmax(f (XBO)) (10)  

XBOϵX 

The domain X consists of four variables in our problem, which are 
argon pressure, hydrogen pressure, arc current, and standoff distance. 
The additional variables in the database, particle temperatures and ve-
locities, are dependent on the four controllable variables and are not 
included in the domain. The upper and lower bounds for each variable 
are detailed in Table 1. The upper and lower bounds were determined 
based on the plasma spray equipment limitations, and the Standoff 
distance (SOD) was based on the experimental limitation for the given 
thermal spray method. 

In order to derive the desired acquisition function, i.e. striking a 
balance between exploration and exploitation, the metric known as 
Expected Improvement (EI) is used. Other potential metrics that 
improve the potential function may include the Probability of 
Improvement (PI); however, the metric only takes into account the 
likelihood that a point will return a result higher than the current 
maximum while ignoring the potential improvement. The EI weighs an 
expected improvement whenever a new data point is tried, and the EI 
can be calculated by the following formula:   

z =
μ(f (XBO)) − max (f (XBO))

σ(f (XBO))
(12)  

where f(XBO) is the surrogate model, μ(f(XBO)) and σ(f(XBO)) are the 
prediction and uncertainty at a given location XBO, Φ(z) is the standard 
normal cumulative probability density, ∅(z) the standard normal 
probability density, and max(f(XBO)) is the maximum EI for the current 

set of samples used to train the surrogate model. 
GP regression was used as the surrogate model because it performed 

the best compared to the RF model. To obtain a location in the data 
search space where a data point needs to be sampled, the Iterated Local 
Search (ILS) was used. The ILS is a stochastic global optimisation algo-
rithm that works by repeating a local search algorithm on the modified 
versions of a good candidate solution. The search was randomly reset 
Nresets times to find the global optimum out of the local optima. The local 
optima were found by repeatedly updating S* (random initial solution). 
The new candidate solutions were first generated by perturbing S*, and 
the new candidate solution S′ was accepted as the new S* if the expected 
improvement of S′ is greater than the expected improvement of S*. After 
no further improvements possible, the best local optima is then 
described as Sbest. 

3. Results 

3.1. Initial experimental data collection 

A total of 32 different spray trials were conducted in this study, and 
the spray conditions are specified in Tables 2 and 3. The spray trails 
1–26 were used as the initial database to process the ML models fitting 
and stability, listed in Table 2. The spray conditions were designed to 
reflect a wider range of processing parameters, i.e. different gas flows of 
primary and secondary gases, the overall current of the spray torch, and 

the SODs from 50 mm and up to 150 mm, and the conditions produced 
diversified in-flight characteristics to reflect a wide spectrum of particle 
temperatures and velocities. The spray trails 27–32 were conducted as 
part of the AL-driven Bayesian optimisation cycle, listed in Table 3. 

During the initial spray trails, the in-flight particle temperatures 
ranged from 2370 ◦C up to 2883 ◦C and the inflight particle velocities 
from 116 m/s up to 242 m/s. An increase in the primary Argon and 
secondary hydrogen gases and the current of the torch resulted in an 
increase in particle temperatures and velocities. Furthermore, the effect 

Table 3 
Summarising the AL-driven Bayesian optimisation cycle spray trials conducted 
in this study.  

Spray 
Run 

Ar 
(psi) 

H2 

(psi) 
Current 
(A) 

SOD 
(mm) 

Temperaturea 

(oC) 
Velocitya 

(m/s) 

27 86 35 541 68 2985.3 242.4 
28 54 25 365 50 2805.5 177.7 
29 70 28 457 62 2853.2 204.9 
30 45 27 539 50 2935.8 188.8 
31 95 37 300 60 2947.4 208.6 
32 95 36 622 133 2691.1 217.6  

a Measured using an in-line Tecnar Accuraspray 4.0 particle diagnostics. 

Table 4 
Accuracy results of the machine learning models when predicting temperatures.  

Model Attributes Training dataset Testing dataset 

RMSE 
(oC) 

MAE 
(oC) 

R2 RMSE 
(oC) 

MAE 
(oC) 

R2 

RF Mean 21.3 14.0 0.98 44.0 36.2 0.86 
SD 1.2 0.7 35.4 29.1 

GP Mean 40.9 29.2 0.93 46.4 37.5 0.88 
SD 1.9 1.2 27.9 19.9  

EI(XBO)=

{
(μ(f (XBO)) − max(f (XBO))Φ(z) − σ(f (XBO))∅(z), if σ(f (XBO)> 0

0, if σ(f (XBO) ≤ 0 (11)   
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of current on particle temperatures and velocities is more pronounced at 
larger SODs, or in other words, the effect of current on particle tem-
peratures and velocities seems to diminish when the SODs were reduced 
to 50 mm. Increasing the SODs from 120 mm to 150 mm results in a 
12–14% decrease in particle temperatures and a 2–4% decrease in 
particle velocities at 500 A current. At 600 A current, the reduction 
nearly halves to a 7–8% decrease in particle temperatures and a 1–2% 
decrease in particle velocities, as an increasing current of the torch in-
creases the burning capacity of the plasma plume. 

3.2. Machine learning 

3.2.1. ML model prediction accuracy, data fitting, and stability 
The results of the RF and GP models performing k-fold cross- 

validation on the initial dataset for particle temperature and velocities 
are listed in Tables 4 and 5, respectively. The accuracy of the training 
temperature and velocity dataset varies greatly depending on the model 
used, whereas the testing prediction was more accurate with the GP 
model. Other state-of-the-models, such as support vector machine, 
linear regression, and ANNs may provide a slightly higher predictive 
accuracy as compared to the RF and GP models (supplementary infor-
mation). However, they may not be directly applicable to the AL 
framework as the models do not account for the variance and standard 
deviation of predictions in their original forms; thus, the implementa-
tion was limited to RF and GP models. For the testing data, the GP 
performed the best across all metrics for both temperature and velocity. 
The RMSE, MAE, and R2 of the GP model for predicting temperatures 
were 46.4, 37.5, and 0.88, respectively. Whereas for particle velocities, 
the RMSE, MAE, and R2 of 18.2, 14.7, and 0.88, respectively, were 
reported. 

Ranking the trained models is challenging and the results could also 
vary slightly depending on the statistical metrics employed by the 
models. The RF model underperformed in 4 out of 6 metrics, with higher 
RMSE and MAE and a lower R2 as compared to that of the GP model 
predictions in most cases. 

Typically, the accuracy of the training data will always be higher 
than that of the testing data; however, a large difference in prediction 
accuracy may indicate poor stability, thus, directly impacting the reli-
ability of the model (Li et al., 2020). Furthermore, frequent higher 
values of testing errors compared to the training errors may also indicate 
the model is overfitted. The overfitting of data could be detected by 
evaluating the difference between the training and testing errors of 
multiple k-fold iterations. Based on the data tabulated in Tables 3 and 4, 
the difference in training and testing error is much larger for the RF 
model as compared to the GP model, shown in Fig. 4, which may indi-
cate an overfitted model. For example, the relative change in data fitting 
(R2) of training and testing data is three-fold higher in the RF model as 
compared to the GP model. The GP model seems to be more stable, i.e. 
the relative change between the training and testing accuracies, as 
compared to the RF model. In thermal spray, a synergetic change of 
±50 ◦C particle temperature and ±20 m/s particle velocity is adequate 
to induce a change in deposited microstructure or associated phase 
changes; thus, there is a need to further improve the prediction accuracy 
in the GP model. As indicated in the materials and methods section, the 
prediction accuracy of the model is highly reliant on the informativeness 

of the datatset used and maximum uncertainty in the given model. Thus, 
it is crucial to identify informative search spaces within the given dataset 
and guide the sampling in the suggested search space to maximise un-
certainty reduction and increase prediction accuracy. 

3.3. Active learning 

3.3.1. Guided search 
At the start of the Bayesian optimisation cycle, the training set 

consisted of spray trails 1–26 from the database tabulated in Table 2. To 
illustrate how the search was guided by Bayesian optimisation, Figs. 5 
and 6 are used. Fig. 5 shows two scatter plots of the original experi-
mental dataset (spray trails 1–26), where Fig. 5a and b plot the particle 
temperatures and velocities at the given SODs, respectively. 

The colour of a trail denotes specific fixed combinations of process-
ing parameters, excluding SODs. The red dashed line represents the 
optimal temperature or velocity, while the dashed area approximates a 
probability distribution over possible functions that pass through the 
data points. The area, described by the GP model, illustrates the un-
certainty of sampling in the dashed region. For example, in the initial 
experimental dataset, more experiments were conducted in the 
120–150 mm SODs range. As a result, the uncertainty in the region is 
lower, which, by extension, leads to the hatched area being narrow 
when close to the data points. If a desired combination of optimal in- 
flight characteristics is desired at the SODs between 110 and 140 mm, 
the model will likely generalise well for the desired particle tempera-
ture; however, the same combination of processing parameters results in 
a reduced particle velocity than the desired velocity as the model is 
unable to generalise the uncertainty for a given point which is outside 
the region of estimated uncertainty. 

In order to define a reference point where the expected improve-
ments are desired, optimal in-flight temperature and velocity charac-
teristics were assumed. The assumption of optimal temperature and 
velocity were based on the spray trails, i.e. the degree of in-flight silicone 
particles, and the resultant deposited microstructure, which are not 
discussed in this study. The choice of optimal data point also reflects the 
diversified framework for the optimisation, as the optimal point for 
particle temperatures lies firmly near the experimental dataset, which 
may indicate less uncertainty for the model optimisation. In contrast, the 
optimal particle velocity is set away from the existing experimental 
dataset, which is used to ascertain the overall uncertainty reduction 
after the optimisation. 

In the SODs region from 50 to 80, the uncertainty is relatively high 
due to a lack of sufficient data points. As a result, the area is favoured by 
the acquisition function since the potential for improvement is large. 
The first few iterations are therefore expected to fall within this region. 
Based on this assumption, 5 different spray trails were conducted (spray 
trails 27–31) in this uncertainty region as guided by the Bayesian opti-
misation to reduce the maximum uncertainty in the initial database, 
listed in Table 3. The positioning of new spray trials in the uncertainty 
region is shown in Fig. 5, where the numbers denote the order in which 
they were sampled. As these are 3 processing parameters in addition to 
SODs, it takes the Bayesian optimisation 5 iterations to adequately 
explore the shorter SODs region. 

In Fig. 6, the hatched uncertainty area has been updated based on the 
5 samples acquired experimentally after the Bayesian optimisation 
cycle. After an attempt to explore the shorter SODs region of the data-
base, it is reasonable to assume that the model may not suggest further 
combinations of temperature and velocity from this region. Based on the 
information illustrated in Fig. 5, the two most likely locations to be 
sampled by the Bayesian optimisation were in the SODs range of 110 and 
135 mm and the Bayesian optimisation iterated to sample at a SOD of 
133 mm. The processing parameters suggested for spray trail 32 (point 6 
in Fig. 6) generated a plasma plume of 2691.1 ◦C and particle velocities 
of 217.6 m/s, which is the second-best experimental trail overall in the 
updated dataset. Since the Bayesian optimisation was sampling as 

Table 5 
Accuracy results of the machine learning models when predicting velocities.  

Model Attributes Training dataset Testing dataset 

RMSE 
(m/s) 

MAE 
(m/s) 

R2 RMSE 
(m/s) 

MAE 
(m/s) 

R2 

RF Mean 8.7 6.1 0.98 20.0 16.4 0.86 
SD 0.7 0.3 12.4 8.2 

GP Mean 18.0 12.3 0.93 18.2 14.7 0.88 
SD 1.5 0.7 12.1 8.2  
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expected for the first 6 iterations, it is reasonable to assume that it will 
work well for the next iterations and that further improvement would 
likely be made for the in-flight characteristics. 

3.3.2. Maximum uncertainty reduction 
Based on the iterations carried out in section 3.3.1, to reach optimal 

processing parameters for the desired in-flight characteristics, it can be 
determined if the samples obtained from the AL were more informative 
than the samples in the original training set. How informative a sample 
is can be measured by looking at the reduction in maximum uncertainty 
after adding a new data point to the old dataset, which in this case, is the 
iterations carried out after the Bayesian optimisation. Table 6 shows the 
average reduction in maximum uncertainty either by adding an AL 
sample or a sample from the original database as the ith sample during 
the training of a GP model. 

The process of obtaining the uncertainty results consisted of several 
sequential steps:  

(i) Categorising the samples as either from the original dataset or the 
AL-derived dataset.  

(ii) Training the GP model on the database that was modified by 
including the AL-driven data points, and then generalising pre-
dictions at regular intervals over the entire bound-defined search 
space to obtain the maximum uncertainty/standard deviation.  

(iii) Selecting a random unused sample (from the database), finding 
the maximum uncertainty in the same manner as (ii), and 
calculating the difference between the current maximum uncer-
tainty and the maximum uncertainty before the current sample 
was added. Thus, assigning a different value relevant to the 
sample category and the position at which it was added.  

(iv) Step (iii) is repeated until all samples in the dataset are used.  
(v) Steps (ii-iv) are repeated N number of times (30,000 in this 

study).  
(vi) All resultant values were summed, averaged, and grouped by 

category and the position step it was introduced. 

The resultant uncertainty concerning the step position is illustrated 
in Fig. 7. The statistical overview of the average reduction in maximum 
certainty is listed in Table 7. The ratio was calculated by dividing the AL 
uncertainty by the original uncertainty. 

The incremental step values indicated in Fig. 7 show that the stan-
dard deviation of maximum uncertainty in the database decreased with 
an increase in the number of spray trails. On average, the samples ob-
tained from the Bayesian optimisation were always more informative 

than the samples from the original dataset, regardless of when they were 
introduced in training. The AL samples were on average 94.3% more 
informative. The smallest difference can be found at Position 1, where 
the AL samples are only 23.9% more informative. This is likely due to 
the training data dataset being relatively small at this step. The effec-
tiveness of using AL appears to increase over time since the samples were 
on average 59.3% more informative for the first 5 positions and 96.0% 
more informative for the last 5 positions. The samples appear to have an 
inversely proportional relationship between how informative the sample 
is and at what position it was introduced, or in other words, the infor-
mativeness of a sample is a function of the iterative position it was 
introduced. 

3.3.3. Contrived test validation 
To check the validity of the Bayesian optimisation implementation, a 

custom scenario was contrived. A simple approximation, using the 
Euclidean distance to a specific point, was used to measure the coating 
quality. For this purpose, the point (2588 ◦C, 242 m/s), which was also 
the optimal in-flight particle temperature and velocity for guided un-
certainty reduction, was used as the contrived test point for the distance 
calculations, shown in Fig. 8 (the red cross). To account for any differ-
ence in units between temperature and velocity, the values were nor-
malised before the distance was calculated. If the Bayesian optimisation 
adequately reduces the maximum uncertainty around the test point, 
then the optimisation can be adapted to accurately predict the spraying 
conditions for the desirable in-flight characteristics, as long as the sur-
rogate model generalises well and the acquisition function remains 
unchanged. 

A total of ten iterations were carried out to check the validity of the 
Bayesian optimisation for the test point, shown in Fig. 9. The initial 
dataset (spray trails 1–26) was used as the starting point for the first 
iteration of the Bayesian optimisation. As the iterations continue, the 
acquired samples, which are the points in each iteration with the highest 
EI, can be categorised as either being explorative or exploitative. Iter-
ations 1, 2, 5, 6, 7, and 9 were mainly exploitatory, while iterations 3 
and 8 were mainly exploratory. Iteration 4 seems to be a mix-match of 
both explorative and exploitative functions to derive the highest EI. 
While iteration 10 did not produce any good points to sample, thus, the 
optimisation was terminated at this iteration. 

For iteration 3, the Bayesian optimisation favoured the sample point 
(2000, 300) since the uncertainty is high in that region due to a lack of 
data points and reduced sampling in the region surrounding the optimal 
solution as sufficient points were sampled around the test point in 
iteration 2. As the likelihood of potential sampling in the regions, where 

Fig. 4. The relative change (%) between the training and testing accuracies with respect to (a) RMSE, (b) MAE, and (c) R2 for all studied models.  
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the uncertainty is high due to a lack of data points, decreases and the 
overall EI potential increases. This allows the optimisation to favour 
uncertainty reductions around the test point, as shown in iterations 4–7 
and 9. In the initial dataset (spray trails 1–26), the best data point 
nearest to the test point was spray trail 8 (2639, 220). The best-predicted 
data point during the Bayesian optimisation cycle after the 10 iterations 
carried out in this section was (2589, 249). The spray trail 8 had a 
Euclidean distance of 0.190, after normalising the temperature and ve-
locity, while the predicted data point indicated a distance of 0.055, 
which is a three-fold increase in prediction accuracy for desired in-flight 
characteristics. The expected improvement after the Bayesian optimi-
sation cycle could drastically reduce the need for explorative 

experimentation and predict the best possible conditions around the 
desirable in-flight characteristics with the least uncertainty in the given 
database. 

After the uncertainty reduction carried out using the AL-driven 
Bayesian optimisation, the RMSE and R2 of the testing dataset were 
calculated for 1–32 spray trails and are listed in Table 8. An impressive 
95.0% improvement (error reduction) of RMSE and an R2 increase of 
12.5% was reported on the predicted in-flight particle velocity after the 
AL-driven optimisation. For the in-flight particle temperature pre-
dictions, a 10.8% RMSE reduction and an R2 increase of 4.5% were re-
ported. A higher error reduction and data fitting with the in-flight 
velocity predictions were expected as there was a disparity in expected 

Fig. 5. The scatter plots of (a) particle temperatures and (b) velocities based on probability distribution area for the initial database (1–26 spray trails).  
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improvements with respect to the optimal temperature and velocity. In 
other words, the optimal temperature was well within the range of 
sampled temperature points, whereas the optimal velocity was far off 
the sampled velocity points, as shown in Figs. 5 and 6. Thus, a higher 
improvement was expected from the in-flight velocity predictions 
compared to the in-flight temperature predictions. 

4. Discussion 

In a process like thermal spraying, which has multiple chemical and 
thermodynamic stages (layers) and involves numerous process param-
eters (nodes) that are interlinked with the stages, it may seem ANNs is 
the best available choice to construct a neural network mimicking these 
complex relationships (Paturi et al., 2021). Despite the ANNs ability to 
learn from past data and use it to better predict the response variables, 
the key difference between ANNs and the statistical methods, like RF 
and GP models, is how the nonlinear data is classified. The literature 
review on the utilisation of machine learning techniques in thermal 
spray is listed in Table 9. For this paper, the discussion is focused on 
ANNs, RF, and GP models. ANNs tend to minimise the empirical risk 
learnt during the model training and intend to converge to local minima, 
which could overfit the model. Whereas the RF and GP models tend to 
have better generalisation capability as they intend to find a global 

solution, taking into consideration the model complexities and under-
lying mechanisms, during the model training (Ren, 2012). In other 
words, ANNs inherently rely on activation functions within the 
multi-layer connections to deal with nonlinear sampling, whereas the RF 
and GP models utilise a kernel function to separate the nonlinear 
problems into linear sampling, thus opting for a customised response 
unique to the nonlinear problem. This makes the RF and GP models 
more accurate to a real-world problem with a higher degree of 
complexity than observed during training, and ANNs may not generalise 
well due to a fixed size of the neural layers that may not include a 
relationship with previously unseen data (Bisgin et al., 2018). 

In this study, two statistical ML models were used to evaluate the 
prediction accuracy for the given dataset and to further incorporate the 
best model for AL via Bayesian optimisation. Typically, for a regression 
model, an R2 value of >0.90 is considered promising for a given data-
base and domain. In this study, the testing accuracies for the RF and GP 
models were below 0.90. It is imperative to mention that the applica-
bility of an ML model largely depends on the quality or the linearity of 
the available database and the function or the desired combinations to 
generalise a prediction. Furthermore, the predictive performance of 
other ML models discussed in supplementary information is slightly 
better; however, their direct integration into the AL framework was 
limited due to the non-statistical nature of models in their original form. 

Fig. 6. The updated scatter plots of (a) particle temperatures and (b) velocities based on probability distribution area for the Bayesian optimised database (1–31 
spray trails). 
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Overall, the GP model performed better in terms of prediction accuracy, 
data fitting, and model stability, as compared to the RF model and the 
GP model was used for further AL-based optimisation. 

The Bayesian optimisation consists of two main components: a sur-
rogate model and an acquisition function carried out to reduce: (I) 
maximum uncertainty in the database by hyperparameter tuning 
(further spray trails 26–32) and (II) uncertainty reduction around a 
contrived test point. The acquisition function, EI, was used to strike 
balance trade-offs between exploration and exploitation by favouring 
high surrogate variance for exploration (part I) and high surrogate mean 
samples for exploitation (part II) (Brochu et al., 2010). Both strategies 
employed in this study have significance and were interlinked for 
AL-driven thermal spraying optimisation. 

In part I, an iteration of the sequential Bayesian optimisation process 
consists of: (i) training the surrogate model (GP in this case) on all 
available data (spray trails 1–26), (ii) exploration of variable combina-
tions that maximise the acquisition function (hyperparameter tuning to 
maximise exploitation), (iii) run selected samples (spray trails 26–32), 
and (iv) update the dataset to reduce overall maximum uncertainty, thus 

improving the predictive accuracy in a given probability distribution of 
the data points. The cycle is then repeated until some termination 
criteria are met. It is imperative to mention that the AL framework relies 
on the uncertainties in the GP model and the scarcity of the data means 
the guided search was biased towards the sampling gap in the given 
database. Furthermore, the model is also limited to constraints adopted 
during the optimisation and these constraints may not extended to other 
domains. The optimisation indicates if the prediction of the desired in- 
flight characteristics is possible in the given database, thus reducing 
the need to carry on expensive and time-intensive thermal spraying 
trails that may not be physically possible or attainable based on unseen 
physical mechanisms and/or equipment limitations. 

Part II adapts a narrower approach (as compared to part I, which 
explores the entire database and reduces maximum uncertainty) where 
an improvement is expected around a desired test point. Thus, the sur-
rogate model samples a limited region where improvement is expected 
and comes with the best available outcome with the least uncertainty 
using the Bayesian optimisation iterations. In this study, the Euclidean 
distance calculation was employed to calculate the distance from the 
predicted optimised in-flight characteristics to the optimal contrived test 
point. A function for estimating coating quality (numeric value) based 
on processing parameters would be ideal for maximisation, but it 
overcomplicates the existing optimisation carried out in this study. 
Thus, based on the Euclidean distance calculation, a coating could be 
classified as either “good” or bad” depending on the coating quality 
thresholds. 

Table 6 
Average reduction in maximum uncertainty in the dataset with respect to the 
positions.  

Position Original Active Learning % changea 

1 0.049 0.061 19.7 
2 0.040 0.057 29.8 
3 0.034 0.054 37.0 
4 0.029 0.051 43.1 
5 0.025 0.048 47.9 
6 0.022 0.044 50.0 
7 0.020 0.040 50.0 
8 0.018 0.037 51.4 
9 0.017 0.034 50.0 
10 0.016 0.032 50.0 
11 0.016 0.030 46.7 
12 0.015 0.029 48.3 
13 0.014 0.027 48.1 
14 0.013 0.025 48.0 
15 0.012 0.023 47.8 
16 0.011 0.022 50.0 
17 0.010 0.021 52.4 
18 0.010 0.019 47.4 
19 0.009 0.018 50.0 
20 0.008 0.017 52.9 
21 0.008 0.016 50.0 
22 0.008 0.014 42.9 
23 0.008 0.013 38.5 
24 0.007 0.013 46.2 
25 0.007 0.013 46.2 
26 0.007 0.012 41.7 
27 0.007 0.012 41.7 
28 0.007 0.011 36.4 
29 0.006 0.011 45.5 
30 0.005 0.010 50.0 
31 0.004 0.011 63.6  

a The percentage change in uncertainty values as compared to original and AL 
values. 

Fig. 7. Reduction in maximum uncertainty as a function of step positions.  

Table 7 
The overall reduction in maximum certainty.  

Uncertainties Mean Min Max SD 

Original 0.015 0.004 0.049 0.011 
Active learning 0.027 0.010 0.061 0.015 
Ratio 1.8 2.5 1.2 1.4  

Fig. 8. Chosen optimal point and initial training data.  
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Fig. 9. Bayesian Optimisation Iterations to reduce maximum uncertainty and improve EI around the contrived test point. Iterations 1, 2, 5, 6, 7, and 9 were mainly 
exploitatory, while iterations 3 and 8 were mainly exploratory. 
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In this study, the contrived test point optimisation indicated a three- 
fold increase in prediction accuracy compared to the experimental 
dataset. When deciding if the prediction accuracy was adequate or 
qualified for the good/desirable in-flight particle characteristics, 
thresholds can be set, as indicated earlier. If the generalised outcomes 
fall outside of the desired thresholds, then part I optimisation can be 
carried out to improve the unexplored regions and decrease the current 
maximum uncertainty within the database. When predicting the dis-
tance to the test point, the temperatures and velocities were used to 
predict the coating quality instead of processing parameters. The choice 
has three primary benefits: (i) uses the available database to predict 
without further experiments, (ii) if the Bayesian optimisation gives 
satisfactory results for a given scenario, then the model could be adapted 
for other experiments, as long as the surrogate model generalises well, 
and (iii) the capability of the process to be visualised, with only two 
inputs (three if EI is counted together with particle temperature and 
velocity) to predict the distance. 

5. Conclusions and outlook 

In this paper, an AL approach based on a Bayesian Optimisation 
framework and using the Gaussian Process as the surrogate Machine 
Learning (ML) model was utilised. The framework aims to reduce the 
maximum uncertainty in the given database and around a contrived test 
scenario. The Bayesian Optimisation was used to identify the search 
spaces within the initial database (spray trails 1–26) and, subsequently, 
to guide sampling iterations (spray conditions) to reduce the maximum 
uncertainty. A total of six guided further spray trails (further spray trails 
26–32) were carried out. On average, an impressive 52.9% improvement 
(error reduction) of RMSE and an R2 increase of 8.5% were reported on 
the predicted in-flight particle velocities and temperatures after the AL- 
driven optimisation. The Bayesian Optimisation was also used to reduce 
local uncertainty around a contrived test point to predict the best 
possible characteristics around the optimal in-flight particle 

characteristics. A Euclidean distance of 0.190, after normalising the 
temperature and velocity, was noted in the initial database to the test 
point. At the same time, the predicted data point indicated a distance of 
0.055, which is a three-fold increase in prediction accuracy. 

The findings in this paper indicate that ML-driven optimisation in 
thermal spraying could be rapidly incorporated to solve intricate and 
highly nonlinear processes without necessarily utilising the underlying 
physical mechanisms. The paper also successfully implements a first-of- 
its-kind AL framework in thermal spraying by effectively guiding the 
spray runs in unexplored regions. This drastically increases informa-
tiveness and improves the predictive accuracy of the ML model, which 

reduces the need to undertake or guide resource-intensive experimen-
tations. The AL-driven optimisation could open ways for rapid compo-
sition development and accelerate the development of advanced 
coatings with minimal optimisation. 
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Table 8 
Accuracy results (testing dataset) of the GP model after the AL-driven Bayesian 
optimisation.  

Particle 
characteristics 

Attribute Initial (1–26 
spray trails) 

AL-driven 
(27–32 spray 
trails) 

Improvement 

Temperature RMSE 
(oC) 

46.4 41.4 10.8% 

R2 0.88 0.92 4.5% 
Velocity RMSE 

(m/s) 
18.2 0.9 95.0% 

R2 0.88 0.99 12.5%  

Table 9 
The utilisation of machine learning techniques in thermal spray, with the expected output and sprayed feedstock.  

Thermal spray 
methods 

Feedstock ML techniques Output References 

HVOF Cr3C2–25NiCr ANN Microhardness, porosity, and wear rate of coating Liu et al. (2019) 
NiCrAlY Coating porosity and hardness Zhang et al. (2009) 
High Entropy alloys RF Phase formation under rapid solidification conditions Kamnis et al. (2023) 

APS Al2O3–13% Weight TiO2 ANN Particle temperature, particle velocity, particle diameter, 
Height, porosity, and the flattening of the coating profile 

(Guessasma et al., 2004a,b; Kanta 
et al., 2011; Liu et al., 2013) 

Extreme Learning 
Machine (ELM) 

Particle temperature, particle velocity, particle size Choudhury et al. (2013) 

Yttria stabilized zirconia 
(YSZ) 

Convolutional neural 
network (CNN) 

Zhu et al. (2021) 

GP and SVM Bonding Strength Xu et al. (2022b) 
Suspension Plasma 

Spraying 
TiO2 Generative Adversarial 

Network (GAN) 
Microstructure Mahendru et al. (2023) 

Cold Spraying Aluminium and copper 
powders 

LR, SVM, knearest 
Neighbour (kNN), and RF 

Impact kinetic and thermal energies Canales et al. (2020) 

Copper, aluminium, 
titanium, nickel, and iron 

ANN Critical velocity Wang et al. (2021)  
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