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ABSTRACT
A key contributor to the success of modern societies is humanity’s

innate ability to meaningfully cooperate. Modern game-theoretic

reasoning shows however, that an individual’s amenity to coopera-

tion is directly linked with the mechanics of the scenario at hand.

Social dilemmas constitute a subset of particularly thorny such

scenarios, typically modelled as normal-form or sequential games,

where players are caught in a dichotomy between the decision to

cooperate with teammates or to defect, and further their own goals.

In this work, we study such social dilemmas through the lens of

’selfishness level’, a standard game-theoretic metric which quan-

tifies the extent to which a game’s payoffs incentivize defective

behaviours.

The selfishness level is significant in this context as it doubles

as a prescriptive notion, describing the exact payoff modifications

necessary to induce players with prosocial preferences. Using this

framework, we are able to derive conditions, and means, under

which normal-form social dilemmas can be resolved. We also pro-

duce a first-step towards extending this metric to Markov-game or

sequential social dilemmas with the aim of quantitatively measur-

ing the magnitude to which such environments incentivize selfish

behaviours. Finally, we present an exploratory empirical analysis

showing the positive effects of using a selfishness level directed

reward shaping scheme in such environments.

KEYWORDS
Social Dilemma, GameTheory,MarkovGame, Reinforcement Learn-

ing, Multi-agent Reinforcement Learning
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1 INTRODUCTION
Social dilemmas [10] are normal-form game theoretic models that

capture collective action problems—situations where individuals

face a trade-off between their own self-interest and the welfare of

the group. In these scenarios, what appears to be the most rational

decision from an individual’s perspective often leads to negative

outcomes for the collective. Social dilemmas are well studied, and

have been the subject of much work in fields such as psychology [3]

and sociology [6]. The prominence of these games is due to their
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relevance to many real-world coordination problems. An enlight-

ening example of this is the case of nuclear weapons proliferation

between opposing nation states. It is individually rational for a

state to maintain a stockpile of nuclear warheads as it serves as a

deterrent against potential conflicts. However, when multiple states

engage in nuclear arms production, the global community faces

increased dangers due to the potential for accidental use, arms races,

and geopolitical tensions. The ideal situation here would be for all

states to agree to destroy their nuclear stockpiles, but the problem is

if any one state were to disarm then any opposing, nuclear-armed,

states would gain a threatening military advantage. This illustrates

the fact that finding solutions to such dilemmas are difficult and

often require external mechanisms that align individual incentives

with broader societal goals.

Sequential social dilemmas [9] serve as an extension of social

dilemmas which allow for more complex simulations of real-world

cooperation problems. They aim to introduce both time and space

to normal-form social dilemmas, which model only simple, one-

state-one-shot, interactions. Use of sequential social dilemmas has

been growing in themulti-agent reinforcement learning community

with many researchers adopting them as the theoretical framework

for complex environment settings. In this context, they are used

as the test-bed for mechanisms, such as formal contracting [2],

social value orientation [11][12], inequity aversion [5][19], and

conformity to emergent social norms [18], that aim to incentivize

agents to act in favour of collective rationality.

Where the simplicity of social dilemmas makes their analytical

study tractable, unfortunately sequential social dilemmas introduce

a level of complexity that makes a similar study of their prop-

erties difficult. As such there is currently a poor understanding

of these environments, with most characterisations being reliant

on the surface level mechanics of each game paired with the re-

searcher’s intuition. The main means of taxonomy comes from

the well known distinctions of public good dilemmas/tragedy of

the commons dilemmas [6], a method of distinguishing between

𝑁 -player social dilemmas (where 𝑁 > 2), and through the use of

Schelling diagrams [14], the construction of which is reliant on

the researcher’s assumptions towards what constitutes cooperative

and defective behaviour in the given environment. While these

categorisation methods are insightful, we propose a shift of focus

to a more quantitative understanding of sequential social dilemmas.

The selfishness level [1] provides a quantitative measure on the

extent to which games incentivize individualistic (or ’selfish’) be-

haviours. It is defined as the smallest multiple of the social welfare

that must be given to each player in order to make a socially opti-

mal strategy profile a Nash equilibrium [13]. This also makes it a

prescriptive notion as it details how to change the payoff structure

of a game in a way that would alter players’ payoffs to be more



conducive to cooperation. As such, the selfishness level can be

said to share the perspective of interdependence theory [4], which

has recently gained attention from AI researchers [11][12][19]. We

concur with, and affirm, the following notion:

humans deviate from game theoretic predictions in

economic games because each player acts not on the

given matrix of a game - which reflects the extrinsic

payoffs set forth by the game rules - but on an “effec-

tive matrix”, which represents the set of outcomes as

subjectively evaluated by that player [12].

This "account" from interdependence theory suggests that humans

exhibit strong cooperative ability because, in an economic game,

players’ preferences are influenced by the extrinsic payoffs (the pay-
offs given by the game rules), but not determined by them. There-

fore, in order to improve the cooperative ability of artificial agents,

we should aim to design a mechanism that can shape the players’

individual preferences in such a way that mutual cooperation be-

comes desirable. The selfishness level does this by prescribing a set

of intrinsic payoffs which represent the subjectively experienced

payoffs of players. These new payoffs are constructed in a way

that shapes players’ preferences to be more conducive to coopera-

tion and, under some conditions, can completely resolve the social

dilemma.

Our contributions in this work are as follows:

• We find the exact selfishness level of general normal-form social

dilemmas and derive the conditions under which social dilemmas

can be resolved through the selfishness level,

• Weprovide a first step towards extending these ideas to sequential

social dilemmas, a much more complex setting,

• We perform some exploratory empirical analysis in two, well-

known, sequential social dilemmas (harvest and cleanup), illus-

trating the benefits of our methodology to agent cooperation in

a multi-agent reinforcement learning setting.

The following sections are organised as follows: In section 2 we

discuss preliminary material, covering the formal definitions of so-

cial dilemmas, the selfishness level and sequential social dilemmas.

Section 3 covers our analytical contributions with the selfishness

level of social dilemmas, the conditions under which the selfishness

level can be used to resolve social dilemmas and our preliminary

extension of the selfishness level to sequential social dilemmas.

Section 4 presents our empirical analysis of our methodology in

two sequential social dilemmas, including our experimental setup,

hyperparameter settings and interpretations of our results. We

then conclude the paper in section 5 with some discussions of the

limitations of this work alongside some possible further research

directions.

2 PRELIMINARY
2.1 Selfishness Level
The selfishness level [1] is a scalar metric on the pure Nash equilib-

ria of a normal-form game. Intuitively, a game’s selfishness level

indicates how much an egotistical player, of that game, values their

own payoff over the collective welfare. The higher the selfishness

level, the more compensation an egotistical player needs to align

their preferences with the welfare of the population. In other words,

it is the smallest scalar multiple of the social welfare that needs to

be gifted to players in order to turn a socially optimal strategy into

a Nash equilibrium.

Definition 2.1 (Selfishness level of a Normal-form Game). Given

any normal-form game 𝐺 � {𝑁, {𝑆𝑖 }𝑖∈𝑁 , {𝑝𝑖 }𝑖∈𝑁 }, we can induce

an altruistic game 𝐺 (𝛼) � {𝑁, {𝑆𝑖 }𝑖∈𝑁 , {𝑟𝑖 }𝑖∈𝑁 } where, 𝑟𝑖 (𝑠) �
𝑝𝑖 (𝑠) + 𝛼𝑆𝑊 (𝑠). The selfishness level of a strategic game𝐺 is then

defined as:

𝛼𝐺 = inf

𝛼
{𝛼 ∈ R+ |𝐺 is 𝛼-selfish} (1)

where, 𝐺 is 𝛼-selfish if, for some 𝛼 ≥ 0, a pure Nash equilibrium of

𝐺 (𝛼) is a social optimum of 𝐺 .

2.2 Social Dilemmas
Social dilemmas are a class of normal-form gamewhich emphasise a

dichotomy between individual preferences and the collective good.

Macy et al. [10] describe social dilemmas as:

mixed-motive, two-person games with two action

choices - cooperate (be honest, truthful, helpful etc.)

or defect (lie, cheat, steal, etc.).

More formally, social dilemmas are symmetrical normal-form games

with payoff matrices similar to Table 1.

𝐶 𝐷

𝐶 𝑅, 𝑅 𝑆,𝑇

𝐷 𝑇, 𝑆 𝑃, 𝑃

Table 1: Outcome categories in the payoff matrix

where the payoff categories are described as follows:

• 𝑅 or ‘reward’ which denotes the payoff for mutual cooperation,

• 𝑃 or ‘punishment’ which denotes the payoff for mutual defection,

• 𝑆 or ‘sucker’ which denotes the payoff for a cooperating player

when their opponent defects,

• 𝑇 or ‘temptation’ which denotes the payoff for a defecting player

when their opponent cooperates.

Social dilemmas are defined by a set of four inequalities which

prescribe the tensions between individual and group preferences:

Inequality Preference

𝑅 > 𝑃 (2) the individual prefers mutual cooperation (𝐶,𝐶)
to mutual defection (𝐷, 𝐷).

𝑅 > 𝑆 (3) the individual prefers mutual cooperation to uni-

lateral cooperation (𝐶, 𝐷).
2𝑅 > 𝑇 + 𝑆 (4) the group prefers mutual cooperation to unilat-

eral cooperation/defection.

𝑇 > 𝑅 or

𝑃 > 𝑆

(5) the individual prefers unilateral defection (𝐷,𝐶)
to mutual cooperation (aka, greed) OR the in-

dividual prefers mutual defection to unilateral

cooperation (aka fear).

Table 2: Set of inequalities that define social dilemmas. They
prescribe tensions between individual and group preferences.

Equations 2-4work to establishmutual cooperation as the unique,

stable, social optimum. The final two inequalities in equation 5 dic-

tate the modality of the social dilemma, of which there exist three:



(1) 𝑇 > 𝑅 and 𝑃 > 𝑆 : which we denote as ’prisoner’s dilemmas’,

(2) 𝑇 > 𝑅 and 𝑃 ≤ 𝑆 : which we denote as ’chicken dilemmas’,

(3) 𝑇 ≤ 𝑅 and 𝑃 > 𝑆 : which we denote as ’stag hunt dilemmas’.

In prisoner’s and chicken dilemmas, the dichotomy between indi-

vidual preferences and collective good is, most plainly, expressed

through the fact that the socially optimal strategy profile (𝐶,𝐶) is
not a Nash equilibrium (I am better off defecting when you cooper-

ate). In stag hunt however, mutual cooperation is, in fact, already a

Nash equilibrium solution. This illustrates the notion that, under a

population of individually rational players, the absence of a Nash

equilibrium is not the only factor influencing players to stray from

mutually cooperative behaviours. [16]. Stag hunts, for instance, are

dichotomised by the risk associated with trusting partner players’

adherence to cooperative strategies (if I cooperate but you defect,

I am worse off than if I were to defect) as is dictated by the ’fear’

condition in equation 5.

For our experiments, we investigate how an altruistic reward af-

fects players’ collective performance in two, well known, sequential

social dilemmas [9]. First we shall describe the notion of Markov

games and then move to sequential social dilemmas, which are a

special case of Markov games.

2.3 Markov Games
Markov games (or stochastic games [8]) have been adopted as

the standard formalisation for problem settings in the multi-agent

reinforcement learning literature. They are a temporal and spacial

extension of normal-form games, where each sub-game, or state 𝑠

(not to be confused with the, similar, use of 𝑠 to denote a strategy

profile), can be seen as normal-form. The rewards 𝑅𝑖 (𝑠, ®𝑎) for each
joint action ®𝑎 = {𝑎1, ..., 𝑎𝑁 } available in state 𝑠 are equivalent to

payoffs for a particular strategy in that state.

Definition 2.2 (Markov Game [20]). A Markov game is defined as

a tuple {𝑁, 𝑆, {𝐴𝑖 }𝑖∈{1,...,𝑁 } , 𝑃, {𝑅𝑖 }{𝑖∈{1,...,𝑁 } , 𝛾} where,
• 𝑁 is the number of agents

• 𝑆 is the set of, Markovian, environment states

• 𝐴𝑖
is the set of actions availiable to agent 𝑖

• 𝑃 : 𝑆 ×𝐴1 × ... ×𝐴𝑁 → Δ(𝑆), where Δ(𝑆) denotes a distribution
over the state space 𝑆 , is the state transition function, providing

the probability of transitioning from a state 𝑠 ∈ 𝑆 to the next

state 𝑠′ ∈ 𝑆 given joint

• 𝑅𝑖 : 𝑆 ×𝐴1 × ... ×𝐴𝑁 × 𝑆 → R is the reward function, returning

a scalar value to the 𝑖th agent that describes the quality of a state

transition

• 𝛾 ∈ [0, 1] is the discount factor which determines how much the

agent values future rewards.

Sequential social dilemmas [9] are a special case of Markov

games. Similarly to social dilemmas, sequential social dilemmas

emphasise a dichotomy between individual preferences and the col-

lective good but express this dichotomy through the more spatially

and temporally complex setting of Markov games.

Definition 2.3 (Sequential Social Dilemma). A sequential social

dilemma is defined as a tuple ⟨M,Π = Π𝐶 ∪ Π𝐷 ⟩ where M is a

Markov game as defined in 2.2 and Π is a policy space which is

constituted by the union of a set of cooperative policies 𝜋𝑐 ∈ Π𝑐

and defecting policies 𝜋𝐷 ∈ Π𝐷
. A key assumption underpinning

the notion of sequential social dilemmas is the existence of a set

of critical states 𝑆𝑐 ⊆ 𝑆 where each state 𝑠𝑐 ∈ 𝑆𝑐 induces a normal-

form sub-game where, players’ preferences can be expressed as a

social dilemma. The similarities between critical state sub-games

and the normal-form social dilemma can be seen in Table 3.

𝜋𝐶 𝜋𝐷

𝜋𝐶 𝑅(𝑠𝑐 ), 𝑅(𝑠𝑐 ) 𝑆 (𝑠𝑐 ),𝑇 (𝑠𝑐 )
𝜋𝐷 𝑇 (𝑠𝑐 ), 𝑆 (𝑠𝑐 ) 𝑃 (𝑠𝑐 ), 𝑃 (𝑠𝑐 )

Table 3: Empirical payoff matrix for the sub-game induced
by a critical state of a sequential social dilemma

where,

𝑅(𝑠𝑐 ) � 𝑉
𝜋𝐶
𝑖
,𝜋𝐶

−𝑖
𝑖

(𝑠𝑐 )

𝑃 (𝑠𝑐 ) � 𝑉
𝜋𝐷
𝑖
,𝜋𝐷

−𝑖
𝑖

(𝑠𝑐 )

𝑆 (𝑠𝑐 ) � 𝑉
𝜋𝐶
𝑖
,𝜋𝐷

−𝑖
𝑖

(𝑠𝑐 )

𝑇 (𝑠𝑐 ) � 𝑉
𝜋𝐷
𝑖
,𝜋𝐶

−𝑖
𝑖

(𝑠𝑐 ).

3 METHODOLOGY
To simplify our following analysis we re-state the definition of social

dilemma. We construct a new game, without loss of generality, by

applying the positive affine transformation 𝑝𝑖 (𝑠) −𝑆, ∀𝑠 ∈ {𝑆𝑖 }𝑖∈𝑁 :

𝐶 𝐷

𝐶 𝑅 − 𝑆, 𝑅 − 𝑆 𝑆 − 𝑆,𝑇 − 𝑆

𝐷 𝑇 − 𝑆, 𝑆 − 𝑆 𝑃 − 𝑆, 𝑃 − 𝑆

and simplify notation:

𝐶 𝐷

𝐶 𝑅, 𝑅 0,𝑇

𝐷 𝑇, 0 𝑃, 𝑃

and finally, re-write the social dilemma inequalities as 𝑅 > 𝑃 , 𝑅 > 0,

2𝑅 > 𝑇 , and either: 𝑇 > 𝑅 or, 𝑃 > 0.

3.1 Selfishness Level of Social Dilemmas
Examining social dilemmas through the lens of selfishness level,

highlights interesting, and intuitive, properties of social dilemmas.

To find the selfishness level of a normal-form game, it suffices to,

first, derive the conditions under which the social optima of the

altruistic modification of that game also become Nash equilibria

and, second, to identify the smallest value of 𝛼 under which those

conditions are satisfied.

Theorem 1. The selfishness level of a social dilemma is

𝛼𝐺 =

{
0 if 𝑇 ≤ 𝑅,
𝑇−𝑅
2𝑅−𝑇 if 𝑇 > 𝑅.

(6)

Proof. Recall that the unique, stable, social optimum of a social

dilemma is obtained through mutual cooperation (equations 2 - 4),

easing this process to simply finding the exact 𝛼 under which (𝐶,𝐶)
becomes Nash. Also recall that there exist three, distinct, modalities

of social dilemma:

(1) 𝑇 > 𝑅 and 𝑃 > 𝑆 : Prisoner’s Dilemmas



(2) 𝑇 > 𝑅 and 𝑃 ≤ 𝑆 : Chicken Dilemmas and,
(3) 𝑇 ≤ 𝑅 and 𝑃 > 𝑆 : Stag Hunt Dilemmas.

It is straightforward to see that, in stag hunt dilemmas, (𝐶,𝐶) is a
Nash equilibrium. This means that, if the social dilemma is a stag

hunt, the selfishness level is 𝛼𝐺 = 0. To see the selfishness level

in prisoner’s and chicken dilemmas, we introduce notation for the

payoffs of the altruistic modification of 𝐺 , 𝐺 (𝛼) (see Table 4).

𝐶 𝐷

𝐶 𝑅′, 𝑅′ 𝑆 ′,𝑇 ′

𝐷 𝑇 ′, 𝑆′ 𝑃 ′, 𝑃 ′

Table 4: Payoff matrix for 𝐺 (𝛼)

where,

𝑅′ = 𝑅 + 𝛼2𝑅,

𝑇 ′ = 𝑇 + 𝛼𝑇,

𝑆 ′ = 𝛼𝑇,

𝑃 ′ = 𝑃 + 𝛼2𝑃 .

For both prisoner’s dilemmas and chicken dilemmas, (𝐶,𝐶) is not a
Nash equilibrium in𝐺 as𝑇 > 𝑅. For (𝐶,𝐶) to be a Nash equilibrium
in 𝐺 (𝛼), the following must hold:

𝑅′ ≥ 𝑇 ′

𝑅′ −𝑇 ′ ≥ 0

(𝑅 + 𝛼2𝑅) − (𝑇 + 𝛼𝑇 ) ≥ 0

(7)

Changing the inequality to an equality and solving for 𝛼 gives us

the lowest bound on 𝛼 which satisfies the condition:

𝛼 =
𝑇 − 𝑅

2𝑅 −𝑇
(8)

□

Equation 6 gives some insight into the information presented by

the selfishness level under the context of social dilemmas. Namely,

when 𝛼𝐺 = 0, i.e. when 𝐺 is a stag hunt dilemma, the game is al-

ready conducive to cooperation among individually rational agents

(players are troubled only by an equilibrium selection problem).

However, when 𝛼𝐺 > 0, i.e. prisoner’s or chicken dilemmas, the

game is not conducive to cooperation among individually rational

agents (mutual cooperation is dominated by unilateral deviation).

As such, we require some external intervention on player’s prefer-

ences to make cooperation possible. For these kinds of dilemmas,

the selfishness level can give us insight into the magnitude of the

intervention required. Equation 8 formally quantifies the magni-

tude of the incentive for agents to deviate and how that incentive

relates to the payoffs of the game. The higher the temptation payoff

𝑇 or the lower the reward payoff 𝑅, the higher the selfishness level

𝛼 and, hence, the more incentive to deviate from the cooperative

outcome. Conversely, when 𝛼 is low, the game is more favourable

towards cooperation, as players have less incentives to deviate.

3.2 Resolving social dilemmas with the
selfishness level

The selfishness level is a measure of how much an egotistical player

values their own payoff over the collective good in a game. It can

be used to analyse how the game’s characteristics influence the

players’ willingness to cooperate or deviate from the cooperative

outcome. In the following section, we also investigate how the

selfishness level can help us design mechanisms or incentives that

can align the players’ preferences with the social welfare and foster

cooperation among individually rational agents.

As has been established, the selfishness level 𝛼𝐺 provides in-

formation on how to modify player’s payoffs in such a way that

cooperation becomes possible. In stag hunt games, 𝛼𝐺 = 0, meaning

that cooperation is already possible among individually rational

players (it is an equilibrium selection problem). However, when

𝛼𝐺 > 0 (as is the case in prisoner’s and chicken dilemmas), mutual

cooperation cannot be Nash. If we inspect the properties of the

resulting altruistic game we find that for chicken dilemmas and

a subset of prisoner’s dilemmas, we are able to resolve the social

dilemma entirely.

Theorem 2. Given a social dilemma 𝐺 , let 𝑇 > 𝑅 and 𝑃 ≤ 0

(a chicken dilemma). If 𝐺 (𝛼𝐺 ) is the altruistic game of 𝐺 where

𝛼 = 𝛼𝐺 , then 𝐺 (𝛼𝐺 ) is resolved.

Proof. Given a chicken dilemma, we have the following payoffs

in 𝐺 (𝛼𝐺 )

𝑅′ = 𝑅 + 𝑇 − 𝑅

2𝑅 −𝑇
2𝑅, (9)

𝑇 ′ = 𝑇 + 𝑇 − 𝑅

2𝑅 −𝑇
𝑇, (10)

𝑆 ′ =
𝑇 − 𝑅

2𝑅 −𝑇
𝑇, (11)

𝑃 ′ = 𝑃 + 𝑇 − 𝑅

2𝑅 −𝑇
2𝑃 . (12)

For 𝐺 (𝛼𝐺 ) to be resolved, we need to have 𝑇 ′ ≤ 𝑅′ and 𝑃 ′ ≤ 𝑆 ′.
Given equations 7 and 8, we already have that 𝑇 ′ = 𝑅′. The second
inequality follows from the following claims

• Claim 1: 𝑆 ′ > 0.Recall that in a chicken dilemma 𝑇 > 𝑅. As

𝑇 > 𝑅 > 0 and 2𝑅 > 𝑇 , 𝑇−𝑅
2𝑅−𝑇 > 0 hence 𝑆 ′ > 0.

• Claim 2: 𝑃 ′ ≤ 0. Recall that in a chicken dilemma, 𝑃 ≤ 0. If 𝑃 = 0,

𝑃 ′ = 0. If 𝑃 < 0, 𝑃 ′ < 0

Combining the above claims, we get that 𝑃 ′ < 𝑆 ′. Hence, 𝐺 (𝛼𝐺 ) is
resolved. □

Theorem 2 illustrates the fact that the selfishness level provides

a measure of the influence of greed in social dilemmas. As chicken

dilemmas are troubled only by greed it is natural that an altruistic

game with 𝛼 = 𝛼𝐺 completely resolves the dilemma. Our next result

shows that, under certain conditions, the selfishness level modified

altruistic game of prisoner’s dilemma is also completely resolved.

Theorem 3. Given some social dilemma, let 𝑇 > 𝑅 and 𝑃 > 0 (a

prisoner’s dilemma). If 𝐺 (𝛼𝐺 ) is the altruistic game of 𝐺 where

𝛼 = 𝛼𝐺 , then 𝐺 (𝛼𝐺 ) is resolved when 𝑃 ≤ 𝑇 − 𝑅.

Proof. Given a prisoner’s dilemma, we have payoffs consistent

with equations 9 - 12 in 𝐺 (𝛼𝐺 ). For 𝐺 (𝛼𝐺 ) to be resolved, 𝑇 ′ ≤ 𝑅′

and 𝑃 ′ ≤ 𝑆 ′. Given equations 7 and 8, 𝑇 ′ = 𝑅′. We can set 𝑃 ′ ≤ 𝑆 ′

and simplify to find the appropriate bound:

𝑃 ′ ≤ 𝑆 ′ =⇒ 𝑃 + 𝑇 − 𝑅

2𝑅 −𝑇
2𝑃 ≤ 𝑇 − 𝑅

2𝑅 −𝑇
𝑇 (13)

which after some simple algebra leads to 𝑃 ≤ 𝑇 − 𝑅 as claimed. □



Theorem 3 shows that, if 𝑃 ≤ 𝑇 −𝑅, then the prisoner’s dilemma

will be completely resolved. Conversely, if 𝑃 > 𝑇 − 𝑅, 𝐺 (𝛼𝐺 ) is a
stag hunt (a social dilemma devoid of greed).

3.3 First Steps Towards an Extension to Markov
Games

While interesting, remaining in the domain of normal-form games

has limited applicability to real-world problems. In this light, we

look towards an exploration of the extension of the ideas presented

in previous sections to the, much more complex and real-world

adjacent, Markov game setting. A perfect extension of selfishness

level to the Markov game setting is a highly non-trivial task as

the additional spacio-temporal complexities are vast and difficult,

even, to quantify. We present here, what we believe to be, a ’first

step’ towards this goal by theorising an idea of selfishness level in

two-player sequential social dilemmas (a special case of Markov

games).

We start by introducing the altruistic Markov game, which is anal-
ogous to the altruistic normal-form game presented in definition 2.1

but in a Markov game setting.

Definition 3.1 (Altruistic Markov Game). Given a Markov game

M := {𝑁, 𝑆, {𝐴𝑖 }𝑖∈{1,...,𝑁 } , 𝑃, {𝑅𝑖 }{𝑖∈{1,...,𝑁 } , 𝛾}
using the language of [1] we can induce an altruistic Markov game

M(𝛼) := {𝑁, 𝑆, {𝐴𝑖 }𝑖∈{1,...,𝑁 } , 𝑃, {_𝑖 }{𝑖∈{1,...,𝑁 } , 𝛾}
where _𝑖 (𝑠, 𝑎, 𝑠′) := 𝑅𝑖 (𝑠, 𝑎, 𝑠′) + 𝛼 (∑𝑗∈𝑁 𝑅 𝑗 (𝑠, 𝑎, 𝑠′)). Note that

the notion of social welfare is replaced by a simple summation of

immediate rewards over each agent for that state.

Consider the special case of altrustic Markov games where the

host Markov game is a two-player sequential social dilemma as

defined in definition 2.3. In this case, for each critical-state 𝑠𝑐 , we

have empirical payoffs:

𝑅′ (𝑠𝑐 ) � 𝑉
𝜋𝐶
𝑖
,𝜋𝐶

−𝑖
𝑖

(𝑠𝑐 ) + 𝛼 (2𝑉 𝜋𝐶
𝑖
,𝜋𝐶

−𝑖
𝑖

(𝑠𝑐 ))
� 𝑅(𝑠𝑐 ) + 𝛼 (2𝑅(𝑠𝑐 ))

𝑃 ′ (𝑠𝑐 ) � 𝑉
𝜋𝐷
𝑖
,𝜋𝐷

−𝑖
𝑖

(𝑠𝑐 ) + 𝛼 (2𝑉
𝜋𝐷
𝑗
,𝜋𝐷

− 𝑗

𝑗
(𝑠𝑐 ))

� 𝑃 (𝑠𝑐 ) + 𝛼 (2𝑃 (𝑠𝑐 ))

𝑆 ′ (𝑠𝑐 ) � 𝑉
𝜋𝐶
𝑖
,𝜋𝐷

−𝑖
𝑖

(𝑠𝑐 ) + 𝛼 (𝑉
𝜋𝐶
𝑗
,𝜋𝐷

− 𝑗

𝑗
(𝑠𝑐 ) +𝑉

𝜋𝐷
𝑗
,𝜋𝐶

− 𝑗

𝑗
(𝑠𝑐 ))

� 𝑆 (𝑠𝑐 ) + 𝛼 (𝑆 (𝑠𝑐 ) +𝑇 (𝑠𝑐 ))

𝑇 ′ (𝑠𝑐 ) � 𝑉
𝜋𝐷
𝑖
,𝜋𝐶

−𝑖
𝑖

(𝑠𝑐 ) + 𝛼 (𝑉
𝜋𝐶
𝑗
,𝜋𝐷

− 𝑗

𝑗
(𝑠𝑐 ) +𝑉

𝜋𝐷
𝑗
,𝜋𝐶

− 𝑗

𝑗
(𝑠𝑐 ))

� 𝑇 (𝑠𝑐 ) + 𝛼 (𝑆 (𝑠𝑐 ) +𝑇 (𝑠𝑐 )) .
As 𝑠𝑐 can be considered a normal-form sub-game of the overall

sequential social dilemma, it is safe to say that the notion of self-

ishness level easily extends to such a characterisation of state. As

such, the selfishness level of 𝑠𝑐 can be found via equation 6. Given

this formalisation we propose the selfishness level of the sequential

social dilemma by constructing the set of selfishness levels for all

critical states ®𝛼 � {𝛼𝑠𝑐 |𝛼𝑠𝑐 =
𝑇 (𝑠𝑐 )−𝑅 (𝑠𝑐 )
2𝑅 (𝑠𝑐 )−𝑇 (𝑠𝑐 ) ∀𝑠𝑐 ∈ 𝑆𝑐 }. This set is

constructed such that | ®𝛼 | = |𝑆𝑐 | (®𝛼 contains the selfishness level of

every critical state) and we assume that ∀𝛼𝑠𝑐 ∈ ®𝛼, 𝛼𝑠𝑐 < ∞ (which

is reasonable as each critical state sub-game is considered a social

dilemma). We then say that the selfishness level of the sequential

social dilemma is

Γ = max

𝑠𝑐
®𝛼 (14)

It is important to note the following property of altruistic games:

if for some 𝛼 ≥ 0 a social optimum of 𝐺 (𝛼) is a Nash equilibrium,

then it is also the case for every 𝛽 ≥ 𝛼 [1]. This means that, for

a given 𝑠𝑐 with selfishness level 𝛼𝑠𝑐 , even in the altruistic game

𝑠𝑐 (𝛽), where 𝛽 >> 𝛼𝑠𝑐 , we can still retain the property that the

social optima of 𝑠𝑐 (𝛽) are Nash equilibria. Under this formalism,

we have a single, scalar, value Γ which describes the selfishness

level for the whole Markov game. More intuitively, it can be said

that this formalism takes a conservative view with respect to rat-

ing a Markov game’s cooperativeness. In other words, given our

definition, the selfishness level of a Markov game is equal to, and

as such completely dictated by, that of it’s most selfish state. This

means that, even if there is only a single state under which players

are able to grossly exploit their peers, then the selfishness level of

the whole game is defined by that interaction alone.

3.4 Rewards propagating to values
Sequential social dilemmas are defined based on player preferences

over long-term value functions instead of immediate rewards. It

is well known that value functions are, at best, expensive to ob-

tain making a direct translation of selfishness level to the value

function impossible for most complex applications. In this light, we

avoid directly manipulating values and, instead, adopt the reward

shaping method shown by _𝑖 in definition 3.1. We show that such a

reward shaping technique propagates intrinsic rewards to the value

function indirectly. As shown in definition 3.1 we shape the reward

of each agent 𝑖 according to _𝑖 (𝑠, 𝑎, 𝑠′) where,

_𝑖 (𝑠, 𝑎, 𝑠′) := 𝑅𝑖 (𝑠, 𝑎, 𝑠′) + 𝛼
∑︁
𝑗∈𝑁

𝑅 𝑗 (𝑠, 𝑎, 𝑠′)

with 𝛼 consistent with equation 6. Given agent 𝑖’s value function

under the extrinsic rewards alone 𝑉 𝑟
𝑖
(𝑠) where,

𝑉 𝑟
𝑖 (𝑠) := E ®𝜋

[∑︁𝑇

𝑡=0
𝛾𝑡𝑅𝑡

]
we want our intrinsic value function to be of the following form:

𝑉 _
𝑖 (𝑠) = 𝑉 𝑟

𝑖 (𝑠) + 𝛼

(∑︁
𝑗∈𝑁 𝑉 𝑟

𝑗 (𝑠)
)
. (15)

We verify that rewards are adequately propagated to the values as

follows:

𝑉 _
𝑖 (𝑠) = E ®𝜋

[∑︁
𝑡
𝛾𝑡

(
𝑅𝑖𝑡 + 𝛼

∑︁
𝑗∈𝑁 𝑅

𝑗
𝑡

)
| 𝑠0 = 𝑠

]
= E ®𝜋

[∑︁
𝑡
𝛾𝑡𝑅𝑖𝑡

]
+ E𝜋

[∑︁
𝑡
𝛼𝛾𝑡

∑︁
𝑗∈𝑁 𝑅

𝑗
𝑡

]
= E ®𝜋

[∑︁
𝑡
𝛾𝑡𝑅𝑖𝑡

]
+ 𝛼

(∑︁
𝑗∈𝑁 E ®𝜋

[∑︁
𝑡
𝛾𝑡𝑅

𝑗
𝑡

] )
= 𝑉 𝑟

𝑖 (𝑠) + 𝛼

(∑︁
𝑗∈𝑁 𝑉 𝑟

𝑗 (𝑠)
)
. (16)

The goal of each agent becomes the maximisation of the expected

payoff in 16.



Figure 1: Illustration of cleanup. To the left is a river, repre-
sented by blue pixels with the brown pixels representing pol-
lution in the river. To the right is an orchardwith green pixels
representing apples. Black pixels represent empty space and
bright coloured pixels represent agents.

4 EXPERIMENTS
Here, we present experiments in which we study the effects on the

cooperative performance of agents under various values of 𝛼 (in

equation 16) in two well-known mixed-motive sequential social

dilemmas [17]. This is motivated by the model of selfishness level

in sequential social dilemmas presented in section 3.3.

4.1 Environments
In ’cleanup’ (a public goods dilemma [7]) agents are rewarded by

collecting apples which spawn randomly in an orchard. The spawn

rate of these apples however is tied to the cleanliness of a nearby

river. As time goes on the river is progressively polluted, lowering

the apple spawn rate, until a saturation point is met at which apples

no longer spawn. The dilemma here is characterised by the fact that,

in order to maintain an abundance of apples, agents must sacrifice

some reward in the short-term to clean the river (for which they

receive no reward). An effective policy in cleanup is one which

effectively balances time spent cleaning pollution with time spent

collecting apples.

In ’harvest’ (a commons dilemma [7]) agents are, again, rewarded
by collecting apples but there is no river or pollution which controls

their spawn rate. Instead, the spawn rate is tied to the amount of

apples available in the local area. The more apples in the area, the

more likely it is that a new apple will spawn nearby. If no apples are

available then new apples are spawned with a very low probability.

Here, if agents are considerate only of their short-term gains then

they will quickly collect all of the apples, reducing the spawn rate of

new apples which will stifle their returns. If agents show restraint

however, then a high apple spawn rate can be maintained and more

apples collected overall.

4.2 Setup
Both environments are run under partial observability (as is con-

sistent with current literature) with each agent’s observation con-

sisting of a 15 × 15 pixel view window, centred on the respective

agent’s current location.

Figure 2: Illustration of harvest. Green pixels represent ap-
ples, black pixels represent empty space and bright coloured
pixels represent agents.

Our codebase is derived from an open source repository [17]. We

use proximal policy optimisation (PPO) [15] as the base learning

algorithm for our policies with agents sharing network parameters.

PPO utilises a pair of deep neural networks, the actor and the critic

respectively. Both networks take, as input, the agents’ observations

which are fed to a convolutional layer, followed by 3 dense, linear,

layers and finally the output layers outputting actions and advan-

tage estimations for the actor and critic networks respectively. The

actor network represents a parameterised policy which is updated

according to the policy gradient loss E𝑡 [log𝜋\ (𝑎𝑡 |𝑠𝑡 )𝐴𝑡 ], where
𝐴𝑡 is the advantage function estimated by the critic network. We

ran our experiments over 12 parallel environments with 5 agents

per environment over 5𝑒7 total timesteps. Training was split into

episodes, where 𝑇 = 1000. We maintained a batch size of 12, 000

and learning rate of 0.0001 for all experiments.

For each environment, we ran experiments with values for 𝛼 ∈
{0, 1, 10, 100, 1000} to explore how a selfishness level of the type

introduced in equation 14 would affect the social welfare of groups

of agents in sequential social dilemmas. We set boolean variables

𝑎𝑖𝑡 , 𝑧
𝑖
𝑡 and 𝑝𝑖𝑡 to ’true’ when agent 𝑖 picks up an apple, is hit by

another agent’s zapper beam or cleans up a tile of pollution at

time 𝑡 respectively and ’false’ otherwise. We additionally use the

indicator function I(.) which returns a value of 1 when it’s input is

’true’ and 0 otherwise.

The primary metric used to judge the population of agents’ ten-

dency to cooperate is the social welfare (𝑆𝑊 )

𝑆𝑊𝑡 =
∑︁

𝑖∈𝑁 𝑅𝑖𝑡

where, 𝑅𝑖 is the extrinsic reward given by the environment to agent

𝑖 at time 𝑡 . We also plot the number of apples consumed (𝐴𝐶) and
the number of times agents are hit with a zapper (𝑍 ) where,

𝐴𝐶𝑡 =
∑︁

𝑖∈𝑁 I(𝑎
𝑖
𝑡 )

𝑍𝑡 =
∑︁

𝑖∈𝑁 I(𝑧
𝑖
𝑡 )

Finally, we plot (exclusively for cleanup) the Gini coefficient over

apples consumed (𝐺𝑖𝑛𝑖) and the number of pollution tiles cleaned

(𝑃) where,

𝐺𝑖𝑛𝑖𝑡 =

∑
𝑖∈𝑁

∑
𝑗∈𝑁 |∑𝑇 I(𝑎𝑖𝑡 ) −

∑
𝑇 I(𝑎

𝑗
𝑡 ) |

2𝑁
∑
𝑖 I(𝑎𝑖𝑡 )

𝑃𝑡 =
∑︁

𝑖∈𝑁 I(𝑝
𝑖
𝑡 ).



Figure 3: Performance of varying 𝛼 values under the harvest environment. Bold lines represent the rolling average of the
respective metric over 5 runs with the shaded areas surrounding representing the standard deviation

Figure 4: Performance of varying 𝛼 values under the cleanup environment. Bold lines represent the rolling average of the
respective metric over 5 runs with the shaded areas surrounding representing the standard deviation

4.3 Results
Figure 3 shows our results in the harvest environment. We observe

that, in harvest, agent learning is generally noisy. Agents with

𝛼 > 0 tend to outperform agents with 𝛼 = 0 but for agents with

𝛼 = 1 or 𝛼 = 10, there is a large variance in performance between

runs. Similarly to cleanup, we observe that 𝛼 = 100 results in the

best performing agents overall.

Figure 4 shows our results in the cleanup environment. Here, we

observe relatively strong performance from agents with 𝛼 = 100.

We hypothesise that this is because, under other values of 𝛼 , agents

find themselves stuck in local optima (𝛼 is not high enough to for

agents to converge to collectively optimal policies) or, in the case

of 𝛼 = 1000, the inflation of the rewards given cause the perception

of good or bad behaviours to become muddied. We further observe

that, even though there is no reward for doing so, our methodology

instils agents with the desire to remove pollution from the river. We

hypothesise that, similarly to the normal form case, this is because

our intrinsic reward method bridges the gap between individually

rational behaviours and collectively rational behaviours - agents



value functions are shaped such that a direct link is made between

agents’ own rewards and the social welfare.

In both environments, those agents with 𝛼 > 0 (agents that are

not purely independent learners) consistently produce higher social

welfare and apple consumption than those without. We also find

that, in both environments, agents quickly learn to avoid zapping

each other. This is likely due to the strong negative consequences

to agent’s rewards, and hence the social welfare, associated with

being zapped. In the case of 𝛼 = 0 however, this is not the case

as agent’s individual rewards are independent of others rewards.

In this case, and as a compounding affect to agents with 𝛼 > 0,

we hypothesise that agents quickly learn to avoid zapping others

due to the lack of positive feedback associated with the action of

zapping. i.e. it wastes time that could be better spent acquiring

apples. This drop-off is not so quickly realised with 𝛼 = 1000 - we

hypothesise that this is due to the large amount of reward inflation

in that setting. We also hypothesised that, due to the simplicity of

the method of reward shaping, team performance would increase

monotonically with 𝛼 . Interestingly, and especially in cleanup, our

results show that this is not the case suggesting that the value of

𝛼 is indeed meaningful. We observe that agents learning under

𝛼 = 1000 perform strictly worse than those with 𝛼 = 100 and, in

cleanup, agents with 𝛼 = 10 perform worse on average than those

with 𝛼 = 1. Here, we conjecture that the best performing values of

𝛼 are those that are closest to the true selfishness level (as described

in equation 14) of the respective environment.

Note that, for our social welfare plots, we have anchored the

𝑦-axis to just below zero. This is to improve legibility of the plots as

at the start of learning, agents exhibit a high frequency of zapping

causing the social welfare to start extremely low.

5 CONCLUSION
In this work, we explored the effectiveness of analysing social dilem-

mas through the lens of their selfishness levels. We have derived

some interesting properties of social dilemmas in the normal-form

case, finding exact conditions under which a selfishness level modi-

fication of the game’s payoffs can result in complete resolution of

the dilemma. We have extended this work by providing a first-step

to bringing a similar analysis to the more complex setting of se-

quential social dilemmas. Going further, our empirical results in

this setting, suggest that our method can indeed provide a benefit to

the cooperative performance of learning agents in sequential social

dilemmas. The overall impact of our method is to add additional

(socially optimal) equilibria to the strategy (or policy) space, not to

prescribe any particular solution. While we hypothesise an increase

in the probability of convergence to socially optimal joint policies,

we suspect that the problem of equilibrium selection is still present

within our method.
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