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Self-Governing Hybrid Societies and Deception

S, TEFAN SARKADI, Dept. of Informatics, King’s College London, United Kingdom

Self-governing hybrid societies are multi-agent systems where humans and machines interact by adapting to
each other’s behaviour. Advancements in Artificial Intelligence (AI) have brought an increasing hybridisation of
our societies, where one particular type of behaviour has become more and more prevalent, namely deception.
Deceptive behaviour as the propagation of disinformation can have negative effects on a society’s ability to
govern itself. However, self-governing societies have the ability to respond to various phenomena. In this paper
we explore how they respond to the phenomenon of deception from an evolutionary perspective considering
that agents have limited adaptation skills. Will hybrid societies fail to govern deceptive behaviour and reach a
Tragedy of The Digital Commons? Or will they manage to avoid it through cooperation? How resilient are
they against large-scale deceptive attacks? We provide a tentative answer to some of these questions through
the lens of evolutionary agent-based modelling, based on the scientific literature on deceptive AI and public
goods games.

CCS Concepts: •Computingmethodologies→Multi-agent systems;Artificial intelligence; Simulation
evaluation; • Security and privacy→ Social aspects of security and privacy.

Additional Key Words and Phrases: Deception, Disinformation, Deceptive AI, Machine behaviour, Self-
organising multi-agent systems
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1 INTRODUCTION
Throughout history, deception has played significant roles in shaping societies, and some would
even argue that deception influenced the rise and fall of entire civilisations. In political competition,
deception plays a crucial role as a strategy for both individuals and groups [21]. If too many
individuals select deceptive strategies to communicate preferences, then an ecosystem emerges
where preferences of people are distorted on a public level, e.g. an echo chamber. This can lead to
undesired group outcomes, inconsistent with individual preferences. Think of when every person
declares publicly false preferences. In turn, the incremental declaration of false preferences is
treated by the group as true preferences. Hence, the group becomes self-deceived by commonly
held beliefs. This feeds back into the individual as peer-pressure, leading to mob behaviour and
potentially undesired outcomes. Unfortunately, organised groups can exploit this phenomenon
[21].
On a societal level, deception takes the form of disinformation - the deliberate (intentional)

propagation of false information in order to mislead others for various motives [6, 7]. It has been
argued that no matter whether deception is well intended or not, it might eventually lead to erosion
of trust [3]. In the case of self-organising societies, for instance, cooperation is destabilised when
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0:2 Sarkadi

deception is present, which then prevents systems from organising themselves against external and
internal threats. On the other hand, deception can stimulate self-organisation by building public
support towards one’s goals, e.g. by exaggerating threats to democracies posed by other nations or
by performing provocative diplomatic actions [38].
Often deception has also been used as a governmental defensive mechanism, either through

strong control and censorship of information flows in totalitarian regimes, or as a strategical
offensive mechanism through deceptive military intelligence operations [26].

In the legal domain, deception has been extensively regulated, e.g. laws against perjury or false
statements under oath, and, some argue, even used to establish national identities and constitutional
rights, by playing with the human tendency of forming groups when presented with a constructed
national identity, or by adhering to a fictitious religious belief [47].
We can safely infer from the vast literature that deception is and has been pervasive in human

society throughout history. Nowadays, however, societies are confronted with a pervasiveness of
deception never seen before [2], due to a combination of factors that influence the dynamics of a
very complex system of information dissemination and consumption, which we call the Infosphere
[8]. The existence of the Infosphere implies the existence of hybrid societies, where multiple types
of agents, both human and artificial, interact. Due to the advancement of AI, the Infosphere is
threatened by several deception risks, some of which are deepfakes, ChatGPT, trollbots etc.[28, 44].
What does this mean for the future of hybrid societies when faced with fully autonomous AI

agents which will be able to learn and develop their own methods for deceiving? Will societies
break down, or will they somehowmanage to govern themselves, promote cooperation, and become
resilient to deceptive attacks? In this paper we answer these questions using large-scale evolutionary
agent-based simulations, similarly used to analyse agent societies in [1, 40, 43, 46], and interpret
the results from the perspective of Machine Behaviour (MB) [37].

2 RESEARCH QUESTIONS & RELATEDWORK
To understand how machines behave in the wild (e.g., in open multi-agent systems, on the Web, on
the Infosphere [8]), the Machine Behaviour (MB) approach can be used instead of mainstream work
on AI [37]. Rather than aiming to maximize or optimize algorithmic performance of AI agents, MB
focuses on defining measures of micro and macro outcomes to answer broad questions such as
how machines behave in different environments and whether human interactions with agents alter
societal outcomes. MB allows researchers to interpret the actions of intelligent agents as part of a
wider self-organising ecosystem that ranges from the technical aspects that underlie the design
of AI agents to the security constraints that govern interactions between agents (humans and
machines alike).

In the context of self-organising systems [22], MB can be used to describe the overall behaviour of
machines and humans as an ecosystem. An example of howMB can be applied is given by [43] where
it is used to interpret how deception in large complex systems can lead to the Tragedy of the Digital
Commons (TDC)1. In self-organising systems, TDC is reached because self-interested agents adopt
the non-cooperative behaviour of free-riding by deciding to defect from contributing to the public
good (a resource) while exploiting it. However, as Ostrom argued [31, 32], cooperative behaviour
can re-emerge if agents manage to establish institutional rules that govern their interactions.

Assuming that deceptive agents seem cooperative to others, while in reality their strategies are
not visible [4], how do we investigate and deal with them? Furthermore, how do we avoid a society

1TDC was initially introduced in [13] for explaining how information can be exploited and polluted as a public good by
both human and artificial agents.
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Self-Governing Hybrid Societies and Deception 0:3

where agents adopt a free-riding behaviour, whether that is deception or defection? Will humans
and machines eventually manage to establish governing rules in the face of deception?
To answer such questions, we must look into the socio-cognitive factors that influence decep-

tive interactions of self-organising hybrid societies. Regarding the deception capabilities of AI
agents, one must consider multiple levels of inter-related social skills, according to Castelfranchi’s
perspective on trust and deception [5]. Moreover, if we are to assume that machines will adopt
humans’ strategies of social interaction, we must also take into account agents’ different capacities
of learning from each other. This type of learning is equivalent to social learning, where humans
imitate the behaviour of other humans to better adapt to social contexts. Indeed, the literature
in evolutionary agent-based modelling shows how social learning influences the evolution of
cooperation [1, 43, 46]. From an evolutionary perspective, it is particularly interesting how stronger
levels of social learning can lead self-organising agent societies to select various mechanisms that
promote cooperation in the face of free-riding. Such studies have looked at multi-agent interactions
which represent some form of public goods games (PGG). In PGGs, agents can either choose to be
cooperative and contribute to maintain the public good, or free-ride and exploit it. Sarkadi et al.
adopted the perspective that knowledge itself can be a public good that is maintained and exploited
by agents through either the curation and sharing of honest information, or by not contributing to
the knowledge (not sharing information) or polluting it with false information [43]. We will use
the same principle to model our multi-agent interactions.

Taking socio-cognitive factors into consideration, the authors in [43] showed that for interactions
like public goods games (PGGs), cooperation can be re-established in the face of deception for
strong social learning (𝑠 → ∞) if the right self-regulatory mechanisms are in place. This means
cooperation can be re-established if agents do not make any mistakes when adapting and learning -
a very strong assumption. The mechanism that they identified was called Peer-Hybrid Interrogation,
which combines the peer-punishment of Defectors with the interrogation and peer-punishment of
potential Deceivers.
Following this line of work, we design an agent-based model of socio-cognitive dynamics of

deception, and empirically test this model through extensive simulations, in order to answer two
main questions:

Q1 Can cooperation in public goods games be re-established in self-governing hybrid societies where
deception is present, but where agents can make mistakes in the process of social learning?
Q2What is the effect of large-scale deception attacks on self-governing hybrid societies in public

goods games where agents can make mistakes in the social learning process?
To answer Q1 and Q2, we start by reproducing the voluntary Public Goods Games (PGGs) in

[43] for both strong and weak conditions of social learning as a baseline. Social learning can
be weak/intermediate (a stochastic process that takes a fixed value for 𝑠 ∈ [0,∞)), or strong (a
deterministic process where 𝑠 = ∞) [46]. In the weak/intermediate stochastic process, the higher
the value for 𝑠 , the stronger the tendency of adopting the better strategy. In the deterministic
process, when 𝑠 = ∞, the agents will always adopt the better strategy and when 𝑠 → 0, a coin toss
decides whether the better strategy is adopted.
After that, we extend this evolutionary framework to introduce a new type of PGG, namely

PGG*, to better represent and capture the socio-cognitive dynamics of deception and deception
detection. We do this by changing the cognitive functions for computing trust and the payoffs for
Deception and Peer-Hybrid Interrogation; we also add a reward in the Peer-Hybrid Interrogator’s
PGG payoff. Doing so, we (i) redefine the trust model to take into account the existence of Deceivers,
not just Defectors; (ii) based on the new trust model, capture the more realistic interactions where
Deceivers need to take into account the possibility of deceiving other Deceivers or being deceived
themselves and (ii) design a decentralised reward mechanism for the Peer-Hybrid Interrogators.
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0:4 Sarkadi

After defining PGG*, we run extensive simulations to explore the long-run frequencies and
temporal dynamics of a hybrid society where agents interact according to the new game. Differently
from [43], we show that in PGG* cooperation can be re-established even for weak/intermediate
social learning.
Subsequently, we extend the methodology for studying deception in agent-based simulations,

by performing a resilience test where deception attacks on the entire population are performed at
fixed intervals. Since we are modelling a hybrid society, we are referring here to the term resilience
as the resilience of a society to recognise [36], but also respond, to deception. In our model, the
concept of resilience takes the form of organisational and ecological resilience in complex systems
[9].

Finally, we discuss our findings considering Q1 and Q2, and we contrast and compare them with
existing and future work on deceptive AI from the lens of MB.

3 BACKGROUND ON DECEPTION IN PUBLIC GOODS GAMES
The work in [43] introduced deception in the evolutionary PGG literature as a new free-riding
strategy and explored six PGG setups to test what kind of punishment strategies are best able to
deal with deception. The six PGGs were the following:

(1) The first PGG was based on [46] where second-order punishment was substituted with a
fixed tax to be paid by the cooperators for Punishers to exist. This is similar to paying a tax for
policing in a society. This PGG consisted of Cooperators, Defectors, Loners, Peer-Punishers
and Pool-Punishers.

(2) In the second PGG the same types of agents were kept as in the first PGG and Deceivers were
introduced. In this set-up, the Deceivers are able to free-ride without risking being caught by
interrogators.

(3) The third PGG kept the same set-up as the second PGG, but replaced the Peer-Punishers
with Interrogators. Interrogators were able to detect Deceivers, while the Pool-Punishers
were able to punish Defectors.

(4) The fourth PGG kept the same set-up as the second PGG, but replaced the Pool-Punishers
with Interrogators. Interrogators were able to detect Deceivers, while the Peer-Punishers are
able to punish Defectors.

(5) The fifth PGG kept the same set-up as the third PGG. However, instead of having two different
types of agents seeking Defectors and Deceivers separately, they introduced a single type
of agent that performs both jobs, namely the Pool-Hybrid Interrogator. This is analogous
to having a centralized policing institution in a society which keeps track of both types of
free-riding behaviours.

(6) Finally, the sixth PGG kept the same set-up as the fourth PGG. However, instead of having
two different types of agents chasing Defectors and Deceivers separately, they introduced a
single type of agent that performs both jobs, namely the Peer-Hybrid Interrogator. This is
analogous to having a decentralized policing institution in a society which keeps track of
both types of free-riding behaviours.

The assumptions made in [43] were the following, namely 1) that a population of agents can
self-organise according and change types according to the available strategies, 2) that the frequency
of adopted strategies by the agents change according to the process of mutation and social learning,
3) that the PGG interactions are voluntary, i.e. there exists the Loner strategy, and 4) that social
learning can either be strong or weak/intermediate. By strong social learning, it is understood that
an agent compares the payoff given by its current strategy with another agent’s strategy and will
copy the other agent strategy only if the other agent’s payoff is higher than its own. By weak social
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learning, it is understood that agents sometimes make mistakes, and that according to a stochastic
process agents compare their strategies with others’ strategies, however they will not be always
capable of distinguishing the difference in payoff. In this weak social learning process, a social
learning parameter takes a value represented by real number. The higher the value of that number,
the stronger the ability of the agent to distinguish between the payoffs of the strategy.
The findings in [43] showed that cooperation can be re-established and deception can be best

dealt with only in the sixth PGG (with Peer-Hybrid Interrogators) and only under the assumption of
strong social learning. That is, agents were not allowed to make mistakes when choosing the better
strategy in the social learning process. According to their findings, the strategy able to deal with
deception and defection is the one of Peer-Hybrid Interrogators. This type of strategy combines the
peer-to-peer punishment of defectors strategy with a peer-to-peer punishment and interrogation
strategy of deceivers. It is different from a pool-punishment strategy, which would imply that
agents that punish make an additional contribution to punishment pool in advance, i.e. centralise
their resources in order to try and catch the defectors or deceivers before the PGG is played (and
before deception and defection actually happen).

Another assumption that was made in [43] was that trust in society was related to the number of
all agents that both cooperated and only seemed to cooperate (Deceivers). This meant that the trust
model was not considering the presence of potential Deceivers. This made agents more trusting
towards each other and easier for Deceivers to exploit the agents that blindly assigned trust in
them.
In this paper we relax both (i) the assumption of strong social learning, i.e. we only use the

deterministic process to reproduce previous results, and (ii) the assumption that trust is not affected
by the presence of Deceivers.

4 THE EVOLUTIONARY DECEPTION GAME
Similarly to [1, 43, 46], we assume that intelligent and self-interested agents adapt their behaviour
in a hybrid society based on the social learning (imitation) model. The strength of social learning
𝑠 directly influences agents to copy the strategies of their peers based on their peers strategy
payoffs. Additionally, these agents might tend to explore other strategies at random, which is
driven by the mutation (exploration) rate `. The combination of exploration and social learning is
equivalent to a model that balances social (driven by 𝑠) and asocial learning (driven by `) [25]. In this
evolutionary setting, agents with greater social learning skills leave very small error margins when
imitating others’ payoffs and, thus, manage to imitate the behaviour of their peers more successfully
compared to other agents. See section 5 Methods & Models, where Algorithm 1 describes how the
public goods game drives the evolution of the population over time 𝑡 and number of iterations 𝑇 .
The inputs of Algorithm 1 are the population distribution at 𝑡 = 0, namely 𝑘0, the social learning
strength 𝑠 , the mutation rate `, and the number of iterations𝑇 , whereas the output is the population
distribution at 𝑡 = 𝑇 , namely 𝑘𝑇 . Algorithm 2 describes the social learning (imitation) process used
in line 7 of Algorithm 1. Algorithm 2 takes as inputs the population distribution 𝑘 , the payoffs from
the PGG Π, and the social learning strength 𝑠 for the details of the social learning process, then it
outputs the population distribution 𝑘 after the social learning process has taken place.

We model a voluntary public goods game (PGG), called PGG*, played between a sample𝑀 of a
fixed agent population 𝑁 , over a period of 𝑇 iterations. At every iteration, each participant first
decides whether to contribute, or not, to the public pool with an amount 𝑐 > 0, and then receives
a payout and a payoff. The payout, equal to 𝑟 × 𝑐 × 𝑀𝐶

𝑀
, where 𝑟 is a multiplier (an incentive to

participate to the PGG, i.e. an amount which multiplies the amount contributed 𝑐), and 𝑀𝐶 is
the number of contributors to the PGG, is the same for all the participants and it increases with
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0:6 Sarkadi

the frequency of cooperative behaviour: if𝑀𝐶 = 𝑀 , then the social good is maximised and each
participant receives the maximum amount 𝑟 × 𝑐 . On the other hand, the payoffs of the participants
depend on the strategies they use to play the PGG.
Because PGG* is a voluntary one, we also have Non-participants (Loners) that never receive

the payout from the PGG, but always receive a fixed amount 𝜎 as payoff, no matter which other
strategies are used in a PGG. The Loner’s role is to give a chance to other strategies to invade the
population, e.g., to secure neutral drift. This strategy is similarly used in [1, 15, 43, 46].

Previous studies show that in the absence of punishment free-riding (taking the payout without
contributing to the public pool) becomes the dominant (evolutionary stable) strategy [46]. Following
the state-of-the-art, we include in the PGG the following cooperative and free-riding strategies:
Cooperation (𝐶) and Peer-Hybrid Interrogation (𝐻𝑃𝑒𝑃 ) as cooperative strategies, i.e. that
contribute to the public pool; Defection (𝐷) and Deception (𝐷𝑒𝑐) as free-riding strategies, i.e. that
do not contribute to the public pool; and Non-Participation (𝐿).

Agents that select the classic cooperative strategy, namely 𝐶 , receive the PGG payout (Eq.2, see
Methods 5), pay the PGG contribution 𝑐 , and pay 𝛽 , which represents a fixed tax for 𝐻𝑃𝑒𝑃 to exist.
The agents that select the classic free-riding strategy, namely 𝐷 , receive the PGG payout and do
not pay the contribution, but if caught they do pay a punishment fee imposed by 𝐻𝑃𝑒𝑃 .
The non-classic strategies for cooperation and free-riding, initially introduced in [43], namely

𝐻𝑃𝑒𝑃 and𝐷𝑒𝑐 , are influenced by a model of trust. In [43], the authors considered that trust increased
with the prevalence of 𝐶 and only decreased with the prevalence of 𝐷 because 𝐷𝑒𝑐 were oblivious
to the presence of other 𝐷𝑒𝑐 in the PGG. Here, we make a different and more realistic assumption,
that trust in society is influenced by both the presence of 𝐷 and 𝐷𝑒𝑐 . By treating trust in this way,
𝐷𝑒𝑐 need to consider that agents in the game who seem to be 𝐶 , might in fact be other 𝐷𝑒𝑐 . In
Methods 5, we describe how trust is computed.
By extending the agent-based framework in [43], we modify the two non-classic strategies to

better reflect socio-cognitive dynamics and the new trust model. 𝐷𝑒𝑐 receives the PGG payout and
does not pay the PGG contribution, but it can be interrogated by 𝐻𝑃𝑒𝑃 and, if caught, it must pay a
tax for deception. Additionally, it must pay a cost of deception that depends on the cognitive load
of the 𝐷𝑒𝑐 , the risk of leakage from 𝐷𝑒𝑐 , and on 𝐷𝑒𝑐’s communicative skill. In this paper we change
the cognitive load function for the 𝐷𝑒𝑐 to include other 𝐷𝑒𝑐s as targets to be deceived based on the
new trust model. This is closer to what happens in the real-world where, for instance, con-men try
to outsmart other con-men. See Methods 5 for a full description of the new 𝐷𝑒𝑐 .

The Peer-Hybrid Interrogator (𝐻𝑃𝑒𝑃 ), while it contributes to the public pool and receives the PGG
payout, has two main regulatory roles: to punish 𝐷 and to detect and punish 𝐷𝑒𝑐 . Differently from
[43], we do the following: (i) introduce a reward for 𝐻𝑃𝑒𝑃 that can be discounted; (ii) introduce the
interrogation skill; (iii) introduce the cognitive load for interrogation; and (iv) re-define the entire
model of 𝐻𝑃𝑒𝑃 to reflect the influence of the new socio-cognitive factors and the new model of
trust. In summary, 𝐻𝑃𝑒𝑃 are rewarded for finding and punishing 𝐷𝑒𝑐 and 𝐷 , but pay the associated
socio-cognitive costs for doing their job. See Methods 5 for a full description of the new 𝐻𝑃𝑒𝑃 .

5 METHODS & MODELS
We use a mixed methodology that comprises of evolutionary game theory and mechanism design in
agent-based modelling (ABM), together with cognitive modelling and resilience testing of complex
systems. The resulting output of the method is an evolutionary public-goods game where deception
and deception detection are present. We validate our model with individual agent-based simulations
instead of analytical methods due to the complexity of the model [34, 35], which arises form the
integration of cognitive functions responsible for deception and deception detection. Our choice
of parameters for evolutionary agent-based models of public goods games is consistent with the
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Self-Governing Hybrid Societies and Deception 0:7

previous literature that used these games for studying the emergence of cooperation under social
learning [1, 43, 46].

Evolutionary Agent-Based Modelling
Public Goods Game. The components of PGG* are the following: A non-empty set of strategies

𝑆 ≠ ∅; a number 𝑁 of agents in a population to play a PGG; 𝑁𝑆𝑖 represents the number of agents
in a population with a given strategy 𝑆𝑖 ; 𝑀 the number of agents that is selected to play a PGG
from a population 𝑁 ; 𝑟 is a multiplication factor that is always 1 < 𝑟 < 𝑀 − 1; 𝑐 represents the
investment a cooperative agent contributes to a PGG; 𝑐𝑆𝑖 denotes the cost of a given strategy 𝑆𝑖 ; Π𝑆𝑖

represents the payoff of a given strategy 𝑆𝑖 ; 𝑠 represents social learning strength; ` is the exploration
(mutation) rate; 𝑏 is the peer-punishment for Defection; 𝑐𝑏 is the cost of punishing a Defector; Γ
is the punishment or tax for Deception; and finally 𝜎 represents the payoff for Non-Participation.
These parameters are summarised in Table 1.

Table 1. Parameter values for deception games, where most of the numerical values were taken from [43].
New parameters marked with *.

Description Symbol Value Range
Population size 𝑁 100

Number of iterations 𝑇 105
Number sampled players 𝑀 5 𝑀 ≤ 𝑁

Social learning (imitation strength) 𝑠 1000 𝑠 ≥ 0
Exploration rate ` 0.001 ` ≥ 0
Contribution 𝑐 1.0 𝑐 > 0
Multiplier 𝑟 3.0 1 < 𝑟 < 𝑀 − 1

Loner (Non-participation) payoff 𝜎 0.3 0 < 𝜎 < 1
Peer punishment effect 𝑏 0.7 𝑏 > 0
Peer punishment cost 𝑐𝑏 0.7 𝑐𝑏 > 0

Cost for Cooperators (Tax for 𝐻𝑃𝑒𝑃 to be present) 𝛽 0.5 or 1 𝛽 > 0
Punishment for deception Γ 0.8 Γ > 0
Cost to punish a deceiver 𝑐Γ 0.5 𝑐Γ > 0
Cost to interrogate agents 𝑐𝑖𝑛𝑡𝑒𝑟𝑟 0.5 𝑐𝑖𝑛𝑡𝑒𝑟𝑟 > 0

Communicative skill (for deceivers) 𝑐𝑜𝑚𝑚𝑆𝑘𝑖𝑙𝑙 0.5 0 < 𝑐𝑜𝑚𝑆𝑘𝑖𝑙𝑙 < 1
*Interrogation reward discount 𝛿 0.1 0 < 𝛿 < 1

*Interrogation skill 𝑖𝑛𝑡𝑒𝑟𝑟𝑆𝑘𝑖𝑙𝑙 0.5 0 < 𝑖𝑛𝑡𝑒𝑟𝑟𝑆𝑘𝑖𝑙𝑙 < 1

Social Learning. Social learning represents the process throughwhich an agent adopts the strategy
or behaviour of another agent through imitation. For each PGG, we perform explicit computations
of agent payoffs given a sample of𝑀 agents that are selected to play the game at each iteration. The
relative differences between the agents’ payoffs obtained with different strategies determine the
probability that an agent will adopt a different strategy. The adoption of the new strategy is driven
by the social learning strength 𝑠 ≥ 0, or by the exploration rate ` ≥ 0, which represents the natural
inclination of agents to randomly adopt another strategy. Social learning can be weak/intermediate
(with a fixed value for 𝑠), or strong (when 𝑠 → ∞). The higher the value for 𝑠 , the stronger the
tendency of adopting the better strategy. The exploration rate can be viewed as a mutation that
models random mistakes in actions as well as purposeful exploration regardless of relative payoffs.
This stochastic approach allows us to dynamically represent how the frequencies of the different
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types of agents evolve over time. In our model we assume, similarly to [30, 46], that player 𝑖 adopts
the strategy of player 𝑗 with a probability that is an increasing function of the payoff difference
Π 𝑗 − Π𝑖 , namely

1
1 + exp[−𝑠 (Π 𝑗 − Π𝑖 )]

(1)

When 𝑠 →∞ the agent will always adopt the better strategy. If 𝑠 → 0 or Π𝑖 = Π 𝑗 , a coin toss
decides whether to imitate or not. In the simulations, agents randomly adopt any other available
strategy probability `, and with probability 1 − `, they update according to Eq. 1. This model is
equivalent to a hybrid social and asocial learning model [25].

Strategies. In our PGG the following strategies can be adopted, i.e., 𝑆 = {𝐶, 𝐷, 𝐿, 𝐷𝑒𝑐, 𝐻𝑃𝑒𝑝 }.

• Cooperator (𝐶): the Cooperator receives the PGG payout (Eq.2, below) and pays the PGG
contribution 𝑐 . The Cooperator also pays a cost for cooperating, which is equivalent to the
tax that allows Peer-Hybrid Interrogators to exist. Cost of Cooperation: 𝑐𝐶 = 𝛽

• Defector (𝐷): the Defector receives the PGG payout, without paying the PGG contribution.
However, the Defector needs to pay a tax 𝑏 inflicted by the Peer-Hybrid Interrogators. Cost
of Defection is : 𝑐𝐷 = 𝑁𝐻𝑃𝑒𝑃

× 𝑏, where 𝑁𝐻𝑃𝑒𝑃
is the number of Peer-Hybrid Interrogators

in the population and 𝑏 is the cost of punishment of Defection after playing the game.
• Loner (𝐿) (a.k.a Non-Participation): the Loner always receives the same payoff 𝜎 . The role
of the Loner is to give a chance to other strategies to invade the population, e.g., to secure
neutral drift towards cooperation. This strategy is similarly used in [1, 15, 43, 46].
• Deceiver (𝐷𝑒𝑐): the Deceiver receives the PGG payout and does not pay the PGG contribution
(similar to what the Defector is doing). On top of that, the Deceiver can be interrogated
by a Peer-Hybrid Interrogator and can pay the cost of deception if it is caught. The cost of
deception depends on the the cognitive load of the Deceiver as well as on the risk of leakage
from the Deceiver. The cost of deception is also influenced by the Deceiver’s communicative
skill. See Deception Model for details in the next section.
• Peer-Hybrid Interrogator (𝐻𝑃𝑒𝑃 ): the Peer-Hybrid Interrogator plays two roles. One role
is that of interrogating and punishing potential Deceivers. The other role is to individually
punish free-riders (peer-punishment). Therefore, it inherits the costs associated with both
roles. Additionally, while it receives the PGG payout it must also pay the PGG contribution
as a cooperative action. See Peer-Hybrid Interrogation Model for details in the next section.

For our PGG model, each strategy, except for Non-Participation, falls into one of the meta-
strategies of playing PGGs, namely Cooperation and Free-Riding. The Cooperation meta-strategy,
which requires an agent to make a contribution to the social good, includes Cooperation and Peer-
Hybrid Interrogation. The Free-Riding meta-strategy, which requires an agent to not contribute
anything to the social good while enjoying the benefits of the social good, includes Defection and
Deception. Thus, the payout resulting from the PGG is:

𝑃𝑎𝑦𝑜𝑢𝑡 = 𝑐 × 𝑟 × 𝑁 − 𝑁𝐹𝑅 − 𝑁𝐿 − 1
𝑁 − 𝑁𝐿 − 1

(2)

In Eq.2 where a PGG is played by a fixed population with 𝑁 agents, 𝑁𝐹𝑅 represents the total number
of Free-Riders, and 𝑁𝐿 represents the total number of Loners (Non-Participants). This payout is
consistent with the previous evolutionary models of PGGs [1, 15, 43, 46].

ACM Trans. Autonom. Adapt. Syst., Vol. 11, No. 5, Article 0. Publication date: 2023.



Self-Governing Hybrid Societies and Deception 0:9

input :𝑘0, 𝑠, `,𝑇
output :𝑘𝑇

1 t = 1;
2 do
3 Π𝑡 = playPGG(𝑘𝑡)

4 if random(0,1) < ` then
5 𝑘𝑡+1 ← mutate(𝑘𝑡);
6 else
7 𝑘𝑡+1 ← imitate(𝑘𝑡 ,Π𝑡 , 𝑠);
8 t ++
9 while t < T ;

10 return 𝑘𝑇
Algorithm 1: The evolutionary dynamics, where each round corresponds to 𝑡 , and 𝑘𝑡 represents
the strategy distribution in the population of agents at time 𝑡 .

input :𝑘,Π, 𝑠
output :𝑘

1 i, j = sample(population,2 agents);
2 threshold = 1

1+exp[−𝑠 (Π 𝑗−Π𝑖 ) ] ;
3 if random(0,1) < threshold then
4 𝑘𝑖 ← 𝑘𝑖 + 1;
5 𝑘 𝑗 ← 𝑘 𝑗 − 1;
6 else
7 𝑘𝑖 ← 𝑘𝑖 − 1;
8 𝑘 𝑗 ← 𝑘 𝑗 + 1;
9 return 𝑘

Algorithm 2: Describes the imitation function (used in line 7 from Algorithm 1), where 𝑘
represents the strategy distribution in the population of agents, Π is the set of payoffs that
agents receive after playing the PGG. When weak social learning takes place, then the threshold
is calculated as described in Equation 1. When strong social learning takes place (which we do
not use here, except for reproducing the results in [43]), then the value for the threshold is 1 if
Π𝑖 > Π 𝑗 , 0 if Π𝑖 < Π 𝑗 , and 0.5 if payoffs are identical.

Modelling the Socio-cognitive Dynamics of Deception
Trust Model. We consider trust to be proportional to the number of cooperators, represented

by Cooperators and Peer-Hybrid Interrogators. Differently from [43], we exclude the Deceivers
from the number of cooperators w.r.t. trust levels in a society. In our model, society can expect
deception to happen and can keep track of deceivers. Hence, we use 𝑡 = 𝑁−𝑁𝐷−𝑁𝐷𝑒𝑐

𝑁
to represent the

trust between a population of agents. This weakens the assumption in [43] based on Truth-Default
Theory (TDT) [24], but keeps the same effect of trust in societies - the higher the levels of trust, the
easier it is for deceivers to succeed. According to TDT, human agents are in the truth-default state
because they do not perceive evidence that indicates the presence of deception. For instance, if one
mostly finds oneself in a context where trust and cooperation are the norm between social agents,
then one is more likely to be in this truth-default state. However, one can also be triggered out of
the truth-default state if evidence towards deception becomes more prevalent. To make it more
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difficult for agents to deceive, we allow for more evidence towards the presence of deception to be
perceived when deception is attempted. It is reasonable to assume that the fewer cooperators are
in a society, the more likely it is for agents to weaken their assumption of the norm of trust and
cooperation. Consequently, the addition of Deceivers to the ‘untrustworthy’ bunch of agents causes
agents with an investigative and skeptical attitude to be more likely to assign deceptive motives to
others, which, in turn, also makes it increasingly difficult for deceivers to actually deceive.

Deception Model. Deceivers receive the payout of the PGG without making the PGG contribution.
Deceivers differ from Defectors because they can conceal their defection to avoid punishment.
However this concealment is costly; the cost of deception increases with the number of other
agents that must be deceived, but decreases with increases in population trust and increases in
communicative skill. We consider the following components that contribute to a Deceiver’s payoff
(defined in the next section):

(1) 𝑐𝑜𝑚𝑚𝑆𝑘𝑖𝑙𝑙 : communicative skill of the Deceiver.
(a) The higher the communicative skill, the lower the cost of deceiving.
(b) The higher the communicative skill, the more likely it is for a Deceiver to succeed in

deception.
(2) 𝛾 = 1 − 𝑐𝑜𝑚𝑚𝑆𝑘𝑖𝑙𝑙 : The Deceivers’ risk of getting caught
(3) 𝑐𝑜𝑔𝐿𝑜𝑎𝑑 = (𝑁𝐶 + 𝑁𝐻𝑝𝑒𝑝 + 𝑁𝐷𝑒𝑐 + 𝑁𝐷 − 1) × (1 − 𝑡) × 𝛾 : The cognitive load of a Deceiver.

Where:
(a) 𝑁𝐶 + 𝑁𝐻𝑝𝑒𝑝 + 𝑁𝐷𝑒𝑐 + 𝑁𝐷 − 1 Represents the number of agents that need to be deceived.

Differently from [43], here we also add the number of Deceivers, because any given Deceiver
considers it necessary to take into account the need for deceiving other Deceivers, and we
subtract 1 (the one Deceiver agent that does not need to deceive themselves).

(b) (1 − 𝑡) × 𝛾 Represents the cost to communicate deceptively with another agent, which is
influenced by the trust in society 𝑡 .

(4) 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 = 𝑁𝐻𝑝𝑒𝑝 × 𝛾 × Γ : Represents the leakage of the Deceiver, which means that the
deceiver leaves a track of evidence that might lead a Peer Hybrid Interrogator to find out
about deception.

(a) The higher the leakage, the higher the cost of deception.
(5) 𝑐𝐷𝑒𝑐 = 𝑐𝑜𝑔𝐿𝑜𝑎𝑑 +𝑙𝑒𝑎𝑘𝑎𝑔𝑒 : the cost of deception, which is a function of 𝑐𝑜𝑔𝐿𝑜𝑎𝑑 and 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 .

Peer-Hybrid Interrogation Model. Adapted from [43] and modified here by adding a discounted
reward to punishing free-riders and interrogating potential Deceivers. We introduce the cost and
the reward that contribute to a Peer-Hybrid Interrogator’s payoff.

The Cost 𝑐𝐻𝑃𝑒𝑃
is computed as follows:

𝑐𝐻𝑃𝑒𝑃
= 𝑐𝑏 × 𝑁𝐷 + \ × (𝛾 × 𝑐Γ × 𝑁𝐷𝑒𝑐 + 𝑐𝑖𝑛𝑡𝑒𝑟𝑟 × (𝑁𝐶 + 𝑁𝐷𝑒𝑐 ))

where:

(1) 𝑐𝑏 : cost of punishing a Defector. It is multiplied by the number of Defectors 𝑁𝐷 .
(2) \ = 1 − 𝑖𝑛𝑡𝑒𝑟𝑟𝑆𝑘𝑖𝑙𝑙 : The cognitive load discount of the Interrogator.
(3) 𝑐Γ : cost of punishing a Deceiver. It is multiplied by:
(a) The probability of a deceiver’s risk of getting caught 𝛾 , which represents the likelihood of

revealing a Deceiver. This multiplication represents the risk of a Deceiver being caught in
a given population.

(b) The number of Deceivers 𝑁𝐷𝑒𝑐

(4) 𝑐𝑖𝑛𝑡𝑒𝑟𝑟 : cost of interrogating an agent. It is multiplied by:
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(a) The numbers of agents that need to be interrogated. These are both Cooperators and
Deceivers 𝑁𝐶 + 𝑁𝐷𝑒𝑐 .

The reward 𝑅 is computed by taking the cost of Peer-Hybrid Interrogators to exist, multiplied by
the number of Defectors and Deceivers and split between the number of Peer-Hybrid Interrogators:

𝑅 =

{
𝛽 × 𝑁𝐷+𝑁𝐷𝑒𝑐

𝑁𝐻𝑃𝑒𝑃

if 𝑁𝐻𝑃𝑒𝑃
> 0

𝛽 × 𝛿 otherwise
where 𝛿 is the interrogation discount factor.

Computing Payoffs
Voluntary PGGs are defined by the introduction of a non-participant or a Loner strategy with a
fixed payoff 𝜎 . The role of the Loner is to give a chance to other strategies to invade the population.
To compute the payoffs of the other strategies in voluntary PGGs, we need to take into account the
probability that all other𝑀 − 1 sampled individuals are Loners. This is given by:

𝑃𝜎 =

(
𝑁𝐿

𝑀−1
)(

𝑁−1
𝑀−1

) (3)

Where:
(1) 𝑁𝐿 is the number of Loners in the population.
(2) 𝑀 is the number of agents selected to play the PGG.
(3) 𝑁 is the size of the population.

Cooperator Payoff.

Π𝐶 = 𝑃𝜎 × 𝜎 + (1 − 𝑃𝜎 ) × (𝑃𝑎𝑦𝑜𝑢𝑡 − 𝑐) − 𝑐𝐶
𝑀 − 1
𝑁 − 1 (4)

Defector Payoff.

Π𝐷 = 𝑃𝜎 × 𝜎 + (1 − 𝑃𝜎 ) × 𝑃𝑎𝑦𝑜𝑢𝑡 − 𝑐𝐷
𝑀 − 1
𝑁 − 1 (5)

Deception Payoff.

Π𝐷𝑒𝑐 = 𝑃𝜎 × 𝜎 + (1 − 𝑃𝜎 ) × 𝑃𝑎𝑦𝑜𝑢𝑡 − 𝑐𝐷𝑒𝑐

𝑀 − 1
𝑁 − 1 (6)

Peer-Hybrid Interrogation Payoff.

Π𝐻𝑃𝑒𝑃
= 𝑃𝜎 × 𝜎 + (1 − 𝑃𝜎 ) × (𝑃𝑎𝑦𝑜𝑢𝑡 − 𝑐) − 𝑐𝐻𝑃𝑒𝑃

𝑀 − 1
𝑁 − 1 + 𝑅

𝑀 − 1
𝑁 − 1 (7)

Experimental Setup
Each simulation is a run of 105 PGG games. Each game contains 𝑁 = 100 agents. In the initial run
of each simulation, the population starts with all agents being Defectors, and after each game the
population evolves as described in Section 5. The code for the simulations was implemented and
run in Python 3.

The setups for the PGG consist of fixing the following parameter values:𝑀 = 5, ` = 0.001, 𝑐 = 1,
𝑟 = 3, 𝜎 = 0.3, 𝑏 = 𝑐𝑏 = 0.7. The fixed parameters for deception were 𝛽 = 1 or 1, Γ = 0.8, 𝑐Γ = 0.5,
𝑐𝑖𝑛𝑡𝑒𝑟𝑟 = 0.5, and 𝑐𝑜𝑚𝑚𝑆𝑘𝑖𝑙𝑙 = 0.5. The parameter values are identical to those used in [46] and [1],
except for the 𝜎 . We used 𝜎 = 0.3 in order to incentivise participation similar to [43], whereas [46]
and [1] used 𝜎 = 1.
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Benchmarks. We consider as a benchmark PGG6 with Peer-Hybrid Interrogators from [43], which
we reproduced for two social learning conditions (𝑠 = 1000 and 𝑠

∞−→) and 𝛽 = 0.5. We compare
this to our new PGG under the weak social learning condition 𝑠 = 1000. Similarly to [43], we
perform 103 simulation runs, where the first run starts from all Defectors. Each subsequent run
starts from the population composition that resulted from the previous run. We report results in
terms of the long-run frequencies with which agents picked particular strategies at the end of the
simulation runs for each of the three PGGs. These figures are reported as averages over the 103
runs respectively.

Test of Resilience. To test the resilience of a governance mechanism against Deception, we perform
artificial invasion of the agent population with the Deception strategy at the following intervals
during an independent long-run simulation: (i) 5000; (ii) 10000; and (iii) 20000 iterations (see Figure
6). In this way, we can check how quickly and efficiently Peer-Hybrid Interrogators manage to re-
invade and re-establish cooperation in the hybrid society. We perform 100 independent simulation
runs, where every run starts from all Defectors.

Statistical Tests. Figures 2, 4 and 5, show respectively the long-run avg. frequency of each strategy
for each PGG and resilience test for PGG*. The error bars represent ±1 standard deviation from
this mean. Mann-Whitney U tests were performed to compare the mean of 𝐻𝑃𝑒𝑃 between PGG*
and the ones in [43]. We also perform One-way ANOVA in order to analyse variance between
payoff samples over all strategies in PGG*. To further compare the payoff samples between the
strategies of PGG*, we perform pairwise parametric t-tests. The results of the tests always gave
very low p-values when comparing 𝐻𝑃𝑒𝑃 to the other strategies (p-value < 0.01), meaning that the
differences between the payoff averages obtained from our simulations are statistically significant
and they have not occurred by chance. All statistical tests were performed in Python 3.

Sensitivity Analysis. To check how the three main components of the social learning mechanism
influence the selection of strategies in PGG*, we studied the effects on the long-run avg. frequencies
of the number of agents in the population 𝑁 for ranges [100, 1000], the number of players𝑀 for
ranges [2, 10], and the strength of social learning 𝑠 for ranges [10, 1000]. The sample size of the
long-run avg. frequencies in these tests represent the number of individual runs for each value of
the varying parameter, always starting with all Defectors.

6 RESULTS
To answer Q1 and Q2 using agent-based simulations, we formulated the hypotheses in Table 2.
We reproduced the results for the PGG model in [43] and confirm that, under their assumptions,
strong social learning (𝑠 → ∞) can indeed re-establish cooperation in hybrid societies, whereas
weak social learning cannot. The two social learning conditions from [43] are contrasted in Figures
2a and 2b.
However, in PGG*, where the improved 𝐻𝑃𝑒𝑃 mechanism is present, cooperation can be re-

established in hybrid societies, even if agents do not have unlimited social learning abilities, i.e.
they are now allowed to make mistakes in the social learning process. We show this in Figure 2c.
Additionally, Figure 1 shows that 𝐻𝑃𝑒𝑃 in PGG* is actually better at re-establishing cooperation
compared to the model in [43]. Another major difference between PGG* and the PGG in [43],
that can be observed by comparing the Figures 2c and 2b, is that PGG*’s variance is lower, which
indicates greater overall stability as a system. This can also be observed in the temporal dynamics
in Figure 3a.
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Table 2. We formulated the following hypotheses to answer Q1 and Q2 with our method.

New PGG Simulation Hypotheses Validation

H1.1: Cooperation can be re-established if social learning is
weak/intermediate in PGG*.

Confirmed

H1.2: The long run avg. frequency of 𝐻𝑃𝑒𝑃 in PGG* is greater
than all other strategies.

Confirmed

Benchmarking Hypotheses

H2.1: Cooperation can be re-established if social learning is
weak/intermediate in PGG from [43].

Falsified

H2.2: Cooperation can be re-established if social learning is
strong in the PGG from [43].

Confirmed

H2.3: The long run avg. frequencies of 𝐻𝑃𝑒𝑃 is greater in PGG*
than the PGG in [43] for weak/intermediate social learning.

Confirmed

H2.4: The long run avg. frequencies of 𝐻𝑃𝑒𝑃 is greater in PGG*
for weak/intermediate social learning than the PGG in [43]
for strong social learning.

Confirmed

Resilience Test Hypotheses

H3.1: 𝐻𝑃𝑒𝑃 is able to re-invade after full-scale deception attacks
in PGG*.

Confirmed

H3.2: The long run avg. frequency of 𝐻𝑃𝑒𝑃 in PGG* is greater
than all other strategies in the resilience test.

Confirmed

Even if social learning is not infinite (𝑠 ≠ ∞), if it is high enough (𝑠 ≥ 100) then cooperation
can be re-established. Figure 4a shows how the frequency of 𝐻𝑃𝑒𝑃 increases together with 𝑠 up to
𝑠 ≈ 100, and then it stabilises around 80%.

Unfortunately, the larger a hybrid society becomes, the more likely it is for 𝐷 to become evo-
lutionary stable. Figures 4c and 4d show how, by increasing 𝑁 , the proportion of 𝐻𝑃𝑒𝑃 decreases,
while the proportion of 𝐷 increases. For 𝑁 > 100, the frequency of 𝐻𝑃𝑒𝑃 starts dropping, and
𝐻𝑃𝑒𝑃 becomes a completely unsustainable strategy for 𝑁 ≥ 200. On the other hand, the number of
players𝑀 does not seem to affect the evolutionary stability of 𝐻𝑃𝑒𝑃 (see Figure 4b).
Regarding resilience, that is the ability of societies to revert back to a cooperative strategy, our

model shows that these are resilient in the face of full-fledged deceptive attacks under certain
conditions w.r.t. attack intervals.

We show that if given enough time between the attack intervals (20000 iterations), 𝐻𝑃𝑒𝑃 manage
to re-invade the population and re-establish cooperation in the long-run (see Figure 5c). By looking
at Figure 5, we can observe how the overall cooperation is significantly decreased compared to the
games where full-fledged deceptive attacks are not artificially caused. The mean of the long-run
avg. frequencies of free-riders (𝐷 + 𝐷𝑒𝑐) is greater than the ones of cooperators (𝐶 +𝐻𝑃𝑒𝑝 ) for the
attacks that happen at intervals of 5000 and 10000 iterations. By looking at Figures 5 and 6, we
can also observe how over a long run simulation of 𝑇 = 105, it is sufficient to have a full-fledged
deceptive attack on all agents at the same time every 10000 iterations in order to break overall
cooperation by having free-riders (𝐷 or 𝐷𝑒𝑐) prevent cooperative strategies from immediately
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Fig. 1. Benchmark comparison. Avg. of 𝐻𝑃𝑒𝑃 frequencies for weak and strong social learning conditions in
PGG from [43] versus weak condition for PGG* (Fig.2). Nonparametric Mann-Whitney U tests were performed
to compare the means of 𝐻𝑃𝑒𝑃 between PGG* and the PGG from [43]. p-value < 0.01 for each pair confirm
the statistically significant differences.

re-invading. This happens despite 𝐻𝑃𝑒𝑃 being dominant by having the highest avg. of the long-run
avg. frequency, because the combined averages of 𝐷𝑒𝑐 and 𝐷 outweigh the combined averages of
𝐻𝑃𝑒𝑃 and 𝐶 (see Figure 5b). This effect is even stronger for more frequent attacks at intervals of
5000 iterations, where 𝐻𝑃𝑒𝑃 does not even become the dominant strategy in the long-run - 𝐷𝑒𝑐
becomes the dominant strategy (see Figure 5a).
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(a) Reproduced PGG for weak social learning from [43].
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(b) Reproduced PGG for strong social learning from [43].
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(c) PGG* with weak social learning.

Fig. 2. Benchmark comparison of PGG results for 𝑠 = 1000 (weak) and 𝑠 →∞ (strong), 𝛽 = 0.5, reproduced
from [43] versus weak condition for PGG*. For reproducibility purposes, we used a sample size of 1000
individual runs for both PGGs, identical to the one in [43]. Bars represent Means of Long-run Avg. frequencies
and error bars represent ±1 standard deviation form the mean. Only the first game run starts from all
Defectors as in [43].
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(a) Time Series Dynamics in a single run for PGG*.
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Fig. 3. PGG* Simulation (Without Resilience Test) Single run Time Series dynamics and avg. of long-run
avg. frequencies when 𝑠 = 1000, 𝛽 = 1, sample size = 100. Bars represent Means of Long-run Avg. frequencies
and error bars represent ±1 standard deviation form the mean. Each game run starts from all Defectors.
To compare the success of strategies (the means of the long-run avg. frequencies) of PGG* we performed
One-way ANOVA and pairwise t-tests between 𝐻𝑃𝑒𝑃 and each strategy. p-value < 0.01 for both One-Way
ANOVA and all t-tests confirm statistically significant differences.
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(a) Social learning (𝑠) effect for Peer-Hybrid Inter-
rogators (𝐻𝑃𝑒𝑃 ).
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(b) Number of players (𝑀) effect for Peer-Hybrid
Interrogators (𝐻𝑃𝑒𝑃 ).
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(c) Population size (𝑁 ) effect for Peer-Hybrid In-
terrogators (𝐻𝑃𝑒𝑃 ).
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(d) Population size (𝑁 ) effect for Defectors (𝐷).

Fig. 4. PGG* Sensitivity Analysis. Effect of Social Learning 𝑠 for 𝐻𝑃𝑒𝑃 vs 𝐷𝑒𝑐 , and effect for number of
players 𝑀 , Population size 𝑁 for 𝐻𝑃𝑒𝑃 vs 𝐷 . Lines represent the mean of the avg. frequencies and shades
represent ±1 SD from the mean. Sample size of 100 individual runs for each parameter effect.
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(a) PGG* resilience test every 5k iterations.
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(b) PGG* resilience test every 10k iterations.
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(c) PGG* resilience test every 20k iterations.

Fig. 5. PGG* Resilience Test. Bars represent Means of Long-run Avg. frequencies and error bars represent ±1
standard deviation form the mean. Each game run starts from all Defectors. Again, to compare strategies of
PGG*, we performed One-way ANOVA and pairwise t-tests between 𝐻𝑃𝑒𝑃 paired with each one of the other
strategies’ means. p-value < 0.01 for both One-Way ANOVA and all t-tests confirm statistically significant
differences. Figures 5a, 5b and 5c represent the long-run avg. frequencies for resilience tests at 5000, 10000,
and 20000 iterations intervals, respectively. Sample size = 100.
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(b) Single run breakdown Time Series Dynamics with resilience test every 5000 iterations.
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(c) Single run breakdown Time Series Dynamics with resilience test every 10000 iterations.
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(d) Single run breakdown Time Series Dynamics with resilience test every 20000 iterations.

Fig. 6. PGG* Resilience Test Dynamics. Figures 6a, 6b, 6c and 6d represent the temporal dynamics
breakdown for PGG* without resilience test and with resilience test at 5k, 10k, and 20k iterations intervals,
respectively.
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7 DISCUSSION
How can the results be interpreted from the MB perspective to answer Q1 and Q2? We know from
[43] that there are indeed risks of machines to adopt deceptive behaviour from social interactions
with other agents (humans or machines). This enhances the negative effects that lead to a TDC,
which according to [43] can be avoided if social learning is infinite. In other words, agents do not
make any mistakes when they adopt other agents’ strategies, which is a very optimistic scenario. It
is very difficult, if not impossible, to guarantee that a self-organising and adaptive complex system
will always be able to learn perfectly - mistakes and/or accidents happen, especially in complex
and dynamic environments. On the other hand, our results indicate that things might not be so
bleak when it comes to respond to deception in the future, even if social learning is not infinite.
In fact, regarding Q1, we show that if more realistic assumptions are met regarding the socio-

cognitive factors involved in deception and deception detection, then infinite social learning
capabilities of agents are not necessary for the TDC to be avoided. Moreover, we have shown that,
under the new assumptions, Peer-Hybrid Interrogation is actually better at fighting off free-riders,
despite the limits imposed on the social learning skills of agents. What we can infer from both
studies ([43] and ours), is that social learning is indeed a crucial factor in avoiding TDC. We
have actually showed here that by increasing the social learning skills of agents, we can reduce
the likelihood of free-riding, and by extension, of TDC happening. The smarter the agents are
at adopting others’ behaviour, the more likely it is for them to learn how to detect and punish
deception (Fig. 4a).

Regarding Q2, we show that self-organising societies, which can select the Peer-Hybrid Interro-
gation decentralised regulatory mechanism - an equivalent of a deliberative democracy [14] - are
resilient to large-scale deceptive attacks under certain conditions. In the real world, deception is
sometimes coordinated as an internal or external attack on the population of agents. An example
is when for short periods the majority of agents in a system can be externally incentivised to (or
tricked into) spread disinformation. Such attacks, if recurring, take their toll on the system’s levels
of cooperation. However, we show how the system, if given the opportunity (and enough time
to respond), fights back and re-establishes cooperation. So, the effects of social learning and the
resilience test demonstrate that self-organising hybrid societies can (i) get better at fighting off
free-riders and (ii) fully recover from external attacks that incentivise agents of the hybrid society
to spread disinformation.

This self-governing system does have its limits though regarding sustainability. Our results show
that while our Peer-Hybrid Interrogation mechanism can deal with free-riders for different sizes
of interactions (Figure 4b), it cannot handle population sizes greater than 200 agents (Figure 4c).
This reflects the difficulties of regulating disinformation in large and open multi-agent systems,
such as Twitter, Facebook, etc., where huge amounts of agents access and share information [2].
On the other hand, there are Facebook and WhatsApp groups or moderated Reddit threads where
this type of decentralised peer-to-peer mechanism might be implemented successfully. In the real-
world, Peer-Hybrid Interrogation might take various forms. One of them is a normative reputation
mechanism that promotes trust, an example of which is how the anonymous silk-road users were
reviewing each other’s online business behaviours [23].

Previous work has proposed normative approaches for regulating agent behaviour in multi-agent
systems. The normative approach might not be entirely distinct from the MB approach, as it aims
to give agents the necessary knowledge to reason about the behaviour and the related rewards or
sanctions of the possible behaviours available to them in a multi-agent system. The MB approach
was proposed as a discipline to study the co-behaviour of humans and AI as part of their shared
ecosystem. Another compatible approach with MB that is different from the normative one is that
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of mechanism design. In contrast to normative approaches, approaches that use mechanism design
for regulating agent behaviour focus on the design of the multi-agent system itself by assuming
that agents generally operate with self-interest [29]. However, mechanism design has mostly been
explored for regulating free-riding behaviour within a purely economical paradigm [16], and except
for[43] and [40] it has not been explored for regulating deception in socio-cognitive systems.

What we have done in this paper is give a self-organising population of agents the opportunity to
self-select a strategy that regulates free-riding behaviour (deception and defection), without having
to specify norms that govern their behaviour. Agents choose to select strategies that interrogate
and punish/sanction free-riders because they are self-interested to manage information.

Regarding deception, there have not been many approaches developed for multi-agent systems
to manage/regulate it explicitly, except for extensive work on trust, reputation and image formation
mechanisms for managing deception, such as the one of Schillo et al. that created a trust model for
reputation [45], Sabater et al. who introduce the notion of image of other agents in socio-cognitive
systems [39] and Yu and Singh who developed a weighted majority belief update mechanisms for
detecting deception [49]. All of these decentralised mechanism are, in principle, compatible with
our Peer-Hybrid Interrogation strategy.
Normative approaches in socio-technical systems have also been applied to govern free-riding

behaviour in a decentralised manner [19]. Distinctly frommechanism design, normative approaches
specify how sanctions or rewards are applied to agent behaviours in different contexts. Rewards
are usually applied as incentives for agents to behave according to the norms specified (usually as
deontic logic representations and axiomatisations [33]). On the other hand, sanctions are applied
when agents deviate from what is specified as norm-adhering behaviour. Agents are then able to
reason about the consequences of their actions. Moreover, some agents of the multi-agent system
have designated sanctioning/punishment roles which they have to execute when they observe
other agents that deviate from the norm. One example of such a system is Ghorbani and Bravo’s
ADICO model for governing the commons [10, 12]. Implementing such a norm-based governing
system can also be used to explore how institutions for governing the commons emerge [11, 33]. In
particular, they can be used to study the management of knowledge in self-organising systems [22].

We must also make the observation that our current MB perspective does not go into explaining
the normative aspects of socio-technical systems like hybrid societies. MB is agnostic w.r.t. an
agent’s capability of reasoning about deciding how to behave given some norms present in the multi-
agent system. The mechanism-design perspective is a more appropriate conceptual perspective to
take in MB. However, that does not mean that MB and normative approaches are incompatible.
Norms can very well be defined such that agents know what to expect if they decide to pursue a
certain strategy. The most obvious mechanism where norms can be applied is in the social learning
process. Instead of assuming that agents are self interested and aim to maximise their payoff when
they adopt another agent’s strategy, a normative reasoning mechanism can be used to increase
the complexity of this decision. For instance, we can make an agent aware of the presence of a
sanctioning mechanisms. These mechanisms can take the form of agents which only play the
roles of punishers and which are triggered if they deviate from the norms. The agent would then
be inclined to maintain cooperation and not select defection. But then again, our evolutionary
system allows agents to achieve similar outcomes by selecting which roles they want to adopt.
The combination of available strategies acts itself as a form of mechanism design where agents
change roles to keep each other in check. The Peer-Hybrid Interrogation strategy for instance
can be viewed as a decentralised process for implementing pro-social norms [27], i.e. norms that
incentivise pro-social behaviour. If we are to interpret Peer-Hybrid Interrogation from Nardin
et al.’s conceptual sanctioning model [29], the strategy is a combination of Detector, Evaluator, and
Executor. The Peer-Hybrid Interrogators detect deception, they evaluate it after it happens, and
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then apply a sanction. These actions are associated with the costs and rewards of the Peer-Hybrid
Interrogators. In this context the pro-social behaviour would be the sharing of truthful information
between agents of a hybrid society.

MB has so far been proposed as a discipline to study the behaviour of machines as part of complex
environments like societies that are either too difficult or impossible to formalize analytically.
Perhaps future work should focus on combining the mechanism design with normative approaches
within an MB discipline in order to explore what kind of explicit normative rules can be used to
design socio-technical ecosystems in which agents will be self-interested to regulate deceptive
behaviour. This might also be helpful to study the behaviour of machines [37, 41] as well as of
humans when they interact with machines, and of potentially the overall the potentially deceptive
ecosystems themselves [20, 50].

8 CONCLUSION
In this study we designed a new agent-based model of public goods games (PGGs) to show (i)
how cooperation can be re-established in self-organising societies where decentralised regulatory
mechanisms exist and where the social learning skills of agents are bounded, i.e. not infinite; and (ii)
how these systems show resilience against large-scale deceptive attacks under certain conditions.
We have shown that even under the assumption of weak social learning agents can indeed

re-establish cooperation in the face of deception when they are given the possibility to adopt
a Peer-Hybrid Interrogation strategy . By weak social learning we mean that agents follow a
stochastic process when adopting another agents strategy, rather than a deterministic one such as
strong social learning. These populations also show that they are resilient and able to re-establish
cooperation if large-scale deception attacks happen. However, there are still limitations regarding
re-establishing cooperation, especially when deception attacks are frequent and when populations
are very large.

As future work, we plan to explore how the effects of this limitation w.r.t. population size can be
reduced or eliminated. This is crucial in finding regulatory mechanisms that implement deliberative
democracy successfully in larger hybrid societies.

Another potential avenue for future work is to study mechanisms that consider various reasons
for performing deception from an ethical perspective [48]. Deception can be malicious, but it can
be done for good reasons too, which do bring some benefits with it. For instance, both [18] and
[17] argue that deception in the context of human-AI interactions can improve both efficiency
and smoothness of communication, while [42] show that humans do not perceive AI agents any
different compared to humans that use deception as part of their job roles in future-of-work
scenarios. Perhaps it is better then to ask ourselves sooner rather than later what trade-offs emerge
in terms of efficiency and smoothness of communication, and what costs are we willing to pay in
order for machines to be truthful and transparent about their non-human nature and communicative
acts.

SUPPLEMENTARY MATERIAL
The code for running the simulations and reproducing the results can be found on the OSF platform
at https://osf.io/46gu2/?view_only=None
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APPENDIX
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(a) Time Series Dynamics when 𝑠 = 0.1 and 𝑇 = 107.
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(b) Time Series Dynamics breakdown when 𝑠 = 0.1 and 𝑇 = 107.

For values of social learning that are lower than 100 (𝑠 < 100), agents stop distinguishing between
the payoffs of the strategy. In Fig. 7a and 7b, we can see how for small values for social learning
such as 𝑠 = 0.1, the selection of strategies becomes volatile, and no single strategy or combination
of strategies becomes stable or dominant. This effect when reducing social learning 𝑠 → 0 is
also shown by Sigmund et al. in Fig. 3 of their paper labelled ‘The competition between peer- and
pool-punishers in voluntary PGGs’, where we can see their sensitivity analysis that varies 𝑠 from
10−4 to 104 [46].
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