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Abstract

Delivering lithium ion batteries capable of fast charging without suffering from accelerated degradation is an important

milestone for transport electrification. Recently, there has been growing interest in applying data-driven methods for

optimising fast charging protocols to avoid accelerated battery degradation. However, such data-driven approaches

suffer from a lack of robustness, explainability and generalisability, which has hindered their wide-spread use in

practice. To address this issue, this paper proposes a method to interpret the fast charging protocols of data-driven

algorithms as the solutions of a model-based optimal control problem. This hybrid approach combines the power of

data-driven methods for predicting battery degradation with the flexibility and optimality guarantees of the model-

based approach. The results highlight the potential of the proposed hybrid approach for generating fast charging

protocols. In particular, for fast charging to 80% state-of-charge in 10 minutes, the proposed approach was predicted

to increase the cycle life from 912 to 1078 cycles when compared against a purely data-driven approach.

Keywords: Lithium-ion batteries, degradation modelling, fast charging.

1. Introduction

The transition towards full electric transportation and grid storage is increasing the pressure to deliver improved

lithium-ion batteries, as their combination of high energy and power densities, long lifespans and low costs have

made them the standard energy storage device for electric transportation. However, current battery performance is

insufficient for most intensive applications requiring fast charging. As defined by the US Department of Energy,

extreme fast charging requires a fresh cell to achieve a fast charged specific energy of 180 Wh/kg and for the loss in

capacity to be less than 20% after 500 cycles [1, 2], specifications beyond the capabilities of today’s commercially

available lithium ion cells. Achieving these performance targets in a scalable and economic manner will require

advances in both battery materials and management, as reviewed in [3, 4, 5].

Most battery management algorithms are based on a battery model that can be used to make predictions about

the response of a cell. A variety of battery models now exist, ranging in scale from simple equivalent circuits [6] to

electrochemical models such as the Doyle-Fuller-Newman model [7]. Battery models have proven highly successful in

a number of applications, including state-of-charge estimation [8], electrode design (by linking the model parameters

to cell performance [9, 10] and setting up thick [11] and graded [12] electrodes) and optimising fast charging protocols.

Various solutions to the fast charging optimisation problem have been proposed, including those based upon nonlinear

programming and optimal control theory. Examples include the early works of [13, 14] and more modern approaches,

such as [15] which used the measure-moment approach to search over discontinuous charging strategies, [16] which

included thermal and ageing dynamics, [17] which applied Bayesian optimisation to accelerate the computation, and

[18] which implemented reinforcement learning. These methods are able to generate optimal fast charging protocols

(often called reference trajectories) but when the cell deviates from these policies (due to unmodelled dynamics
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for instance) then feedback control is needed to apply corrections and push the battery back towards the reference.

Feedback control schemes for fast charging include the reference governors of [19], model predictive control [20, 21]

and its extension with deep learning [22], the model inversion strategy with output tracking from [23], the adaptive

schemes of [24] that are able to accommodate faults and the switching schemes for constraint satisfaction [25] and

following different operating modes [26]. Satisfying the problem constraints are key in these optimal strategies [27],

with the most significant constraint being the one for lithium plating, but there are others, including for mechanical

stress [28]. This has motivated several modelling studies on quantifying, or at least visualising, the onset of lithium

plating, with characterisation studies including [29, 30] and the voltage based scheme of [31]. Critical to the success

of these schemes is the the appropriateness of the model (if the model is too complex, then it adds complexity to the

optimal control problem, if it is too simple then the predictions do not capture the key effects). The impact of this

trade-off was explored in the sensitivity analysis of [32] which examined how changes in the model parameters, such

as the number of active particles, affects its suitability for generating optimal trajectories. More recently, there has

been a push towards going beyond the numerical analysis of these fast charging problems and, instead, develop an

understanding of the solution structures by examining the optimality conditions. This has led to the development of

analytical solutions for many fast charging problems. In particular, using the single particle model, it was shown in

[33, 34] that the switching strategies that have proven popular, as used in [26] for instance, are in fact optimal under

certain problem assumptions. This idea was generalised in [35] where it was shown that such switching policies,

referred to as “bang-and-ride” control, are optimal for the broad class of monotone optimal control problem, which

includes many fast charging problems as special cases. Such studies provide the theoretical framework to characterise

the solutions of optimal fast charging protocols analytically and to explain why the popular switching strategies

perform so well in experiments, even though they are relatively simple.

One area where current battery models have struggled is in predicting battery degradation. While several battery

degradation models have been proposed, their predictions have received only limited validation on rich, real-world

data and methods to train them efficiently have not yet been established. In response to the challenges faced in

implementing and training battery degradation models, there has been growing interest in data-driven algorithms,

including [17, 36]. Compared to model-based methods, data-driven approaches are trained by extracting features

directly from the data, and as battery data has become increasingly available, the performance of these algorithms has

steadily improved. Since they are not based on any underlying physical model, data-driven methods can avoid the

inherent biases of models and have demonstrated impressive results, especially for predicting knee points in battery

cycling data, such as in [37] where accuracy levels of 88–90% were reported even when only the first 3-5 cycles were

used for the predictions.

However, data-driven algorithms suffer from limitations that have slowed down their deployment to the battery

management and control systems used in practice. For example, these algorithms suffer from an inability to generalise

to situations outside of their training data (which is typically cycling data from controlled lab settings that are not

necessarily representative of real-world usage [38]). To perform at their best, these algorithms require ‘big data’, but

data on this scale is not currently available for batteries [39] because of the extended times and costs needed to run

experiments. The large datasets that do exist are predominantly owned by electric vehicle (EV) manufacturers, so they

are not open-source and not available to researchers. Data-driven algorithms also suffer from a lack of robustness,

which makes it difficult for them to adapt to changing setups (such as when a new cell type is adopted or when

the sampling time of the algorithm is updated) without full retraining. By contrast, adapting a model-based method

typically involves recomputing the solution with some newly identified model parameters. By operating as a black-

box, data-driven methods also suffer from a lack of explainability (meaning an inability of the algorithm to justify its

proposed actions), an important consideration for EVs as they are safety critical systems; an EV shutting off power on

a busy road because of a decision made by a data-driven algorithm could place users at risk.

For these reasons, it is becoming increasingly apparent that data-driven algorithms need to inherit some of the

benefits of model-based methods if they are to be safely deployed to practical settings. Namely, they should be

explainable (to improve reliability and reduce the likelihood of unexpected events), generalisable (meaning an ability

to adapt to changes in the system setup) and robust (so that they can be guaranteed to work in practice), while still

retaining the benefits of the data-driven framework, chiefly an ability to learn battery degradation.

This fusion between model-based and data-driven methods is the problem considered in this paper, with a model-

based interpretation of the fast-charging protocols of [36] given. In particular, the main contributions of this paper

are:
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1. A method to generate fast charging protocols using model-based control optimised on the data-driven protocols

of [36].

2. A validation of the proposed method and models using the data of [36].

3. An error-free discretisation in time for the cell thermal dynamics is introduced.

The paper proposes model-based interpretations of the newly emerging data-driven methods for battery management

and control. The goal is to combine the ability of the data-driven approach for learning battery degradation with the

explainability, robustness and generalisability of the model-based approach. We do this by focusing on interpreting

the fast charging protocols of [36], that were derived by a data-driven method, in terms of an optimal control problem

involving an electrical and thermal model of the cell. The data and results of [36] were chosen for reference as, at the

time of writing, it was considered to be the richest available fast charging data-set capable of linking the cell’s cycle

life to its fast charging protocol.

The specific problem considered in this work builds upon that of [36] where a multi-stage fast charging protocol

[40] was sought to minimise cell degradation. The considered charging protocol optimised here is defined to charge

the cell from 0% to 80% SOC in 10 minutes in four constant-current steps, with the duration of each charging step

being the time taken to increase the state-of-charge by 20%.

The main similarities and differences between Attia et al. [36] and the presented work are:

• In [36], a machine learning model was developed to estimate the cycles-to-failure of a cell from the data of its

first 100 charging cycles using the same charging protocol. Our work developed a predictor for the cycles-to-

failure from the dynamical states and charging rates of the first cycle rather than the first 100 cycles, as defined

in Equation (26).

• Attia et al. [36] generated a rich data-set containing a large number of cells under different fast charging

protocols and cycled them with this same protocol 100 times. In this work, this data-set was used to train

an electro-thermal model of the batteries during fast charging (Equation (10)) as well as the cycles-to-failure

predictor of Equation (26) based upon the state and current values of this model. No such model was estimated

in [36], and the results of Table 4 highlight the benefits of using models for solving fast charging optimisation

problems.

• Using the identified model of Equation (10), the optimisation problem of Equation (16) was solved to find the

multi-stage constant-current charging protocol to maximise the predicted cycles-to-failure. With this approach,

the optimiser could efficiently search over all charging currents satisfying the problem constraints. This con-

trasted with the purely data-driven method of Attia et al. [36] which could only search over up to nine distinct

charging rates during each charging step.

The proposed method is designed to be “hybrid” in the sense that it uses the data to learn degradation metrics and

the model to improve the optimisation. By mixing data-driven and model-based methods in this way, the proposed

approach is predicted to bring superior results compared to the purely data-driven approach of [36]. Specifically,

the learned model predicts an increase in the maximum cycle-life-failure from 912 to 1078 compared against the

data-driven method of [36]. This increase in cycle life is obtained by exploiting the model’s ability to optimise over

trajectories, a feature lacking from data-driven methods such as that used in [36]. As well, as increasing the cycle-life,

the proposed approach has additional benefits, such as an ability to generalise (for example to account for a change

in the sampling time) and learn representations of the ‘black-box’ degradation models, such as that found in [36], in

terms of the model’s states during the fast charge.

The underlying theme of this work is that linking data-driven and model-based control methods can lead to signifi-

cant gains for battery control and management problems, such as generating fast charging protocols. By compensating

for the weaknesses of each method, a hybrid approach has the potential to lead to new gains in both performance and

robustness.

2. Cell modelling

To apply optimal control to the ‘A123 Systems APR18650M1A’ cell data of [36], a thermal and voltage model

was first developed.
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2.1. Electrical Model

A simple equivalent circuit model of the form of Figure 1 was used to describe the cell’s electrical response.

i(t)

+

v0(t)

vout(t)OCV (z(t))

v1(t)

R1

R0

C1

-

Figure 1: Equivalent circuit model of a cell with one RC pair.

The associated dynamics of this circuit model are

v̇1(t) = −
1

R1C1

v1(t) +
1

C1

i(t), (1a)

ż(t) =
i(t)

Q
, (1b)

with z(t) being the cell’s state-of-charge, i(t) the applied current (A), Q the cell capacitance (As), v1 the voltage drop

(V) across the RC-pair of Figure 1 with R1, C1 being, respectively, the resistance and capacitance.

The voltage of the model was

vout(t) = OCV(z(t)) + v1(t) + R0i(t) (2)

with OCV(z(t)) being the open circuit voltage, v1(t) the voltage drop over the RC pair and R0i(t) the ohmic term.

Throughout the paper, the notation that a charging current is positive (so that the cell charges when i(t) > 0) is

adopted.

It is assumed that the electrical parameters (R1,C1,R0) of the circuit in Figure 1 remain constant throughout charg-

ing. It is noted that in reality, the model parameters would vary with state-of-charge, temperature, and the cell’s

age [41]. The effects of varying R0 were considered and are discussed in Appendix A. Compared to other battery

models, in particular electrochemical ones such as the Doyle-Fuller-Newman (DFN) [7, 42], it is acknowledged that

the circuit model of Figure 1 is simple. However, since the main focus of this paper is on linking model-based and

data-driven control for fast-charging, this simple model was sufficient to allow an accurate parameterisation from the

data, while also being sufficiently computationally efficient.

2.2. Thermal model

Considering heat generation rates, the temperature of the cell was modelled as

mcpṪ (t) = Pgenerated(t) − Pemitted(t), (3)

with m being the cell mass (kg), cp the specific heat capacity (Jkg−1K−1) and T the cell temperature (K) (assumed to

be uniform throughout the cell). Here, ohmic heating was taken to be the sole source of the power heating the cell,

Pgenerated(t) [43], so

Pgenerated(t) = i(t)(vout(t) − OCV(z(t))), (4)

= i(t)(R0i(t) + v1(t)), (5)
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and convective heat transfer was assumed for the power dissipated by the cell to the surroundings, Pemitted(t), so

Pemitted(t) = hA(T (t) − Tamb), (6)

with h being the convective heat transfer coefficient (Wm−2K−1), A the cell’s surface area (m2) and Tamb the ambient

room temperature (K), which was assumed to be constant.

In practice, lithium ion batteries experience several additional modes of heat generation, such as from entropy

change effects and side-reactions [43, 41]. However, for fast charging, it has been shown that the Ohmic heat genera-

tion of Equation (4) is the dominant source of heat generation [44]. Therefore, these other heat generation terms were

neglected in the simple model of Equation (5). Likewise, in our preliminary testing, it was found that radiative heat

transfer was small in comparison to convective heat transfer, and so only convective heat emission was considered in

Equation (6).

By defining the temperature difference between the cell and the ambient air as ∆T (t) = T (t) − Tamb, the following

thermal dynamics are obtained

∆Ṫ (t) = −
hA

mcp

∆T (t) +
R0

mcp

i(t)2 +
1

mcp

v1(t)i(t). (7)

2.3. Model discretisation

Combining Equations (1a), (1b), and (7) gives a state space representation of the combined electrical and thermal

models
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with outputs vout(t) = OCV(z(t))+v1(t)+R0i(t), and T (t) = Tamb+∆T (t). For ease of notation, this system is expressed

as
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. (9)

The model equations outlined above are defined in continuous time, however, in order for the model to compare

the data of [36], which is sampled at discrete time steps, the dynamics had to be converted into a discrete time form.

By integrating the thermal and electrical dynamics of (7) and (1), the following discrete-time system was obtained
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(10)

where

β1 =
b1

λ1

(

1 − e−λ1∆t[k]
)

, (11a)

β2 = b2∆t[k], (11b)

β3 =

(

b3

λ2

+
b1b4

λ1λ2

)

(

1 − e−λ2∆t[k]
)

−
b1b4

λ1(λ2 − λ1)

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

, (11c)

β4 =
b4

λ2 − λ1

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

, (11d)

and ∆t[k] is the time-step at time index k and square brackets are used to indicate the time step. Throughout, the
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applied current is assumed to be zero-order hold

i(t) = i[k] ∀t ∈

















k−1
∑

j=0

∆t[ j],

k
∑

j=0

∆t[ j]

















,

so that the current is constant throughout the sampling interval. To relate the model to the data of [36], a time-varying

time step was adopted. In particular, in [36] the time-step was defined so that the cell was charged by a set portion

of the cell capacity, namely pQ, during each sampling interval ∆t[k], where p is defined as the proportion of the cells

total capacity to be charged per step. Since the stored capacity is a function of the applied current, the time-steps

followed

∆t[k] =
pQ

i[k]
, (12)

which vary with the applied current i[k] with K being the total number of time steps. In keeping with the protocols of

[36], K = 4 and p = 0.2 in this paper.

Since the electrical model dynamics of (1) are linear, their discretisation can be readily obtained by simple inte-

gration. This is not true for the thermal model of (7), due to the bi-linear heat generation term v1(t)i(t) - even if a

zero order hold is assumed on the current i(t), this does not imply the relaxation voltage v1(t) will also be constant

during the sample interval, and so neither will v1(t)i(t). Normally, as in [45, Appendix 1] and [46] which discretised

the model in [47], thermal dynamics such as (7) are discretised using an Euler approximation

d∆T (t)

dt
≈
∆T [k + 1] − ∆T [k]

∆t[k]
. (13)

However, this is not what is done here, as the resulting approximation errors from using (13) were found to be large

for the long time-steps (≈ 200s) of [36]. Instead, an exact solution for the discretisation of the thermal model of (7)

was obtained, Equation (10), that took into account the fact that the relaxation voltage v1(t) changes during a sampling

instant. This exact discretisation is the first main result of this paper and its full derivation is given in Appendix B.

The expression for the voltage at each sampling time is

vout[k] = OCV(z[k]) + v1[k] + R0i[k]. (14)

For the optimisation problems of (16), it was also found that the voltage immediately before the sampling point,

defined here as

vout[k − δt] = OCV(z[k]) + v1[k] + R0i[k − 1], (15)

had to be constrained to prevent infeasible solutions. Here, the notation [k − δt] indicates the time immediately before

sampling point k.

2.4. Parameter estimation

The model parameters (in Table 1) were estimated using the data from [36]. The data of [36] is divided into five

‘batches’ of up to 48 cells each, or fewer if the experiment failed or the cycle life prediction was anomalous. Data

is available for the input current and output voltage of the cells within the first four batches, which were repeatedly

charged and discharged (cycled) at least 100 times. Temperature data is also available in [36] for the fifth batch. Cells

within batch 5 were cycled to failure and the number of cycles before failure was tabulated for each cell and charging

protocol [36]. To parameterise the model (10), only the first cycle of each charging protocol was considered so that

all of the data used to train the model was from ‘new’ cells with the same, minimal, degradation.

2.4.1. Estimating the electrical model parameters

For parameterising the electrical model, batch 1 from [36] was reserved for training the model; this consisted of 46

cells each with a unique charging current protocol. Batch 5 was used for testing the model and any cells with charging

protocols matching those in the training set were removed from the testing set prior to model testing. Additionally,
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some of the samples had data missing for extended periods of times and were removed from the dataset. The final

testing set thus consisted of 7 cells, each with a unique charging protocol. Batches 2-4 contained cells charged with

protocols that were identical or very similar to batch 1 so were not used in training or testing.

R0 was found by observing step changes in voltage at the same time as step changes in current. R0 was then taken

to be the magnitude of the step change in voltage divided by the magnitude of the step change in current [48]. It was

assumed that R0 did not vary with SOC (see Appendix A) and the model value for R0 was found by taking an average

of the R0 values from step changes across the training set. This value is given in Table 1.

R1 and C1 were found by observing the diffusion voltage across the RC pair of the cells during charging. The

parameters were chosen to fit the exponential behaviour of individual cells and charging protocols in the training set

and an average was taken for the final values which are given in Table 1.

The OCV(z(t)) function fitting the training set was derived using the vout data, parameter values and OCV(z(t)) =

vout(t) − v1(t) − R0i(t). The parameter values and the OCV function are needed for derivation of one another and so

the model training was done iteratively until the model performance on the training set was deemed satisfactory. For

the optimisation problem, the OCV function was a piecewise polynomial, as defined in Appendix C.

2.4.2. Estimating the thermal model parameters

Only batch 5 of the data-set from [36] includes temperature data. Batch 5 includes 45 cells, containing 9 unique

charging protocols with 5 cells cycled with each protocol [36]. As with the electrical model only the first cycle of

the ‘new’ cell was considered for training and testing. In the ‘read me’ attached to the data of [36] it was stated that

the temperature data was unreliable and that the thermocouples sometimes lost contact during cycling. Samples with

anomalously low temperature increases over charging were removed from the data set, along with those with missing

data points over long periods of time. There were only 27 cell charging samples remaining after cleaning the data in

this way, and this included 8 unique charging protocols. The training set consisted of 13 randomly selected cells from

the cleaned batch 5, and the testing set consisted of the remaining 14. The training set contained 7 unique protocols;

the testing set also contained 7 unique protocols, 6 of which were present in both sets with one charging protocol

unique to each set.

The temperature data in the dataset often showed a sizeable difference between the starting and ambient temper-

ature readings and was notably noisy. The cells in this batch were cycled at the same time in a forced convection

temperature chamber set to 30◦C [36], so it was expected that the ambient temperature would be the same and equal

to 30◦C across the data. This was found not to be the case and it was decided to trust the temperature reading of the

forced convection chamber over the thermocouples. Accordingly, the remaining data were shifted so that the initial

temperature data point was equal to 30◦C in all cases. In the model, Tamb = 30◦C and was assumed to not change with

time.

The model parameters of m and A were estimated using the cell datasheet [49] and cp and h were estimated using

the RANSAC (Random Sample Consensus) procedure [50]. Within this procedure, the MATLAB ODE fitter greyest

[51], which provides optimal model parameters for individual input/output samples, was used. Here, greyest was

configured to take the temperature and power generated from the data of [36] as inputs and produce estimates for h

and cp that minimised the mean square error between the temperature data and the simulated temperature, computed

using Equation (7), for each sample in the training set. The data used was from the first 1500s of the cycle which

included the vast majority of the cell charging time. greyest was applied to all samples in the training set, generating

a different candidate model for every sample. These candidate models were then used to predict the cell temperature

during charging for every sample in the training set. The candidate model with the lowest average mean square error

across the training set was then selected. The parameters found by this method are given in Table 1. As the thermal

model uses the electrical model as an input the identification of the thermal parameters is dependent on the electrical

parameters, as shown in Equation (7).

2.4.3. Model performance

Table 2 shows a comparison of the error statistics for the electrical model for both the training set (batch 1), and

the testing set (batch 5 with repetitions and matches with the training set removed). The mean square error (MSE)

between the experimental and simulated voltages shown was calculated for each cell in the dataset over the the first

10 minutes of charging, as this was the critical region for the optimisation. The error was calculated between samples

taken every 0.01 s.
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Parameter Value Units

Electrical model

R0 0.0163 Ω

R1 0.0221 Ω

C1 678.733 F

Q 3960 As

Thermal model

m 39 ×10−3 kg

A 3.714 × 10−3 m2

cp 2025.737 Jkg−1K−1

h 43.061 Wm−2K−1

Experimental protocol

p 0.2

K 4

Table 1: Estimated parameters for the cell electrical and thermal models.

Dataset Median Mean MSE SD

MSE (mV)2 MSE (mV)2 (mV)2

Training Set 195.0 225.3 126.7

Testing Set 748.2 737.8 211.6

Table 2: Table displaying the median, mean and standard deviation (SD) of the mean square error (MSE) of the simulated voltage response upon

charging up to 80% SOC (tmax = 600 s) compared against the data of [36].

Figures 2 and 3 show the performance of the electrical model over the whole charging cycle against examples

from the testing and training set respectively. Figure 3 shows the worst performance of the model, over the first 600

s of charging, against a charging protocol in the testing set.
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Figure 2: Electrical model output compared to a protocol on the training set, mean squared error of 176.094 (mV)2.

The error from the voltage model was low during the first 80% of charging, but small errors in the model may

have led to errors in the optimisation. Figure 3 shows the sample with the largest error over the first 10 minutes which

was still deemed acceptable.

Figures 2 and 3 both display a characteristic present throughout the dataset where there are drops in current, and

therefore in voltage, prior to the step changes in current. This led to similar drops in calculated heat generated shown

in Figures 4 and 5.

The performance of the thermal model is given in Table 3. Due to a number of anomalous samples with large error

the mean is skewed by the presence of these anomalous samples, so the median MSE is also given. Figure 4 shows
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Figure 3: Electrical model performance on the protocol in the testing set with the greatest error over the first 10 minutes of charging, mean squared

error of 1070.546 (mV)2.

the performance of the thermal model on the cell from the training set with the median error, and Figure 5 shows the

performance of the thermal model on a cell from the testing set with a larger error.

Dataset Median Mean MSE

MSE (K2) MSE (K2) SD (K2)

Training Set 0.2260 0.3802 0.4178

Testing Set 0.3025 0.7617 1.0784

Table 3: Table displaying the median, mean and standard deviation (SD) of the mean square error (MSE) of the simulated thermal response upon

charging up to 80% SOC (tmax = 600 s) compared against the data of [36].

0 500 1000 1500

30

31

32

33

34

35

36

37

0

0.5

1

1.5

2

2.5

Figure 4: Thermal model performance on a cell from the training set. Mean squared error of 0.2260 K2.

The performance of the thermal model is not to the same standard as the electrical model. As shown by Figures

4 and 5, the model often underestimates the peak temperature of the cell. Table 3 shows the standard deviation of

the error is large in both the training set and in the testing set which is likely due to the issues with the thermal

training dataset described above. Using the thermal model with the voltage model as its input will introduce more

error, however, it is likely that the error will still be dominated by the thermal model. These errors are unlikely to have

affected the general behaviour of the model and the conclusions of this report.

3. Generating the fast charging protocols

The discrete model in (10) was used to find optimal current charging profiles to maximise the number of cycles to

failure whilst charging the cells to 80% SOC in 10 minutes. The underlying motivation of the proposed approach was

9



0 500 1000 1500

30

31

32

33

34

35

36

37

0

0.5

1

1.5

2

2.5

Figure 5: Thermal model performance on a cell from the testing set. Mean squared error of 0.4223 K2.

to interpret the cycle-life predictor of [36] in terms of physical quantities, i.e. the evolution of the model’s states, so

that it could be used within a model-based control problem and then be optimised.

The greatest challenge in solving this problem was defining the objective function associated with the optimal

charging profiles given in [36] which maximised cycles to failure. Two objective functions are presented, one which

was found from the data of [36] using linear regression and the second minimised the cumulative increase in cell

temperature during the charge.

3.1. Problem set-up

The optimal charging profiles were generated by solving optimisation problems of the form

min
x

f (x) (16a)

subject to:



















c(x) ≤ 0,

ceq(x) = 0,

Px ≤ q.

(16b)

Here, the cost function is denoted by f (x), the nonlinear equality constraints of the problem are captured by the vector

ceq(x), the nonlinear inequality constraints by c(x) and the linear inequality constraints by Px ≤ q. This separation

between nonlinear and linear inequality constraints was made just to clarify the problem formulation. The decision

vector x was formed from the state and applied current values at each time step, where K = 4 is the total number of

time-steps

x =
[

i[0], v1[1], z[1],∆T [1], i[1], v1[2], z[2],∆T [2], . . . , i[K − 1], v1[K], z[K],∆T [K]
]⊤
. (17)

It was assumed that each cell was initially completely discharged and v1[0] = z[0] = ∆T [0] = 0 and that charging

ceased immediately after K steps, so i[K] = 0 A. The time steps were defined such that the cell was charged an equal

amount of SOC in each time step, in this work and in [36] this was 20% SOC per step.

3.2. Constraints

The equality constraints of (16b) (ceq(x) = 0) were used to include the cell model and the problem definition in the

optimisation. Thus, the rows of ceq(x) implemented the discrete cell model (10) and ensured the sum of the variable

time steps equalled 10 minutes. The definition of ∆t[k] (12) ensured SOC = 80% after 10 minutes if K = 4 and

p = 0.2.

The inequality constraints of (16b) (c(x) ≤ 0 and Px ≤ q) were used to impose bounds on the states of the model.

Upper and lower limits were imposed on i, z, and ∆T using the linear inequality constraint, Px ≤ q. The matrix P is

a sparse selector matrix where each row contains a single 1 or −1 to select an element of x and q is a column vector.
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These elements were defined by the following inequalities

−i[k] ≤ −imin, ∀k ∈ [0,K − 1], (18)

z[k] ≤ zmax, ∀k ∈ [1,K], (19)

−z[k] ≤ −zmin, ∀k ∈ [1,K], (20)

∆T [k] ≤ ∆Tmax, ∀k ∈ [1,K]. (21)

Here, zmax = 1 and zmin = 0 (from the definition of SOC [48]), and imin = 0 A (only charging, no discharging). The

maximum current input was indirectly limited by the bounds on voltage and temperature, which is consistent with

the bounds set in [36]. The maximum allowable increase in temperature ∆Tmax was 4.5◦C, as this was the maximum

observed temperature increase seen in our simulations of the top three performing charging currents from [36], which

all reached ≈ 34.5◦C after 10 minutes and the first 4 current steps.

The nonlinear inequality constraints were defined by the upper and lower bounds on output voltage. Thus, the

rows of the output vector of c(x) are equal to the following expressions

vout[k] − vmax, ∀k ∈ [0,K], (22)

−vout[k] + vmin, ∀k ∈ [0,K], (23)

vout[k − δt] − vmax, ∀k ∈ [1,K], (24)

−vout[k − δt] + vmin, ∀k ∈ [1,K], (25)

where vmax = 3.6 V and vmin = 0 V to be consistent with [36]. Without the additional constraint on vout[k − δt], the

voltage just before the switching point of the currents was found to exceed the bound during the fast charging, as a

result of the R0i[k] term. Imposing this additional constraint prevented this violation.

3.3. Cost function

The cost function f (x) was designed to minimise cell degradation during a fast charge to 80% SOC in 10 minutes.

The first approach for designing the cost function, which is a key concept in this paper, was to learn its structure

directly from the data of the four-step charging protocols from [36] and relate this learned function back to the

identified model’s states. Battery degradation is generally regarded as being challenging to model accurately and

efficiently, as it comprises a complex combination of inter-related physical and chemical mechanisms [52, 38, 53].

For example, one of the dominant mechanisms for cell degradation is the growth of the ‘solid electrolyte interphase’

(SEI) [52]. Generally, a greater temperature during (dis)charging leads to a greater rate of SEI layer growth and

degradation [54], which would suggest that high temperatures are detrimental to the health of the cell. Conversely,

lithium plating, another degradation mechanism that is particularly prevalent during fast charging, causes greater

battery degradation at lower temperatures [55]. So, exposure to both high and low temperatures can be detrimental to

a battery’s health. Together, such mechanisms highlight the difficulty in defining an all encompassing cost function

to represent battery degradation in terms of a models’ physical states. For this reason, that there has been significant

interest in the use of data-driven methods to compute fast charging protocols, such as those used in [36, 38].

The results of this paper build on those from [36], where fast charging protocols were generated using a data-

driven approach to maximise the number of cycles to failure. As in [36], we define ‘cycles-to-failure’ (CtF(x)) as the

number of cycles prior to the discharge capacity of the cell dropping below 80%. In this paper, the goal was to obtain

an expression for this predictor in terms of the evolution of the model states and applied currents of (10). In other

words, the goal was to open the black box of the cycle-life predictor from [36], giving it a physical interpretation and

enabling it to be used within a model-based optimal control problem.

To this end, the cycles-to-failure were expressed as

CtF(x) =w1i[0] + w2i[1] + w3i[2] + w4i[3] + w5∆T [1] + w6∆T [2] + w7∆T [3] + w8∆T [4] + w9, (26)

which is a weighted sum (with weights w) of the applied current and temperature values at each sampling point during

the fast charge. To estimate the weight vector w, batch 5 of [36] was used, as it was the only batch with known cycles

to failure. As batch 5 only contained nine unique charging protocols, the weight vector w could only contain nine
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elements if all protocols were to be used for training, in order to avoid issues of over-fitting. The structure of (26)

contains the current and temperature information at each of the discrete steps. This simple linear function is only a

heuristic, with this parameterisation chosen to capture the complex relationship between degradation rates and cell

temperature as well lithium plating and the charging current. If more data was available, then more general features

would have been used in (26), including voltage information.

This limitation reinforces the need for more training data, composed of various different cell charging profiles and

cells, if the full extent of these battery management and control methods are to be exploited.

The state samples (x) used to generate the weights were obtained from the variable-time-step model (Equation

(10)) rather than the raw data, as this ensured consistency throughout the training data for the CtF model of Equation

(26). The weight vector w for the CtF(x) was then found using standard least-squares fitting

w = (Λ⊤Λ)−1Λ⊤b

where Λ is a (45 × 9) matrix with rows of the simulated states (x) corresponding to the coefficients of the elements

of w in Equation (26), and b is a (45 × 1) column vector containing the experimental cycles to failure of each of the

nine unique charging protocols’ five repetitions. w6 was found to be negative, whereas w5, w7, and w8 were found

to be positive, suggesting that a high ∆T [k] is beneficial to cycle life at some time instants and not at others. Such

details further highlight the complexities of correctly capturing degradation features within a single, state-defined,

cost function. The trained elements of w are given in Appendix D.

Because the rank of Λ is equal to the number of weights, the predictions for each of the nine training protocols

are equivalent to the mean of their five experimental cycles to failure. The mean absolute error between the predicted

and experimental cycles to failure across the training set was 76.5 cycles, which is due to variation in the experiments

from their corresponding experimental mean. It is noted that this is not best practice and the performance of the model

when extrapolating outside of the trained range is not expected to be good. This also meant that there was not enough

data for a testing set so the performance of this model could not be validated. However, this was considered the best

course of action given the limited availability of open-source experimental cycling data in [36].

As well as cycles-to-failure, another cost function was considered, the cumulative gain in cell temperature during

the fast charge

TΣ(x) =

K
∑

j=1

∆T [ j]. (27)

The reason for including this additional cost function in the results was to highlight the flexibility of the model-

based optimisation to adapt to new problem settings. This cost function was identified after it was noticed that

the temperature plots of cells charged with the optimal profiles from [36] all appeared to have a low integral of

temperature.

3.4. Solution method

The MATLAB function fmincon [56] was used to solve the optimisation problems of Equation (16). It was found

that, primarily due to the time-varying step-sizes of Equation (12), the optimisation problem of Equation (16) was

non-convex. For that reason, local optima were obtained when the optimisation was initialised at different starting

conditions, corresponding to the currents being uniformly distributed as random values between 0 and 10 A and the

all other states initialised at 0. Here, 5000 such randomly sampled initial conditions were considered. Generally,

the computed local minima found were expected to be close to the global minimum, as the local minima did not

show significant variation. The solution giving the lowest cost function value was then taken as the global minima.

It is acknowledged that more advanced optimisation solvers than fmincon exist for solving such problems, but this

algorithm was found to be sufficient for the problem at hand. Notably, it was easy to implement (especially in handling

the constraints of (16b)), scalable and provided good solutions. From inspection of the local minima, it is not expected

that significant reductions in the cost would be achievable using more advanced algorithms specifically designed for

non-convex problems.
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4. Results

This section details the results obtained from implementing the above fast charging optimisation method. Figures

6 and 7 show current profiles and corresponding outputs which maximised the predicted cycles to failure with f (x) =

−CtF(x).
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Figure 6: The optimal charging profiles to maximise cycle life whilst charging a cell to 80% SOC in 10 minutes, and the voltage response of these

current inputs. Solutions for when both the temperature is constrained and when it is unconstrained are shown.
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Figure 7: The cell thermal responses and heat generation rates to the charging profiles of Figure 6.

In these figures, the impact of applying the constraint of Equation (21) limiting the increase in cell temperature

was also investigated. It was found that when the temperature constraint was in place, the optimal solution predicted

the number of cycles-to-failure would be 978 cycles, but when the temperature constraint was removed, it predicted

1078 cycles. Both of these values exceeded all of the cycle-to-failure predictions made by the model (26) for charging

protocols in its training set, highlighting the benefits of model-based optimisation.

For reference, the experimental minimum, maximum, and mean cycle lives from the validation batch of the top

three optimal charging profiles from [36] are given in Table 4 along with the cycle lives predicted by the ‘early outcome

predictor’ of [36]. Using the labelling notation of [36], the computed optimal protocol obtained by solving Equation

(16) with the temperature constraint was (4.688C-6.451C-4.786C-3.905C) and without the temperature constraint it

was (4.289C-7.384C-5.301C-3.621C). In this notation the current of each of the four steps are given in order in C-rate.

4.1. Discussion

With only limited available data to train the linear model for the cycles-to-failure of Equation (26), care should be

taken when extrapolating the predictions for the cycles-to-failure of this model. The estimations from the experiments

of [36] and their early outcome predictor should be regarded as being more trustworthy, although consideration of
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Charging Profile
Mean

Cycle Life

Minimum

Cycle Life

Maximum

Cycle Life

Early Outcome

Predictor [36]

Model Predicted

Cycle Life (26)

CLO1

(4.8C-5.2C-5.2C-4.160C)
890 774 1082 1185 890

CLO2

(5.2C-5.2C-4.8C-4.160C)
912 775 1166 1183 912

CLO3

(4.4C-5.6C-5.2C-4.252C)
884 678 1089 1174 884

Maximising CtF

(∆Tmax = 34.5◦C)
978

Maximising CtF 1078

Minimising
∑K

j=1 ∆T [ j]

(∆Tmax = 34.5◦C)
670

Table 4: Table comparing the experimental cycle lives and cycle lives predicted by the early outcome predictor of [36], as well as the predictions of

Equation (26). CLO1-3 were present in the training set of the CtF model so predictions are equivalent to the mean cycle life. Protocols are denoted

by (CC1-CC2-CC3-CC4) in C-rate.

Table 4 shows even that predictor is fallible and that experimental cycle lives can vary over a range of hundreds

of cycles. Any optimal profile that is estimated to have a cycle life greater than its training set should be treated

with caution until further experiments are carried out, since it is extrapolating beyond its training data. Therefore,

it is acknowledged that the proposed optimal charging protocols should be validated against other suggested optimal

profiles and the rest of the validation set of [36]; a greater number of trials of each protocol will be required to be

confident in its mean predicted cycle life.

The cycle life model of (26) could have been trained from the early outcome predictions for each of the 224

charging profiles trialled by [36] for a larger training dataset. However, all of the predictions have large predicted

standard deviations of roughly 100 cycles [36] and training a model on these predictions would introduce the same

biases into our model. It would then be unsurprising if the model predicted the same or a similar charging profile to the

protocol with greatest predicted cycle life from [36] (CLO1) as one which would maximise cell cycle life. The same

argument could be made based on the fact that the top three protocols of [36] (CLO1-3) were in batch 5 which was

used to train the cycle life predictor model (26) and constituted the protocols with the largest cycle life; consequently,

it may be possible that the proposed approach is also biased in their favour.

With the proposed method involving a model-based optimisation, there is a continuous parameter space of current

steps to explore. This continuous search space contrasts with the discrete steps allowed in the experiments of [36]

which yielded 224 set different current profiles to experiment on. The discrete levels allowed for CC1-3 were spaced

every 0.4C between 3.6C and 6C [36]. Of the discrete profiles considered in [36], the 4-step protocols ‘closest’ to the

computed optimal solution of Equation (16) with ∆Tmax = 34.5◦C were: (4.4C-6C-4.8C-4.328C) which was ranked

#27/224 with a predicted cycle life of 1120, and (4.8C-6C-4.8C-4C) which was ranked #36/224 with a predicted cycle

life of 1104 (cycle lives predicted by [36]). The protocol closest to the optimal solution of Equation (16) without

the upper bound on temperature was (4.4C-7C-5.2C-3.691C), which was ranked #61/224 with a predicted cycle life

of 1022. Given the large experimental range of cycle lives of the protocols in the data and the standard deviation of

the predicted cycle lives being around 100 for each protocol, it is expected that the protocols generated by solving

Equation (16) would have cycle lives comparable, or better, than the best performing ones of [36] because of the

model-based optimisation.

The objective function minimising the sum of the sampled cell temperature values (given by TΣ(x) in Equation

(27) and subject to the thermal constraint of of Equation (21)) was also trialled as a candidate function for which

the optimal profiles from [36] were minimising. Figures 8, 9, and 10 show comparisons of current, voltage, and

temperature between the top 3 protocols from [36] (CLO1-3), the 4-step current profile which minimised the sum of

the sampled temperatures, and the protocol which maximised the cycle life of Equation (26) subject to the temperature

constraint of Equation (21). Each of these protocols were simulated using the discrete model of Equation (10) at a

time step of ∆t[k] = 0.001 s. The figures show that this objective function of the sum of the sampled temperatures
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Figure 8: Comparison of the optimal current profiles of [36] compared to our optima for minimising the sum of sampled temperatures and

maximising predicted cycle life.
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Figure 9: Comparison of the optimal voltage profiles of [36] compared to our optima for minimising the sum of sampled temperatures and

maximising predicted cycle life.

performed well given its simplicity. The optimum charging profile it generated was more similar to the best performing

profiles of [36] than the protocol which maximised the cycles-to-failure of (26). However, having similar profiles did

not relate to similar predicted cycles-to-failure. As Table 4 shows, the CtF for the protocol minimising the sum of

the temperatures was 670 which was significantly lower than the CtF of 890 for CLO1. This difference highlights the

sensitivity of a cell’s cycles-to-failure with respect to the cycling protocol and how even similarly looking protocols

can have significant variations in their cycle lives. It also highlights the benefits of optimising over the learned cost

function, by maximising the CtF directly, compared to using adhoc descriptions of cell degradation such as the sum

of temperatures.

In order for methods such as the model-based solution of Equation (16) to be used effectively, an accurate cell

model was required as well as a suitable definition of the cost function (e.g. minimising cell degradation). For

maximising cell cycle life, the objective function was difficult to define [52, 38, 53], particularly since only the

first cycle was simulated. In [36], data from the first 100 cycles were used and despite this, the cycles-to-failure

predictor still over-predicted the cycle lives of its top three optimal charging protocols, often by over 100 cycles [36].

Ultimately, it is difficult to model and optimise for cycles-to-failure when the number of cycles can change by 100

between experiments using the same charging protocol [36]. In order to train models for degradation estimation, more

data is required and data-driven methods will have to be employed in tandem with models.

5. Conclusions

In this paper, a method to optimise fast charging profiles for lithium ion batteries was proposed. The main novelty

of the proposed method was its “hybrid” nature, combining elements of both data-driven and model-based algorithms
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Figure 10: Comparison of the optimal temperature profiles of [36] compared to our optima for minimising the sum of sampled temperatures and

maximising predicted cycle life.

to compensate for each of their weaknesses and exploit their strengths. In particular, the proposed method interpreted

the fast charging protocols of [36], obtained using a data-driven approach, as the solution of a model-based optimal

control problem. This problem formulation gave the method extra flexibility, in the sense that it exploited the ability

of the data-driven approach to learn cell degradation directly from the data with the model-based approach’s strengths

of extrapolation, optimisation and providing performance guarantees. Extended use of this method is likely to lead

to time and computational efficiency gains, meaning that optimised charging protocols are found that are better than

those determined using a purely data-driven approach and are identified with fewer experiments. The advantages of

the proposed approach were demonstrated by computing fast charging profiles for A123 Systems APR18650M1A

cells, the results of which predicted an increase in the cycles-to-failure from 912 to 1078 cycles compared to [36].

Such performance gains highlight the potential of fusing data-driven and model-based algorithms for optimising fast

charging protocols. Retraining the model and re-applying the method after a set amount of cycles would allow the

optimised fast charging currents to adapt in response to the cell ageing. The work-flow outlined in Figure E.13 of

Appendix E details how such adaptive charging could be implemented.

The results of this paper identified several opportunities for future work. Most importantly, the need for rich,

large, open-source data sets of lithium ion batteries, covering a range of different charging profiles and chemistries,

was highlighted as a critical bottleneck for the development of fast charging algorithms. Moreover, even though

significant performance gains were predicted using the proposed method that was based upon simple models, further

gains are to be expected with more comprehensive models and algorithms, for example electrochemical models.

The value of using electrochemical models is that the degradation mechanisms could be included directly into the

fast charging optimal control problem, rather than being learned from data. However, existing models for battery

degradation are challenging to parameterise and there has been relatively limited degradation model validation against

experimental data– which is why data-driven solutions have grown in recent years. Finally, there are potential benefits

from synchronising the model development and data-collection steps of the process highlighted. Here, the model

was developed after the experiments were conducted; in fact, they were trained on the data of [36]. If the model

development had instead been conducted as the data was collected then it could have been used to propose new testing

protocols, thereby potentially reducing the number of experiments required and increasing the richness of the data

sets. Combining the modelling and data collection work at the earliest stages of lithium ion battery research projects

is expected to produce the greatest benefits, as opposed to retrofitting models onto historical data.
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Appendix A. R0 variation with SOC

Values of R0 were calculated from the training set at different values of SOC. In [36], the charging protocols

contained step changes in the charging current every 20% SOC which allowed the estimation of the series resistance

R0 at these points by dividing the magnitude of the step change in voltage by the corresponding magnitude of the step

change in current [48]. It was found that the value of R0 was approximately constant across values other than at SOC

= 0, where it was higher. This is shown in Figure A.11. Different schemes were trialled with a higher R0 at low SOC,

but all caused an initial overshoot of Vout unless R0 fell to its steady state value almost instantaneously, to the point

where taking R0 to be constant was an acceptable simplification; any error this introduced would be absorbed into

an artificial increase in OCV(z) at low SOC. Whilst this may not be reflective of experimental data [41] this gave the

advantage of a simpler model and faster optimisation. The constant value of R0 = 0.0163Ω used is the average value

of the data points for R0 excluding the values when z = 0.
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Figure A.11: Variation of R0 with SOC estimated from the data of [36].

Appendix B. Derivation of the discrete time model

To pose the optimisation as a discrete-time optimal control problem, it was necessary to discretise this model in

time with the states being defined along the sampling points tk, k = 0, 1, . . . ,K. Square brackets will be used to

denote the discrete-time signals throughout, as in i[k] = i(tk) with the sampling interval ∆tk between times tk−1 and tk
described by Equation (12).

During the discretisation, the current i(t) satisfied a zero-order hold profile, changing only at the sampling points

tk. This resulted in a discrete-time current sequence defined by i[k] = i(k∆t[k] + δt) ∀δt : 0 ≤ δt < ∆t[k].

The goal was then to integrate the continuous dynamics of Equations (1) and (7) across one time-step to generate

the discrete time model. Beginning with the electrical dynamics, and with the current i[k] being zero-order hold, the

discretised relaxation voltage from Equation (1) was simply

v1[k + 1] = e−λ1∆t[k]v1[k] + b1i[k]

∫ tk+1

tk

e−λ1(tk+1−τ)dτ, (B.1)

= e−λ1∆t[k]v1[k] +
b1

λ1

(

1 − e−λ1∆t[k]
)

i[k]. (B.2)

Similarly, the discretised state-of-charge was

z[k + 1] = z[k] + b2i[k]

∫ tk+1

tk

dτ = z[k] + b2i[k]∆t[k]. (B.3)
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However, obtaining an exact expression for the discretised thermal model equation is complicated by the v1(t)i(t)

term in Equation (9). Whilst i(t) is constant over the sampling period, v1(t) is not, and, therefore, neither is v1(t)i(t).

By integrating the thermal dynamics of (7), then

∆T [k + 1] = e−λ2∆t[k]∆T [k] +

∫ tk+1

tk

e−λ2(tk+1−τ)(b3i[k]2 + b4v1(τ)i[k])dτ,

= e−λ2∆t[k]∆T [k] +
b3

λ2

(

1 − e−λ2∆t[k]
)

i[k]2 + b4i[k]

∫ tk+1

tk

e−λ2(tk+1−τ)v1(τ)dτ.

Using Equation (B.2), the relaxation voltage (v1(t)) during the sampling period can be shown to satisfy

v1(t) = e−λ1(t−tk)v1[k] +
b1

λ1

(

1 − e−λ1(t−tk)
)

i[k], ∀t ∈ [tk, tk+1]. (B.4)

Substituting this expression into Equation (B.4) allows the integral of Equation (B.4) to be calculated exactly, as

detailed in Equation (B.5). Substituting this expression back into Equation (B.4) gives the exact form of the discrete-

time thermal dynamics, given in Equation (B.9).

∫ tk+1

tk

e−λ2(tk+1−τ)v1(τ)dτ =

∫ tk+1

tk

e−λ2(tk+1−τ)

(

e−λ1(τ−tk)v1[k] +
b1

λ1

(

1 − e−λ1(τ−tk)
)

i[k]

)

dτ, (B.5)

= v1[k]

∫ tk+1

tk

e−λ2tk+1+λ1tk+(λ2−λ1)τdτ +
b1

λ1

i[k]

∫ tk+1

tk

(

e−λ2tk+1+λ2τ − e−λ2tk+1+λ1tk+(λ2−λ1)τ
)

dτ,

(B.6)

=
1

λ2 − λ1

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

v1[k]

+
b1

λ1λ2

(

1 − e−λ2∆t[k]
)

i[k] −
b1

λ1(λ2 − λ1)

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

i[k]. (B.7)

∆T [k + 1] = e−λ2∆t[k]∆T [k] +
b3

λ2

(

1 − e−λ2∆t[k]
)

i[k]2 +
b4

λ2 − λ1

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

i[k]v1[k]

+
b1b4

λ1λ2

(

1 − e−λ2∆t[k]
)

i[k]2
−

b1b4

λ1(λ2 − λ1)

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

i[k]2, (B.8)

= e−λ2∆t[k]∆T [k]

+

((

b3

λ2

+
b1b4

λ1λ2

)

(

1 − e−λ2∆t[k]
)

−
b1b4

λ1(λ2 − λ1)

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

)

i[k]2

+
b4

λ2 − λ1

(

e−λ1∆t[k]
− e−λ2∆t[k]

)

i[k]v1[k]. (B.9)

Collecting Equations (B.2), (B.3), and (B.9) gives the full discrete state space model of Equation (10) with the

parameters defined in Equation (11).
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Appendix C. Piece-wise polynomial OCV curve

Using the parameters of Table C.5, the open circuit voltage OCV(z(t)) curve was fitted using the piece-wise

polynomial

OCV(z(t)) =

5
∑

j=0

ωi, j (z(t) − Zi−1) j , ∀z(t) ∈ [Zi−1,Zi) (C.1)

with the weights ωi, j and the local regions of the piece-wise polynomial approximation Zi stated in Table C.5 . Here,

the total number of regions was i = 1, 2, . . . , 6 and Z0 = 0.

i Zi ωi,0 ωi,1 ωi,2 ωi,3 ωi,4 ωi,5

1 0.001 2.114 546.6 0 0 0 0

2 0.2 2.661 19.28 -294.3 2292 -8752 13011

3 0.875 3.241 0.238 0 0 0 0

4 0.92 3.241 0.238 0 0 0 0

5 0.95 3.509 6.518 -172 1480 0 0

6 1 3.590 0.204 0 0 0 0

Table C.5: Parameters of the open circuit voltage curve from Equation (C.1).

Figure C.12 shows the piece-wise polynomial representation of the open-circuit curve defined by Equation (C.1)

as well as the data points used for the fitting and the moving average fit of those points. It can be seen that this curve

is continuous but its gradient is not at all junctions. The function was created to be monotonically increasing, which

is generally realistic [57], as it was hypothesised that ensuring monotonicity of this curve would aid in solving the fast

charging optimisation problems.

Figure C.12: Comparison between the modelled open circuit voltage curve as a function of state-of-charge from Equation (C.1) with that predicted

from the data of [36].

Appendix D. Cycles to failure predictor

Table D.6 contains the trained values of the vector w from Equation (26).
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w1 w2 w3 w4 w5 w6 w7 w8 w9

-2625.19 358.30 -1642.00 -985.47 8568.65 -3313.98 2239.72 1516.68 6296.58

Table D.6: Table displaying the values of the trained weights for predicting cycles to failure using Equation (26).

Appendix E. Method work-flow

Figure E.13 shows the workflow of the proposed method for optimising health-aware fast charging protocols by

combining both model-based and data-driven approaches. This work-flow allows the method to be adaptive in the

sense that, as new cycling data is generated, the parameters of the model and the degradation cost function can be

re-learned using the parameter derivation method above and (26) before the optimisation problem of (16) is re-solved

to compute new charging protocols. In this way, the optimised fast charging protocols can evolve in response to the

cell ageing.

Experimental 
cycling data

Parameter estimation of the 
electro-thermal model

Learn relationship between 
cycles-to-failure and variables 

of the fast charging 
optimisation

Equation (26)

Optimise fast charging 
protocols

Equation (16)

Fast charge cell

Figure E.13: Illustration of the proposed method to generate optimal fast charging protocols. From experimental data, the method learns a

relationship between the cell’s cycles-to-failure and the decision variables of the fast charging problem and it also estimates the parameters of an

electro-thermal battery model. It then solves a model-based optimal control problem to generate optimised fast charging protocols that minimise

the impact on the cell’s health.
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