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Abstract: Various facial colour cues were identified as valid predictors of facial attractiveness, yet the
conventional univariate approach has simplified the complex nature of attractiveness judgement for
real human faces. Predicting attractiveness from colour cues is difficult due to the high number of
candidate variables and their inherent correlations. Using datasets from Chinese subjects, this study
proposed a novel analytic framework for modelling attractiveness from various colour characteristics.
One hundred images of real human faces were used in experiments and an extensive set of 65 colour
features were extracted. Two separate attractiveness evaluation sets of data were collected through
psychophysical experiments in the UK and China as training and testing datasets, respectively. Eight
multivariate regression strategies were compared for their predictive accuracy and simplicity. The
proposed methodology achieved a comprehensive assessment of diverse facial colour features and
their role in attractiveness judgements of real faces; improved the predictive accuracy (the best-fit
model achieved an out-of-sample accuracy of 0.66 on a 7-point scale) and significantly mitigated the
issue of model overfitting; and effectively simplified the model and identified the most important
colour features. It can serve as a useful and repeatable analytic tool for future research on facial
impression modelling using high-dimensional datasets.

Keywords: facial attractiveness; skin colour; multivariate regression; machine learning; predictive
accuracy

1. Introduction

Facial attractiveness plays a pivotal role in shaping human perceptions, influencing
societal interactions, and driving decision making across various domains [1,2]. Despite the
significance of facial structures [3–5], more recent research increasingly highlights the influ-
ential role of facial colour cues, encompassing skin tone, colour variations, and contrasts,
on attractiveness evaluations, often associated with perceptions of health, age, and vitality.
For instance, overall facial redness, yellowness, and lightness are most widely examined
as cultural-specific determinants of attractiveness perception [6–10]. The colouration of
specific regions, such as cheeks, periorbital area, and lips, has also been identified as a
valid predictor of facial attractiveness [11,12]. Furthermore, more uniform skin colour or
accentuated colour contrasts between facial features like eyes, brows, and mouth relative to
the surrounding skin are both correlated positively with perceived attractiveness [13–17]. A
summary of these potential colour cues of facial attractiveness is provided in the materials
and methods section.

The axiom in most previous research described above is to change a single colour
variable in a controlled experiment for attractiveness evaluation. Such isolation, however,
neglects the holistic and complex nature of attractiveness judgement upon real human
faces and makes it impossible to assess the relative importance of different colour variables
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in real scenarios. Meanwhile, the manipulation could easily make the colour out of the
ecologically valid range. In contrast, the recent growing body of work has shifted towards
the use of realistic skin models in experiments for face perception or preference evaluation
without any image manipulation [13,18–23]. The problems of the univariate experimental
approach and the necessity of using realistic models for mapping physical characteristics
to facial impressions or preference judgements have been emphasised [24,25].

Currently, even research employing realistic skin models could underestimate the
role of colour in preference judgements, as very limited colour characteristics (usually, the
overall skin tone) have been considered together with many other physical or biophysical
properties of the face [13,18,20,21]. Little is known about the impact of diverse colour cues
taken together on facial attractiveness judgment. Our recent work has also confirmed
the limited role of the overall skin tone in preference judgements on real human faces,
but efforts have been made to show there are stronger links between colour and facial
preference when more variables are included [22,23]. In the current study, a larger set
of facial images of real human faces was used with colour rigorously controlled. Colour
analyses were performed on each of the images to extensively include potential colour cues
of attractiveness.

Due to the high number of candidate colour variables and possible inherent correla-
tions between them, predicting attractiveness from various colour cues could be difficult
and may depend on the modelling methods. An important challenge is to select valid
predictors from a large number of variables and avoid the problem of multicollinearity and
overfitting. Despite its difficulty, there is a strong need to predict facial preference in many
applications such as cosmetics, medical and aesthetic surgeries, lighting, and the imaging
industry [26–28]. From a practical perspective, it is often desirable to achieve good predic-
tive accuracy with fewer explanatory variables. Thus, different multivariate approaches
were tested in this study regarding their fitness in facial attractiveness modelling. To avoid
the issue of overfitting, an independent testing dataset of attractiveness evaluation was
collected to validate the out-of-sample predictive accuracy of different modelling methods.

Multivariate regression techniques are useful for modelling the relationship between
a large set of explanatory variables and the response variable. Multiple linear regression
is one of the most popular multivariate statistical techniques utilised for forecasting in
diverse fields such as the environmental [29–31], economics [32], psychology [33], and
facial impression [13,18,19]. Running the full model with too many variables, especially
irrelevant ones, will lead to a needlessly complex model. To simplify the model, subset
selection, such as stepwise regression, is used to incrementally incorporate or exclude
predictors based on certain criteria (e.g., AIC, correlation significance, etc.), ensuring
only vital variables remain [34]. Two other strategies have been proposed to address the
issue of multicollinearity. The first reduces the dimensionality of the data matrix before
modelling, using methods like principal component regression (PCR) and partial least
squares regression (PLSR). The method overcomes the problem of multicollinearity by
projecting the original predictors into an uncorrelated subspace of principal components or
latent components and then fitting the linear regression model [35–37]. The second strategy
utilises a technique from ML, regularisation or penalisation, to constrain the coefficients
of a model and reduce the variance of the parameter estimators. The most well-known
regularisation regression methods are ridge, lasso, and elastic net. Ridge regression (RR)
still maintains the structure of the linear regression model but shrinks the coefficients to
approach 0 [38,39]. Least absolute shrinkage and selection operator regression (LASSO)
penalises high coefficients of the informative variable to be 0 [40]. Elastic net regression (EN)
combines shrinkage from RR and LASSO and balances the two algorithms by weighting the
two effects [41,42]. The implementation of this approach in facial impression research can
be found in previous work [43,44]. The current study assessed all the strategies mentioned
above in terms of their effectiveness in attractiveness modelling from colour traits.

Using datasets from Chinese subjects, this study aimed to establish a new analytic
framework for attractiveness modelling based on colour cues. The framework was designed
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to address the limitations in prior research: (1) the univariate experimental approach was
avoided; instead, a large set of realistic skin models was used to extract facial colour
features with ecologically valid variations; (2) an extensive range of colour characteristics
was included, allowing a more comprehensive evaluation; and (3) the issue of inherent
correlations and potential model overfitting was addressed by comparing various statistical
and machine learning regression techniques and using a novel testing dataset, which
played a crucial role in validating the predictive accuracy of different models. The proposed
methodology effectively improved predictive accuracy and could serve as a useful and
repeatable analytic tool for future studies on robust facial impression modelling from a
high-dimensional dataset of facial features.

2. Materials and Methods
2.1. Facial Images

One hundred images of real human faces were used as experimental materials. Those
images were all Chinese facial images selected from the Leeds Liverpool Skin Colour
Database (LLSD), with neutral facial expressions and mid-grey backgrounds [45]. The
image dataset was captured by the authors using a Nikon D7000 (Nikon Corporation,
Tokyo, Japan) and a Canon EOS 6D Mark II (Canon Inc., Tokyo, Japan) DLSR camera.
The images were all captured under standard lab conditions and then processed based
on rigorous colour management procedures with the purpose of accurately measuring
and reproducing the colour appearance of human faces. The details of the photograph
and colour management have been described in previous work [22]. The colour-calibrated
images were used in experiments for attractiveness evaluation as representations of the
naturally occurring facial colour variations in Chinese populations.

2.2. Facial Attractiveness Evaluation

Two separate sets of facial attractiveness evaluation data were collected through psy-
chophysical experiments in Leeds, UK, and Shanghai, China, respectively. The experimental
procedure and data collection method at the two sites were the same: the experiments were
conducted in a dark room using a calibrated display; the observers viewed each of the facial
images presented in a random order and then made a categorical judgement of perceived
facial attractiveness based on the skin colour using a 7-point Likert-type scale, where 1
represented ‘least attractiveness’ and 7 represented ‘best attractiveness’. Experiment 1 was
conducted in the UK and had 40 Chinese images assessed by a panel of Chinese observers.
In order to validate the out-of-sample predictive accuracy of different models, an indepen-
dent testing dataset was collected in China (Experiment 2) using a new set of 60 Chinese
images and a new panel of Chinese observers. The same 40 images used in Experiment 1
were also assessed in Experiment 2 to test observer consistency between the two sites.

Experiment 1 used twenty-two Chinese observers (7 males; mean age ± SD = 26.05 ± 3.96)
with normal colour vision. They were all native Chinese and, at the time of study, either stu-
dents or visiting scholars at Leeds University with 1–3 years’ living experience in the UK. Ex-
periment 2 had fifty-one native Chinese observers (21 males, mean age ± SD = 24.45 ± 4.10)
with normal colour vision who participated. They were either students or researchers at
Fudan University, China.

2.3. Proposed Analytic Framework

This research presented a new data analytic framework for facial attractiveness mod-
elling from colour cues, as shown in Figure 1. The main motivation for building this new
framework was to reveal the importance of various facial colour cues under more realistic
conditions and to address model overfitting issues due to the high number of candidate
variables and their correlations.
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Figure 1. The proposed analytic framework.

A four-step analysis procedure was followed. The first step was to identify all the
potential colour predictors of attractiveness. Table 1 summarises the total of sixty-five ex-
planatory colour variables included in this study, the corresponding method of calculation,
and the references. Analyses of those facial colour characteristics were performed on each
of the facial images. The Pearson Correlation Coefficient (two-tailed) was used to assess
the relationships between the attractiveness rating and various colour variables. Based on
the correlation matrix, the second step was to select effective predictors and remove the
irrelevant ones (having non-significant correlations with attractiveness ratings, p > 0.05)
from a large number of variables. Facial attractiveness ratings were then modelled from
the relevant colour characteristics in step 3 using the eight multivariate statistical and ML
regression techniques. In the last step, a model comparison was conducted across different
regression techniques using three criteria, predictive accuracy, simplicity, and interpretabil-
ity. The regression techniques with best model performance were recommended. The
effectiveness of this proposed framework was also validated based on the model com-
parison between the conventional univariate models and the recommended multivariate
approaches.

2.3.1. Facial Colour Analysis

Analyses of the 65 facial colour characteristics listed in Table 1 were performed on
each of the facial images, as in the example shown in Figure 2. Based on the digital camera
colour characterisation, the colour specifications of each pixel were obtained and various
facial colour characteristics were accurately calculated in a device-independent standard
CIELAB colour space [46]. Five categories of facial colour cues, as revealed in previous
studies, were measured in terms of the three CIELAB coordinates (L*, a*, b), together with
the chroma, C*, and hue angle, hab, as they may also be important colour parameters in
relation to perception. The method of image analysis and calculation, explanatory variables,
and references of each colour category are detailed in Table 1. Figure 2 provides a clear
outline of the specific facial regions where those colour analyses were performed.
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Table 1. Summary of facial colour characteristics included in this study.

Category Method Explanatory Variables References

Average skin colour The overall mean colour value of all pixels
within the facial skin area. L*, a*, b*, C*, hab [6,7,10,19,47–49]

Local skin colour
The mean colour values of the pixels within the
five local facial skin areas: forehead, cheek,
nose, chin, and periorbital.

Forehead_L*, a*, b*, C*, hab

[11]
Cheek_L*, a*, b*, C*, hab
Nose_L*, a*, b*, C*, hab
Chin_L*, a*, b*, C*, hab
Periorbital_L*, a*, b*, C*, hab

Feature colour
The mean colour values of the pixels within the
three facial feature areas: lip, brows, and eyes.

Lip_L*, a*, b*, C*, hab
[12]Brows_L*, a*, b*, C*, hab

Eyes_L*, a*, b*, C*, hab

Skin colour variation
The mean colour difference from the mean
(MCDM) of the forehead, cheek, nose, chin,
and overall facial skin area [50,51].

MCDM_Forehead

[13,14,16,52]
MCDM_Cheek
MCDM_Nose
MCDM_Chin
MCDM

Facial colour contrast
The adapted version of Michelson contrasts
between three facial features (eyes, eyebrows,
and mouth) and their surrounding skin [53].

Eyes_C_L*, a*, b*, C*, hab
[17,54–57]Brows_C_L*, a*, b*, C*, hab

Mouth_C_L*, a*, b*, C*, hab

2.3.2. Multivariate Regression Techniques

The data collected in Experiment 1 were used as a training dataset for all model
estimations. The explanatory variables were normalised to have zero mean and unit
standard deviation before modelling. Based on high observer consistency, ratings were
averaged across all observers to create a score for each face before modelling from the face
level colour traits.

Classic ordinary least squares regression (OLS) and seven strategies for robust regres-
sion of high-dimensional datasets were used to predict attractiveness from facial colour
cues. The OLS was included for comparison, where all the relevant colour predictors were
involved in one model without any process of variable selection. The other seven strategies
proposed were based on the three most commonly used multivariate techniques, subset
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selection, dimension reduction, and regularisation. For the regression techniques that have
tuning parameters, a ten-fold cross-validation was performed to determine the optimal
parameters with the maximised model fit and to optimise the algorithms. All the analyses
were carried out in R (RDC, 2010).

• Subset selection regression

Forward stepwise (SF) and backward stepwise (SB) methods were tested and the
subset selection was achieved by an iterative procedure based on Akaike Information
Criterion (AIC) [34,58]. SF starts with intercept and adds colour predictors based on AIC in
a stepwise manner, while SB starts with a full model and removes colour predictors in a
stepwise manner until AIC is no better. The stepwise regression was implemented using
the olsrr package.

• Dimension reduction regression

Two-dimension reduction regressions, principal component regression (PCR), and
partial least squares regression (PLSR) were considered. In PCR, a ten-fold cross-validation
was utilised to determine the number of principal components by minimising the root mean
squared error (RMSE) of the prediction on the one-fold new data. In PLSR, the ten-fold
cross-validation was also adopted to select the optimal number of latent components. PCR
and PLSR were implemented using the pls package.

• Regularisation regression

Three regularisation regression methods were adopted: ridge regression (RR), lasso
regression (LASSO), and elastic net (EN). A ten-fold cross-validation process was used
to define the shrinkage parameter, lambda (while alpha = 0), of RR and control how
aggressively the coefficients were shrunk toward zero. In LASSO, the same ten-fold cross-
validation process was performed to determine the lambda (while alpha = 1). In EN, both
parameters, alpha and lambda, can be tuned to optimise the model fit where alpha controls
the degree to which the model shrinks coefficients and lambda determines how aggressively
coefficients are set to zero. The ten-fold cross-validation was again implemented to generate
the best combination of alpha and lambda with the maximised fit (minimised RMSE). The
regularisation regressions were implemented using the glmnet and caret packages.

2.3.3. Model Comparisons

Different multivariate regression techniques were compared in terms of their predic-
tive accuracy, simplicity, and interpretability. Both the in-sample and the out-of-sample
predictive accuracy were measured using the training dataset collected in Experiment 1 and
the novel testing dataset collected in Experiment 2 (a new set of images and a new panel
of observers), respectively. Root mean square error (RMSE) was adopted as a measure of
predictive accuracy, which calculates the difference between the observed values (attrac-
tiveness scores rated by observers) and modelled values (attractiveness scores predicted
by models). The coefficients of determination R2 show the goodness of fit, calculated as
the square of the Person correlation coefficient between the observed values and modelled
values. By contrast with R2, RMSE is not inflated by the number of predictors and has
the same unit as the original scale used in the experiments. Meanwhile, the number and
selection of colour predictors in each model were considered. For the regression techniques
that perform direct variable selection, such as SF, SB, LASSO, and EN, the model was also
evaluated by the number and selection of colour predictors that remained in the model.
For the rest of the methods including OLS, PCR, PLSR, and RR, all the variables remained
in the model and the rank of the variables was compared according to the standardised
regression coefficients.

To evaluate the effectiveness of the proposed framework, the recommended multivari-
ate approach was also compared with the conventional univariate models. An additional
simulation analysis was conducted to assess the impact of the number of variables (N) on
the model performance. For each N, a corresponding set of colour variables was randomly
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selected from the larger set of relevant predictors. These variables were then utilised to
construct the model, and the resulting root mean square error (RMSE) was calculated to
evaluate model performance. The RMSE was determined for both in-sample (training)
and out-of-sample (testing) datasets. To ensure robustness and account for variability, this
random selection and model building process was iterated 30 times for each value of N.
The resulting RMSEs were then aggregated to calculate the mean and standard deviation,
providing a measure of the model’s accuracy and consistency across different iterations.

3. Results
3.1. Observer Consistency

Cronbach’s alpha coefficient was calculated as a measure of inter-observer variability
for attractiveness ratings across observers [59,60]. The internal consistency was very high
for attractiveness ratings in both Experiment 1 (Cronbach’s alpha = 0.96, 95% CI [0.94,
0.98]), and Experiment 2 (Cronbach’s alpha = 0.98, 95% CI [0.98, 0.99]).

The rating results of the same forty Chinese images used in both experiments were
compared to assess the consistency between the two groups of Chinese observers, and the
two sets of rating scores were found to be significantly highly correlated (Person’s correla-
tion coefficient: r(38) = 0.94 [0.89, 0.97], p < 0.001). The high consistency of the preference
judgement results between the two experiments showed that the short experience of living
abroad would not affect the aesthetic preference of Chinese observers.

3.2. Correlation Matrix

Figure 3 shows the correlation matrix between the attractiveness ratings and all the
facial colour characteristics, and the colour variables that have significant correlations
(p < 0.05) with attractiveness ratings are marked in red. Among the five different colour
coordinates, all the significant colour cues were basically related to skin lightness (L*),
redness (a*), and hue angle (hab) rather than yellowness (b*) or chroma (C*). The twenty-one
significant colour characteristics were then used as valid explanatory variables in the next
step of the mathematical modelling. Note that some of these facial colour characteristics
were correlated with each other, e.g., the local skin lightness (L*) was often highly correlated
with the average skin lightness (L*) of the same faces. Further variable selection was carried
out during the modelling process and the collinearity was considered when building the
models.

3.3. Comparisons of Multivariate Regression Techniques
3.3.1. Predictive Accuracy and Model Fit

The results of the in-sample and out-of-sample model performance of the eight regres-
sion methods are shown in Table 2. Differences in RMSE values between different models
were relatively smaller for the training dataset (from 0.42 to 0.62) but larger for the testing
dataset (from 0.66 to 1.35). The range of R2 for the training dataset across different models
was from 42.6% to 73.9% and is always lower on the test, as expected. OLS showed the
lowest RMSE and highest R2 value for the training dataset; it performed the worst on the
testing dataset. In this study, PCR selected two principal components for optimal model
fit, and the two components explained 58.6% of the variance in the original predictors and
42.6% of the variance in attractiveness; PLSR selected only one component, which explained
41.5% of the variance in the original predictors and 44.8% of the variance in attractiveness.
Regularisation techniques achieved better out-of-sample model performance than all the
other models, where EN showed the lowest RMSE value and RR had the highest R2 value
for the testing dataset.
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Table 2. Comparison of the eight multivariate regression algorithms based on the RMSE and R2 for
the training dataset and the testing dataset.

Algorithms Training
RMSE

Training
R2 (%)

Testing
RMSE

Testing
R2 (%)

OLS 0.42 73.9 1.35 10.8
Subset selection

SF 0.51 61.2 0.82 38.5
SB 0.44 71.4 1.17 12.0

Dimension reduction
PCR 0.62 42.6 0.71 39.9
PLSR 0.61 44.8 0.68 39.6

Regularisation
RR 0.60 51.8 0.67 43.5
LASSO 0.54 58.1 0.70 39.4
EN 0.55 56.9 0.66 41.8

The predictive accuracy of the eight regression models in predicting facial attrac-
tiveness is also demonstrated in the bar plots in Figure 4. The OLS and subset selection
regressions showed lower in-sample RMSE values but higher out-of-sample RMSE val-
ues. The models using dimension reduction and regularisation techniques were just the
opposite, resulting in closer RMSE values between the training dataset and the testing
dataset. The scatter plots in the Supplementary Materials give the comparisons between
the actual values of facial attractiveness ratings recorded during the experiments and the
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predicted values of facial attractiveness calculated from the regression models of each of
the facial images (each red data point in the left column represents one of the forty facial
images that were judged in Experiment 1, and each blue data point in the right column
represented one of the sixty facial images that were judged in Experiment 2). The different
degrees of dispersion of the testing dataset also indicate the different out-of-sample model
performances as mentioned above.
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3.3.2. Ranking and Selection of Predictors

The numbers of colour predictors that were selected by the SF, SB, LASSO, and EN
models were 7, 11, 11, and 14, respectively. For the OLS, PCR, PLSR, and RR models, all
21 variables remained in the model. Based on the standardised regression coefficients
in all regression models, the colour predictors were ranked in each model. Considering
that the regularisation techniques gave the better predictive accuracy as described in the
previous section, the top 11 colour predictors selected by both LASSO and EN are listed in
Table 3, ordered by the relative importance of each colour predictor (according to absolute
standardised regression coefficients) in the EN model (last column). The rankings of these
11 colour predictors in eight regression models are given in the table. Some variables that
were not selected by SF or SB are marked as 0. Between RR, LASSO, and EN, almost all the
top 11 variables selected were held in common.

Table 3. Ranking of the eleven colour predictors selected by LASSO and EN in the eight regression
models. Variables that were not selected by SB or SF regression are marked as 0.

LASSO &
EN Selected OLS SF SB PCR PLSR RR LASSO EN

Brows_C_a* 5 4 3 8 5 1 1 1
MCDM 12 6 4 9 11 3 2 2

Nose_hab 7 0 6 18 7 2 6 3
MCDM_Cheek 10 7 0 15 17 4 7 4
Mouth_C_a* 17 0 7 10 2 5 8 5

Chin_L* 13 10 0 4 3 6 9 6
Forehead_hab 4 5 0 19 9 11 5 7

Chin_hab 8 0 0 21 14 10 3 8
Cheek_L* 2 2 2 3 1 7 11 9
Nose_L* 16 8 5 6 8 12 4 10

Mouth_C_hab 15 9 0 16 10 9 10 11
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The correlation matrix between the top eleven colour predictors selected by LASSO
and EN and facial attractiveness ratings are further visualised in the heatmap in Figure 5.
To identify the hidden structure and pattern in the matrix, the 11 colour predictors were
reordered based on the hierarchical clustering as shown in the five black boxes, which were
brows colour contrast (a*), skin colour variation (overall or cheek), local skin hue angle
(forehead, chin, or nose), the mouth colour contrast (a*), and local skin lightness L* (nose,
chin, or cheek), from top left to bottom right.
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3.4. The Effect of the Number of Variables on Predictive Accuracy

To further assess the impact of variable number on predictive accuracy, a comparative
analysis of RMSE trends with an increasing number of colour predictors was performed
(Figure 6). Based on the results above, the regression technique with the highest out-
of-sample accuracy and relatively smaller number of selected predictors, the EN model,
was used in comparison with the conventional OLS model. For each selected number of
predictors (N), a corresponding set of N colour predictors was randomly selected from the
set of relevant colour predictors to build the model. Figure 6 shows the mean and standard
deviation of RMSEs across 30 random iterations.

Noticeably, when N was set to 1, coefficients regularisation was not applied; instead,
simple regression was adopted, and thus the results show the performance of 30 randomly
chosen univariate models (in-sample accuracy—MRMSE = 0.74, SDRMSE = 0.02; out-of-
sample accuracy—MRMSE = 0.98, SDRMSE = 0.13). As the number of colour predictors
increases, the EN mode exhibited a downward trend and smaller variations in both training
and testing RMSE, suggesting an increase in model accuracy with the addition of more
predictors. The in-sample RMSE of the OLS model also showed a consistent decrease. The
results suggested the superiority of the combined model using multivariate approaches
over any univariate models. On the other hand, the out-of-sample RMSE of the OLS model
showed a consistent increase with more variables included and also large deviations across
30 random iterations. The larger divergence between in-sample and out-of-sample RMSE
with the increase in predictor numbers indicated more serious overfitting problems of the
OLS model as more variables were included. The large deviations also suggested the model
performance was largely dependent on the selection of variables, whereas these issues had
been effectively mitigated by the EN model.
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4. Discussion

In this study, a novel four-step analytical framework was provided for modelling
facial attractiveness from various colour characteristics (see Figure 1). It was the first time
that a diverse set of colour predictors derived from realistic skin models were collectively
considered. Correlation analysis was employed to refine variable selection and thus im-
prove the efficiency of modelling. Multivariate approaches were then applied to assess all
the relevant colour characteristics simultaneously and manage the complex data structure
with a large number of correlated colour features. Due to the inherent correlations among
colour variables (see Figure 3), conventional regression methods such as OLS may cause
problems of multicollinearity and result in model overfitting (see Figure 6). In the current
research, this issue was addressed by comparing three different multivariate approaches fit
for high-dimensional datasets and using a novel testing dataset for model evaluation.

An ideal regression model for attractiveness prediction should be sparse, interpretable,
and well predictive. The subset selection methods directly used the colour variables for
prediction, which was straightforward and easy to interpret. However, the methods are
largely affected by multicollinearity. In particular, the backward method, as it contained
more variables than the forward method, resulted in an out-of-sample predictive error
almost three times larger than the in-sample error (RMSE values). Moreover, the results
could vary based on the order of the variable selection, which made it difficult to identify
the most important contributor in the model (see Table 3). The PCR, PLSR, and RR have
been identified as suitable algorithms to deal with multicollinearity [35,37]. Here, PCR
and PLSR showed a relatively closer in-sample and out-of-sample accuracy and had the
least number of predictors (PCR selected the first two principal components and PLSR only
selected the first component) and thus the least degrees of freedom. The shortcoming was
a certain amount of colour information was lost during the dimension reduction process.
Such losses influenced the R2 values, resulting in both the PCR and PLSR models having
the lowest variance in attractiveness (42.6% and 44.8%, respectively) compared to all the
other methods. Dimension reduction techniques also have the disadvantage that they
are difficult to interpret. Though the model only contains a small number of principal
components, any future prediction will require the analysis of all the relevant colour
variables to calculate those principal components. The regularisation regression models,
LASSO and EN, were easier to interpret, as they performed feature selections. Both models
gave relatively accurate predictions on the testing dataset, while EN performed better in
terms of both predictive error (RMSE) and variance explained (R2). RR also gave a similar
performance to EN but it was more complex, with all the colour predictors remaining in
the model. Complex models are not necessarily performing better than simpler ones [61].
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With fewer colour variables selected, the model was also easier to interpret and more
practical to implement. In summary, considering the predictive accuracy, simplicity, and
interpretability, the EN model with ML techniques was most recommended for modelling
attractiveness from facial colour traits. For evaluating the overall performance of different
algorithms in the future, all three criteria need to be taken into account, and determining
the specific regression algorithm depends on the investigatory priority.

Relying on the appropriate techniques and algorithms, the predictive accuracy of
attractiveness based on facial colour traits could be improved with a larger number of
variables. Based on the best-fit EN regression, the multivariate models with more relevant
colour predictors not only showed higher predictive accuracy (out-of-sample RMSE = 0.66)
than the univariate models (out-of-sample RMSE = 0.98) but also effectively mitigated
the issue of overfitting in classic models (see Figure 6). Recent research has criticised
the univariate approach because manipulating a single variable while holding others
constant prevents the assessment of the role of different colour cues as a whole in the
attractiveness judgements of real faces [24,25]. Other studies based on realistic skin models
showed only a limited role of colour in preference judgements [13,18–21]. Our findings,
however, suggested that the multivariate approach based on realistic conditions could also
underestimate the importance and reveal much weaker associations between skin colour
and facial preference if only limited colour variables considered. The current approach,
with a wide range of colour characteristics being studied, showed superior performance
and confirmed the effectiveness of colour in attractiveness modelling. On the other hand,
a few studies used multivariate approaches to build facial attractiveness models based
on structural facial features including averageness, dimorphism, and symmetry, and their
out-of-sample RMSE varied from 0.46 to 0.77 [62,63]. Compared to those studies, the
colour-based models in this study showed a comparable importance of the colorimetric
facial traits in attractiveness judgement among Chinese individuals.

Following the proposed framework, the most important colour traits for Chinese
populations were also revealed. According to the complete correlation matrix (Figure 3), all
the relevant colour predictors at significant levels were related to L*, a*, or hab without an
exception. These results revealed that Chinese observers relied more on colour cues related
to skin lightness (L*), redness (a*), or hue angle (hab) for attractiveness judgement. The other
two colour attributes, yellowness (b*) or chroma (C*), are less important and almost entirely
unused to make decisions. Among these relevant colour predictors, the variable ranking of
RR, LASSO, EN, and PLSR showed a large overlap. LASSO and EN selected the same top
eleven colour predictors. Within these 11 colour predictors, the top 10 from RR, the top 9
from PLSR, the top 6 from PCR, the top 6 from SF, and the top 8 from SB were included
(Table 3). After grouping the correlated variables (Figure 5), the most important features
were identified: the brows colour contrast (a*), skin colour variation (overall or cheek),
local skin hue angle (forehead, chin, or nose), the mouth colour contrast (a*), and local
skin lightness L* (nose, chin, or cheek). The results were consistent with previous research
on a part of the variables [7,13,17,22], but, more importantly, revealed the significance of
assessing a wide range of facial colour characteristics to obtain a comprehensive estimate
of the role of colour features on aesthetic preferences. Two new predictors, local skin hue
angle and local skin lightness, were added to the analysis and found as important colour
parameters for the first time. The results verified the assumption that hab is an important
colour predictor for Chinese to evaluate attractiveness. Calculating the skin lightness of
some local skin areas might be enough for future attractiveness predictions, instead of
analysing the overall facial lightness.

The analytic framework proposed in this study offers a robust foundation for future
research into the modelling of facial attractiveness. Any new facial colour characteristic that
emerges as an influential factor in determining attractiveness can be added as a new colour
predictor from the first step of variable identification. Alternate regression techniques
might also be explored in the modelling phase to potentially enhance the model’s perfor-
mance. Furthermore, this versatile framework can be expanded to investigate other facial
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impressions or preference attributes, and prediction models can be created accounting for
variations in ethnicity, age, gender, and more. For practical implementation, our recom-
mendation is to prioritise key colour features and combine them effectively, consider target
populations and expert insights for specific applications, continuously update and validate
the model, and integrate face recognition technology to achieve real-time feedback [64,65].
By concentrating on these crucial aspects, industries can utilise predictive models for facial
attractiveness more efficiently, thereby enhancing their products and services.

5. Conclusions

The current study presented a complete and repeatable analytical framework for
attractiveness modelling from various facial colour cues derived from realistic skin mod-
els. Within the framework, it was possible to evaluate the role of diverse facial colour
cues holistically in attractiveness judgements of real faces. Based on the comparisons of
various multivariate regression techniques, ML techniques with feature selection were
recommended for future modelling. The proposed methodology with the best-fit model
achieved high out-of-sample accuracy with a large number of colour predictors, while
simultaneously effectively addressing the challenges related to multicollinearity and over-
fitting. Based on the methodology, the most important colour features influencing facial
attractiveness judgments among Chinese individuals were identified. Our findings also
demonstrated the importance of colour in facial attractiveness judgements, which could be
comparable to those of facial structural features.
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predicting facial attractiveness for the training data (left column) and the testing data (right column).
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