
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/24761

This document is available under CC BY license

To cite this version :

Shuo LIU, Hui WANG, Annie-Claude BAYEUL-LAINÉ, Cheng LI, Joseph KATZ, Olivier
COUTIER-DELGOSHA - Wave statistics and energy dissipation of shallow-water breaking waves
in a tank with a level bottom - Journal of Fluid Mechanics - Vol. 975, - 2023

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/24761
https://creativecommons.org/licenses/by/4.0/
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Under consideration for publication in J. Fluid Mech. 1

Banner appropriate to article type will appear here in typeset article

Wave Statistics and Energy Dissipation of
Shallow-Water Breaking Waves in a Tank with a
Level Bottom
Shuo Liu1†, Hui Wang1, Annie-Claude Bayeul-Lainé1, Cheng Li2,3, Joseph Katz4,
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The present study focuses on two-dimensional direct numerical simulations of shallow-
water breaking waves, specifically those generated by a wave plate at constant water depths.
The primary objective is to quantitatively analyse the dynamics, kinematics, and energy
dissipation associated with wave breaking. The numerical results exhibit good agreement
with experimental data in terms of free-surface profiles during wave breaking. A parametric
study was conducted to examine the influence of various wave properties and initial conditions
on breaking characteristics. According to research on the Bond number (𝐵𝑜, the ratio of
gravitational to surface tension forces), an increased surface tension leads to the formation
of more prominent parasitic capillaries at the forwards face of the wave profile and a thicker
plunging jet, which causes a delayed breaking time and is tightly correlated with the main
cavity size. A close relationship between wave statistics and the initial conditions of the
wave plate is discovered, allowing for the classification of breaker types based on the ratio of
wave height to water depth, 𝐻/𝑑. Moreover, an analysis based on inertial scaling arguments
reveals that the energy dissipation rate due to breaking can be linked to the local geometry
of the breaking crest 𝐻𝑏/𝑑, and exhibits a threshold behaviour, where the energy dissipation
approaches zero at a critical value of 𝐻𝑏/𝑑. An empirical scaling of the breaking parameter
is proposed as 𝑏 = 𝑎(𝐻𝑏/𝑑 − 𝜒0)𝑛, where 𝜒0 = 0.65 represents the breaking threshold and 𝑛

= 1.5 is a power law determined through the best fit to the numerical results.
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1. Introduction
As a strongly nonlinear intermittent process occurring over a wide range of scales, wave
breaking plays an important role in air-sea interactions by limiting the height of surface
waves and enhancing the transfer of mass, momentum, and heat between the atmosphere
and the ocean (Melville 1996; Perlin et al. 2013). When a wave breaks, the free surface
may experience dramatic changes, entraining air into the ocean and ejecting spray into the
atmosphere, with the production of bubbles and aerosols (Kiger & Duncan 2012; Veron
2015), and the generation of local turbulence near the free surface. Breaking also controls
the fate of oil spills and contaminants in the upper ocean, determines particle size distribution
and dynamic transport, and further affects the health of marine environments (Delvigne &
Sweeney 1988; Deike et al. 2017; Li et al. 2017). The processes associated with breaking
waves have received much research attention, and the greatest progress has been made in the
geometry of breaking, breaking onset criteria, dissipation due to breaking, and air entrainment
(Perlin et al. 2013; Deike 2022).

In particular, the energy transfers involved in waves have been studied extensively over
the years, and the parameterization of the dissipation rate due to breaking has benefited
greatly from laboratory experiments and numerical measurements. The parameterization
originating from seminal experimental studies by Duncan (1981) has indicated that the work
done by the whitecap or energy dissipation rate per unit length of wave crest scales to the
fifth power of a characteristic speed, i.e., 𝜖𝑙 = 𝑏𝜌𝑐5/𝑔. Here, 𝑏 is a dimensionless coefficient
related to the wave-breaking strength, 𝜌 is the density of water, 𝑐 is a characteristic speed
associated with the breaking wave, and 𝑔 is the acceleration due to gravity. The breaking
parameter 𝑏 was first assumed to be a nondimensional constant but subsequently shown by
extensive experimental investigations to vary over several orders of magnitude when varying
the breaking wave slope 𝑆 (Rapp & Melville 1990; Tian et al. 2010). To establish possible
relationships between the breaking parameter 𝑏 and the initial conditions of breaking waves,
the conventional dissipation scaling of turbulence theory has been applied to the wave-
breaking process (Duncan 1981; Drazen et al. 2008; Mostert & Deike 2020), following the
form of the turbulent dissipation rate based on dimensional analysis (Batchelor 1953). The
local turbulent energy dissipation rate during wave breaking can be estimated as 𝜖 = 𝜒(𝑤3/𝑙),
where 𝜒 is a proportionality constant, 𝑤 is the representative velocity scale, and 𝑙 is the
turbulent integral length scale characterizing the energy-containing turbulent eddies (Taylor
1935; Vassilicos 2015). Therefore, the energy dissipation rate per unit length of the crest is
𝜖𝑙 = 𝜌𝐴𝜖 by assuming a turbulent cloud of cross section 𝐴. Drazen et al. (2008) related the
local turbulent energy dissipation rate to the local breaking properties by inertial scaling,
i.e., 𝜖 =

√︁
𝑔ℎ

3/ℎ, where ℎ is the breaking height and
√︁
𝑔ℎ is the ballistic velocity of the

toe of the plunging breaker. The turbulence cloud is assumed to be a circle with a cross
section of 𝐴 = 𝜋ℎ2/4. This indicates that the dissipation rate per unit length of breaking
crest 𝜖𝑙 = 𝜌𝐴𝜖 ∝ 𝜌𝑔3/2ℎ5/2 ∝ (ℎ𝑘)5/2𝜌𝑐5/𝑔, where 𝑘 is the wavenumber, and 𝑐 =

√︁
𝑔/𝑘

by the dispersion relation in deep water. This leads to 𝑏 ∝ 𝑆5/2, with 𝑆 = ℎ𝑘 being the
breaking wave slope. The threshold behaviour of the energy dissipation associated with wave
breaking has been identified through laboratory measurements, revealing that 𝑏 must tend
to zero for sufficiently small slopes (Rapp & Melville 1990; Drazen et al. 2008; Tian et al.
2010; Grare et al. 2013). To characterize this behaviour, Romero et al. (2012) proposed
a semiempirical scaling 𝑏 = 𝑎(𝑆 − 𝑆0)5/2 by introducing a characteristic slope threshold,
with a constant 𝑎 = 0.4 and a critical slope 𝑆0 = 0.08 being determined based on the fit
to the laboratory data. Subsequent numerical simulations have consistently validated this
scaling relationship (Iafrati 2009; Deike et al. 2016; De Vita et al. 2018). In addition to deep
water breaking waves, the energy dissipated by breaking solitary waves on a beach slope
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has also been quantified by Mostert & Deike (2020). The representative velocity scale is
considered the impact velocity, which is calculated ballistically as 𝑤 =

√︁
2𝑔𝐻𝑏, where 𝐻𝑏

is the wave amplitude at breaking. The turbulent integral length scale is estimated to be the
undisturbed depth at breaking 𝑑𝑏, and the cross section of the turbulence cloud is assumed to
be 𝐴 = 𝜋𝐻𝑏

2/4. Consequently, the dissipation rate per unit length of breaking crest is given
by 𝜖𝑙 = 𝜌𝐴𝜖 ∝ 𝜌𝑔3/2𝐻𝑏

7/2/𝑑𝑏 ∝ (𝐻𝑏/𝑑0)7/2(𝑑𝑏/𝑑0)−1𝜌𝑐5/𝑔, where 𝑑0 is the undisturbed
depth prior to the beach slope, and 𝑐 =

√︁
𝑔𝑑0 is derived from the dispersion relation in

shallow water. These efforts have led to a connection between the dynamics and kinematics
of breaking waves, and a parameterization of the dynamics has been developed based on
geometric properties.

While great progress has been made in previous studies of breaking-wave dynamics,
including the prediction of the geometry, breaking onset, and energy dissipation, certain
limitations persist, necessitating further research to attain a comprehensive comprehension of
breaking waves. First, the majority of research efforts have focused on the study of breaking
waves in deep water. However, breaking waves in shallow and intermediate water depths
undergo more pronounced changes in the free surface compared to deepwater breakers, which
introduces additional complexities to the problem. Furthermore, there is a scarcity of studies
addressing shallow water breaking, particularly in cases where breaking is solely attributed
to nonlinearity in a tank with a level bottom. Although the direct numerical simulation (DNS)
approach, which resolves all breaking processes in waves, has been successfully employed
in deep-water studies (Iafrati 2011; Deike et al. 2016) and shallow-water breakers (Mostert
& Deike 2020), previous investigations have been constrained by limited computational
resources, thus restricting the range of wave scales to smaller Reynolds and Bond numbers.
Nonetheless, it is essential to consider experimental waves encompassing a wide range of
length scales, ranging from wave breaking at the metre scale to micron-scale air bubble
entrainment.

Thus, in this context, this study focuses on shallow-water breaking waves generated by a
wave plate moving across a level bottom, emphasizes the early phases of the wave-breaking
process defined by Deane & Stokes (2002), and reduces the physics involved to a two-
dimensional issue. A wide range of scales have been resolved using an adaptive mesh
refinement scheme, retaining a realistic representation of the breaking processes, including
the transfer and dissipation of energy and the formation and the plunging jet and air cavity in
a two-phase turbulent environment. A comprehensive examination of the differences in the
energetics and the transition to turbulence was conducted by Mostert et al. (2022). Through
a direct comparative analysis of 3-D simulations with their 2-D counterparts, they showed
that the 2-D and 3-D energy budgets begin to diverge strongly after the rupture of the main
cavity, with the discrepancy becoming increasingly pronounced at larger 𝑅𝑒. Notably, the
2-D and 3-D contributions of energy dissipation rate are comparable at the moment of peak
dissipation. Despite the inherently three-dimensional nature of turbulence resulting from
the breaking process, numerous numerical investigations, including works by Lubin et al.
(2006), Iafrati (2009), Deike et al. (2015), De Vita et al. (2018), and Boswell et al. (2023),
have explored the feasibility of employing 2-D breaker simulations as computational analogs
for scaling the breaking dissipation of full 3-D processes. The scaling law for the deep-water
breaking parameter, derived from 2-D DNS energy dissipation rates by Deike et al. (2015)
and De Vita et al. (2018), aligns consistently with experimental observations and 3-D DNS
results. These favourable comparisons with semiempirical models of energy dissipation rates
by deep-water breakers suggest the utility of 2-D computations for estimating dissipation
rates. Additionally, Boswell et al. (2023) assert that 2-D simulations offer a reasonable
approximation for the energetic dissipation of full 3-D simulations in shallow-water regimes.
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Consequently, despite the limitations imposed by the two-dimensional numerical simulations,
the results obtained exhibit reasonably good agreement with experimental observations,
thereby enabling the investigation of energy dissipation during wave breaking. Moreover,
this study focuses specifically on shallow water wave breaking in a constant-depth region,
distinguishing it from the majority of recent breaking wave studies. By adapting methods from
studies on deep-water breakers, we contribute to the analysis of this less explored scenario.
The paper is organized as follows. In §2, we introduce the configurations of laboratory
breaking-wave experiments and propose a dimensional analysis for waves generated by
wave plates. In §3, we present the numerical scheme and model setup and conduct mesh
convergence analysis and model verification. The wave characteristics with different breaking
intensities during wave breaking are analysed in §4. In §5, we investigate the scaling of
wave dynamics and kinematics to initial conditions by using inertial-scaling arguments and
analysing numerical results. We conclude in §6 with some summaries of the present work.

2. Problem description
2.1. Laboratory breaking-wave experiments

This study investigates the dynamics of waves, the evolution of the plunging jet, and the energy
budget during the process of wave breaking. The aim is to establish quantitative relationships
of the main cavity, breaking criteria, and energy dissipation with respect to the fluid properties
and initial conditions by reproducing experimental waves through two-dimensional direct
numerical simulation. A series of breaking-wave experiments were conducted in a 6 m long,
0.3 m wide, and 0.6 m high wave flume, with the aim of investigating the breaking processes
and the dispersion of oil spills by breaking waves (Li et al. 2017; Wei et al. 2018; Afshar-
Mohajer et al. 2018). The breaking waves are initialized by driving a piston-type wavemaker
over a constant water depth 𝑑. A single-wave breaking event is produced by a single push of
the wavemaker, and its trajectory 𝑥(𝑡) and associated wave plate velocity𝑈 (𝑡) are determined
by the following functions:

𝑥(𝑡) = 𝑠

2
(1 − cos𝜎𝑡), 0 ⩽ 𝑡 ⩽

1
2 𝑓

(2.1)

𝑈 (𝑡) = 𝑠𝜋 𝑓 sin𝜎𝑡, 0 ⩽ 𝑡 ⩽
1

2 𝑓
(2.2)

where 𝑠 is the wavemaker stroke length; 𝜎 = 2𝜋 𝑓 is the angular frequency; and 𝑡 is the time.
A single push of the wavemaker for a half period 1/(2 𝑓 ) is applied to produce a wave with
a single crest. During the motion of the wave plate, the maximum wave plate stroke is 𝑠, and
the maximum wave plate velocity is 𝑈𝑚𝑎𝑥 = 𝑠𝜋 𝑓 . Multiple types of waves can be generated
by varying the stroke 𝑠, frequency 𝑓 , and water depth 𝑑, ranging from nonbreaking regular
waves to breakers with different intensities. In comparison with the conventional motion
of the piston-type wavemaker that produces sinusoidal waves with an oscillatory motion of
𝑥(𝑡) = 𝑠/2 sin𝜎𝑡, the piston trajectory here can steepen the wave profile and promote the wave
to break. The origin of the experimental domain is located at the undisturbed water surface on
the left boundary, where 𝑥 represents the streamwise direction, and 𝑦 is the vertical direction,
with right and upwards being positive. The wavemaker is initially located at 𝑥 = 0.535
m from the left boundary (see figure 1). High-speed imaging is implemented to visualize
the plunging jet impact and the subsequent breakup processes during wave breaking. The
turbulence produced by breaking is characterized using particle image velocimetry (PIV).
PIV images are processed to calculate the time evolution of turbulence in the wave tank.



Shallow-Water Breaking Waves in a Tank with a Level Bottom 5

𝑥(𝑡) = 𝑠
2 (1 − cos𝜎𝑡), 0 ⩽ 𝑡 ⩽ 1

2 𝑓

Figure 1: Sketch of the laboratory breaking wave experiment and numerical domain.

Wave 𝑠(m) 𝑓 (Hz) 𝑑(m) 𝑈𝑚𝑎𝑥(m s−1) 𝑐(m s−1) 𝑈𝑚𝑎𝑥/𝑐
1 0.5334 0.75 0.25 1.257 1.566 0.803
2 0.4572 0.75 0.25 1.077 1.566 0.688
3 0.4572 0.625 0.25 0.898 1.566 0.573

Table 1: Parameter space for generating three different breaking waves. The column
labels are as follows: 𝑠, wave plate stroke; 𝑓 , frequency; 𝑑, water depth; 𝑈𝑚𝑎𝑥 , maximum
piston speed; 𝑐, shallow water wave speed; 𝑈𝑚𝑎𝑥/𝑐, ratio of the maximum piston speed to

the shallow water wave speed.

Digital inline holography, a 3-D imaging technique, is employed to measure the size of the
produced droplets and bubbles and to qualify the subsurface particle size distribution.

On the basis of laboratory experiments, 2-D simulations of a range of breaking waves
are conducted using the Basilisk solver. Three different breaking waves are simulated to
numerically reproduce the breaking characteristics. The wave plate stroke 𝑠, frequency 𝑓 ,
and water depth 𝑑 for generating the three breakers as well as the corresponding maximum
wave plate velocity 𝑈𝑚𝑎𝑥 are summarized in table 1. One of the breakers, a typical plunging
breaker with 𝑠 = 0.5334 m and 𝑓 = 0.75 Hz, is chosen for model verification and detailed
analysis. Furthermore, a parametric study is performed to relate the wave characteristics to
the initial conditions by extensively varying the stroke 𝑠, frequency 𝑓 , and water depth 𝑑.

2.2. Dimensional analysis of waves generated by a wave plate
In this section, a dimensional analysis of the waves generated by wave plates is performed.
Considering a 2-D wave, the wave generated by the wave plate is assumed to be dependent
on the fluid properties and the initial conditions. If the wave process is restricted to air-water
systems close to standard temperature and pressure, then the density and kinematic viscosity
ratios of the two phases are those of air and water in the experiments, which will not be
regarded as altering the wave features. Then, the dependent variables for identifying this
specific wave can be expressed as follows:

𝑓 (𝑔, 𝜈, 𝜌, 𝛾, 𝑠, 𝑓 , 𝑑) (2.3)

where 𝑔 [dimension L T−2] is the gravitational acceleration, 𝜈 [L2 T−1] is the water kinematic
viscosity, 𝜌 [M L−3] is the water density, and 𝛾 [M T−2] is the surface tension. The piston
stroke 𝑠 [L] and frequency 𝑓 [T−1] of the wave plate and the undisturbed depth of water 𝑑
[L] are referred to as the initial conditions. Buckingham’s theorem can be used to construct
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the following dimensionless parameters by selecting 𝜌, 𝑔, and 𝑑 as the repeating variables:

𝑔1/2𝑑3/2

𝜈
= Re,

𝜌𝑔𝑑2

𝛾
= 𝐵𝑜,

𝑠

𝑑
,

𝑓√︁
𝑔/𝑑

=
𝑓 𝑑

𝑐
. (2.4)

The above dimensional analysis indicates that wave characteristics are determined by the
Reynolds number Re, Bond number 𝐵𝑜, 𝑠/𝑑 and 𝑓 𝑑/𝑐, where 𝑐 =

√︁
𝑔𝑑 is the wave speed

in shallow water. Of particular interest in this study is the maximum wave height before
breaking 𝐻 [L], the breaking wave crest 𝐻𝑏 [L] of the plunging breaker, the total energy per
unit length transferred by the motion of the wave plate 𝐸𝑙 [ML T−2], and the dissipation of
the wave energy per unit length of the breaking crest, 𝜖𝑙 [ML T−3]. These wave characteristics
should be dimensionless to connect to the dimensionless parameters representing the fluid
properties and the initial conditions in (2.4). Using dimensional analysis, the dimensionless
parameters for these wave features are as follows:

𝐻

𝑑
,

𝐻𝑏

𝑑
,

𝐸𝑙

𝜌𝑔𝑑3 ,
𝜖𝑙

𝜌𝑔3/2𝑑5/2 (2.5)

Quantifying the influence of these dimensionless parameters is of great significance for
elucidating the wave shape evolution, energy transfer, and air entrainment mechanisms.

3. Numerical investigation
3.1. Basilisk solver

The Navier-Stokes equations for incompressible gas-liquid two-phase flow with variable
density and surface tension are simulated using the Basilisk library. The Basilisk package,
developed as the successor to the Gerris framework (Popinet 2003, 2009), is an open-
source program for solving various systems of partial differential equations on regular
adaptive Cartesian meshes with second-order spatial and temporal accuracy. A quadtree-
based adaptive mesh refinement (AMR) scheme is used in 2-D calculations to improve
computational efficiency by concentrating computational resources on important solution
domains. The generic time loop is implemented in the numerical scheme and the time step
is limited by the Courant–Friedrichs–Lewy (CFL) condition. The incompressible, variable
density Navier-Stokes equations with surface tension can be written as:

𝜌(𝜕𝑡𝒖 + (𝒖 · ∇)𝒖) = −∇𝑝 + ∇ · (2𝜇D) + 𝒇 𝛾 (3.1)

𝜕𝑡 𝜌 + ∇ · (𝜌𝒖) = 0 (3.2)

∇ · 𝒖 = 0 (3.3)
where 𝒖 = (𝑢, 𝑣, 𝑤) is the fluid velocity, 𝜌 ≡ 𝜌(𝑥, 𝑡) is the fluid density, 𝑝 is the pressure, 𝜇 ≡
𝜇(𝑥, 𝑡) is the dynamic viscosity, D is the deformation tensor defined as 𝐷𝑖 𝑗 ≡ (𝜕𝑖𝑢 𝑗+𝜕 𝑗𝑢𝑖)/2,
and 𝒇 𝛾 is the surface tension force per unit volume (Deike et al. 2016).

The liquid-gas interface is tracked by the momentum-conserving volume-of-fluid
(MCVOF) advection scheme (Fuster & Popinet 2018), while the corresponding volume
fraction field is solved by a piecewise linear interface construction (PLIC) approach
(Scardovelli & Zaleski 1999, 2000) with the interface normal being computed by the
mixed-Youngs-centered (MYC) method (Aulisa et al. 2007). The volume-of-fluid (VOF)
method was originally developed by Hirt & Nichols (1981) and has been modified by Kothe
et al. (1991), and further coupled with momentum conservation by Fuster & Popinet (2018),
with the advantage of allowing variable spatial resolution and sharp representation along the
interface while restricting the appearance of spurious numerical parasitic currents (Zhang
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et al. 2020). The interface of two-phase flow is reconstructed by a function 𝛼(𝑥, 𝑡), defined
as the volume fraction of a given fluid in each cell of the computational mesh, assuming
values of 0 or 1 for each phase. The density and viscosity can thus be computed by arithmetic
means as:

𝜌(𝛼) = 𝛼𝜌1 + (1 − 𝛼)𝜌2 (3.4)

𝜇(𝛼) = 𝛼𝜇1 + (1 − 𝛼)𝜇2 (3.5)
where 𝜌1 and 𝜌2, 𝜇1 and 𝜇2 are the density and viscosity of the first and second fluids,
respectively.

An equivalent advection equation for the volume fraction can be obtained by replacing the
advection equation for the density:

𝜕𝑡𝛼 + ∇ · (𝛼𝒖) = 0 (3.6)

A momentum conserving scheme is applied in the advective momentum fluxes near the
interface to reduce numerical momentum transfer through the interface. Total fluxes on each
face are obtained by adding the diffusive flux due to the viscous term, which are computed
by the semi-implicit Crank-Nicholson scheme (Pairetti et al. 2018). The Bell-Collela-Glaz
(BCG) second-order upwind scheme is used for the reconstruction of the liquid and gas
momentum per unit volume to be advected in the cell (Bell et al. 1989).

Surface tension is treated with the method of Brackbill et al. (1992) and the balanced-force
technique (Francois et al. 2006), as further developed by Popinet (2009, 2018). A generalized
version of the height-function (HF) curvature estimation is implemented to address the
inconsistency at low interface resolution, giving accurate and efficient solutions for surface-
tension-driven flows. The surface tension force per unit volume 𝒇 𝛾 can be expressed as:

𝒇 𝛾 = 𝛾𝜅𝛿𝑠𝒏 (3.7)

where 𝛾 is the surface tension coefficient; 𝛿𝑠 is the interface Dirac function, indicating that
the surface tension term is concentrated on the interface; and 𝜅 and 𝒏 are the curvature and
normal to the interface, respectively.

The integrals over the entire water phase are performed numerically to identify the energy
budget in the water. The kinetic energy 𝐸𝑘 and the gravitational potential energy 𝐸𝑝 of the
propagating wave are provided as follows:

𝐸𝑘 =
1
2

∫
𝑉

𝜌 |𝒖 · 𝒖 |d𝑉 (3.8)

𝐸𝑝 =

∫
𝑉

𝜌𝑔𝑦d𝑉 − 𝐸𝑝0 (3.9)

where 𝑉 is the domain occupied by water in the system and 𝐸𝑝0 is the gravitational potential
energy of the still water at the beginning. The mechanical energy 𝐸𝑚 of the wave is calculated
as the sum of the kinetic and potential components:

𝐸𝑚 = 𝐸𝑘 + 𝐸𝑝 (3.10)

The nonconservative energy dissipation from the action of viscosity, 𝐸𝑑 , can be calculated
directly from the deformation tensor:

𝐸𝑑 (𝑡) =
∫ 𝑡

0

∫
𝑣

𝜇
𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢 𝑗

𝜕𝑥𝑖
d𝑉d𝑡 (3.11)

Thus, the total conserved energy budget is given by 𝐸𝑡 = 𝐸𝑘 + 𝐸𝑝 + 𝐸𝑑 .
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3.2. Numerical setup

The numerical methodology employed in this investigation involves the simulation of the
incompressible flow of two immiscible fluids. To accurately capture the physical features
of the wave profiles, the Navier-Stokes equations are solved numerically on sufficiently fine
grids so that viscous and capillary effects can be retained. Gravity is accounted for using
the “reduced gravity approach” (Wroniszewski et al. 2014) by re-expressing gravity in two-
phase flows as an interfacial force. An initial depth of water 𝑑 is used in a square box
with a side length of 𝐿0 = 24𝑑 = 6 m. The wave propagates in the 𝑥 direction from left
to right. The density and kinematic viscosity ratios of the two phases are those of air and
water in the experiments, which are 1.29/1018.3 and 1.39𝑒 − 5/1.01𝑒 − 6, respectively. The
Reynolds number in the breaking wave event generated by the wave plate can be defined by
Re = 𝑔1/2𝑑3/2/𝜈 = 𝑐𝑑/𝜈, where 𝑐 =

√︁
𝑔𝑑 is the wave phase speed in shallow water. Due

to the limitation of computational resources, combined with the decreasing effects of the
Reynolds number on the evolution of wave breaking (Mostert & Deike 2020), it is possible to
use a Reynolds number that is smaller than the actual value. Breaking waves are normalized
using the reference length and velocity scales, which in this case are the still water depth
𝑑 and wave speed in shallow water 𝑐, respectively; the reference time scale is defined as
𝑡0 = 𝑑/𝑐 =

√︁
𝑑/𝑔. For the plunging breaking wave with 𝑠/𝑑 = 2.13 and 𝑓 𝑑/𝑐 = 0.12 at a

water depth of 𝑑 = 0.25 m, a Reynolds number of 6 × 104 is employed, which corresponds
to a viscosity six times smaller than that of the water. Notably, the fundamental nature of the
breaking processes is not expected to be significantly altered by Reynolds number effects.
The surface tension can be expressed by the Bond number 𝐵𝑜 = 𝜌𝑔𝑑2/𝛾, where 𝛾 is the
constant surface tension coefficient between water and air. The physical value of the water
surface tension coefficient with air, 𝛾 = 0.0728 kg/s2, is used to analyse the effect of surface
tension on the formation of the main cavity, resulting in 𝐵𝑜 = 8600.

The numerical resolution is given by Δ = 𝐿0/2𝑙𝑚𝑎𝑥 , where 𝑙𝑚𝑎𝑥 is the maximum level
of refinement in the AMR scheme. Three sets of the maximum level of refinement used for
mesh convergence analysis in this study are 13, 14, and 15, corresponding to minimum mesh
sizes Δ/𝑑 of 0.00293, 0.00146, and 0.00073, respectively. The number of grids to represent
the water depth in each set is 342, 683, and 1366, respectively. As the surface tension scheme
is time-explicit, the maximum time step is the oscillation period of the smallest capillary
wave. For the maximum level of refinement 𝑙𝑚𝑎𝑥 = 15, the corresponding maximum time
step Δ𝑡/𝑡0 should not be larger than 4𝑒 − 4. A CFL number of 0.5 is utilized to ensure
numerical stability. VOF tracers are used to capture the air-water interfaces and the moving
boundary of the wave plate. This capability of local dynamic grid refinement significantly
reduces the computational cost of representing a breaking wave that propagates within an
extended physical domain at a high resolution. This makes it especially appropriate for the
present application where wave profile evolution and wave breaking are expected. The piston
is implemented by initializing a volume fraction field at each time step, which corresponds
to the position and speed of the moving piston. This approach has been effectively employed
in previous studies (Lin-Lin et al. 2016; Wu & Wang 2009). Since the moving piston is
updated at each time step, the grids intersected with the piston are refined to the finest level
all the time, thus ensuring the accurate representation of the moving boundary in the adaptive
meshes. The refinement criterion is based on the wavelet-estimated discretization error in
terms of the velocity and VOF fields. The corresponding mesh will be refined as required
when initializing the wave. The wave plate boundary and the air-water interface are initially
refined to the finest level, while the remainder of the domain remains at a level of refinement
of 10. The refinement algorithm is invoked at every time step to refine the mesh whenever
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Figure 2: Convergence study at three different mesh resolutions for wave 1 with 𝑠/𝑑 =
2.13, 𝑓 𝑑/𝑐 = 0.12, green, 213; blue: 214; red: 215. Grid convergence of the free surface
during wave breaking at 𝑡/𝑡0 = 3.25 (a) and jet impact at 𝑡/𝑡0 = 4.25 (b); the temporal

evolution for horizontal component 𝑢 (c) and vertical component 𝑣 (d) of the velocity field
in the broken bore propagation region at 𝑥/𝑑 = 10.8; and the energy budget (e) for kinetic
energy 𝐸𝑘 (dotted), gravitational potential energy 𝐸𝑝 (dashed), mechanical energy 𝐸𝑚

(dashdot), and total conserved energy 𝐸𝑡 (solid).

the estimated error of the wavelet exceeds the prescribed threshold for both the velocity and
volume fraction fields.

3.3. Mesh convergence
The choice of the effective numerical resolution is related to the numerical convergence. A
key physical feature of simulating two-phase breaking waves is the thickness 𝛿 of the viscous
boundary layer at the free surface. The estimation from Batchelor’s method suggests the
defining length scale 𝛿 ∼ 𝑑/

√
Re ≈ 0.004𝑑 = 1.0 mm (Deike et al. 2015, 2016). Based on

this estimation, the viscous sublayer is resolved with more than five grid cells at 𝑙𝑚𝑎𝑥 = 15,
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(a) (b) (c)

Figure 3: Qualitative comparison of free surface profiles between laboratory images and
numerical results for wave 1 with 𝑠/𝑑 = 2.13 and 𝑓 𝑑/𝑐 = 0.12.

allowing us to resolve the dissipation rate associated with the breaking waves (Mostert et al.
2022). Furthermore, the grid convergence of the numerical results is analysed by considering
three sets of simulations with 𝑙𝑚𝑎𝑥 = 13, 14, and 15, corresponding to the effective resolution,
which is equivalent to 40962, 81922 and 163842 on a regular grid, respectively. The numerical
convergence is discussed in terms of the evolution of the free surface, velocity field, energy
budget, and size distribution of the bubbles entrapped by wave breaking. Figure 2(a) and (b)
illustrate the influence of mesh resolution on the development of the free surface for wave
1. The wave breaks at 𝑡/𝑡0 = 3.25, characterized by a vertical slope at the front of the wave
(a). As the maximum level of refinement 𝑙𝑚𝑎𝑥 increases from 13 to 15, the differences at
the tip of the overturning jet become progressively smaller. The overturning jet curls over
itself and impacts the surface of the wave front at 𝑡/𝑡0 = 4.25 (b). Although slight phase
shifts can be observed at different resolutions, the shape and size of the entrained air by
the plunging jet remain similar. Figures 2(c) and (d) show the temporal evolution of the
horizontal component (c) and vertical component (d) of the velocity field in the broken-bore
propagation region at 𝑥/𝑑 = 10.8. A better agreement is observed between the cases with
resolutions of 214 and 215 compared to those between 213 and 214. Regarding the energy
budget, figure 2(e) indicates numerical convergence in the evolution of kinetic energy 𝐸𝑘 ,
gravitational potential energy 𝐸𝑝, and conservative energy 𝐸𝑚 = 𝐸𝑘 + 𝐸𝑝 for all cases. This
convergence suggests that numerical accuracy is achieved in the energy transfer between 𝐸𝑘

and 𝐸𝑝. However, differences in 𝐸𝑡 = 𝐸𝑘 + 𝐸𝑝 + 𝐸𝑑 at different resolutions imply that the
dissipated energy cannot be fully captured by the current grid cells directly. Nevertheless, as
the wave dissipation rate can be calculated based on the conservative energy 𝐸𝑚, numerical
convergence is also attained in estimating energy dissipation when calculated from the loss
of 𝐸𝑚.

The above convergence studies have confirmed that all results are well converged, with
no significant changes observed as the maximum level of refinement increases from 13 to
15. The resolution of 215 is used to realize a more precise parametric study to determine the
wave characteristics as a function of the fluid properties and initial conditions. Consequently,
all presented results in the following sections have attained convergence with respect to grid
resolution.

3.4. Breaking wave verification
A high-speed camera with a frame rate of 500 frames per second is used in the experiments to
visualize the development of wave breaking and subsequent breakup processes. The field of
view, 4.12 × 4.12, is centred horizontally at 𝑥/𝑑 = 6.74, with left and right view sides of 4.68
and 8.8, respectively. The vertical centre of the camera is adjusted to the initial free surface.
The numerical results of the temporal evolution of the free surface for wave 1 are compared
with experimental snapshots for model verification. Comparisons of the free-surface profile
between the simulation results and snapshots taken during the experiments are shown in



Shallow-Water Breaking Waves in a Tank with a Level Bottom 11

figure 3. The camera is located upstream of the wave direction close to the side of the wave
plate. This device is primarily responsible for recording the development of the plunging
jet, jet impact and air entrapment, and the generation of the first splash-up. Comparisons
of the free-surface evolution at 𝑡/𝑡0 = 3.8, 4.4, and 5.0 show excellent agreement between
the current simulation and the experimental results. The configuration in the motion of the
wave plate leads to the formation of a highly asymmetric wave profile during the prebreaking
period. As the wave slope increases and the wave crest curls over, the formation of a plunging
jet becomes evident at 𝑡/𝑡0 = 3.8, with a downwards projection towards the water surface. At
𝑡/𝑡0 = 4.4, the plunging jet impacts the rising wave front, leading to the formation of the main
cavity through the entrapment of an air tube. At 𝑡/𝑡0 = 5.0, a splash-up is generated, propelled
by the primary plunging jet, moving upwards. It is accompanied by the emission of droplets
from fractured ligaments. The slight discrepancy between the height of the splash-up and
the development of the aerated region is attributed to the 3-D instability in the spanwise
direction, which falls beyond the scope of this study. Overall, the evolution of the free surface
during the breaking process, including the curvature of the overturning wave crest, the size of
the main cavity, and the height and location of the first splash-up, can be accurately predicted
by our numerical simulations.

Furthermore, figure 4 shows the simulated free-surface profiles over time for wave 1
recorded at three designated positions (𝑥/𝑑 = 4.8, 7.2, and 9.6) corresponding to the
prebreaking, breaking, and postbreaking regions, respectively, with a comparison to the
experimental high-speed imaging results. The free-surface profile at the first position (𝑥/𝑑
= 4.8) remains smoothly curved, which corresponds to the prebreaking stage where the
free surface is smooth, without the formation of the vertical interface and the generation of
bubbles and droplets. The numerical simulation accurately reproduces the evolution of the
free surface, including the development of the rise and fall of the wave profile, with only a
slight underestimation at the peak value of the wave profile at 𝑡/𝑡0 = 3.1. The second position
is located at 𝑥/𝑑 = 7.2, within the wave-breaking region, near the main cavity entrapped by
the plunging jet. In the experiment, the free surface exhibits an immediate increase after jet
impact at approximately 𝑡/𝑡0 = 4.4, indicating the penetration of the plunging jet into the wave
front and the formation of the main cavity. Figure 4(b) shows that our numerical simulation
can closely capture the phenomenon of how waves break. The only discrepancy can be caused
by the lack of small ejections when the plunging jet penetrates into the wave front due to
the absence of the 3-D effect. The wave propagates to the third position and develops into
turbulent flow, forming a large amount of spray and bubbles. There are apparent fluctuations
in the free surface between 𝑡/𝑡0 = 5.6 and 8.8, showing a strongly turbulent phenomenon in
this region. Figure 4(c) shows an overall underestimation of the free-surface elevations from
𝑡/𝑡0 = 5.6 to 8.8 by our numerical simulation. This result is most likely due to differences in the
recordings of the free-surface elevations from the experiments and numerical simulations. In
the experiment, the value of the free-surface elevations is the maximum elevation of the wave
profile, splashing bubbles, and droplets, as the free-surface elevations are recorded from the
black region in the experimental snapshots. However, in the numerical simulation, the free-
surface elevations are primarily determined by wave profiles rather than splashing droplets
scattered above the water surface. In general, the temporal evolution of free-surface profiles
can be precisely reproduced by our simulation when compared to laboratory experiments at
each location.

In summary, although our 2-D simulation has limitations in capturing droplets and
ligaments in the spanwise direction, the model demonstrates its capability to accurately
depict wave hydrodynamics. This is evidenced by its ability to reproduce the wave height,
wave speed, and wave-breaking process, as demonstrated in the aforementioned comparisons.
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Figure 4: Qualitative comparison of surface elevations over time at 𝑥/𝑑 = 4.8 (a), 7.2 (b),
and 9.6 (c) for wave 1 with 𝑠/𝑑 = 2.13 and 𝑓 𝑑/𝑐 = 0.12.

4. Breaking characteristics
4.1. Wave-breaking dynamics

Sequences of three different plunging breakers with contours of the normalized velocity
magnitude (𝑢, 𝑣)/𝑐 are shown in figure 5. For wave 1, the wave begins to break as the wave
crest steepens and becomes multivalued at 𝑡/𝑡0 = 3.19. A curled jet is formed projecting
ahead of the wave, and a high and flat interface accumulates at the backside of the wave
crest. The overturning jet develops further and impacts the wave front, forming a closed
cavity from the entrapped air at 𝑡/𝑡0 = 4.25. The phenomena of the breaking event from wave
breaking and jet impact to splash-up formation among waves 1, 2, and 3 are quite similar.
However, some differences exist at the backside of the wave crest and regarding the size
and shape of the closed cavity. Due to the highly unsteady and rapidly evolving breaking
crest, determining the location and speed of the crest is challenging. Instead, the maximum
horizontal particle velocity 𝑢 is used to analyse the speed evolution from incipient breaking to
jet impact. Notably, the phase speed in shallow water 𝑐, calculated using linear wave theory,
exhibits significant discrepancies when compared to the measured wave phase speed, which
can be determined by the distance between two crests. These discrepancies may arise from
the highly nonlinear and asymmetric wave profile, as well as the persistent motion of the wave
plate during wave breaking. For simplicity, we continue to use the shallow water phase speed
𝑐 here. Prior to wave breaking, the maximum horizontal particle velocity is located at the
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Figure 5: Evolution of the free surface for the three different plunging breakers, labelled
with the normalized velocity vectors (𝑢, 𝑣)/𝑐. Figures (a), (c), and (e) correspond to the
time when the wave front nears vertical, while figures (b), (d), and (f) indicate the time

when the plunging jet impacts the wave front. The green star indicates the position where
the maximum horizontal particle velocity is located at that moment.

wave crest. The green star in figure 5 indicates the position where the maximum horizontal
particle velocity is located at that moment. As the wave front approaches vertical, the particle
velocities become almost horizontal with the order of the phase speed. The location of the
maximum horizontal particle velocity then shifts downwards to the vertical plane along
the longitudinal direction. At this stage, the maximum horizontal particle velocity begins
to increase until the plunging jet impacts, reaching its maximum value at the top of the
entrapped air cavity within the curling jet. For wave 1, the front face becomes nearly vertical
at 𝑡/𝑡0 = 3.19, with a horizontal crest particle velocity of 𝑢/𝑐 = 1.57. Upon impact of the
plunging jet at 𝑡/𝑡0 = 4.25, the horizontal crest particle velocity increases to 𝑢/𝑐 = 1.99,
representing a 27% increase. For wave 2 and wave 3, the front face becomes nearly vertical
at 𝑡/𝑡0 = 2.88 and 𝑡/𝑡0 = 4.51, respectively, with velocity increases of 40% and 14% up to
the impact of the plunging jet at 𝑡/𝑡0 = 4.19 and 𝑡/𝑡0 = 5.63, respectively.

The wave-breaking process is illustrated using wave 1 as a representative example. Figure
6 shows the normalized streamwise velocity 𝑢/𝑐, vertical velocity 𝑣/𝑐, and vorticity 𝜔/𝜔0 at
different stages of wave overturning (left column, (𝑡 − 𝑡𝑖𝑚)/𝑡0 = -1), jet impingement (middle
column, (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 0), and splash-up (right column, (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 1), where 𝑡𝑖𝑚 denotes
the time when the plunging jet impacts the wave front, and 𝜔0 =

√︁
𝑔/𝑑 represents a reference

vorticity. Figure 6(a-c) presents the distribution of the streamwise velocity component, with
the maximum values 𝑢/𝑐 = 1.62 (a) at the neck below the wave crest, 2.21 (b) at the impact
point where the toe of the jet connects with the wave front, and 2.65 (c) near the tip of the
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Figure 6: Detailed normalized streamwise velocity 𝑢/𝑐 (a-c), vertical velocity 𝑣/𝑐 (d-f),
and vorticity 𝜔/𝜔0 (g-i) during wave overturning (left column, (𝑡 − 𝑡𝑖𝑚)/𝑡0 = -1), jet

impact (middle column, (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 0), and splash-up (right column, (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 1).
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Figure 7: Detailed normalized streamwise velocity 𝑢/𝑐, vertical velocity 𝑣/𝑐, and vorticity
𝜔/𝜔0 in the late stage after wave breaking at (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 2, 4 and 6.

splash-up. Combined with the distribution of the vertical velocity, the water-particle velocities
of the wave crest are found to be approximately horizontal, as shown by PIV measurements
of breaking waves by Perlin et al. (1996). The vertical asymmetry can be clearly observed
from the distribution of the vertical velocity. Vortices are identified as concentrated at the free
surface as the wave overturns, becoming more intense during cavity closure and subsequent
splash-ups. Figure 7 illustrates the normalized streamwise velocity 𝑢/𝑐, vertical velocity 𝑣/𝑐,
and vorticity 𝜔/𝜔0 during the late stage of wave breaking at (𝑡− 𝑡𝑖𝑚)/𝑡0 = 2, 4 and 6. Notably,
the highest streamwise velocity components are concentrated on the ruptured ligaments and
ejected droplets resulting from the splash-ups, reaching a maximum value of 𝑢/𝑐 = 2.65, as
depicted in figure 7(a-c). By examining the distribution of the vertical velocity component in
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Figure 7(d-f), we can identify the location of the original wave crest, as well as the number
and positioning of the primary splash-up processes, since the vertical velocity component
𝑣/𝑐 equals zero at the positions of the original wave crest and impact point. As the wave
experiences repetitive jet impacts and splash-ups, the wave front interfaces become turbulent,
resulting in irregular turbulent patches. Figure 7(g-i) demonstrates that the vortices do not
interact with the bottom, suggesting that the wave depth does not significantly influence the
turbulent clouds induced by wave breaking in our study.

4.2. Energy budget
This section investigates the temporal evolution of the energy input by the wave plate,
energy loss during wave breaking, and the corresponding dissipation rate. Before proceeding,
we acknowledge the inherent three-dimensional nature of turbulence and the potential
controversies surrounding the use of 2-D simulations. Although 2-D simulations may not fully
capture the complexities of three-dimensional turbulence, they have been widely employed
in studying breaking waves due to their ability to reproduce key features and capture the
dominant mechanisms governing the breaking process. Specific aspects of breaking waves,
such as wave overturning and energy evolution, have been found to yield valuable insights
through 2-D simulations. Previous studies, such as Iafrati (2009), have indicated that the
overturning of the jet and the initial jet impact are primarily two-dimensional processes.
Moreover, the assumption of two-dimensionality is reasonable, particularly in the early
stages after the onset of breaking, when large air bubbles are entrapped. The use of two-
dimensional DNS has also proven effective in capturing the dissipative scales of the breaking
wave process, as demonstrated by Deike et al. (2015). Three-dimensional effects are expected
to become significant only in the subsequent stage, where instabilities in the cross-direction
strongly influence both the fragmentation process of the air cavity and the dynamics of large
vortical structures. Figures 8 (a), (b), and (c) illustrate the energy evolution in the wave tank
for each case. Initially, there is no energy in the system, but as the wave plate begins to move
and interact with the water body, the generation of waves leads to a simultaneous increase in
gravitational potential energy and kinetic energy. The total energy continues to increase until
the moment when the plunging jet impacts the wave front. For waves 1, 2, and 3, this occurs
at 𝑡/𝑡0 = 4.25, 4.19, and 5.63, respectively. Prior to the jet impact, two visible energy transfers
between kinetic and potential energy can be observed, resulting from wave steepening and
the descent of the plunging jet. Figures 8(d), (e), and (f) present the temporal evolution of
the total mechanical energy starting from the initial jet impact for three different waves. The
associated dissipation rate is also depicted using dashed lines. Examining wave 1 in Figure
8(d), the energy dissipation rate remains relatively small and constant from the impact of the
plunging jet until just before the first splash-up impact, occurring at approximately (𝑡−𝑡𝑖𝑚)/𝑡0
= 1. Subsequently, as the first splash-up and its associated shedding droplets collide with the
water surface, the energy dissipation rate begins to increase. From (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 1 onwards,
the wave front interface undergoes significant perturbations due to multiple jet impacts,
splashing events, and the formation of entrapped bubbles and ejected droplets. These breaking
processes enhance energy transfer and dissipation, leading to a rapid increase in the energy
dissipation rate and a continuous decay of the total mechanical energy. After (𝑡 − 𝑡𝑖𝑚)/𝑡0 =
3, as the wave becomes more turbulent, the dissipation rate reaches its maximum, entering a
plateau that remains relatively constant until approximately (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 8. Following the
intense dissipation caused by turbulence, the dissipation rate starts to decrease at a constant
rate, with a noticeable reduction observed at approximately (𝑡 − 𝑡𝑖𝑚)/𝑡0 = 13. A similar
trend is observed in waves 2 and 3, with a weaker energy transfer and turbulence region due
to wave breaking. Notably, all scales of the breaking wave, from energy dissipation to the
formation and breakup of bubbles and droplets in a two-phase turbulent environment, must
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Figure 8: The temporal evolution of the normalized energy per unit length 𝐸𝑙/(𝜌𝑔𝑑3) for
wave 1 (a), wave 2 (b), and wave 3 (c) from the initiation of wave plate motion until the
moment of jet impact. The motion of the wave plate transfers energy to the stationary

water column, resulting in the propagation of waves at a constant water depth. Jet impact
occurs at 𝑡/𝑡0 = 4.25, 4.19, and 5.63 for waves 1, 2, and 3, respectively. Figures (d), (e),

and (f) present the normalized energy per unit length 𝐸𝑙/(𝜌𝑔𝑑3) and the normalized
energy dissipation rate per unit length 𝜖𝑙/(𝜌𝑔3/2𝑑5/2) starting from the time of jet impact

for the three different waves. The energy dissipation is enhanced upon the plunging jet
striking the wave front. The dissipation rate first increases and then remains relatively

constant for a period. Subsequently, the energy dissipation rate starts to decline, marking
the end of the active breaking stage. Three grey lines indicate specific time points at

(𝑡 − 𝑡𝑖𝑚)/𝑡0 = (1/(2 𝑓 ))/𝑡0, (1/ 𝑓 )/𝑡0, and (3/(2 𝑓 ))/𝑡0.

be resolved in order to accurately capture the physics of breaking waves. However, this is
not feasible in two-dimensional direct numerical simulations. The energy dissipation rates
presented in figure 8(d-f), which are based on the decay of the mechanical energy, were
used as a way of determining the active breaking period. The natural end time of breaking
is not immediately obvious, but examining the evolution of dissipation rates provides a way
to identify the point at which the wave has stopped breaking. While our 2-D results on the
energy budget and dissipation provide a brief overview of energy evolution during breaking
and its associated causes from a two-dimensional perspective, some physical phenomena
such as the rupture of the main air cavity cannot be represented due to the absence of 3-D
information. Consequently, it is not advisable to extrapolate from these 2-D results to infer
the complete physical processes occurring during breaking.

5. Parametric study as a function of the fluid properties and initial conditions
5.1. Influence of the Bond number on the main cavity

In this section, the effect of dimensionless parameters responsible for the wave evolution
and breaking characteristics on the geometry of the main cavity at impact is investigated.
The effect of the Reynolds number on the wave evolution is expected to be small before
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Figure 9: Evolution of the free surface, spanning from jet formation to jet impact, is
examined with a time interval of Δ𝑡/𝑡0 = 0.16. A large Bond number of 80000, which

represents a significant scale separation, is used for grid convergence analysis. The
comparison between 𝑙𝑚𝑎𝑥 = 15 and 16 exhibits better agreement compared to that

between 𝑙𝑚𝑎𝑥 = 14 and 15, indicating that 𝑙𝑚𝑎𝑥 = 15 adequately achieves grid
convergence, even for relatively high Bond numbers.

wave breaking, as the jet thickness is independent of the Reynolds number, and no apparent
dependence of the cavity size on the Reynolds number is discovered (Iafrati 2009; Mostert
et al. 2022). The Reynolds independence of the wave characteristics and main cavity features
is checked by comparing the numerical results for distinct Reynolds numbers of 6 × 104 and
6 × 105 with experimental data. These findings confirm the results obtained previously by
Iafrati (2009). The influence of the Reynolds number on the wave features is neglected in
this study since it has been shown to be negligible at high Reynolds numbers in breaking
waves. Since our 2-D simulation provides a reasonable estimate of the wave profile and the
formation of a plunging jet, which is considered the laminar structure before jet impingement
occurs, the effects of the Bond number on the evolution of the wave profile and breaking
characteristics of plunging breakers are determined by examining extensive cases with a
wide range of Bond numbers. The Bond number increases from 6000 to 80000 in increments
of 2000, while all other parameters remain constant. Note that 𝐵𝑜 = 8600 refers to the
surface tension between air and water in the experiments. Previous studies have revealed that
a larger value of 𝐵𝑜 results in greater separation between the wavelength and Hinze scale,
necessitating the use of costly numerical resources if all scales are to be resolved (Wang et al.
2016). Our high-resolution meshes that benefit from adaptive mesh refinement criteria can
resolve breakers with greater separation between length scales, allowing us to vary 𝐵𝑜 over
a wide range. For instance, for 𝐵𝑜 = 80000, the capillary length 𝑙𝑐 =

√︁
𝑑2/𝐵𝑜 = 0.884𝑚𝑚,

and the capillary length relative to the smallest grid size 𝑙𝑐/Δ ∼ 5 at 𝑙𝑚𝑎𝑥 = 15. A similar
capillary length to the smallest grid size ratio was utilized in the three-dimensional wave
breaking DNS of Re = 100000 and 𝐵𝑜 = 1000 by Mostert et al. (2022). Additionally, a
grid number of 6.4 was employed to represent the initial sheet for investigating the motion
and stability of the edge of a liquid sheet in 2-D. A rim forms at the edge of the free end
of the sheet, and a neck appears just behind the rim, resembling the phenomena observed
in the stretching of the plunging jet (Fuster et al. 2009). These applications suggest that
the current grid resolution is adequate for capturing the formation and geometry of the
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Figure 10: The spatial evolution of the free surface and the development of overturning jet
for wave 1 at various Bond numbers when 𝑡/𝑡0 = (a) 2.5, (b) 3.1, (c) 3.8, (d) 4.1.

plunging jet. In addition, a convergence study was conducted to assess the ability of our
2-D simulation to capture the formation and geometry of the plunging jet, considering three
different 𝑙𝑚𝑎𝑥 values of 14, 15, and 16 for 𝐵𝑜 = 80000. As shown in figure 9, we observe
that the agreement between 𝑙𝑚𝑎𝑥 = 15 and 16 is better than that between 𝑙𝑚𝑎𝑥 = 14 and 15,
and the results for 𝑙max = 15 and 16 are nearly coincident. This suggests that 𝑙𝑚𝑎𝑥 = 15 is
sufficient for achieving grid convergence, even at relatively high Bond numbers. Figure 10
illustrates the evolution of the wave profile under various Bond numbers at 𝑡/𝑡0 = 2.5, 3.1,
3.8, and 4.1. Qualitatively, the wave profile evolution does not exhibit a significant influence
of 𝐵𝑜. The impact of 𝐵𝑜 primarily manifests in the development of the plunging jet, which
features a rounded edge due to capillary retraction (Fuster et al. 2009). At 𝑡/𝑡0 = 2.5, the
generated wave crest experiences the effects of surface tension, resulting in a bulge on the
front face of the steepening wave crest. The inset of figure 10(a) reveals a smaller bulge with
the increasing Bond number, accompanied by a slightly larger wave height prior to breaking.
This behaviour indicates that surface tension induces capillary ripples on the forwards face
of the wave, leading to a bulge on the water surface. Experimental studies by Perlin et al.
(1996) captured the appearance of parasitic capillary waves on the upper section of the
vertical wave front, specifically along the highest elevations of the lower front face of the
plunging wave. Moreover, Diorio et al. (2009) observed that the bulge and capillary waves
on the crest-front faces of the spillers at breaking onset are self-similar, independent of the
breaking-wave-generation mechanism. This geometric similarity is limited to the crest-front
profiles of the spillers and is attributed to the crest flow being dominated by surface tension
and gravity. For larger Bond numbers where the influence of surface tension is negligible, a
smaller bulge is formed. The slopes of the free surface upstream of the toe and the curvature
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wave profiles, 𝐵𝑜 = 20000

Figure 11: Estimation of the breaking height ℎ, which is the sum of the height from the
breaking crest to the cavity top ℎ𝑡 and the vertical height of the main cavity ℎ𝑐 . The main
cavity size 𝐴 is assumed to be proportional to ℎ𝑐

2, which can be normalized by 𝐴0 ∝ ℎ2,
giving that 𝐴/𝐴0 ∝ (ℎ𝑐/ℎ)2.

of the bulge appear to increase with surface tension. The profile shapes and trends depicted in
figure 10(a) exhibit qualitative similarities to numerical simulations of deep-water plunging
and spilling breakers reported by Perlin et al. (1996) and Diorio et al. (2009). However, the
detailed quantitative characteristics of the capillary ripples are beyond the scope of this study
and are not discussed here. At 𝑡/𝑡0 = 3.1 (figure 10(b)), as the horizontal asymmetry of the
wave profile develops further, the edge of the bulge erupts from a point just forwards of the
crest and becomes tangent to the wave direction, presenting different widths of the bulge due
to different surface tensions. The bulge due to surface tension projects forwards and develops
into a plunging jet at 𝑡/𝑡0 = 3.8 (figure 10(c)), and a thicker jet can be observed at a smaller
Bond number, indicating that jet thickness is dependent on the Bond number due to capillary
effects caused by surface tension. Figure 10(d) shows that at 𝑡/𝑡0 = 4.1, the plunging jets at
𝐵𝑜 = 6000 and 8000 impact the rising wave front, ingesting a tube of air, while the plunging
jets at 𝐵𝑜 = 12000 and 16000 still need more time to form the cavity. As the Bond number
increases, the instant at which the plunging jet impinges on the front of the wave is delayed,
and the plunging jet becomes thinner and projects further forwards ahead of the wave,
entrapping more air into the wave. The cross-sectional shape of the air cavity is affected by
surface tension. Increasing the effect of surface tension causes the plunging jet to thicken and
reduces the volume of air entrapped at the jet impact. The geometric properties of the main
cavity caused by plunging breakers are identified by New (1983), showing that the surface
profiles underneath the overturning crest may be represented by an ellipse of axes ratio

√
3,

with its major axis rotated at an angle of approximately 60◦ to the horizontal. A similar shape
can be confirmed in our cases as shown in figure 11. The vertical height of the main cavity
ℎ𝑐, calculated as ℎ𝑐 = ℎ− ℎ𝑡 , is closely related to the size of the main cavity entrapped by the
plunging jet, where ℎ is the breaking height and ℎ𝑡 is the height from the breaking crest to the
cavity top. The cross-sectional area of the initially ingested cavity in the breaking process can
be estimated by applying the ellipse area formula 𝐴 = 𝜋(ℎ𝑐/𝑠𝑖𝑛60◦)2/4

√
3, where ℎ𝑐 is the

vertical height of the main cavity. By normalizing the main cavity using the cross-sectional
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Figure 12: Estimation of the main cavity size and breaking height. (a) The geometry of the
main cavity when the plunging jet connects with the front of the wave at 𝑡/𝑡0 = 4.32 under

various Bond numbers. (b) Relationship between cavity area and Bond numbers. (c)
Linear relationship between the decreased breaking height caused by shortened project
distance and the capillary length, (ℎ0 − ℎ)/𝑑 ∝ (𝑙𝑐/𝑑)3. (d) A scaling to estimate the

breaking height at different Bond numbers.

area 𝐴0, we obtain 𝐴/𝐴0 ∝ (ℎ𝑐/ℎ)2. A new scaling regarding the cavity correction factor
for the entrained cavity is proposed as 𝐴/𝐴0 = ((ℎ − 𝜋𝑙𝑐)/ℎ)2 by Mostert et al. (2022), with
very good agreement at high Bond numbers and weaker agreement at lower Bond numbers.
This indicates that ℎ𝑐 = ℎ − 𝜋𝑙𝑐, where 𝑙𝑐 is the capillary length. Similar scaling can be
proposed, but a coefficient of 0.6 should be used to mediate the difference between the width
of the jet and the breaking height when it exhibits a greater separation between the wave
scale and capillary length due to the larger Bond number in the present work, which gives
𝐴/𝐴0 = (0.6(ℎ−𝜋𝑙𝑐)/ℎ)2. Figure 12(a) illustrates the geometry of the main cavity when the
plunging jet connects with the front of the wave at 𝑡/𝑡0 = 4.32. It is observed that the size of
the main cavity appears to be independent of the surface tension when increasing the Bond
number, indicating a convergence of the main cavity size as the Bond number increases.
Figure 12(b) shows very good agreement between this scaling and the present DNS results.
As previously stated, the wave jet becomes thinner and projects further forwards ahead of
the wave as the surface tension decreases. It exhibits a breaking height ℎ0 in the absence of
surface tension, which represents the maximum value of all breaking heights when surface
tension is considered. The decreased breaking height caused by the shortened project distance
normalized by 𝑑 is proportional to the cube of the capillary length normalized by 𝑑, which
gives (ℎ0 − ℎ)/𝑑 ∝ (𝑙𝑐/𝑑)3, as shown in figure 12(c), while ℎ𝑡 remains constant under a
distinct Bond number. Figure 12(d) shows the comparison of the numerical results of ℎ/𝑑
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to the estimated values of ℎ/𝑑 calculated using ℎ0/𝑑 −𝐶 (𝑙𝑐/𝑑)3 by the proposed power-law
scaling, with 𝐶 being a proportionality constant.

5.2. Breaking criteria
This section develops the relationship between wave parameters, i.e., maximum wave height
before breaking 𝐻 [L], breaking-wave crest 𝐻𝑏 [L] of the plunging breaker, and the initial
conditions used to generate waves in this study by numerical data fitting, following the above
dimensional analysis as stated in (2.4) and (2.5):

𝐻

𝑑
= 𝑓𝐻 (Re, 𝐵𝑜,

𝑠

𝑑
,
𝑓 𝑑

𝑐
) (5.1)

𝐻𝑏

𝑑
= 𝑓𝐻𝑏

(Re, 𝐵𝑜,
𝑠

𝑑
,
𝑓 𝑑

𝑐
) (5.2)

As discussed in section 5.1, Re and 𝐵𝑜 do not significantly influence the wave characteristics,
so the wave is considered independent of Re and 𝐵𝑜 when discussing the scaling of 𝐻 and
𝐻𝑏 to the initial conditions. Thus,

𝐻

𝑑
= 𝑓𝐻 ( 𝑠

𝑑
,
𝑓 𝑑

𝑐
) ∝ ( 𝑠

𝑑
)𝛼𝐻 ( 𝑓 𝑑

𝑐
)𝛽𝐻 (5.3)

𝐻𝑏

𝑑
= 𝑓𝐻𝑏

( 𝑠
𝑑
,
𝑓 𝑑

𝑐
) ∝ ( 𝑠

𝑑
)𝛼𝐻𝑏 ( 𝑓 𝑑

𝑐
)𝛽𝐻𝑏 (5.4)

This dimensional analysis demonstrates the dependence of the wave characteristics on the
dominant dimensionless variables derived from the initial conditions. Their quantitative
relations are investigated by conducting various cases for different combinations of 𝑠, 𝑓 , and
𝑑 to determine the corresponding coefficients in the dimensionless expressions.

First, the wave characteristics are estimated from the simplified theory for plane wave-
makers. In shallow water, a simple theory for the generation of waves by wavemakers was
proposed by Galvin (1964), who reasoned that the water displaced by the wavemaker should
be equal to the crest volume of the propagating wave form. As breaking waves are generated
by a piston wavemaker with a stroke of 𝑠 over a constant water depth 𝑑, the volume of water
displaced over a whole stroke is 𝑠𝑑. If the resulting waves are vertically symmetric with
one single crest before breaking, then the crest volume of the propagating wave forms in a
wavelength is

∫ 𝐿/2
0 (𝐻/2) (1 − cos 𝑘𝑥)d𝑥 = 𝐻𝐿/4, where 𝐿 is the wavelength and 𝑘 = 2𝜋/𝐿

is the wavenumber. Equating the two volumes,

𝑠𝑑 =
𝐻𝐿

4
(5.5)

According to the dispersion relation of shallow-water waves, the wavelength is 𝐿 = 𝑇
√︁
𝑔𝑑.

Then the resulting connection between the wave height and the initial conditions of the wave
plate can be expressed as:

𝐻

𝑑
=

4𝑠
𝑇
√︁
𝑔𝑑

(5.6)

Notably, the wave parameters 𝐻, 𝐿, and 𝑇 in this expression are theoretical values and do not
represent the real values in actual waves, which already break before forming a symmetrical
waveform, but it provides us with a possible relationship that can be used to determine the
fit to the numerical data.

Then, the scaling of the maximum wave height before breaking 𝐻 of the experimental
waves generated by the wave plate is fitted through the numerical results under various
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Figure 13: Scaling for the maximum wave height before breaking (a) and breaking wave
crest (b) with respect to the initial conditions. Normalized wave height from equation (5.3)
with the parameters 𝛼𝐻 = 1 and 𝛽𝐻 = 1. This indicates that the wave height normalized
by the water depth is proportional to the maximum wave plate velocity normalized by the
wave phase speed. (b) The normalized breaking wave crest from equation (5.4) with the

parameters 𝛼𝐻𝑏
= 2/3 and 𝛽𝐻𝑏

= 1/3. (c) Relationship between the maximum fluid
particle velocity before jet impact and the maximum wave plate speed.

initial conditions. It can be seen from equation (5.3) that 𝐻/𝑑 ∝ 𝑠𝛼𝐻 𝑓 𝛽𝐻 𝑑𝛽𝐻/2−𝛼𝐻𝑔−𝛽𝐻/2,
so 𝐻 ∝ 𝑠𝛼𝐻 𝑓 𝛽𝐻 𝑑𝛽𝐻/2−𝛼𝐻+1𝑔−𝛽𝐻/2. At the same frequency 𝑓 , numerical results show that
𝐻/𝑑 ∝ 𝑠𝑑−1/2 and 𝐻 ∝ 𝑠𝑑1/2, so we have 𝛼𝐻 = 1 and 𝛽𝐻 = 1; thus, it gives:

𝐻

𝑑
∝ 𝑠 𝑓√︁

𝑔𝑑
∝ 𝑈𝑚𝑎𝑥

𝑐
(5.7)

where 𝑈𝑚𝑎𝑥 = 𝑠𝜋 𝑓 is the maximum wave plate velocity and 𝑐 =
√︁
𝑔𝑑 is the linear velocity.

This is quite similar to the theoretical result proposed in equation (5.6). Furthermore, the
scaling of the breaking-wave crest 𝐻𝑏 with the initial conditions is also fitted through the
numerical results. Based on the same method of analysing the numerical data, the exponents
in power-law scaling can be determined as 𝛼𝐻𝑏

= 2/3 and 𝛽𝐻𝑏
= 1/3; thus:

𝐻𝑏

𝑑
∝ ( 𝑠

𝑑
)2/3( 𝑓 𝑑

𝑐
)1/3 (5.8)

Figures 13 (a) and (b) show the relationship between the normalized maximum wave height
before breaking 𝐻/𝑑 and breaking-wave crest 𝐻𝑏/𝑑 to the initial conditions. A linear
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correlation between the maximum wave height before breaking 𝐻 and the maximum wave
plate speed 𝑈𝑚𝑎𝑥 is revealed, showing that the wave height increases as the maximum wave
plate speed increases. As indicated in figure 13, the generated wave remains nonbreaking
for 𝐻/𝑑 ⩽ 0.65. The breaking is of the spilling type for 0.65 ⩾ 𝐻/𝑑 ⩽ 0.80, whereas
it is of the plunging type for 𝐻/𝑑 ⩾ 0.80. The above results agree with the measurement
performed by Li (2017), who showed that the critical value for spilling and plunging waves is
𝐻/𝑑 = 0.80. For plunging breakers, a linear correlation between breaking-wave crest 𝐻𝑏 and
initial conditions is also proposed, which is in good agreement with the numerical results.

We also present the relationship between the maximum fluid particle velocity at the
moment of jet impact and the initial conditions. Figure 13 (c) demonstrates a generally linear
dependence between 𝑢max/𝑐 and 𝑈max/𝑐, where lower values of 𝑈max/𝑐 tend to correspond
to higher values of 𝑢max/𝑐, while larger values of 𝑈max/𝑐 result in lower values of 𝑢max/𝑐.
Deviations from this linear dependence may be attributed to nonlinearity and asymmetry
introduced by our wave-making method. Waves associated with larger 𝑈max/𝑐 break earlier,
limiting the acceleration of water particles, whereas waves corresponding to smaller 𝑈max/𝑐
receive energy from the backside of the wave crest. In addition, the shoaling effect induced
by higher nonlinearity leads to an increase in wave height and a decrease in fluid particle
velocity.

5.3. Energy dissipation due to breaking
The energy dissipation rate due to breaking can be defined as 𝜖𝑙 = Δ𝐸𝑚/Δ𝑡, which is
the average decrease in the conservative energy 𝐸𝑚 over the active breaking period Δ𝑡.
Notably, different studies have adopted varying definitions for the active breaking period. For
instance, in the laboratory measurements conducted by Drazen and Kirby (2008) on deep-
water breaking due to dispersive focusing, the duration of the breaking event is determined
by differencing the start and stop times of breaking from the spectrogram of the hydrophone
signal. On the other hand, when considering breaking solitary waves on plane slopes in
shallow water, Mostert & Deike (2020) defined the active breaking period as commencing
when the wave face becomes vertical and ending when the kinetic energy 𝐸𝑘 equals the
potential energy 𝐸𝑝. This definition ensures that the contribution of bottom boundary layer
friction during run-up is excluded from the calculation of the dissipation during breaking.
In the current case, where the wave breaks due solely to nonlinearity in a tank with a level
bottom, the dominant mechanism of dissipation comes from viscous dissipation by turbulence
in the upper layers. If we assume that most of the viscous dissipation occurs while the wave
is actively breaking, then the active breaking phase ends when the energy dissipation rate
slows. As shown in figure 8(d), (e), and (f), the energy dissipation rate initially exhibits a
rapid increase with time, reaching its maximum at approximately (𝑡− 𝑡𝑖𝑚)/𝑡0 = (1/(2 𝑓 ))/𝑡0.
Subsequently, the dissipation rate remains relatively constant for a duration of 1/(2 𝑓 ), after
which it begins to decay. A noticeable decay in the energy dissipation rate can be observed at
approximately (𝑡 − 𝑡𝑖𝑚)/𝑡0 = (3/(2 𝑓 ))/𝑡0, which may indicate the end of the active breaking
stage. Therefore, in this study, the active breaking period is defined as the period starting
when the jet impacts and lasting Δ𝑡 = 3/(2 𝑓 ), once the quasiequilibrium stage has ended
and the energy dissipation rate begins to decay.

The physical parameters for the energy budget are the total energy per unit length
transferred by the motion of the wave plate 𝐸𝑙 [ML/T2] and the energy dissipation per
unit length of the wave crest 𝜖𝑙 [ML/T3] for plunging breakers. Then, the dimensional
analysis for the energy budget gives:

𝐸𝑙

𝜌𝑔𝑑3 = 𝑓𝐸𝑙
(Re, 𝐵𝑜,

𝑠

𝑑
,
𝑓 𝑑

𝑐
) (5.9)
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Figure 14: Scaling for the total energy transferred by the motion of wave plate 𝐸𝑙 .
Normalized total energy from equation (5.13) with the parameters 𝛼𝐸𝑙
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Likewise, the energy budget is assumed to be independent of the Reynolds number and Bond
number. Thus,

𝐸𝑙

𝜌𝑔𝑑3 = 𝑓𝐸𝑙
( 𝑠
𝑑
,
𝑓 𝑑

𝑐
) ∝ ( 𝑠

𝑑
)𝛼𝐸𝑙 ( 𝑓 𝑑

𝑐
)𝛽𝐸𝑙 (5.11)

𝜖𝑙

𝜌𝑔3/2𝑑5/2 = 𝑓𝜖𝑙 (
𝑠

𝑑
,
𝑓 𝑑

𝑐
) ∝ ( 𝑠

𝑑
)𝛼𝜖𝑙 ( 𝑓 𝑑

𝑐
)𝛽𝜖𝑙 (5.12)

We first determine the relationship between the total energy per unit length and the
initial conditions. According to linear wave theory, the total energy per wave unit width
is given by 𝐸𝑙 = 𝜌𝑔𝐻2𝐿/8. Thus, the dimensionless wave energy can be expressed as
𝐸𝑙/(𝜌𝑔𝑑3) = 𝐻2𝐿/(8𝑑3). Assuming that the generated wave has the same frequency as the
wave plate, we can calculate the nominal wavelength 𝐿 using the dispersion relationship
in shallow water, i.e., 𝐿 = 𝑇

√︁
𝑔𝑑 ∝

√︁
𝑔𝑑/ 𝑓 . Furthermore, we have derived the scaling

between wave height and the initial conditions as 𝐻/𝑑 ∝ 𝑠 𝑓 /
√︁
𝑔𝑑. Consequently, we find

that 𝐸𝑙/(𝜌𝑔𝑑3) = 𝐻2𝐿/(8𝑑3) ∝ (𝑠/𝑑)2( 𝑓 𝑑/𝑐). Therefore, the scaling of the energy budget
with respect to the initial conditions is determined by 𝛼𝐸𝑙

= 2 and 𝛽𝐸𝑙
= 1 and can be

described as:
𝐸𝑙

𝜌𝑔𝑑3 ∝ ( 𝑠
𝑑
)2( 𝑓 𝑑

𝑐
) (5.13)

Figure 14 shows the relationships between the total energy transferred by the motion of the
wave plate 𝐸𝑙 and the initial conditions. It is evident that the measured total energy from the
numerical data is generally in agreement with the estimated results from the initial conditions.
However, in the lower range of total energy, which corresponds to lower nonlinearity, the
estimated total energy derived from the initial conditions tends to underestimate the measured
total energy.

Next, we aim to establish a scaling relationship between the energy dissipation rate during
wave breaking and the wave parameters. This scaling is based on an inertial model for
estimating the energy dissipation rate, similar to the approach employed by Drazen et al.
(2008) for deep-water breakers and Mostert & Deike (2020) for shallow-water breakers. We
seek to validate the applicability of this framework in predicting energy dissipation during
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breaking in shallow water over a flat bed geometry. To establish a connection between the
isotropic turbulence assumption and the empirical relationship, accurate estimations are
required for the turbulent integral length scale 𝑙, the characteristic velocity scale 𝑤, and the
turbulent cloud cross-section 𝐴. In Drazen et al. (2008)’s study on plunging breaking waves
in deep water, an inertial model is employed to estimate the dissipation rate, using the local
wave height ℎ and velocity at impact as the length and velocity scales, respectively. The
trajectory of the toe, as measured in the experiment, indicates that the toe of the breaker is in
freefall under gravity, descending a height ℎ. Consequently, the vertical velocity of the toe at
impact can be approximated as 𝑤 =

√︁
2𝑔ℎ. By assuming a cylindrical cloud of turbulence of

cross-sectional area 𝐴 = 𝜋ℎ2/4 and applying the linear dispersion relationship in deep water,
they argued that the breaking parameter 𝑏 should be proportional to 𝑆5/2, where 𝑆 = ℎ𝑘 is the
local slope at breaking. Following the same inertial model, Mostert & Deike (2020) quantified
the energy dissipation caused by breaking solitary waves in shallow water on a gentle slope.
They determined the impact velocity of the plunging jet as 𝑤 =

√︁
2𝑔𝐻𝑏, where 𝐻𝑏 is the

wave height at breaking. The turbulent integral length scale 𝑙 is estimated by the undisturbed
depth at breaking 𝑑𝑏, as 𝑑𝑏 sets the upper limit on the size of eddies that form from the
breaking process. This was corroborated by examining the vorticity in the liquid phase during
the breaking event, which demonstrated that the mixing zone reaches the slope bed and is
constrained by the depth. Utilizing the inertial model, they established a relationship between
the dissipation resulting from wave breaking during the active breaking period and the local
wave height, depth, and beach slope, denoted as 𝑏 ∝ (𝐻𝑏/𝑑0)7/2(𝑑𝑏/𝑑0)−1, where 𝑑0 is
the water depth before the wave enters the slope. The same estimation method utilized by
Mostert & Deike (2020) can be applied to our breaking waves in shallow water. However,
there are notable distinctions between our breaking waves and the wave breaking on a slope
examined in their work. Unlike waves breaking on a slope, our waves propagate in a tank
with a flat bottom and break due to strong nonlinearity. Although in many cases the breaking
height 𝐻𝑏 exceeds the water depth 𝑑, since the plunging jet descends from a wave crest
and impacts the wave front, the mixing zone is situated near the initial water depth and is
still bounded by the breaking height 𝐻𝑏. This can also be supported by the vorticity field
during the postbreaking period, as depicted in figure 7. By considering a cylindrical cloud of
turbulence with a cross-sectional area of 𝐴 = 𝜋𝐻𝑏

2/4, a vertical height of 𝐻𝑏, and an impact
velocity of the toe 𝑤 =

√︁
2𝑔𝐻𝑏, the dissipation per unit length along the wave crest is:

𝜖𝑙 = 𝜌𝐴𝜖 = 𝜌
𝜋𝐻𝑏

2

4

√︁
2𝑔𝐻𝑏

3

𝐻𝑏

∝ 𝜌𝑔3/2𝐻𝑏
5/2 (5.14)

𝑏 =
𝜖𝑙

𝜌𝑐5/𝑔
=

𝜖𝑙

𝜌𝑔3/2𝑑5/2 ∝ (𝐻𝑏

𝑑
)5/2 (5.15)

This scaling demonstrates that the dominant dimensionless variable describing the energy
dissipation by breaking in shallow water is the ratio of 𝐻𝑏 and 𝑑. Multiple experimental
measurements have demonstrated that energy dissipation associated with wave breaking
exhibits a threshold dependence on 𝑆, with the dissipation rapidly approaching zero at
low values of 𝑆. Drawing on laboratory data from various sources, Romero et al. (2012)
proposed a semiempirical result by introducing a slope-based breaking threshold 𝑆0, which
can be expressed as 𝑏 = 𝑎(𝑆 − 𝑆0)𝑛, where 𝑎 is a constant and 𝑆0 is a threshold slope for
breaking. Based on a visual fit through the data, a power of 5/2 consistent with the inertial
scaling of Drazen et al. (2008), as well as a slope threshold of 𝑆0 = 0.08 and a scaling factor
of 𝑎 = 0.4 were obtained. In the shallow-water cases, our numerical results also reveal a
threshold behaviour in the energy dissipation associated with wave breaking. As shown in
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Figure 15: Scaling for the energy dissipation per unit length of breaking wave 𝜖𝑙 (a) with
respect to the initial conditions. (a) Scaling for energy dissipation per unit length of

breaking wave 𝜖𝑙 with respect to local breaking parameters 𝐻𝑏/𝑑, as shown in equation
(5.16). (b) Normalized energy dissipation rate based on the relationship between the

breaking wave crest 𝐻𝑏/𝑑 and the initial conditions.

figure 15 (a), the green dotted line represents a fit to the inertial scaling 𝑏 = 𝑎(𝐻𝑏/𝑑)5/2

with a coefficient value of 𝑎 = 0.06. However, when the inertial scaling is extended to
smaller values of 𝐻𝑏/𝑑, it overestimates the dissipation rate compared to the numerical
data. This discrepancy clearly indicates that the energy dissipation approaches zero at low
values of 𝐻𝑏/𝑑, exhibiting threshold behaviour. To account for this observation, we adopt
a semiempirical scaling relationship of the form 𝑏 = 𝑎(𝐻𝑏/𝑑 − 𝜒0)𝑛, where 𝜒0 denotes
the critical value for 𝐻𝑏/𝑑. By fitting the numerical data, we can obtain the best-fitting
parameters for this scaling relationship:

𝜖𝑙

𝜌𝑔3/2𝑑5/2 = 𝑎(𝐻𝑏

𝑑
− 𝜒0)𝑛 = 0.21(𝐻𝑏

𝑑
− 0.65)1.5 (5.16)

This reveals a threshold value of 𝜒0 = 0.65 and a power law scaling of 𝑛 = 1.5. Figure 15 (a)
illustrates the fitted curve that smoothly connects all the numerical data. Notably, the obtained
threshold 𝜒0 closely aligns with the breaking criterion 𝐻/𝑑 = 0.65, which distinguishes
between breaking and nonbreaking waves. Note that this link between the energy dissipation
rate and the local breaking parameters is applicable to plunging breakers. Although spilling
waves exist within the 𝐻𝑏/𝑑 range of 0.65 - 0.76, the dissipation associated with spilling
breakers is not depicted in this context. The validation of the relationship between dissipation
caused by spilling breakers and local breaking parameters would require additional data, but
it exceeds the scope of this discussion. This critical value for 𝐻𝑏/𝑑 can be justified by the
absence of energy dissipation in nonbreaking waves. It is worth highlighting that in deep
water scenarios, the scatter of the data at high values of 𝑆 and the relatively small threshold
slope 𝑆0 allow for retaining the power law of 5/2 in the inertial scaling proposed by Drazen
et al. (2008) when the slope threshold is introduced. However, in shallow-water cases, the
critical value 𝜒0 = 0.65 significantly modifies the power law from the inertial scaling of 5/2
to 1.5. As stated in section 5.2, based on the relationship of the normalized breaking-wave
crest to the initial conditions 𝐻𝑏/𝑑 = 1.19(𝑠/𝑑)2/3( 𝑓 𝑑/𝑐)1/3, the energy dissipation rate can
also be connected to the initial conditions. Figure 15 (b) shows a good dependence between
the energy dissipation rate and the initial conditions.

Based on the aforementioned analysis, the magnitude of the breaking parameter 𝑏 in
shallow-water breaking waves is influenced by the ratio of the local breaking crest height
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Figure 16: Energy dissipation from laboratory experiments and numerical simulations.
DW: deep water; SW: shallow water. The solid line is the semiempirical formulation in

deep water regimes, 𝑏 = 0.4(𝐹 − 0.08)5/2 (Romero et al. (2012)), with breaking threshold
𝐹∗ = 0.08, while the dotted line is the semiempirical formulation in deep water regimes
proposed by Boswell et al. (2023) with 𝐹∗ = 0.65. The dashed line is a visual fit through

the present data, giving 𝑏 = 0.212(𝐹 − 0.65)1.5. THL, Tainan Hydraulics Laboratory
wave tank; SIO, Scripps Institution of Oceanography wave tank; DNS, direct numerical

simulations; LES, large eddy simulations.

to the water depth, highlighting the significant role of water depth in energy dissipation
in shallow water. The breaking parameter 𝑏 exhibits a threshold dependence on 𝐻𝑏/𝑑,
rapidly tending to zero for low values of 𝐻𝑏/𝑑. As 𝐻𝑏/𝑑 increases, the breaking parameter
asymptotically converges to the inertial scaling of 5/2. These findings, which combine a local
inertial turbulent argument and empirical results through least squares fit to the numerical
data, establish a relationship between the dissipation rate and wave parameters, providing
predictive insights into the dissipation rate of breaking waves in shallow water.

A comparative analysis was conducted using data from the literature in both deep water
(sourced from Deike (2022)) and shallow water (sourced from Boswell et al. (2023))
conditions. As originally proposed by Beji (1995) and subsequently applied in the numerical
investigation conducted by Boswell et al. (2023), a nonlinearity parameter 𝐹 = 𝑔𝑎/𝑐2 was
used to connect the two distinct regimes, where 𝑎 is a representative amplitude and 𝑐 is
a phase speed. In deep water, where 𝑐 =

√︁
𝑔/𝑘 , the nonlinearity parameter 𝐹 ∼ 𝑎𝑘 = 𝑆

corresponds to the wave slope, while it converges to 𝑎/𝑑 in shallow water, with 𝑐 =
√︁
𝑔𝑑.

In our cases, 𝐹 approaches 𝐻𝑏/𝑑 as 𝑎 ∼ 𝐻𝑏. Figure 16 shows the breaking parameter 𝑏 for
deep=water breakers from a variety of experimental and numerical sources (Kendall Melville
1994; Drazen et al. 2008; Grare et al. 2013; Banner & Peirson 2007; Deike et al. 2016;
Derakhti & Kirby 2016; De Vita et al. 2018; Deike et al. 2015; Mostert et al. 2022),
along with the shallow-water dataset from Boswell et al. (2023) and the present study. The
breaking dissipation in this study falls between the previously established deep-water regimes
and the shallow-water breaking waves documented by Boswell et al. (2023), and shows
favourable consistency within the range of overlap between our data and Boswell’s data.
Furthermore, our data extend the left boundary of this range by extending the nonlinearity
parameter, specifically, 𝐻𝑏/𝑑 from 0.85 to 0.75. This particular range displays a discernible
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diminishing trend in the breaking parameter 𝑏 as the nonlinearity parameter 𝐹 decreases. A
similar trend can also be observed in Boswell’s data. However, there is a clear discontinuity
between the deep-water and shallow-water regimes, rendering a single power-law scaling
inadequate for capturing both datasets. As introduced by Romero et al. (2012), a heuristic
examination of the breaking threshold was undertaken to fit the extensive experimental
and numerical observations in deep-water scenarios, yielding a semiempirical formulation
𝑏 = 0.4(𝑆 − 0.08)5/2, where 𝑆 ∼ 𝐹 under deep-water conditions. Notably, Boswell et al.
(2023) made a commendable effort to address the discontinuity across various depth regimes
using the same concept of breaking threshold dependence, and a slope threshold 𝐹∗ = 0.7
was determined in Boswell’s shallow-water solitary wave cases. In our cases, the critical
breaking threshold 𝐹∗ was determined to be 0.65 through the best fit to our numerical
data. The expression 𝑏 = 0.212(𝐹 − 0.65)1.5 collapses the DNS data presented in the
present study favourably. However, the proposed semiempirical scaling fails to encompass
the DNS data of shallow-water solitary breaking waves from Boswell et al. (2023). Therefore,
further endeavors should be made to develop a comprehensive breaking parametrization.
Nevertheless, the available datasets summarized in figure 16 offer valuable insights into
this unsolved problem. The data suggest the possibility of a varying breaking threshold,
particularly in the context of transitioning between deep and shallow water conditions. A
determination relation governing the breaking threshold could be proposed to accommodate
the different depth regimes. This remains to be explored in future work.

6. Concluding remarks
The present study was designed to determine the effect of the fluid properties and initial
conditions on the dynamics, kinematics, and energy dissipation in the breaking process by
performing high-fidelity simulations of breaking waves generated by a piston-type wave
plate using two-dimensional direct numerical simulation. The investigation of the stroke
and frequency of the wave plate has shown detailed information, including breaking charac-
teristics, energy transfer, and dissipation during wave breaking. A quantitative relationship
between the main cavity size and the breaking height is presented based on the investigation
of the influence of the Bond number on the evolution of the overturning jet. This reveals
the effect of surface tension on the crest overturning process, which thickens the width of
the plunging jet and shortens the distance that projects forwards ahead of the wave. The
resulting wave height is estimated based on the simplified theory for plane wavemakers,
and a reliable agreement is obtained between this theoretical result and our numerical data.
The link between wave height and initial conditions indicates that waves can be classified as
nonbreaking waves, spilling breakers, and plunging breakers based on the ratio of wave height
to water depth 𝐻/𝑑. The conventional dissipation scaling of turbulence theory is applied to
the wave-breaking process, deriving a link between the energy dissipation rate and the ratio
of the breaking-wave crest to the water depth 𝐻𝑏/𝑑. By accounting for a threshold behaviour,
an empirical scaling of the breaking parameter is proposed as 𝑏 = 𝑎(𝐻𝑏/𝑑 − 𝜒0)𝑛, where 𝜒0
= 0.65 represents the breaking threshold and 𝑛 = 1.5 is a power law determined through the
best fit to the numerical results. The proposed scaling laws quantitatively link the kinematics
and dynamics of breaking waves to the local wave parameters and initial conditions, which
may be of use for future theoretical analysis.
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Scardovelli, Ruben & Zaleski, Stéphane 1999 Direct numerical simulation of free-surface and interfacial
flow. Annual review of fluid mechanics 31 (1), 567–603.



Shallow-Water Breaking Waves in a Tank with a Level Bottom 31

Scardovelli, Ruben & Zaleski, Stephane 2000 Analytical relations connecting linear interfaces and
volume fractions in rectangular grids. Journal of Computational Physics 164 (1), 228–237.

Taylor, Geoffrey Ingram 1935 Statistical theory of turbulence-ii. Proceedings of the Royal Society of
London. Series A-Mathematical and Physical Sciences 151 (873), 444–454.

Tian, Zhigang, Perlin, Marc & Choi, Wooyoung 2010 Energy dissipation in two-dimensional unsteady
plunging breakers and an eddy viscosity model. Journal of fluid mechanics 655, 217–257.

Vassilicos, J Christos 2015 Dissipation in turbulent flows. Annual Review of Fluid Mechanics 47, 95–114.
Veron, Fabrice 2015 Ocean spray. Annu. Rev. Fluid Mech 47 (1), 507–538.
Wang, Zhaoyuan, Yang, Jianming & Stern, Frederick 2016 High-fidelity simulations of bubble, droplet

and spray formation in breaking waves. Journal of Fluid Mechanics 792, 307–327.
Wei, Zhangping, Li, Cheng, Dalrymple, Robert A, Derakhti, Morteza & Katz, Joseph 2018 Chaos

in breaking waves. Coastal Engineering 140, 272–291.
Wroniszewski, Pawe l A, Verschaeve, Joris CG & Pedersen, Geir K 2014 Benchmarking of navier–

stokes codes for free surface simulations by means of a solitary wave. Coastal Engineering 91,
1–17.

Wu, ChuiJie & Wang, Liang 2009 Numerical simulations of self-propelled swimming of 3d bionic fish
school. Science in China Series E: Technological Sciences 52 (3), 658–669.
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