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Abstract 28	
The strong control that the emissions of carbon dioxide (CO2) have over Earth’s climate identifies the need 29	
for accurate quantification of the emitted CO2 and its redistribution within the Earth system. The ocean 30	
annually absorbs more than a quarter of all CO2 emissions and this absorption is fundamentally altering the 31	
ocean chemistry. The ocean thus provides a fundamental component and powerful constraint within global 32	
carbon assessments used to guide policy action for reducing emissions.  These carbon assessments rely 33	
heavily on satellite observations, but their inclusion is often invisible or opaque to policy. One reason is that 34	
satellite observations are rarely used exclusively, but often in conjunction with other types of observations, 35	
thereby complementing and expanding their usability yet losing their visibility. This exploitation of satellite 36	
observations led by the satellite and ocean carbon scientific communities is based on exciting developments 37	
in satellite science that have broadened the suite of environmental data that can now reliably be observed 38	
from space.  However, the full potential of satellite observations to expand the scientific knowledge on critical 39	
processes such as the atmosphere-ocean exchange of CO2 and ocean acidification, including its impact on 40	
ocean health, remains largely unexplored. There is clear potential to begin using these observation-based 41	
approaches for directly guiding ocean management and conservation decisions, in particular in regions 42	



where in situ data collection is more difficult, and interest in them is growing within the environmental policy 43	
communities.  We review these developments, identify new opportunities and scientific priorities, and identify 44	
that the formation of an international advisory group could accelerate policy relevant advancements within 45	
both the ocean carbon and satellite communities.  Some barriers to understanding exist but these should not 46	
stop the exploitation and the full visibility of satellite observations to policy makers and users, so these 47	
observations can fulfil their full potential and recognition for supporting society. 48	
 49	
1. Introduction 50	
The latest assessment by the Intergovernmental Panel on Climate Change (IPCC) on the state of our climate 51	
identified that warming of 1.5°C appears unavoidable (IPCC, 2022) and that rapid emissions reductions are 52	
urgently needed to reduce further warming and stabilise climate. These recommendations are guided by 53	
annual assessments of the carbon budget (e.g. by the Global Carbon Project, GCP) which attempt to 54	
quantify annual emissions (fossil fuel, cement production, land use change), their redistribution within the 55	
atmosphere and their uptake by the land biosphere and the ocean (e.g. Friedlingstein et al., 2019, 2020, 56	
2022). The relatively well-mixed nature of the atmosphere allows the quantification of the long-term CO2 57	
accumulation using a small number of observing stations (e.g. Keeling, 1978). Observation-based estimates 58	
of the annual ocean carbon uptake (sink) have now become a key component within these assessments, 59	
complementing the ocean model-based estimates. In contrast, the land sink continues to be estimated via 60	
models (Friedlingstein et al., 2022) due to its highly heterogeneous nature. Thus, ocean and atmosphere 61	
observations form the key observational pillars and constraints within these annual carbon budget 62	
assessments, with their uncertainties directly impacting the closure of the total budget. The policy relevance 63	
of these annual carbon assessments cannot be underestimated; they provide information about the impact of 64	
mitigation policies and they also enable updates on the so called “remaining carbon budget”, which identifies 65	
how much CO2 can be emitted in the coming decades without overshooting specific climate targets (e.g. as 66	
determined using models within IPCC, 2022 and Friedlingstein et al., 2022). Thus, efforts to increase 67	
understanding of, as well as improve the quantification of the ocean carbon sink, will strengthen its constraint 68	
on the remaining components of the budget within annual assessments, and increase the strength of any 69	
resulting policy guidance.   70	
 71	
Models and the analyses of ocean interior observations show that more than a quarter of the total 72	
anthropogenic emissions have been taken up by the ocean (Sabine et al., 2004; Gruber et al., 2019b) with 73	
the proportion absorbed remaining near constant over the last five decades (Friedlingstein et al., 2022; 74	
Gruber et al., 2023). This uptake occurs predominantly through gas exchange across the atmosphere-ocean 75	
interface and penetrates into the subsurface layers, changing the marine carbonate chemistry. The net effect 76	
is often called “Ocean Acidification” and is detrimental to marine life and the ocean’s ability to function as a 77	
carbon sink. This ocean acidification encompasses the anthropogenic CO2 driven increase in acidity ([H+], 78	
decreasing in pH), the increase in the concentration of dissolved CO2, the decrease in the concentration of 79	
the carbonate ion and the resulting decrease in the saturation state of seawater with regard to solid forms of 80	
calcium carbonate such as aragonite and calcite (e.g. Feely et al., 2009). Ocean acidification is decreasing 81	
the ocean’s capacity to absorb further CO2 (Orr et al., 2005) and its impact on marine organisms and 82	
ecosystems varies substantially across taxa and systems, but tends to be especially detrimental for 83	
calcifying organisms, including those with significant economic or ecological importance such as corals, 84	



mussels, and pelagic calcifiers (e.g. Dixon et al., 2022; Doney et al. 2020). The changes induced by ocean 85	
acidification percolate up entire food webs, populations and ecosystems, threatening essential marine 86	
ecosystem services (Sunday et al., 2017; Fabry et al., 2019) such as coastal or flood protection and fisheries 87	
(e.g. Doney et al., 2020) and degrading their related socio-economical values.  88	
 89	
Historically, most knowledge about global ocean carbon was derived from models (Gruber et al.,2023) but 90	
since the 1990s ocean observations are providing an increasing number of constraints. Within this in situ 91	
observations are critical, but given the ocean’s size and its often inhospitable nature, their coverage remains 92	
limited. The unique capability of space-based observations for providing large spatial scale (figure 1a), and 93	
increasingly regional-scale, observations means that they are now heavily used alongside in situ 94	
observations. Beyond the differences in spatial coverage, this combination is needed as some key properties 95	
cannot be observed from space but can be in situ (e.g. gaseous CO2 within the ocean), whilst some 96	
observations require specialist in situ capability not routinely available, but which is routinely deployed in 97	
space (e.g. near-infrared sensed temperature at 1 mm depth, or microwave evaluation of ice coverage). Just 98	
as in situ instruments require regular laboratory calibrations, satellite instruments require regular monitoring 99	
and calibration via in situ data. Consequently, the ability to use satellite observations relies upon in situ data 100	
campaigns, and global and regional observation-based assessments of ocean carbon rely heavily upon the 101	
integration of satellite observations with extensive in situ data and model re-analyses (Shutler et al., 2020). 102	
 103	
Clearly the only way to slow the rate of ocean acidification is to drastically reduce the rate of the human-104	
made emissions of CO2, in order to, at least stabilize the atmospheric CO2 concentration, and satellite and in 105	
situ observation-based ocean carbon assessments will be critical to identify any stabilisation. Even when 106	
stabilisation occurs, we will need mitigation and adaption strategies and satellite observations are well 107	
placed to support these. Similarly, a plethora of outstanding, and critical, science questions that carbon-cycle 108	
communities are now focussing on, such as identifying the strength and role of the Southern Ocean carbon 109	
sink (e.g. Gruber et al., 2019), or the importance of ocean biology in modulating carbon exchange and how 110	
this will change (e.g. Arico et al., 2020) will all require the use of satellite observations.  111	
 112	
This paper, supported with new primary data, first reviews how and why satellite observations are critical to 113	
ocean carbon science and assessments. It then identifies new scientific opportunities and key areas where 114	
satellite observations will provide greatest benefit to the carbon community, and identifies how to strengthen 115	
the important link between these satellite observation-based approaches and potential end users, a link that 116	
is currently weak. This includes mapping how the satellite capabilities could be used to support mitigation 117	
and adaption at regional and international levels. This map has been co-designed with early adopters whose 118	
communities are already grappling with the decreasing pH of their seas.  This paper forms part of a special 119	
issue and accompanies the work of Brewin et al., (2023) which identifies the capabilities for studying 120	
inorganic and organic ocean carbon from space, and a large range of scientific needs. This paper expands 121	
upon this by focussing solely on the ocean carbon sink and ocean acidification, identifying scientific and 122	
policy priorities and opportunities for quantifying surface water inorganic carbon.   123	
 124	



 
Figure 1: Satellite Earth observations are already used extensively to study ocean health and increasingly 

ocean acidification. a) This view of the Pacific Ocean from the largest satellite ever built, the International 

Space Station, illustrates the synoptic-scale view uniquely provided by satellite observations – everything 
in this view is the Pacific Ocean (credit, European Space Agency). This platform has hosted >30 different 

experimental satellite sensors which have yet to be explored by the ocean carbon community; b) The ‘pH 

stripe’ highlighting the long-term change in ocean pH since the 1980s, as determined using satellite 

observation-based data illustrates how satellite observations can help highlight the impact that carbon 

emissions are having on ocean health (generated using data from Gregor and Gruber, 2021). 

 125	
2. Satellite data are extensively used for ocean carbon assessments 126	
The relationships between the different carbonate system parameters are fundamentally driven by 127	
thermodynamics. Salinity directly affects the coefficients of the carbonate system equations (Land et al., 128	
2015) and covaries with alkalinity across the globe (Millero et al., 1998; Lee et al., 2006). Temperature is a 129	
strong controller of CO2 solubility (Woolf et al., 2016); so temperature and salinity are highly related to 130	
changes in dissolved inorganic carbon (e.g. Bakker et al., 1999). Hence, temperature and salinity are 131	
important diagnostic variables and are needed to assess the surface water carbonate system (Dickson et al., 132	
2007). This has led to satellite temperature data now routinely being used to identify the causes of wider 133	
spatial scale variability in the surface carbonate system (e.g. Lefevre et al., 2021; Olivier et al., 2022).  The 134	
relatively recent capability for satellite salinity observations has unlocked the ability for space-based 135	
carbonate system monitoring (Land et al., 2015; Salisbury et al., 2015) of surface waters via empirically 136	
derived salinity-alkalinity relationships.  Early work demonstrated its credibility enabling the first observations 137	
of synoptic scale alkalinity in the Atlantic (Fine et al., 2016), and alkalinity and dissolved carbon temporal 138	



mixing in the Amazon plume (Land et al., 2019).  The use of machine learning has produced observation-139	
driven decadal-scale assessments of a single carbon parameter (partial pressure of CO2, e.g. Watson et al., 140	
2020; Chau et al., 2022; Friedlingstein et al., 2021; figure 2) and even the complete carbonate system 141	
(Gregor and Gruber, 2021; figure 2) through combining the satellite observations with large in situ databases 142	
(Global Ocean Data Analysis Project, GLODAP, Lauvset et al., (2021) or the Surface Ocean CO2 Atlas, 143	
SOCAT, Bakker et al., 2016).  Such methods extensively rely on satellite temperature, wind speed, sea 144	
surface height and ocean colour, in conjunction with in situ re-analyses or climatologies, to identify the 145	
underlying processes controlling in-water concentrations. For ocean sink assessments, the direction of 146	
exchange with the atmosphere is determined by the CO2 concentration above and below the atmosphere-147	
ocean interface, whereas the turbulent exchange itself is primarily water-side controlled so it is routinely 148	
characterised using sea surface temperature and wind speed data (e.g. Ho et al., 2016).  An array of 149	
methods combine elements of all of these satellite approaches to determine the CO2 concentrations along 150	
with satellite observed ice coverage and re-analysis data (e.g. for atmospheric conditions) to calculate 151	
atmosphere-ocean CO2 exchange and the net carbon sink (e.g. the eight methods presented within 152	
Friedlingstein et al (2021) and its annual updates used to guide policy; the six methods within Fay et al., 153	
2021). This use of satellite remote sensing has enabled the ocean carbon community to reconstruct multi-154	
decadal ocean carbon assessments. These efforts have been encouraged and supported by international 155	
carbon observing strategies (e.g. CEOS, 2014; GOA-ON 2019; Tilbrook et al., 2019) and individual scientific 156	
community efforts (e.g. the international Surface Ocean and Lower Atmosphere Study, SOLAS).  Collectively 157	
this exploitation means that satellite observations have become critical for assessing marine carbon and the 158	
impact that carbon absorption is having on ocean ecosystems and health (Shutler et al., 2020; Arico et al., 159	
2021). They are therefore being used to guide policy and have now been identified as important for 160	
supporting delivery of the UN Ocean Decade outcomes (Dobson et al., in-press; Arico et al., 2021).  Despite 161	
these advances in understanding and capability, the critical importance of satellite observations for such 162	
assessments, along with the fragile nature of any underlying in situ networks (e.g. SOCAT) on which they 163	
also rely, is often opaque to, or overlooked by, policy makers.  Clearly, the routine integration of all forms of 164	
observations, combining satellite and in situ observations from ships, moorings, and robotic platforms is now 165	
possible. And sustained funding and international prioritization mechanisms would enable an integrated 166	
global carbon observing network (Shutler et al., 2020) to better inform and support policy decisions and 167	
outcomes. 168	
 169	



 
Figure 2: Recent advances in satellite observation-based data for studying the surface water marine 

carbonate system. a) Global assessments of the amount of gaseous CO2 (pCO2) can be mapped using 

satellite observations in conjunction with in situ databases to provide decadal-scale monthly data inputs to 

annual carbon assessments (i.e. Friedlingstein et al., 2021) (data from Gregor and Gruber, 2021); b) 
Regional assessments using satellite observation-based methods can quantify alkalinity and dissolved 

carbon flowing from the Amazon into the Atlantic (data from Land et al., 2019).  

 170	
3. Achievable advances needed within the next 2 to 5 years 171	
The following sections identify how remote sensing advances in ocean carbon research can help further 172	
constrain the global carbon budget and benefit the wider carbon community increasing the ability to guide, 173	
advise and manage mitigation, adaptation and conservation efforts. 174	
 175	
3.1 Scientific advances in understanding or capability 176	
Six areas of scientific importance where satellite observations can play a critical role are discussed in the 177	
following sections. Satellite approaches hold the potential for: reducing major sources of uncertainties in 178	
global ocean carbon assessments (section 3.1.1); addressing inconsistencies between observed and re-179	
analysis assessments of upper ocean mixing (section 3.1.2); quantifying the variability and trends in land to 180	
ocean carbon exchange (section 3.1.3); resolving meso-scale features and variability for supporting regional 181	
and local-scale assessments of ocean acidification (section 3.1.4); identifying those regions and times where 182	
compound events are occurring (section 3.1.5), and for understanding the role of biology in the evolution of 183	
the long-term ocean carbon sink (section 3.1.6). 184	
 185	
3.1.1 Exploring the air-sea interface 186	
Despite the focus on global-scale assessments, the actual exchange of CO2 occurs across a sub-millimetre 187	
depth of the mass boundary layer where the atmosphere and ocean interact. Small gradients in 188	
concentration either side of this interface are considered significant when scaled globally (Bellenger et al., 189	
2023; Goddijn-murphy et al., 2015; Dong et al., 2022; Watson et al., 2020; Woolf et al., 2016; Shutler et al., 190	
2020), and the water-side control of CO2 exchange implies that the water-side gradients are particularly 191	
important.  Improved understanding of the impact of near-surface temperature gradients (Woolf et al., 2016) 192	



has helped to advance satellite observation-based assessments of the ocean carbon sink (e.g. Dong et al., 193	
2022; Shutler et al., 2020; Woolf et al., 2019; Watson et al., 2020;), but debate continues over their 194	
significance as field evidence of the impact of these gradients is lacking (Friedlingstein et al., 2022). 195	
Microwave penetration depth in water is within the mass boundary layer and therefore microwave observed 196	
temperatures can be considered a sub-skin temperature (Minnett et al., 2019), whereas infra-red 197	
observations are close to the atmosphere-ocean interface. Coincident ship-mounted remotely sensed infra-198	
red and passive microwave temperature observations could therefore enable the temperature across the 199	
mass boundary layer to be experimentally evaluated in the field; measurements that could then constrain a 200	
high-resolution turbulence model (e.g. as used within Merchant et al., 2019) or be compared with boundary 201	
layer imaging from advanced air-sea interaction facilities (e.g. Nagal et al., 2015) to provide the missing 202	
evidence sought by the wider carbon community. Similarly, passive microwave satellite salinity retrievals 203	
originating from within the mass boundary layer could help further refine our understanding of near-surface 204	
salinity gradients (as haline gradients can also occur; e.g. Woolf et al., 2016).   205	
 206	
The parameterisation and understanding of the atmosphere-ocean exchange of gases is considered the 207	
major source of uncertainty within global scale ocean carbon sink assessments (e.g., Woolf et al., 2019). 208	
Passive microwave measurements across multiple wavelengths contain the signature of key processes 209	
controlling this surface exchange and offer a unique and largely untapped resource for direct observations of 210	
multiple exchange processes, which could reduce the reliance on wind-speed based proxies of air-sea gas 211	
exchange (Shutler et al., 2020). Whilst future passive microwave satellite concepts will provide significant 212	
opportunities for simultaneously studying multiple ocean-atmosphere processes to enable more advanced 213	
understanding of these interactions (e.g., Ciani et al., 2019; Gentemann et al., 2020).  It may also be 214	
possible to observe or parameterise alkalinity directly from passive microwave emissivity data, in contrast to 215	
current methods (e.g., Land et al., 2019) which rely on the emissivity derived salinity to then derive alkalinity. 216	
Such efforts could focus on long-standing microwave sensors designed for salinity (e.g., the soil moisture 217	
and ocean salinity satellite mission, SMOS) through exploiting large alkalinity datasets (e.g., Lauvset et al., 218	
2021) and regions of high data densities like the Atlantic.  Whereas the potential and advantages of using 219	
satellite backscatter to parameterize gas exchange has been previously highlighted (Shutler et al., 2020) but 220	
no new advances have so far appeared despite a plethora of suitable satellite sensors already in orbit, and 221	
the development of ship mounted synthetic aperture radar instruments means that radar focused gas 222	
exchange experiments are now feasible. 223	
  224	
3.1.2 Connecting the interface with the sub-surface and upper ocean dynamics and mixing 225	
The conditions below the surface can enhance or diminish the surface carbon absorption and alter the 226	
carbonate system state, and surface observed conditions can provide insights into the processes or 227	
conditions occurring at depth. Dependent upon the sensing technology the relevant depth of satellite 228	
observations can range from sub-millimeter (e.g. thermal infrared) down to tens of meters (e.g., ocean colour 229	
in an oligotrophic gyre) or below (e.g. altimetry). These depth-specific, or depth-relevant, analyses are now 230	
possible using satellite data, which combined with knowledge of physical oceanography may allow the sub-231	
surface carbonate system conditions, internal ocean transport and the mixing of water from the interface into 232	
the upper ocean to be determined. For example, the evaluation of the impact of near-surface gradients 233	
(discussed in section 3.1.1) relies upon the depth specific nature of satellite thermal infrared observations 234	



and surface to depth export fluxes have been estimated based on ocean colour satellite observations (Stukel 235	
et al., 2023).  A thorough understanding of atmosphere-ocean interactions combined with satellite 236	
measurements of surface winds has enabled the vertical and horizontal water flow in the Californian 237	
upwelling and its influence on the carbonate system to be determined (Quilfen et al., 2021). Similarly, the 238	
analysis of altimeter observed eddies analysed alongside in situ data and knowledge of their rotation 239	
characteristics has allowed the regional significance of eddy-driven vertical mixing to be quantified (Ford et 240	
al., 2023), which could easily be applied globally. 241	
 242	
Upper ocean turbulence and mixing of all ocean constituents including carbon is predominantly driven by 243	
atmospheric winds at the ocean-atmosphere interface. However, there are clear disparities between existing 244	
wind re-analysis data products which are critical for quantifying ocean carbon and the observed storm tracks 245	
from polar lows and tropical cylones (e.g., Verezemskaya et al., 2017). The significance of this disparity is 246	
likely to grow as the intensity and frequency of storms changes with the changing climate (e.g., Bhatia et al., 247	
2019) and these inconsistencies are likely impacting more than just surface turbulence estimates, as storms 248	
are known to alter upper ocean mixing and vertical motions which influence temperature, salinity and biology 249	
(e.g., Reul et al., 2020) and they can interact with the barrier layer in the upper ocean to inhibit vertical 250	
mixing (Balaguru et al., 2012).  Different satellite technologies offer a selection of complementary capabilities 251	
to address these issues. Satellite scatterometers can provide high spatial resolution observations of low to 252	
medium wind speed and direction, but their sensitivity is reduced at higher speeds (e.g., Polverari et al., 253	
2021), whereas new advances in polarised synthetic aperture radar have enabled the wind speeds (but not 254	
direction) within the eyes of storms to be resolved (e.g., Mouche et al., 2019), although the coverage of the 255	
storm within the satellite view can be limited. New passive microwave approaches show high sensitivity to 256	
cyclone wind speed and direction, but at relatively low spatial resolutions (e.g., Reul et al., 2017).  257	
Intelligently and consistently combining data from all satellite approaches would enable an observation-258	
based wind-speed and direction dataset relevant for all wind conditions with more consistent wind 259	
distributions, and work has begun in this area (e.g., the MAXSS project, https://www.maxss.org/). 260	
Consistency between observation-based wind and wave climate data records will be needed to enable the 261	
creation of an upper turbulence climate data record, as extreme waves do not always occur coincident with 262	
extreme winds (Hell et al., 2021). These approaches would be suitable for addressing disparities in wind re-263	
analysis data products, leading to a better quantification and understanding of upper ocean turbulence and 264	
mixing through time (and would benefit advances in air-sea exchange, by providing consistent wind and 265	
wave data for use in gas exchange parameterisations, as discussed in section 3.1.1). Existing satellites 266	
networks could enable these advancements, and coverage and understanding will improve further with new 267	
proposed satellite wind missions (e.g., Kilic et al., 2018) and proposed active microwave satellite sensors 268	
hold the potential to further increase knowledge of surface ocean mixing by directly observing atmosphere 269	
and ocean surface velocities and ocean current interactions (e.g., Ardhuin et al., 2019; Gommenginger et al., 270	
2019; Morrow et al., 2019). 271	
 272	
3.1.3 Constraining land to ocean carbon flow 273	
Various methods are used to characterise land to ocean flow of inorganic carbon by rivers including in situ 274	
upscaling methods (e.g. Regnier et al., 2013), ocean inverse model estimates (Jacobson et al., 2007) and 275	
ocean sink estimates (Watson et al., 2020), or atmosphere inversion based approaches (Rödenbeck et al., 276	



2018). Despite the plethora of approaches there is lively debate over the river transport value, and its 277	
temporal variability, any potential long-term trends, and how these relate to human activity are all poorly 278	
constrained (e.g. Regnier et al., 2013b; Lacroix et al., 2020 and Regnier et al., 2022). Hence annual carbon 279	
assessments conducted by the global carbon budget rely on long-term static values. Satellite observations 280	
are well placed to characterise this flow and an example method presented in Panel 1 suggests that the 281	
Amazon inter-annual variation in dissolved inorganic carbon outflow is ±10%. Combining high-quality data 282	
from existing satellites (e.g., Sentinels 2 and 3) with data from commercial CubeSats (that have higher 283	
spatial resolution and observation frequency, but lower spectral quality) and gauging stations could enable 284	
satellite observation-based methods to characterise global land-to-ocean flow of carbon for inclusion within 285	
global assessments. This characterisation could include its magnitude, variability, any long-term trends and 286	
causal factors, the latter of which is likely to change with time. Such combined use of agency and 287	
commercial satellite sensors is already used for monitoring global coral health (Li et al., 2019).  288	
 289	
3.1.4 Towards the study of meso-scale phenomena 290	
Current satellite observation-based datasets for individual carbon system parameters (e.g. alkalinity, Land et 291	
al., 2019) and the complete marine carbonate system (Gregor and Gruber, 2021) are monthly data at 1° 292	
resolution (~110 km at the equator). Whilst these demonstrate the potential of such methods and are useful 293	
for seasonal-scale or global analyses, they are clearly less useful for regional or local assessments and 294	
understanding, particularly when some conditions and interactions can be high frequency or short lived (e.g., 295	
Desmet et al., 2021). These existing methods could be further developed to provide close to weekly and ~25 296	
km resolutions, as the key underlying observations important for higher-frequency changes in the carbonate 297	
system are available at these scales (e.g. temperature at ~25 km as the first order controller of the gaseous 298	
quantity of CO2), whilst those observations only available at lower resolutions due to sensing constraints 299	
(e.g. salinity at >50 km spatial resolution useful for alkalinity) are characterising aspects that change more 300	
slowly. At a basic level using these higher resolution inputs would enable the extension or re-training of 301	
existing published algorithms to become near-coastal in regions where a high density of near-coast in situ 302	
data already exist (e.g., California Current upwelling region). The focus on only deriving higher resolution 303	
versions of those parameters needed to isolate the higher-frequency (rather than doing so for all parameters) 304	
means that this approach could be applied to global analyses.  These higher resolution data are likely to be 305	
more useful for regional and local users wishing to identify the extent to which their regional waters are 306	
already being impacted by ocean acidification. The increasing amount of globally available higher resolution 307	
optical and microwave satellite observations (e.g., daily at <60 m from Sentinel 1, Sentinel 2, Landsat, Planet 308	
Labs) mean it is now possible to view or resolve sub-mesoscale features and these could support 309	
investigations into any errors within ocean carbon sink assessments (e.g. as studied by Gloege et al., 2021). 310	
 311	
3.1.5 Identifying regional compound events 312	
Of special concern are the interactions of the changes in ocean chemistry with other concurrent changes, 313	
especially warming, but also deoxygenation, pollution, and fishing pressures often termed compound events 314	
(e.g. Gruber et al., 2021). These compound events often occur in the aftermath of marine heatwaves (e.g., 315	
Frölicher and Laufkötter, 2020) and tend to add an additional dimension of stress to the already stressed 316	
ecosystems (Gruber et al., 2021) which can impact all tropic levels. The ability to use satellite-observation 317	
data to derive heat wave duration and extent (e.g., Oliver et al., 2020), surface ocean carbonate data 318	



(Gregor and Gruber, 2021) and atmosphere-ocean carbon flux data (e.g. Watson et al., 2020) offers the 319	
potential to identify where and when these compound events are occurring (figure 3) and to probe the impact 320	
of heat waves on the surface ocean carbon system. Increasing the temporal and spatial resolution of existing 321	
datasets (section 3.1.4) and exploiting experimental or operational higher frequency satellite approaches 322	
(e.g., Planet Labs dove network, or those mentioned in figure 1a) could enable the detection and analysis of 323	
shorter and more intense individual extreme conditions and any resulting compound events. They may also 324	
enable precursor events or conditions to be identified as indicators of future change towards short-term 325	
forecasting (e.g., 6 monthly). Machine learning (e.g., time-series forecasting) could then likely enable 326	
observation (satellite and in situ) driven short-term forecasting aligned with the needs of policy makers and 327	
marine users (Arico et al., 2021). 328	
 329	

 330	
 

Figure 3: The ability to identify global and regional conditions and variability across all marine carbonate 

system parameters means that we can now study regional changes in pH to identify where and when 

ecosystems are experiencing extreme conditions (determined using data from Gregor and Gruber, 2021). 
 331	
3.1.6 Identifying and capturing the role of biology 332	
Phytoplankton biological growth can modulate surface water CO2 concentrations as CO2 in the water is used 333	
during photosynthesis, but is also respired, and CO2 is the net output from calcification (e.g. Ford et al., 334	
2022; and as reviewed by Brewin et al., 2021). This biological control, how future changes in biology may 335	
alter the oceanic sink of CO2 and how changes in biological growth can indicate ocean health and stress 336	
have all been identified as important areas of research (e.g., Arico et al., 2021). Satellite-observations are 337	



already extensively used to study biological carbon (Brewin et al., 2021). But currently the majority of 338	
observation-based ocean carbon sink data used within carbon assessments (e.g. within Friedlingstein et al., 339	
2021) focus on observations of ocean physics to intelligently interpolate the sparse surface in situ gaseous 340	
CO2 data, so these are likely to overlook biological control mechanisms. Climate-quality satellite ocean 341	
colour observations (e.g., Sathyendranath et al., 2019) offer the opportunity to include biology within these 342	
interpolation schemes. Assessments have been attempted using satellite observed chlorophyll-a estimates 343	
(as an indicator of photosynthetic processes) which is a good first step (e.g. Gregor et al., 2021). But 344	
evaluations should also focus on satellite-based primary production or net community production data (as 345	
reviewed by Brewin et al., 2021) that are more likely to capture the fuller impact of biology on surface water 346	
gaseous CO2 (Ford et al., 2022) and the inclusion of calcification processes that is likely to be important in 347	
some regions (Shutler et al., 2013). More work is needed to extend some methods and datasets to achieve 348	
global coverage and to build more complete uncertainty budgets (e.g., for net community production). Ocean 349	
colour observations, upon which these biological data partly rely, are not retrievable during low light periods, 350	
polar winters or below clouds (but biology may still exist), and these data also contain integrated 351	
contributions across multiple optical depths within the water and so may not be purely near surface.  So 352	
methods exploiting these satellite data for surface assessments will need to be able to handle missing or 353	
masked data and avoid making assumptions about the underlying biological state when observations are 354	
missing, and should consider optical depth. As a first step, a hierarchical approach could be used for regions 355	
of missing data, where the method progressively moves through a list of ranked datasets until data coverage 356	
is found (e.g., satellite observations, then re-analysis data with the last option being a long-term 357	
observational mean). Addressing the issue of missing data is an aspect that should be considered by the 358	
satellite observation community to increase the usability of their data, as example machine learning and 359	
statistical methods exist (e.g., Liu and Wang, 2022). But these now need to be used within climate data 360	
records following the example of the sea surface temperature community who provide gap filled daily data 361	
records (Merchant et al., 2019). 362	
 363	
3.2 Overcoming barriers to the utility and full exploitation of satellite observations 364	
Most remote sensing data and approaches are unlikely to achieve the same precision and accuracy as 365	
laboratory measurements, whilst satellite sensor performance can also change over time as the sensor and 366	
optics age. Similarly, all field-deployed in situ instrumentation, such as buoys or floats, can have instrument 367	
performance lower than their laboratory equivalent and their performance can degrade over time (e.g., due 368	
to biofouling, calibration drift, damage, or battery degradation).  This means that both space-based and in 369	
situ observations have their own unique capabilities, advantages, and individual characteristics to consider.  370	
Therefore the evaluation of the utility of satellite observation approaches should focus on what they can they 371	
provide that is complementary to other observations or measurements, such as providing higher frequency 372	
sampling in space and time (e.g., to enable global assessments, for studying river outflows or episodic 373	
events) and sampling where other types of observations are sparse, impractical, or impossible (e.g., polar 374	
regions or regions that experience piracy). Then the accuracy and precision of these satellite observations 375	
with respect to reference measurements defines how to interpret these data and their potential applicability 376	
to a given scientific question. For example, identifying the existence of long-term change or short-lived 377	
episodic events versus attempting to precisely identify the rate or range of change of a specific carbonate 378	
parameter have very different needs in terms of uncertainties.  Consequently, assessing the utility of satellite 379	



observations solely by comparing their precision and accuracy to that possible from laboratory analyses is a 380	
mistake.  Along with the intended application, such assessments should also consider differences in 381	
sampling in time and space between different observation techniques (laboratory analyses, in situ 382	
instrumentation and satellites) as ignoring them can introduce artificial errors (e.g., Land et al., 2023). 383	
Overlooking the uncertainties associated with the reference data (e.g., laboratory or in situ) being used can 384	
also lead to misleading performances (e.g., Ford et al., 2021).  Furthermore, for some applications (e.g., 385	
identifying the existence of long-term change and its direction) it will be more important to use temporally 386	
stable (long-term) data sources to minimise bias and maximise the precision, rather than concentrating 387	
purely on the accuracy of the approach (e.g., using a climate data record; see Taylor, 1967 for an 388	
explanation of the underlying statistics).  Assessing the utility and potential applications of satellite 389	
observations requires consideration of all of these points. 390	
 391	
3.3 The need for aligned scientific communities 392	
As discussed, it is clear that marine carbon assessments are heavily reliant on satellite observations, and 393	
there are a large amount of observations available, each with individual nuances; however, the reasons for 394	
specific data choices that are used within these assessments are not always clear. For example, the majority 395	
of the satellite observation datasets chosen within data submissions to the global carbon budget 396	
(Friedlingstein et al., 2022) focus on operational datasets (e.g. Donlon et al., 2012), designed for short-term 397	
forecasting systems, whereas climate-quality data would be more appropriate (e.g. Boutin et al., 2021; Dodet 398	
et al, 2021; Merchant et al., 2019; Sathyendranath et al., 2019). These non-optimal dataset choices may be 399	
driven by the specific time period being studied, the spatial extent, the visibility of the dataset, uncertainties, 400	
a lack of confidence in the data or a misunderstanding of the nuances and intricacies of these satellite 401	
observations (e.g. see the extensive content within Robinson 2010) and the potential impact of different 402	
choices.  Similarly, key studies that are guiding community methods and priorities contain misunderstanding 403	
of the use and interpretation of satellite data. For example, Fay, Gregor et al., (2021) misinterpret what 404	
satellite chlorophyll-a data represent (referring to them as surface biological activity) potentially leading to 405	
incorrect conclusions about their efficacy. Gloege et al., (2021) use satellite observations extensively but 406	
omit the data sources or versions, and Gloege et al., (2021) and Lefèvre et al., (2021) overlook the 407	
associated data uncertainties (e.g., river plume contamination causing increased chlorophyll-a uncertainties). 408	
Irrespective of the reasons for these errors - poor or inconsistent dataset choice and reporting, 409	
misunderstandings in capabilities, and overlooking uncertainties are all likely to limit the quality of these 410	
carbon assessments and community guidance with implications for policy development.  411	
 412	
Given the high reliance on satellite data for supporting policy, and its potential role in mitigation, adaptation 413	
and conservation approaches, the formation of an international expert advisory group to support optimal use 414	
of satellite observation datasets and novel sensors or products within carbon assessments and relevant 415	
policy is now needed. This would also enable the carbon community to guide the satellite observation 416	
community in identifying and providing the most appropriate data for key scientific questions, and enable the 417	
exchange of knowledge on uncertainty assessments, data standards and metadata. This would support the 418	
goals of the Observing Air-Sea Interactions Strategy (OASIS, Cronin et al., 2022) and the carbon aims and 419	
interests of the Committee of Earth Observation Satellites (CEOS) (and more widely the Global Ocean 420	
Observing System, GOOS, and Global Climate Observing System, GCOS), and it could also support and 421	



guide efforts by the in situ communities to develop a network of reference observations (Wanninkhof et al., 422	
2019); with mutual benefits as reference observations are needed to assess satellite data-based products. 423	
This advisory group would need to consist of multi-sensor satellite and in situ experts and could be led by the 424	
International Ocean Colour Coordinating Group (IOCCG) or the Group for High Resolution Sea Surface 425	
Temperature (GHRSST) as both have experience of developing cross-disciplinary groups. These efforts 426	
would greatly benefit from support and input from the International Ocean Carbon Coordination project 427	
(IOCCP), with key input from climate teams (e.g. the various ESA Climate Change Initiative teams) and 428	
individual experts where coordinating groups or climate teams do not exist (e.g. for satellite observed 429	
atmospheric column integrated gases). Advances will only be possible through collaboration and co-430	
developed work to guide and identify the advantages of linking expert knowledge across the communities. 431	
Collectively, this could lead to aligned communities in terms of data knowledge, availability, visibility, 432	
accessibility and standards. This exchange of knowledge could also help support ocean acidification groups 433	
by accelerating the integration of different sources of marine carbon data for supporting decision making 434	
(e.g., towards holistic representations of current and future ocean acidification conditions and short-term 435	
monitoring).   436	
 437	
3.4 Informing climate adaptation and mitigation measures 438	
Local and regional approaches to minimize the effects of ocean acidification are emerging with a much 439	
stronger focus on adaptation and local mitigation (Gattuso et al., 2015). These approaches often work 440	
towards effective legislative and governance mechanisms that incorporate ocean acidification data to 441	
underpin adaptation and mitigation strategies (Dobson et al., 2022).  This includes i) measures to better 442	
protect the organisms and ecosystems under stress from ocean acidification against other compound threats 443	
(e.g. from overfishing or physical destruction); ii) measures that aim to repair the system (e.g., by building 444	
artificial reefs, restoring blue carbon ecosystems or by adding alkaline substances to offset the effect of 445	
ocean acidification) and iii) measures to combat the more local or regional drivers of high acidity and low pH 446	
conditions, (e.g., by reducing local eutrophication, pollution, and coastal erosion, Kelly et al., 2011).   447	
Common to all three approaches is the need for high quality observations, both to assess the level of threat 448	
and exposure to the local organisms and ecosystems, as well as to measure the potential success or co-449	
benefit of any action. While in-situ based systems are developing and expanding rapidly in some areas of the 450	
world, satellite-based observations are now of a sufficient quality to provide a global perspective and 451	
constraints for many regions that are only marginally observed.  Importantly, satellite observation-based data 452	
can be used to call attention to the plight of the oceans in the context of climate change by highlighting 453	
regions already under stress and taking on risk (figure 1b; figure 3). There is potential to link satellite 454	
observations with the conditions being experienced by some species, the need to support increased 455	
understanding of satellite methods within some communities (particularly climate policy leads and marine 456	
managers), and the opportunity to co-develop interpretation or indicator methods with key users (Panel 2). 457	
The need to increase ocean acidification awareness and literacy more widely has been identified by the UN 458	
Decade endorsed Ocean Acidification Research for Sustainability programme OARS (Dobson et al., 2022) 459	
and imagery based on satellite observational-based data could support this (e.g., figure 1b). In this way, 460	
satellite observation-based data could now be used to aid bottom-up initiatives, to support communities in 461	
planning adaptation, management, and monitoring strategies and top-down initiatives to allow policy makers 462	
to identify those regions most at risk, highlight their plight and identify necessary mitigation and adaptation 463	



needs (Wible, 2021; e.g., figure 3).  These same approaches could be applied to support action on, and 464	
understanding of, other compounding issues of ocean health (e.g., eutrophication in the coastal zone),  465	
 466	
A satellite and in situ based observing system for climate adaption and mitigation that is now possible 467	
(Shutler et al., 2020) is needed to support these actions by providing targeted and useful data to a broad 468	
user base. To do so, the observing system would need the following characteristics: (i) access to data in 469	
marginally observed regions, or regions where little in situ data are collected to enable ‘new users’, (ii) data 470	
must be retrieved with high resolution in time and space, especially in regions of concern, (iii) data must be 471	
easily and quickly available after their retrieval, and (iv) any ocean carbon data need to be well integrated 472	
within other data streams addressing marine stressors, and (v) to ensure uptake and use of these data, it is 473	
likely that efforts need to be co-designed with end users (including climate policy leads and marine 474	
managers) and undertaken in such a way as to provide suitable data visualization or analysis tools (e.g. Kain 475	
and Covi, 2013) and to train early adopters, stakeholders and users in how to use these tools and interpret 476	
any data. 477	
 478	
3.5 Actively demonstrating the value of advances in estimating the ocean carbon sink 479	
The concept of a digital twin component or that of observing system simulation experiment could now be 480	
used to illustrate the powerful constraint that ocean carbon sink estimates have on global carbon 481	
assessments.  This would be a digital representation of the global carbon cycle, with a focus on ocean 482	
carbon assessments along with representation of all major sources, pools and sinks of carbon and its 483	
redistribution within the Earth system (figure 4). By assuming fossil fuel combustion is well known (box 7; 484	
figure 4) this approach can be used to identify closure of the budget, and how improvements in ocean carbon 485	
sink estimates impact that closure.  All components of this approach are already being routinely used by 486	
international groups in a pre-operational, ad-hoc, or distributed manner (e.g., a similar approach is used to 487	
assess budget closure within annual assessments, Friedlingstein et al., 2022) so efforts for the 488	
implementation would focus purely on addressing technical aspects (e.g., data storage, timely data access, 489	
computing requirements, consistency of implementations, full and consistent documentation, testing 490	
frameworks etc).  Such an approach would allow the importance of the advances made through satellite 491	
observation-based methods to be evaluated and highlighted (i.e., the developments identified in section 3.1 492	
of this paper). It could also be used to identify where scientific community effort is best focussed to improve 493	
assessments, used to assess the scientific and policy advice impact of major national funding decisions to 494	
infrastructure, whilst also being used to automate routine assessments to simplify the monitoring of the 495	
present state of the ocean to support conservation, mitigation and global carbon assessments; and in doing 496	
so, support the aims of sections 3.2, 3.3 and 3.4 of this paper.   497	
 498	
These capabilities could be demonstrated and evaluated under a range of scientific and policy focussed 499	
‘what if’ scenarios including: what happens to the ocean carbon sink estimate and global budget closure if 500	
we include ocean eddies, ocean biology, or novel in situ data types within the analyses (e.g., Argo floats, 501	
gliders, autonomous vessels)?  And what happens to the budget closure if the uncertainties within the ocean 502	
observational constraint or the river to ocean carbon flow are reduced?  Or what happens to the strength of 503	
any resultant policy advice if key in situ ocean observation networks are funded, versus not funded? 504	
 505	



This approach would help address the needs in the UNESCO and IOC decadal roadmap for ocean carbon 506	
(Arico et al., 2021) by i) highlighting, clarifying, elevating and promoting the use of satellite observations 507	
within ocean carbon analyses and understanding, ii) being used to help evaluate the importance of biology 508	
within ocean carbon assessments, iii) helping identify beneficial approaches for long-term support of the in 509	
situ ocean carbon observing system and iv) demonstrating how a satellite observation-based system in 510	
conjunction with in situ networks, and model re-analyses can be constructed to support policy. 511	
 512	

 
Figure 4: The digital twin component structure or an observing system simulation experiment approach to 

identify the strength of the observation-based carbon sink estimates. The logos within each module 

element give typical agency and community data providers. Boxes in blue are where satellite Earth 

observation data are exploited within global assessments (e.g., Friedlingstein et al., 2022). Techniques 

typically used for the boxes in green and red are beginning to use satellite observations through new 
carbon emissions focussed satellite missions, and this exploitation is expected to continue increasing. 

 513	
 514	
4.0 Conclusions 515	
The urgency of providing the most accurate and precise ocean carbon assessments within the next 5 years, 516	
and to continue refining them is highlighted by the latest IPCC reports where they warn of the need to 517	
drastically reduce carbon emissions. Whilst the performance of any ocean assessments will govern, or limit, 518	
the ability to clearly identify the ocean and carbon budget response to ongoing emissions. Such data will 519	
continue to be needed following any emissions reduction to help track the response of the Earth system.  520	
The heavy reliance and necessity of satellite Earth observation data to enable global ocean carbon 521	
assessments is now scientifically clear and this importance has been recognised by the United Nations 522	
Education Scientific and Cultural Organisation (UNESCO) and the International Oceanographic Commission 523	
(IOC). Combined with the powerful constraint that ocean carbon data have on global carbon assessments, 524	
this importance demonstrates the need to focus efforts on further advancing the use of satellite observations.  525	
The importance of space-based salinity, temperature and wind speed data within assessments and for 526	
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enabling new scientific capabilities and insight continues to grow, and despite large advances remains 527	
relatively under exploited. Alongside this, it is likely that satellite retrieved ocean colour in particular will 528	
become increasingly important for these assessments, along with satellite sea-state, ocean currents and 529	
atmospheric column integrated gas observations.  Greater community cohesion and co-design between 530	
satellite, in situ, and modelling researchers/users focussing on the carbon system will increase the potential 531	
for greater scientific advances, further increase the strength of the ocean constraint within carbon 532	
assessments, and enable the advances to actively guide ocean mitigation and conservation efforts.  There is 533	
a need for sustained effort and funding to provide expert guidance on the use of satellite observations within 534	
carbon studies and assessments, to provide support for the key ocean in situ measurements that underpin 535	
the satellite approaches, and to underpin these efforts within annual carbon assessments used to guide 536	
policy, marine management and behavioural change. This policy advice would be considerably strengthened 537	
by the formation of an integrated multi-platform observing system with satellite data at the heart; an 538	
approach that is now scientifically and physically possible. 539	
 540	
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7.0 Appendix  920	
 921	
The following sections detail the methods for the example land to ocean carbon flow estimate. 922	
 923	
7.1 Integrated carbon mass across the depth of the Amazon river plume 924	
Ocean surface total dissolved inorganic carbon (CT) concentration data were obtained for the period 2010 to 925	
2020 from a publically available monthly gridded CT time series (Sims et al., 2022). This dataset 926	
encompasses the whole Amazon outflow region including regions that mainly contain oceanic water masses 927	
from the South Atlantic, so it is necessary to first distinguish between the oceanic waters and those relating 928	
to the river plume. The Amazon river plume was identified using sea surface salinity (SSS) specified as any 929	
grid cells with SSS < 35 (as used by Coles et al., 2013; Hu et al., 2004). The monthly gridded time series 930	
data are a surface dataset and so do not include subsurface values through the total plume depth, so plume 931	
depth is needed to quantify the total riverine CT.  To account for changes in SSS and likely CT concentration 932	
with depth, the mean SSS throughout the plume, Splume, was calculated from surface SSS using the 933	
relationship described by Hu et al., (2004): 934	
 935	

"!"#$% = 4.352 + """ ∗ 0.881						(1)  936	
 937	
The depth integrated CT concentration of each plume grid cell (CTplume) was then calculated using Splume and 938	
by assuming CT is conservative with salinity using: 939	
 940	

12!"#$% = 12&#'(
)!"#$%
))) 						(2)  941	

 942	
where CTsurf is the monthly mean surface CT concentration. Total plume CT (CTtotal) for a given month can 943	
then be calculated by summing CTplume for each grid cell within the plume (as identified by regions SSS < 944	
35). In an effort to separate out the riverine CT from the oceanic originating CT, the proportion of CT in each 945	
plume grid cell which originates from the river, κ, was estimated by assuming conservative mixing with ocean 946	
water, and linearly interpolating between 0 and 35 (such that a salinity of 0 indicates 100% riverine source, 947	
and 35 indicates 100% oceanic source). The gridded riverine CT (CTriverine) is then calculated as: 948	
 949	

12'*+%'*,% = 312!"#$%					(3)  950	
 951	
where κ is the mixing factor. The total carbon mass resulting from CTriverine is then calculated for each grid 952	
cell by multiplying CTriverine by plume volume and molecular mass of carbon, mc, to give: 953	
 954	

4-. = 5!"#$%12'*+%'*,%6/				(4)  955	
 956	
where Vplume is the volume of the plume for the respective grid cell, calculated by multiplying the grid cell 957	
surface area by Splume. Collectively equations 1 to 4 enable a spatial dataset of carbon mass integrated 958	
across the depth of the plume to be calculated. 959	
 960	
7.2 Quantifying Amazon river discharge 961	



Calculating the flux of carbon originating from the river requires a measure of river flow and the need to 962	
identify a region or location across which the river plume flow is measured or quantified. Along a river this 963	
measurement location would be a river gauging station where the flow is channelled, but here the data give 964	
the plume as it extends into the ocean. So to quantify the CT discharge as it flows into the ocean a family of 965	
24 radii transects were drawn across the plume, centred on the mouth of the Amazon (figure A1). For each 966	
portion of each radii that intersects with the plume MCT was summed and the monthly riverine CT flow 967	
estimate for each radii transect (i.e. the resultant sum of carbon passing through, or intersecting, each 968	
individual radii) was calculated by dividing the sum of MCT by the monthly Amazon river discharge: 969	
 970	

120#1("02,' =
∑ 4-.,**∈5

8 						(5)  971	
 972	
where G is the set of all plume grid cells intersecting with the radii transect with radius r, MCT,i is the mass of 973	
CT in grid cell i, and Q is the monthly volume of water discharged by the Obidos gauging station. This 974	
calculation is repeated for all radii and months, producing 24 different estimates of CToutflow. Note, that 975	
outflow estimates of zero (i.e. where G = ∅) were excluded, since this indicated that no plume cells were 976	
intersected by the radii perimeter. This could occur, for example, if there is a break in the plume, or if the 977	
plume does not extend as far as the radii. 978	
 979	
Choosing an optimal radii is not straightforward, since small radii are more likely to include near-coastal data 980	
where uncertainties in the CT data are likely greater (eg due to land-sea adjacency effects for the satellite 981	
Earth observation inputs), while larger radii will increase the time lag in the calculation because it will 982	
intersect water that is temporally older. This time lag is not expected to always follow a linear relationship 983	
with distance due to temporal and/or spatial variation in plume direction, discharge rate, wind speed and 984	
ocean current interactions. Larger radii, which have larger time lags, are likely to result in larger uncertainties 985	
in the calculations, as the water will have likely experienced more interactions (mixing, chemical alteration or 986	
losses due to gas exchange), and so the grid cells selected by larger radii are less likely to solely contain 987	
water of a similar age. 988	
 989	

 
Figure A1 Radii centred on the mouth of the Amazon that were used to quantify the flow of carbon 

originating from the river plume.  

 990	
 991	



Using the mean CT outflow calculated from multiple radii will reduce the uncertainty associated with coastal 992	
cell inaccuracies and variations in plume shape. Conversely, including larger radii increases the time-lag 993	
between the mean of river flow variations and the mean identified CT outflow. To mitigate this, CT outflow is 994	
calculated from a set of radii, R = {1, 2, … nr}, where nr is chosen to minimise this time-lag. This is done by 995	
selecting the nr that maximises the correlation coefficient between mean seasonal CT outflow and mean 996	
seasonal river discharge. The aim is to maximise the number of radii used to estimate the mean, while 997	
keeping the size of radii small enough to ensure that the temporal lag is inconsequential at the monthly 998	
temporal resolution used. It is expected that this maximum correlation method will be robust to variation in 999	
the calculated mean seasonal (monthly) CT outflow, but it does not always guarantee alignment to the peak 1000	
value. For the Amazon dataset the radii 5 gave the highest correlation between the mean seasonal CT 1001	
outflow and mean seasonal discharge (r=0.99).   1002	
 1003	
 1004	
7.3 Uncertainty analysis 1005	
Uncertainties were propagated at each step of equations 1 to 5 and an analysis was conducted to identify 1006	
the main sources of uncertainty in CT. The resulting uncertainty in CT outflow combines uncertainties from 1007	
the surface CT gridded time series data, discharge data, plume depth relationship (Coles et al., 2013) and 1008	
the mean plume salinity (Hu et al., 2004). Standard analytical error propagation methods were used where 1009	
possible (see Taylor, 1997). The uncertainty in monthly discharge was estimated as the standard deviation 1010	
of the mean monthly discharge (ie assuming that sub-monthly measurements were independent repeated 1011	
samples of the monthly mean). Uncertainties in the plume depth were estimated from the 95% confidence 1012	
limits shown in figure 13 of Coles et al., (2013). No uncertainties are reported for the relationship between 1013	
mean plume salinity and surface salinity in Hu et al., (2004), (which is equation 1) so an estimate of ±10% 1014	
uncertainty in the coefficients has been used for both intercept and slope. 1015	
 1016	
An analytical approach was not appropriate for determining the uncertainty in the plume mask from SSS 1017	
(and therefore plume surface area), and so an ensemble approach was used instead. For this, a set of 100 1018	
ensembles were calculated using the SSS dataset with added noise (i.e. sampling 100 times from a grid of 1019	
normally distributed random numbers) with a mean equal to the original SSS data set value and standard 1020	
deviation equal to the uncertainty in that value for each grid cell: 1021	
 1022	

"%,&%$6"%,*,7 = 9:"$%8,,7 , "#,/%'18*,19,7<						(6)  1023	
 1024	
where Sensemble,i,j is the ensemble SSS for the sample i at grid cell j, and Smean,j and Suncertainty,j are the mean 1025	
and uncertainty from the SSS data set for grid cell j. The plume masks for each ensemble SSS were 1026	
calculated by applying the SSS < 35 threshold, leading to an ensemble of 100 separate plume masks. 1027	
  1028	
Uncertainties arising from SSS, including from the plume mask, were propagated using these 100 ensemble 1029	
data sets. The calculation was repeated for each ensemble SSS at each stage (equations 1 to 5). This 1030	
results in 100 ensemble outputs for each step in the calculation, from which the standard deviation was 1031	
calculated to estimate uncertainty at that stage. For example, to calculate uncertainty in the plume surface 1032	
area, the surface area of each ensemble plume mask was calculated, and the standard deviation of these 1033	



100 surface areas calculated. Similarly, to calculate the uncertainty in mean plume salinity (equation 1) 1034	
arising from the SSS input data, equation 1 was applied to each ensemble, resulting in 100 Splume values 1035	
from which the standard deviation was calculated. In calculating the uncertainty of the CT content of the 1036	
plume (CTplume, from equation 2) the full ensemble of 100 ensemble Splume data sets were used in conjunction 1037	
with the 100 SSS ensembles to propagate this uncertainty forward.  Note that the uncertainty propagated 1038	
from SSS data is combined with any other source of uncertainty at each step (e.g. the ±10% on the Hu et al., 1039	
(2004) relationship) resulting in a combined uncertainty estimate for all input data and models, from which 1040	
the standard deviation is calculated to estimate the combined uncertainty of the complete approach.  1041	
 1042	
7.4 Results 1043	
The mean annual CT outflow of the Amazon was calculated as 43.7 ± 3.0 Tg C yr-1 (table 4) with a standard 1044	
deviation of 4.3 Tg C yr-1 and a coefficient of variation of 0.10.  Therefore the Amazon to Atlantic flow of 1045	
inorganic carbon is estimated to be 44 Tg Cyr-1 with an annual variation of ~10%. Current estimates of land 1046	
to ocean carbon flow are 0.45, 0.60 and 0.78 GtC yr-1 (Jacobson et al., 2007; Watson et al., 2020; 1047	
Resplandy et al., 2018; Sarmiento & Sundquist, 1992) and there is much debate over which value to use, 1048	
hence the latest global carbon assessment used the mean value of 0.61 GtC yr-1 (Freidlingstein et al., 2020).  1049	
Therefore using 0.61 GtC yr-1 as the reference suggests that the Amazon could be responsible for ~7 % of 1050	
global land to ocean flow of inorganic carbon and the first estimate of the inter-annual variation in this 1051	
Amazon land to ocean flow is ±10%. 1052	
 1053	

Annual results  Mean ± uncertainty 
Amazon discharge 5.56×1012 ± 5.15×108 m3 

Plume surface area 1.38×1012 ± 3.42×109 m2 
Plume thickness 13.2 m 
Plume volume 1.87×1013 ± 7.18×1010 m3 
Plume CT 3.64×1013 ± 4.39×1011 g C 
CT outflow (rn = 5) 43.71 ± 3.00 Tg C 

Table A1: Annual mean results and standard deviations for each component of the CT outflow calculation 1054	
for the Amazon river based on rn = 5. 1055	
 1056	
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Panel 1: The potential for quantifying land to ocean flow of inorganic carbon 

 

Quantifying extent, magnitude and variability  
Land to ocean flow of inorganic carbon by rivers is included within the annual carbon assessments, with an 

equivalent annual size of 20% to 35% of the contemporary oceanic carbon sink (range taken from 

Friedlingstein et al., 2022). However, the complexity of these systems, their distribution throughout the world 
combined with their high heterogeneity means that current assessments assume static values. Given the 

size of this carbon exchange, improving our ability to monitor them and characterise their flows would help 

improve closure of the global carbon assessments. 

 

Combining satellite, in situ and empirical approaches and data sources 
Surface extent and monthly variability of large river flows can be viewed and accurately quantified using 

satellite data (Land et al., 2019; Sims et al., 2022; Figure P1). These satellite data provide spatially resolved 

observations, but are limited in their temporal resolution and they are unable to determine the plume depth. 
Combining empirical understanding from in situ analyses with river gauging information and satellite data can 

enable the depth, flow and spatial extent to be characterised. 

 
Figure P1: Satellite observation-based estimates of the surface dissolved inorganic carbon within the 

Amazon plume during three different months in 2015 showing high spatial and temporal variability 

 

Example method 
Ocean surface total dissolved inorganic carbon concentration data were obtained from a publicly available 

Amazon region monthly gridded time series (Sims et al., 2022) and regions where salinity <35 was used to 

identify the river plume (as used by Hu et al., 2004). The mean salinity and carbon within the plume were 
calculated from the surface salinity using the relationship described by Hu et al., (2004), from which the 

depth integrated carbon concentration was calculated, assuming the carbon is conservative with salinity. The 

riverine carbon estimate was further refined by assuming conservative mixing with ocean water through 

linearly interpolating between salinity of 0 and 35 (i.e. 0 is 100% riverine, 35 is 100% oceanic).  River flow 

gauging data then allows the carbon flow through an arc that bisects the plume (e.g. equivalent to an 

offshore gauging station) to be calculated giving a total riverine land to ocean carbon flow with respect to 

time. Please see the appendix of this paper for the full methods. 

 
This analysis identifies a net flow of 44 terra grams of carbon per year (Tg C yr-1) for the Amazon with an 

inter-annual variation of ±10%. This total flow is equivalent to ~7% of the total annual global riverine flux 

currently used in global assessments (e.g. as used in Friedlingstein et al., 2021). 



Panel 2: The potential to use satellite observations to guide management and mitigation 

 

Linking satellite observations with species  
Space observations will be key for understanding the impact of acidification on economically important 

marine resources to identify the baseline conditions and variability, and to map life histories of key species 

against changing conditions (as proposed by Green et al., 2021) towards underpinning management 
decisions, and where and when to focus remedial efforts.  This could be applied to any marine species, but 

potential foci could be key sentinel species of ecosystem health (e.g., tuna, marine turtles or birdlife), 

economically, or socially, important fisheries, such as oysters, or artisanal fish species and key plankton 

species that form the base of the food chain (e.g., pteropods). This could identify regions of interest such as 

those that are already experiencing high variability in marine carbon conditions, indicate when conditions 

cross experimentally-derived thresholds of tolerance for particular species, guide where efforts should be 

focussed to support communities and marine life, or identify highly-variable but healthy ecosystems towards 

identifying populations with phenotypes more resistant to change. It may be possible to use satellite 
observations in conjunction with niche modelling approaches (e.g., Phillips et al., 2006) to understand how 

the existing conditions are impacting the different life stages of each species.  And matching satellite 

observations of carbon, with key biological processes or indicator data could provide quantitative evaluation 

of the impacts of acidification through time at an ecosystem level (e.g., Widdicombe et al., 2023) 

 

The co-development of indicators and easy access alongside other observations 
Many user groups are unlikely to require a deep understanding of the ocean conditions and instead will 
require the data to be translated into simple indicators. For example, to identify regions that are under-stress, 

particularly vulnerable, hot spots of activity, or pre-cursor indicators of a potential detrimental change in 

conditions. To be of most use, ocean acidification data and its complete metadata needs to be assessed in 

the context of other stressors, especially that of ocean warming, but also coastal eutrophication, coastal 

habitat destruction and pollution (Gruber et al., 2011). The co-development of these simple indicators, using 

satellite observation-based data and constructed in ways that are understandable for non-experts, could be 

used to identify regions or societies that require protection, remedial action or support.  For most users, local 

to regional monitoring information that is available in a timely and easily-accessible manner will be of most 
relevance, although for major stakeholders (e.g. governments or international assessments) global 

information is likely to be crucial (e.g., the Inter-governmental Panel on Climate Change, IPCC).  

 

Supporting community understanding and uptake of satellite observations 
Training in data interpretation and capacity building are likely to be the main limitations on uptake of satellite-

derived information, along with making data easily available to those without reliable internet connectivity. 

Potential user groups, including policy makers (e.g., country-wide or regional politicians), to regional 

resource managers (e.g., who determine regional monitoring), to end users (e.g., shellfish growers), will 
have different needs and understanding.  Direct engagement with marine and coastal resource managers 

who are uniquely working on improving ocean acidification and hypoxia management responses, 

interventions, and resilience building strategies is essential. For addressing climate change, successful 

coastal and marine management depends upon an improved understanding of regional ocean and coastal 



change and enhanced communication between resource managers and other stakeholder groups (Keil et al., 

2021). 


