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Seawalls are critical defence infrastructures in coastal zones that protect
hinterland areas from storm surges, wave overtopping and soil erosion
hazards. Scouring at the toe of sea defences, caused by wave-induced
accretion and erosion of bed material imposes a significant threat to the
structural integrity of coastal infrastructures. Accurate prediction of scour
depths is essential for appropriate and efficient design and maintenance of
coastal structures, which serve to mitigate risks of structural failure through
toe scouring. However, limited guidance and predictive tools are available for
estimating toe scouring at sloping structures. In recent years, Artificial Intelligence
and Machine Learning (ML) algorithms have gained interest, and although they
underpin robust predictive models for many coastal engineering applications,
such models have yet to be applied to scour prediction. Here we develop and
present ML-basedmodels for predicting toe scour depths at sloping seawall. Four
ML algorithms, namely, Random Forest (RF), Gradient Boosted Decision Trees
(GBDT), Artificial Neural Networks (ANNs), and Support Vector Machine
Regression (SVMR) are utilised. Comprehensive physical modelling
measurement data is utilised to develop and validate the predictive models. A
Novel framework for feature selection, feature importance, and hyperparameter
tuning algorithms are adopted for pre- and post-processing steps of ML-based
models. In-depth statistical analyses are proposed to evaluate the predictive
performance of the proposed models. The results indicate a minimum of 80%
prediction accuracy across all the algorithms tested in this study and overall, the
SVMR produced the most accurate predictions with a Coefficient of
Determination (r2) of 0.74 and a Mean Absolute Error (MAE) value of 0.17. The
SVMR algorithm also offeredmost computationally efficient performance among
the algorithms tested. The methodological framework proposed in this study can
be applied to scouring datasets for rapid assessment of scour at coastal defence
structures, facilitating model-informed decision-making.
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1 Introduction

Scouring is the process of gradual erosion and removal of bed
materials in the vicinity of coastal structures caused by
hydrodynamic forces from waves and tidal currents. In addition
to the hydrodynamic forces from tides and waves, which can be
compounded by climate change influences, critical infrastructures
including underwater pipelines, coastal defence structures, and
coastal zone management processes such as dredging can
contribute to conditions that are favourable to increased seabed
scouring through the disruption of natural sediment transport
processes and the alteration of the prevailing hydrodynamic
environment in the nearshore region. Scouring at the toes of
critical coastal defence structures (e.g., sloping and vertical
seawalls) can result in the loss of structural integrity (Salauddin
and Pearson, 2019a; Salauddin and Pearson, 2019b; Tseng et al.,
2022) and ultimate failure, and is particularly critical in the
management of coastal flood risks. Toe scouring can elevate wave
overtopping discharge at defences, by increasing water depth at the
defence and causing the formation of larger waves at the structure
(Peng et al., 2023). The sedimentation and scouring in the vicinity of
coastal structures can alter the bottom topography and bed slope,
which in turn can influence wave shoaling and breaking processes
and alters the turbulent kinetic energy budget of waves and their
potential to overtop defences (Peng et al., 2023). Given that extreme
events in coastal regions are predicted to increase in intensity and
frequency under climate change scenarios, increased exposure to toe
scouring at coastal defences is likely to be an increasing issue in the
coming years (Fitri et al., 2019; Salauddin and O’Sullivan, 2022). The
availability of accurate methods to predict toe scour depths is,
therefore, critical for mitigating scour related risks.

Reliable prediction of scour depths at coastal defences
challenging and is influenced by complex wave-structure
interactions and a range of nearshore processes (hydrodynamic
and morphological). The prediction of scour depth, therefore,
involves the consideration of parameters that reflect the diverse
processes. These relate to wave and current conditions, tide and
wave approach angles, sediment and bathymetric characteristics and
features, and water depth at the structure (Müller et al., 2008;
Pourzangbar et al., 2017a). For example, the scouring patterns
observed in fine and coarse grained bed material are distinctly
different (Pourzangbar et al., 2017b). Previous studies also
highlighted that scour depth from regular waves are generally
larger than those observed for irregular waves.

A significant number of beaches globally are coarse-gained
shingle beaches, often with man-made coastal defences such as
vertical seawalls or sloping structures (Powell and Lowe 1994;
Salauddin and Pearson, 2018; Salauddin and Pearson, 2020).
Although the literature (e.g., Pourzangbar et al., 2017a;
Pourzangbar et al., 2017b) has demonstrated the robust
performance of ML algorithms in predicting scour depth at
sandy beaches, the capabilities of ML techniques for predicting
scour in shingle foreshores are much less reported. The recent study
by Salauddin et al. (2023) focussed on evaluating the effectiveness of
ML algorithms for predicting scour depths at vertical seawalls and
showed that MLmodels were able to predict scour depths with good
accuracy for experimental data. Nevertheless, there remains a scope
of the application of such algorithms to other structure types such as

a sloping structure on a permeable shingle bed and investigate the
performance of such algorithms in predicting scour depths
for the same.

Here we present for the first time the development and testing of
ML algorithms (namely, Support Vector Machines Regression
(SVMR), Gradient Boosted Decision Trees (GBDT), Random
Forests (RF) and Artificial Neural Networks (ANN)) at a sloping
structure with a sloping shingle foreshore. The models were trained
and tested on a physical modelling experimental dataset of scour
depths at a 1 in 2 (1 V:2H) impermeable sloping seawall located on a
permeable 1 in 20 (1 V:20H) shingle foreshore. Advanced novel pre-
processing and post-processing techniques such as feature selection
and feature importance are proposed to facilitate ML-based
modelling for scouring datasets and we devise a stepwise
methodological framework for scouring prediction. The
predictive performance of ML models are investigated through
well-established statistical metrics. The key objectives of this
study are (i) to develop a robust methodological framework to
use data driven ML algorithms for predicting scour depth at
coastal defences, and (ii) quantify the predictive performance of
selected ML-based models for estimating scour depths at sloping
coastal sea defences.

2 Scour prediction methods

Existing studies assessing scour at sea defences such as vertical
seawalls and sloping seawalls are typically underpinned by numerical,
laboratory and field-based modelling approaches to derive empirical
relations and engineering guidance. Fowler (1992) developed
empirical formulae for toe scour depth based on physical
modelling of scouring at a vertical seawall placed on a sandy
foreshore. Wallis et al. (2010) and Sutherland et al. (2003, 2006)
proposed an improved guidance for predicting scour depths at vertical
walls constructed on sandy foreshores using field and laboratory
observations. These authors also claimed that for the tested
conditions, maximum scour depths at a plain vertical wall were
similar to those observed for a 1 in 2 sloping seawall. In recent
years, Salauddin and Pearson (2019a), Salauddin and Pearson, (2019b)
conducted a comprehensive suite of laboratory-based physical
modelling experiments to characterise scouring at both vertical and
sloping structures on shingle foreshores, subjected to a wide range of
irregular wave conditions (including storm and swell sea states).

The review of literature relating to scour at seawalls reveals a
substantial correlation between toe scour depth and relative water
depth at the toe (ht/L0m), where, ht is the toe water depth (m) and
L0m is the mean deep water wavelength (m), for defences on sandy
foreshores. Sutherland et al. (2008) proposed an empirical
relationship (Eq. 1) between the dimensionless scour depth (St/
Hs), [calculated from scour depth St (m) and significant wave height
(m),Hs (m)], and relative toe water depth (ht/L0m) for the prediction
of toe scour depth at a plain vertical seawall in a sandy beach. This
was later verified by Müller et al. (2008). Similar findings were also
observed for scouring at a plain vertical wall with a shingle foreshore
slope (Salauddin and Pearson, 2019a; Salauddin and Pearson,
2019b). Sutherland et al. (2008) also proposed an empirically
based equation to predict the toe scour depth for vertical seawalls
considering the influence of beach slope (Eq. 2).
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Stmax

Hs
� 4.5e−8π

ht
L0m

+0.01( ) 1 − e
−6π ht

L0m
+0.01( )( ) (1)

St
Hs

� 6.8 0.207 ln α( ) + 1.51( )e−5.8Tmht 1 − e−3Tmht( ) − 0.137 (2)

where, St and Stmax are the toe scour depth and maximum toe scour
depth, respectively,Hs is significant wave height (=highest one-third
of wave heights), α is beach slope, ht is toe water depth, L0m is deep-
water wavelength based on Tm, where Tm is the mean wave period.

Numerical modelling tools have also developed and applied to
simulate scour behaviour at coastal defences (Peng et al., 2018; Peng
et al., 2023; Yeganeh-Bakhtiary et al., 2020). For example, Peng et al.
(2023) utilized Reynolds Averaged Navier–Stokes equations (RANS)
and the Volume of Fluid (VOF) modelling technique, coupled with
wave-sediment transport and morphological factors, to simulate scour
dynamics in front of an impermeable plane vertical seawall under
specific wave conditions. However, robust numerical modelling
techniques for estimating scour in wave environments still remain
limited, largely as a result of the complexity of multiphase flow
simulations, but also as a result of the high computational
requirements (due to the involvement of intrinsic equations) that are
involved. For example, in numerical simulations of estimating scour
depths, uncertainty is induced from the dependency of such models on
empirical parameters of the scouring process (Yang et al., 2018).

In recent years, with advancements in data science and
computational resources, Artificial Intelligence (AI) in the form
of Machine Learning (ML) has been successfully employed to
address a wide range of coastal engineering problems. For
example, significant research relating to the development of AI
based decision-support algorithms for the prediction of wave
characteristics (Yeganeh-Bakhtiary et al., 2023) and wave
overtopping at coastal defences has been undertaken (see, for
example, den Bieman et al., 2021a, 2021b; den Bieman et al.,
2020; Elbisy, 2023; Elbisy and Elbisy, 2021; Habib et al., 2022b;
Habib et al., 2023a; Habib et al., 2023b). Habib et al. (2022a) has
provided an overview of recent studies on the applications of ML
approaches in coastal engineering problems.

Data-driven ML modelling approaches have been applied to
predict scour depths at vertical breakwaters. Pourzangbar et al.
(2017a), Pourzangbar et al. (2017b) successfully applied several ML
algorithms, including Genetic Programming (GP), Artificial Neural
Network (ANN), Support Vector Machine Regression (SVMR) and
the M5’ Decision Tree model to predict scour depth from physical
modelling data for impermeable vertical breakwaters with sandy
foreshores. However, the development to date of ML-based scour
prediction models have thus far been applied to vertical breakwaters
and sandy foreshores with fine grains. Previous studies however have
not dealt with the prediction of scour depth at a sloping structure on a
permeable shingle foreshore using advanced ML algorithms, which
has been addressed for the first time in this work.

3 Materials and methods

3.1 Scouring dataset

The scour dataset used in this study was obtained from
experimental studies conducted in a 2D wave flume, 22 m long,

0.6 m wide, and 1 m deep (Figure 1), at the University of Warwick’s
Water Engineering Laboratory (Salauddin and Pearson, 2019b). The
flume was equipped with a piston-type wave paddle, six Wave
Gauges (WG) and active adsorption system capable of generating
monochromatic and random waves, generating realistic sea states in
the wave channel. The dataset consisted of over 120 experiments in
which the scour characteristics at the toe of a sloping wall (1:2) with
a shingle foreshore, of approximately 6 m length, on a 1:20 slope
were observed and included a comprehensive range of incident wave
conditions including both impulsive and non-impulsive waves. The
JONSWAP wave spectrum with a peak-enhancement factor of
3.3 was applied to generate incident waves that were
representative of the young sea state. The relative crest freeboard
(Rc/Hm0), (where Rc is the crest-freeboard of the defence structure
and Hmo is the wave height at the toe of the structure) ranged from
0.5 to 5.0 and this was achieved by applying six different types of toe
water depths. The scouring characteristics were measured for both
impulsive and non-impulsive wave conditions. The dataset
comprising of 120 sets of observations, was split into a train-test
set of 70%–30%.

For each test configuration, the scour depth was measured at the
toe of the structure and at different locations along the wave flume in
front of the structure. The maximum scour depth was then
determined from these measurements. Analysis of the
experimental data showed that, for the wave conditions tested,
the maximum scour depth occurred at the toe of the structure.
An insight into the database in terms of statistical correlation
(Pearson R) revealed very low correlative relations between the
scour parameters (described in the Glossary section) and the relative
scour depth (=St/Hm0; where, St is the measured scour depth and
Hm0 is the water depth at the toe of the structure). No negative
correlation was observed between the variables, however, only Rc/
H1/3,deep and Ir showed a maximum correlation of 0.25 with the
relative scour depth. Two kernel (ANN and SVMR) and two DT-
based (RF and GBDT) algorithms were investigated in the study of
Habib et al. (2023a) and it was reported that the algorithms
performed satisfactorily in predicting wave overtopping at a
vertical sea wall. The algorithms are hence also investigated for a
scour dataset, since the intrinsic nature of the scour dataset is similar
to what was applied in the overtopping study (Habib et al., 2023b).

The workflow followed in the data preparation, together with
model development and testing is summarised in Figure 2.

3.2 SVMR

SVMR is a category of supervised ML algorithms and an extension
of the classification-based Support Vector Machines (SVM), typically
employed for regression tasks (Noori et al., 2022). SVMR algorithms
aim to minimize the prediction error and simultaneously maximize the
margin around the fitting function, effectively identifying the best-fit
function for a given dataset. Figure 3 illustrates a typical workflow
structure for SVMR. For a regression problem using a training dataset
containing interlinked input features (xi) and target values (yi), SVMR
deduces a function f(x) that predicts the target values y based on input
features x. The fundamental goal of SVMR is to construct a hyperplane
that closely fits the training data within a specified tolerance of error
margin (ε). Feature points inside the epsilon tube surrounding the
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hyperplane are regarded as support vectors, w, and do not incur any
penalties. Points outside of this tube are penalized because they add to
the error. The loss function is determined using Eq. 3:

min
1
2

w| || |2 + C∑N

i�1εi + ε1
* (3)

where, εi and ε1* are slack variables that gauge how far the outliers are
from the ε-tube, N is the total number of slack variables and C is a
regularization factor that can be adjusted to determine the flatness of
the hyperplane.

The main goal of the optimisation approaches related to SVMR
is deducing the optimal values forw, and the slack variables, εi and ε1*

SVMR. The objective is to minimize the regularization term while
ensuring that errors are within ε and slack variables remain non-
negative. If non-linearity exists, the feature data is projected onto
kernel space, a higher-dimensional hyperplane, which improves the
model’s accuracy. The function k(xi, xj) defines the kernel space,
and in this study, a Gaussian Radial Basis kernel function (RBF, Eq.
4) is utilised:

k xi, xj( ) � exp − xi, xj

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2
2σ2

⎛⎝ ⎞⎠ (4)

where, σ is the kernel parameter. Gaussian RBF kernel is suitable for
datasets with unknown or challenging-to-trace intrinsic feature
characteristics (Roushangar and Koosheh, 2015). This is because the
RBF kernel, based on the Taylor Series expansion, can accommodate an
infinite number of feature dimensions. SVMR is particularly known for
producing robust predictions when dealing with non-linear and high
dimensional data (e.g., Kawashima andKumano, 2017; Lan et al., 2023),
similar to the dataset used in this study.

3.3 ANN

ANNs are well established in coastal engineering applications
for tackling classification and regression tasks by mapping inputs to
outputs, assigning weights to specific inputs, estimating and
minimizing a loss function (example.g., Raikar et al., 2018;

FIGURE 1
Schematic of the Experimental setup for measuring scour depth at a sloping wall with a shingle foreshore (Adopted from Salauddin and
Pearson, 2019b).

FIGURE 2
The methodological approach adopted for the ML based modelling.
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FIGURE 3
The workflow of a SVMR algorithm adopted in this study.

FIGURE 4
Schematic of a feed-forward and back propagation ANN algorithm adopted in this study.
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Verhaeghe et al., 2008; Zanuttigh et al., 2016; Formentin et al., 2017;
EurOtop, 2018; Habib et al., 2023a; Habib et al., 2023b). Figure 4
illustrates the workflow of a feed-forward and back propagation
ANN algorithm, including the input, hidden, and output layers. The
input layer receives data from the training set. The information is
only communicated to and from each layer within the neural
network and not between neurones in the same layer. The
model’s hidden layers are responsible for assigning numerical
weights to the incoming information from the input layers and
to the activation functions. The output layer of the network
estimates the quantity predicted by the activation functions and
then calculates the dependent feature(s) from the independent
feature(s) in the input layers (Babaee et al., 2021; Khosravi
et al., 2023).

A Multi-Layered Perceptron (MLP) ANN, which is feed-
forward and back-propagation in nature, is adopted in this study
(Figure 4). The term feed-forward and back-propagation essentially
means that until a predetermined allowable error rate is achieved,
the error rates are minimized by altering the loss functions through a
combination of feed-forward (exchange of information from Input
to Hidden to Output Layers) and back propagation (exchange of
information from Output to Hidden and Hidden to Input Layers).
The adjustment of weights and biases during the backpropagation
stage is determined by the error rate. This process involves assigning
new weights and activation functions to the hidden layers. The
optimization of the number of hidden layers is usually based on the
complexity of the input data, aiming to minimize prediction error
(Elbeltagi et al., 2021; 2022).

3.4 RF and GBDT

RF and GBDT algorithms are typically categorised as Decision
Trees (DTs). DTs are supervised machine learning algorithms used
to predict an output variable (i.e., dependent or target variable)
based on a set of independent variables (i.e., features). DTs are
capable of tackling both classification and regression problems. In
regression, they predict continuous or numerical output variables,
while in classification, they predict class labels for discrete output
variables (Yeganeh-Bakhtiary et al., 2022).

In the case of regression-based DTs, the training data is
iteratively partitioned into rectangular regions, and the mean and
median values within each region is estimated until a pre-
determined stopping criteria are met. For example, given a
training dataset, X = (x1, y1), (x2, y2)...., (xn, yn){ }, where xi

represents an input feature vector for the ith training dataset and
yi is the corresponding output, the DT algorithm divides X into a
series of rectangular regions, denoted as R1, R2, R3, etc. For each
region, the median andmean are estimated to serve as the prediction
value P for that corresponding region. The final DT is constructed
using the input features that distinctly divide these rectangular
sections and yield the output variable with the smallest variance.
DTs are commonly used in prediction tasks due to their ability to
handle noise and non-linearity in input data independently
(Pedregosa et al., 2011; Kotu and Deshpande, 2015; Yeganeh-
Bakhtiary et al., 2023).

A Random Forest (RF) algorithm is an ensemble of DTs
constructed from a random sub-set of training data. Figure 5

illustrates a schematic of methodological workflow for RF
modelling approach.

RF model aims to reduce overfitting and enhance generalization
by minimizing overexposure to any specific set of training data. The
final prediction from tRF is the average of predictions made by
individual DTs, often referred to as bagging. An additional
advantage of RF is its capability handle both categorical and
numerical data, further minimising overfitting.

The boosting strategy is another method for enhancing DTs’
predictive capabilities. An example of a Boosting approach is the
GBDT algorithm (see Figure 6). The Mean Squared Error (MSE)
between the predicted and actual values is measured in the
boosting technique using a loss function. During training, the
boosting algorithm aims to minimize this loss function by
assigning numerical coefficients to input data, often through
gradient descent. The GBDT algorithm, in particular, is
known for rapidly minimizing the loss function, resulting in
faster and more accurate predictions from DT models
(Sutton, 2005).

3.5 Model optimization

3.5.1 Hyperparameter tuning
Hyperparameters refer to the parameters of a ML algorithm that

can be adjusted or tuned by the user, as opposed to model
parameters, such as the coefficients of mapping functions, which
are not user-accessible. Hyperparameter tuning is a crucial process
for reducing overfitting and ensuring that the ML algorithm is well-
suited for a specific set of input data. Hyperparameter tuning was
conducted for all the ML adopted models in this study using the
open-source scikit-learn library in Python (Pedregosa et al., 2011).
Table 1 summarises the optimum hyperparameters adopted for the
SVMR, RF, GBDT, and ANN models. The SVMR algorithm’s
regularization parameter is represented by the C term in Table 1.
The algorithm’s “engine” is a function called the kernel that maps
input parameters (independent variables) onto output values
(dependent variable). This study investigates the performance of
linear, polynomial and RBF kernels. Gamma (Table 1) is a kernel
function coefficient. This study combines “RandomizedSearch” and
a k-fold Cross Validation (CV) to find the best parameters. CV is a
popular resampling method that eliminates bias from prediction
models (Pedregosa et al., 2011; Salauddin et al., 2023). The data is
randomly divided into k sets of nearly similar size for k-fold cross
validation. The ML algorithms are first tested on these folds to
validate the training, and then applied to the test set. The validation
step ensures that the algorithms explicitly capture the variations and
patterns in the training set. The function RandomizedSearchCV
(RS) uses a set number of random combinations of
hyperparameters. The RS function is particularly suitable for
performing hypertuning when there are a large number of
hyperparameters involved, i.e., similar to this work.

The key functional components of a DT network can be found in
the hyperparameters of the RF model (Table 1). “n_estimators”
determines the number of trees in an RF, while “max_depth” and
“min_samples_split” help mitigating overfitting. In this study, a
random search with Cross Validation (CV) was used for
hyperparameter tuning in the RF model.
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GBDT and RF are both based on DTs, with GBDT relying on
gradient boosting. GBDT’s hyperparameters (Table 1) determine the
size of the decision tree that best suits the input data. “learning_rate”
is crucial for reducing overfitting as it computes the weights of input
features to converge the error in the loss function. “max_depth” also
plays a role in reducing overfitting by limiting the number of nodes
in the trees. For GBDT, hyperparameter tuning was performed using
a random search with 5-fold cross validation. The scope of
hyperparameter tuning with ANN is limited (Huang et al., 2012;
Ghiasi et al., 2022). RS with a k-fold CV approach is implemented in
this study to enhance the learning rate “alpha,” and the best model is
determined based on the model loss criterion. Typical
hyperparameter tuning values for the ANN models are adopted
from LeCun et al. (2015) and Glorot and Bengio (2010). The kernel
function of the ANN is located in the hidden layers, and the user can
predetermine both the number of layers and neurons in each layer.
Additional to the ‘alpha’ parameter’ and the activation function, the
number of epochs was adjusted to attain the optimal set of
hyperparameters for the ANN in this study.

3.5.2 Feature selection and feature transformation
Robust ML-based predictions can be challenging when dealing

with high-dimensional data that can reduce the effectiveness and
accuracy of machine learning algorithms due to data redundancy.
Additionally, computational resource costs can increase due to
prolonged algorithm runtimes. To address the issue of data

redundancy, feature selection techniques are employed. These
techniques aim to filter a subset of relevant features from a large
dataset, effectively eliminating redundancy and irrelevance (Cai
et al., 2018). Feature selection is typically achieved through
statistics-based permutation combinations, which measure the
correlation of individual features with a target feature. The most
important features are then deduced based on their correlation
scores, as highlighted by Liu and Motoda (2012) and Donnelly
et al. (2024).

Feature transformation is a technique used for extracting useful
features from a large dataset, where the initial number of features is
transformed into a new, more compact dataset with fewer but
relevant features, while conserving the implicit and/or explicit
information of the original dataset. One well-known feature
transformation technique is Principal Component Analysis
(PCA) (Roessner et al., 2011; Noori et al., 2022). PCA is
particularly useful for capturing and reducing variance in large
datasets by selecting the most relevant features that account for
the majority of variance across the dataset. It is characterized as a
dimensionality reduction technique that converts the original
variables into uncorrelated principal components.

This study adopts a combination of feature selection and feature
transformation techniques to discover and filter the most relevant
features in the scour dataset. A Forward Sequential Feature Selection
(FSFS) method is employed for feature selection. FSFS is a “greedy”
method that iteratively builds a set of selected features (S) by adding

FIGURE 5
The workflow of a RF algorithm [Adopted from Habib et al. (2023a)].
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new features, one at a time, and performing prediction tasks using a
chosen estimator. In more concrete terms, FSFS starts with zero
features and identifies the feature that, when used to train an
estimator (e.g., linear regression in this study), maximizes a
Cross Validation (CV) score. This process is repeated, adding
one feature at a time, until all features in the dataset have been
considered. The number of features that maximizes the CV score is
considered the optimal number. FSFS is widely accepted for its
simplicity and accuracy in estimating the number of important

features in a dataset (Marcano-Cedeno et al., 2010). In this study,
FSFS determined 10 parameters as the optimum number of features
(see Figure 7). Subsequently, PCA was applied to gain insight into
the 10 most important features of the dataset utilised in this study,
including d50 (mm), Duration (s), ht (m), Rc (m), Tm,deep (s), Lp (m),
Lm (m), Rc/H1/3,deep, ht/H1/3,deep and Ir (terms are explained in the
glossary). The data corresponding to the features proposed by FSFS
are selected as predictive model input for the training and testing
phase of the ML algorithms.

FIGURE 6
The workflow of a GBDT algorithm. Adopted from Habib et al. (2023b).

TABLE 1 Set of hyperparameters and their optimised values.

Algorithm Source code of hyperparameters Best values

SVMR parameters = {’kernel’: (’linear’, ’rbf’,’poly’), ’C’: [2, 5, 10, 15, 20],’gamma’:
[’auto’,’scale’],’epsilon’: [0.1,0.2,0.5,0.3]}

‘kernel’: ‘rbf; ‘gamma’: ‘scale’; ‘epsilon’: 0.1; ‘C’: 15

RF param_grid = { ’n_estimators’: np.arange (50, 500, 10), ’max_depth’: np.arange
(3,12,3), ’min_samples_split’: np.arange (2, 3), ’min_samples_leaf’: np.arange (2, 3),

‘learning_rate’:np.arrange (0.01, 0.1, 0.01) }

n_estimators’: 50, ‘min_samples_split’: 2, ‘min_samples_leaf’: 2,
’max_depth’: 3, ‘learning_rate’: 0.06

GBDT param_grid = { ’n_estimators’: np.arange (50, 100, 10), ’max_depth’: np.arange (3, 12),
’learning_rate’: np.arange (0.01, 0.1, 0.05), ’colsample_bytree’: np.arange (0.5,

1.0, 0.1)}

‘n_estimators’: 70; ‘max_depth’: 10; ‘learning_rate’: 0.06;
‘colsample_bytree’: 0.5

ANN param_grid = { ’hidden_layer_sizes’: [(150,100,50), (120,80,40), (100,50,30)],
’max_iter’: np.arange (50,500,50), ’activation’: [’logistic’,’tanh’, ’relu’], ’solver’: [’sgd’,

’adam’], ’alpha’: [0.0001, 0.0005], ’learning_rate’: [’constant’,’adaptive’], }

‘activation’: ‘relu’; ‘hidden layer sizes’: [100,50,30]; ‘max_iter’: 150;
‘alpha’: 0.0001; ‘solver’: ‘adam’
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Further analysis of the training phase was conducted by examining
the variation of RMSE in the training set (Figure 8). The CV value and
the number of training and validation iterations were set at 5 and 100,
respectively. Figure 8 illustrates that, despite observing RMSE variations
across all the algorithms, the average RMSE remained consistent in all
the cases. This indicates that the selected algorithms in this study are
capable of producing similar performance on the given dataset.

3.6 Evaluation metrics

To evaluate the performance of the machine learning algorithms
in predicting relative scour depth, the predicted values were

compared to the observed values using statistical metrics
including the coefficient of determination (R2), root mean square
error (RMSE), mean absolute error (MAE), and relative absolute
error (RAE). The Coefficient of Determination (Eq. 5) describes the
percentage of the dependent variable’s fluctuation that can be
predicted from the independent variables and, as such, serves as
a gauge to evaluate the overall effectiveness of ML models (Cheng
et al., 2014):

R2 � 1 − ∑ yi − ŷi( )2∑ yi− �y( )2 (5)

where yi, ŷi and �y are the observed values, predicted values, and
mean of all observed values, respectively.

The standard deviations between the observed and predicted
values are reflected in the Root Mean Square Error (RMSE)
calculated from Eq. 6, and discrepancies between these values,
averaged across the number of observations, is expressed in
terms of the Mean Absolute Error (MAE) as in Eq. 7:

RMSE �
��������������
1
N
∑N

i�1 qA − qP( )2√
(6)

MAE � 1
N

∑N

1
qA − qP
∣∣∣∣ ∣∣∣∣ (7)

where, qA and qP are the actual and predicted relative scour depths,
respectively.

In a regression test, the null hypothesis is that all of the
regression coefficients are zero, i.e., the model is not predictive.
The F-test is performed to determine whether accept or reject the
null hypothesis. The F-test assesses whether the addition of predictor
or dependent variables improves the model compared to a model
with only an intercept (zero predictor variables). It quantifies the
ratio of explained variance to unexplained variance (residuals) as
(Eq. 8):

F �
SSR
k
SSE

n−k−1
(8)

where, SSR � ∑ (yi − ŷi)2 , SSE � ∑ (yi− �y)2 , k and n are the
numbers of independent variables and observations, respectively.

The plot of the residuals or the Discrepancy Ratio (DR) against
the predicted values is also an important criteria about the relevancy
of a prediction model and the residuals should ideally exhibit zero
correlation with the predicted values (Sahay and Dutta, 2009;
Salauddin et al., 2023).

The study of Kissell and Poserina, (2017) suggested that the
statistical significance of regression models (where predicted values
are compared against observed ones) should be holistically evaluated
in terms of the r2 score, F-test score and the p-value. The values
obtained from these statistical parameters should be in agreement to
deduce the stability and accuracy of regression models.

4 Results and discussion

4.1 Model performances

The experimental dataset of Salauddin and Pearson (2019a) was
deployed for training and testing of all the ML algorithms examined

FIGURE 7
Variation of performance metric (CV score) with the number of
features during Forward Sequential Feature Selection (FSFS).

FIGURE 8
Variation of RMSE during the training phase for SVMR, ANN, RF
and GBDT algorithms.
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in this study following scalar transformations and feature selection.
Training and testing of the models followed a commonmethodology
which provided the basis for comparing modelled and measured
dimensionless scour depths (St/H1/3 deep [-]) in Figure 9. Results
indicate that all the four ML-based models tested in this study are
capable of providing realistic approximation of scour depths. In-
depth statistical evaluation of the predictive models is presented
in Table 2.

Notably, a number of data points for smaller (near to 0.0)
relative scour depths fall outside the 95% CIs. This pattern is also
evident for a few datapoints of large relative scour depth, while a few
data points representing larger relative scour depths were inside the
95% CI zone. This suggests that while the algorithms were capable of

robust overall predictions, but in the case of both smaller and larger
relative scour depths, they exhibited some inconsistency. However,
predictions for larger relative scour depths were more accurate
(positioning on or very close to the regression line in Figure 9).
The scatter in the graphs can be explained by the Pearson R score.
Among the tested algorithms, ANN, GBDT, and RF showed similar
scatter with relatively lower R scores compared to SVMR. SVMR, in
particular, demonstrated comparatively more accurate predictions,
as reflected by the highest r2 and R scores of 0.74 and 0.85,
respectively. The RMSE values of the algorithms did not vary by
a large margin with respect to one another. The SVMR yielded the
lowest RMSE value of 0.28 while that of the RF was the highest at
0.33. The highest RMSE value was approximately 22% of the

FIGURE 9
Comparison of predicted versus actual relative scour depths (=St/H1/3 deep [-]) for (A) SVMR, (B) ANN, (C) RF, and (D) GBDT.
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predicted maximum relative scour depth. From a computational
efficiency perspective, under the given hyperparameter conditions
(Table 1) and using a computer with an 8 cores CPU, 16 GB RAM,
and 6 GB of dedicated GPU memory, the SVMR, ANN, GBDT and
RF algorithms completed the prediction task (for the test set) in 2.5,
6.93, 14.83 and 22.3 s, respectively. This information suggests that
SVMR outperforms the other algorithms in terms of
computational efficiency.

Comprehensive statistical analyses of the developed ML-based
models’ performance were conducted in this study. Statistical scores
are then used to rank the performance of the four tested ML
algorithms in predicting scour depth at sloping structures with
shingle foreshore. Table 2 shows the results of performance
evaluation of the algorithms according to the criteria outlined
in Section 4.1.

The results from the evaluation metrics indicate that all the
algorithms yielded strong r2 scores (r2 scores >0.40; Kissell and
Poserina, 2017). Hence, the F-test was performed and it was
observed that all the models yielded F-score higher than the
critical F-test score of 4.15 (Table 2) and also the p-values for all
the models were substantially (~10−6) lower than the significance
level of 0.05. These findings reflect the statistical significance of the
results obtained from the ML algorithms and it can be inferred that
the variations in the independent variable (actual relative scour
depth) were accounted for by the dependent variable (predicted
relative scour depth). The cumulative number of outliers in the
models is expressed in the form of the RMSE. The SVMR algorithm
yielded the predicted relative scour depth quantity with the smallest
number of outliers, reflected in the lowest RMSE of 0.28 across all
the tested algorithms. The RMSE of the other algorithms is not
shown to differ significantly, suggesting the appropriateness and
robustness of the proposed ML algorithms for predicting relative
scour depth. A higher RMSE and MAE was coupled with lower r2

and vice versa for all the models. It is noted that the scale of MAE is
dependent on the scale of the outputs (here, the predicted relative
scour depth). The maximum and minimum absolute relative scour
depth in the test set was 1.5 and 0.8, respectively, giving a mean
relative scour depth of 1.15. The maximum MAE of 0.22 across the
models was observed for the RF model. Conversely, the minimum
MAE of 0.17 was determined for the SVMR model. Therefore, the
range of MAE evaluated for this study was between 14.7% and 19%
for the mean relative scour depth in the test set, consisted of
32 observations derived from the original set of 120 observations
using a train-test split of 70%–30%. The significance of the MAE
analysis is that the models were able to predict the relative scour
depth with an approximate accuracy of 80%. Overall, the most
accurate scour predictions were attributed to the SVMRmodel, with

the least accurate predictions being associated with the RF and
GBDT models, suggesting that DT based algorithms may be less
suited for obtaining predictions from smaller datasets.

4.2 Feature importance

The method of evaluating the relative contribution of various
features, also referred to as variables or predictors, in a predictive
model is known as Feature Importance (FI). It is useful for selecting
features, comprehending the underlying data, and getting new
perspectives on the subject at hand. FI reveals which features
have the most impact on the model’s predictions, essentially
bridging the findings from ML to the physical consistency of the
underlying processes (i.e., scouring in this study). The FI results are
reported in two formats here, namely, the magnitude of the
coefficients method and the permutation importance method.
This is due to the fact that although the DT-based algorithms
(i.e., RF and GBDT) had in-built FI analysis functions, the other
two algorithms (SVMR and ANN) did not possess this function in
Scikit-Learn’s module. In the magnitude of the coefficients method,
the size of the coefficients directly reflects the significance of the
feature. Greater absolute values imply greater significance of the
predictors. The permutation importance method involves
permuting a predictor’s values at random and analyzing the
impact on model performance. The more performance is lost, the
more significant the feature is thought to be. The results are reported
in a similar format to that of the magnitude of coefficients method.
Figure 10 summarizes the impact of the predictors on the
prediction analysis.

In some experiments related to the measurement of relative
scour depth at sloping walls with gravel foreshore, it was reported
that the Iribarren Number Ir had a strong positive correlation with
the measured scour depths for a given relative toe water depth (ht/
L0m) (Salauddin and Pearson, 2019b). Hence, it was expected that Ir
would have the maximum influence in the prediction analysis to
ensure consistency with experimental results. The FI analysis results
show that 3 out of 4 (i.e., ANN, SVMR, and RF) algorithms
identified Ir as the most important predictor. For the GBDT
algorithm, Ir is ranked as one of the top three predictors, while
the water depth at the toe of the structure (ht) is identified as the
most important predictor. In Figure 10, the bars labelled as ‘others’,
comprises the summation of the magnitude of importance of
features including d50, Duration, Rc, Tm deep, and Lm from the
four tested algorithms. Therefore, it can be inferred from the
results of FI, that the physical scouring processes are reasonably
well-captured in the proposed ML-based models.

TABLE 2 Prediction evaluation metrics and statistical scores for ML-based models.

Algorithm Coefficient of
determination (r2)

Root mean square
error (RMSE)

F-test score [F-critical =
4.15; at p-value: 0.05]

Mean absolute
error (MAE)

Pearson
(R)

RF 0.62 0.33 82.50 0.22 0.95

GBDT 0.62 0.32 76.89 0.19 0.92

SVMR 0.74 0.28 84.20 0.17 0.96

ANN 0.68 0.30 71.50 0.17 0.96
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4.3 Residuals

The residual plot for all of the tested algorithms is shown in
Figure 11. The residuals are independent of the predicted values,
highlighting that the results are in good agreement regarding the
reliability of the models.

4.4 Taylor’s diagram

An effective visual method to describe the statistical metrics
from predictive models is the Taylor’s Diagram (Taylor, 2001). The
Taylor’s Diagram (Figure 12) shows three statistical parameters,
including the correlation coefficient projected as an azimuthal angle

(in black), the radially plotted Centered Root Mean Square (cRMS)
(in green), and the horizontally plotted standard deviations (in
blue). Taylor diagram is particularly robust for assessing and
comparing several performance aspectsof complicated models.

Due to the fact that they are both the square roots of squared
differences between the actual and predicted values, standard deviation
and the cRMS are comparable. However, they differ from one another
in the context that RMSE is used to gauge the gap between actual values
and the corresponding predictions while standard deviation accounts
for the spread of data around the mean. The error of prediction, or the
quantitative deviation is measured using the cRMS. Here, the cRMS of
the SVMR is the lowest, while the standard deviation is the highest. This
essentiallymeans that while the predicted results aremore spread across
the regression line, the quantity of spread is small, indicated by the low
cRMS score. Conversely, RF and ANN has lower standard deviation,
but the quantity of deviation is high which is reflected by the higher
cRMS score. The SVMR model also yielded the highest correlation
coefficient of 0.96 followed by that of ANN (0.955), RF (0.95) and
GBDT (0.92). Therefore, from a holistic point of view it could be
inferred from the Taylor’s Diagram that the SVMR produced the more
accurate values of predicted relative scour depth.

5 Conclusion

Climate change-induced extreme climatic events intensify scouring
in front of coastal infrastructures, posing a significant threat to their
structural integrity and reliability. The development of robust prediction
tools for coastal scouring is crucial for enhancing coastal resilience and
safeguard these vital defences. This study examined the capabilities of
advanced ML techniques for prediction of relative scour depths at
sloping seawalls with shingle foreshores. This study developed a
methodological framework for implementing of ML-based models
for accurate predictions of relative scour depths at sloping walls with
shingle foreshore. Four ML algorithms including RF, GBDT, SVMR,
and ANN were utilised and tested on an experimental dataset of scour
depths. We proposed a robust and efficient framework including
detailed procedures for data scaling, feature selection, and tuning of
the modelling parameters.

A methodological approach is proposed for pre-processing the
physical modelling dataset to conduct missing value imputations,
feature transformation (PCA), selection, and data scaling to ensure
redundant data andmissing values do not impair the performance of
the ML models. In order to verify the ML algorithms on a randomly
selected sub-set of training data, cross validation was carried out in
the training step. A typical train-test split of 70%–30% was
implemented. These precautions ensured that a consistent
methodology was followed to achieve comparable outcomes from
the predictions made by the four algorithms. Iribarren Number (Ir)
was identified as the most important parameter influencing the
scouring process, in agreement with the physical process of scouring.

The performance of the proposed ML-based predictive models
were evaluated for a comprehensive experimental dataset. The predicted
relative scour depth and comprehensive statistical evaluation confirmed
the robust performance and accuracy of all the tested algorithms.

A set of statistical indices, (r2, RMSE, MAE, F-test and Pearson R)
were incorporated to gauge the efficiency of the tested ML algorithms.
The SVMR algorithm showed superior performance compared to the

FIGURE 10
Feature Importance Analysis showing the impact of predictors.

FIGURE 11
Variation of Residuals with predicted relative scour depth.
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other tested algorithms with an r2 score of 0.74, RMSE of 0.28, MAE of
0.17 and Pearson R value of 0.96. The DT based algorithms were not
able tomatch performance of SVMR andANNwith scores of 0.62 for r2

for both RF and GBDT. ANN was identified as the second-best
performing algorithm with a r2 score closest to that of SVMR the
(0.68). The F-test score and the Pearson R values of the algorithms are
indicative of the fact that the variation of the independent variable is
accounted for by the dependent variables or the predictors and that
there is strong correlation between the actual and predicted values.
These findings were reinforced by the high Pearson R values of 0.96,
0.955, 0.95 and 0.92 for SVMR, ANN, RF and GBDT, respectively. The
SVMRmodel was also the most computationally efficient model (<3s),
more than two times faster than ANN (6.93s) followed by DT based
GBDT (14.83s) and RF (22.3s). The comparison of MAE revealed that
accuracy of predictions was over 80% for all the algorithms. One
important reason of DTs underperforming in this study may be due
to the relatively small number of training data. Although there is no
explicit requirement of the amount of training data required by ML
algorithms, larger and more diverse datasets could improve the
performance of ML-based models presented in this study. Future
studies should focus on further improving the performance of the
proposed predictive tool by the inclusion of larger experimental
datasets. Hybrid machine learning approaches with optimisation
techniques could potentially enhance predictive performance of the
models proposed here and should be tested on wave-induced scouring
datasets. Themethod proposed in this study could be adopted by coastal
engineers for rapid scour depth prediction and inform design and
maintenance of coastal defence structures.
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Glossary

d50 Effective particle size (mm)

Duration Storm duration (s)

ht Water depth at toe of the structure (s)

Rc Crest freeboard of the structure (m)

Tm,deep Average Wave Period in Deep Water (s)Angle of wave attack (o)

Lp Peak Wavelength in Deep Water (m)

Lm Mean Wavelength in Deep Water (m)

Rc/H1/3, deep Relative Crest Freeboard (−), where H1/3, deep is the significant wave height (m) calculated from the average of the highest one-third of all waves

ht/H1/3, deep Relative Water Depth (−)

St/H1/3 deep Relative Scour Depth (−); where St = Scour Depth (m)

Ir Iribaren Number (−) [ = tan α���
Hm0
Lm

√ ]; where α = angle of foreshore
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