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We present an accreditation protocol for analogue, i.e., continuous-time, quantum
simulators. For a given simulation task, it provides an upper bound on the variation
distance between the probability distributions at the output of an erroneous and error-
free analogue quantum simulator. As its overheads are independent of the size and
nature of the simulation, the protocol is ready for immediate usage and practical
for the long term. It builds on the recent theoretical advances of strongly universal
Hamiltonians and quantum accreditation as well as experimental progress toward the
realization of programmable hybrid analogue–digital quantum simulators.
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Quantum simulation is rapidly emerging as a leading application of quantum tech-
nology (1). One key approach is analogue simulation, which proceeds by engineering
many-body quantum systems in a well-controlled environment and simply allowing
their dynamics to occur. As these systems increase in size and improve in performance,
their computational capabilities are beginning to surpass those of existing classical
computers (2–4). Despite improvements, they continue to be afflicted by errors. It
is thus accepted that before analogue quantum simulators can tackle problems of
practical or fundamental importance, methods to provide quantitative guarantees on
the correctness of the outputs of error-prone analogue quantum simulators must be
developed (5).

Validation of analogue quantum simulators has typically relied on tractable theoretical
models incorporating errors and imperfections (1). Another method has been to run the
dynamics forward and backward for equal amounts of time which returns the system
to its initial state—should there be no errors. Commonly known as Loschmidt echo,
this method can detect some errors and imperfections but cannot provide quantitative
guarantees on the correctness of the outputs. More sophisticated variations have been
developed that evolve the simulator from some known initial state through a closed
loop in state space, eventually returning to its initial state (6). These provide some
measure of how faithfully the simulator implements the target Hamiltonian. A similar
objective is served by Hamiltonian learning (7, 8), which is being developed for analogue
simulators. By experimentally applying the target Hamiltonian on its approximate steady
state and estimating a series of expected values of the resulting state, Hamiltonian
learning provides estimates of the coefficients in the Hamiltonian actually applied.
While it misattributes errors in the state preparation and measurement to those in the
Hamiltonian, it does provide some confidence in the actual Hamiltonian implemented
experimentally. Methods such as randomized benchmarking have also been developed
for analogue quantum simulators to quantify the performance of their components (9).
However, none of these methods can provide quantitative guarantees on the correctness
of the simulator’s outputs. A benchmarking protocol to estimate the fidelity of quantum
simulations has also been proposed recently but requires exponential classical resources
and so is not scalable (10).

In this paper, we present a scalable and practical accreditation protocol that provides
an upper bound on the correctness of the outputs of an analogue quantum simulator. As
the outputs of all quantum simulators are classical probability distributions, our protocol
places an upper bound on the variation distance between the probability distributions
generated by erroneous and error-free analogue quantum simulator. We dub this task
quantum accreditation.

Experimentally, our quantum accreditation protocol can be implemented on existing
analogue simulators, in particular those using Rydberg atoms. These systems can
implement analogue Hamiltonian evolution as per the XY interaction (11) as well as
interleaved single qubit gates (12). Our work can thus be construed to solve the open
problem of verifying the outputs of analogue quantum simulators by exploiting advances
in their programmability (1, section V).
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Theoretically, the two obstacles to the quantum accreditation
of analogue quantum simulators lie in the analogue and quantum
natures of the problem. The former engenders a variety of Hamil-
tonians that such simulators can and do implement (11, 13–
17) and starkly contrasts with the mathematical formulation of
universal digital quantum computation (18). This has been a
barrier to a general recipe to bound the correctness of outputs
of analogue simulators. The latter is the well-acknowledged
exponential cost of simulating a general interacting many-body
quantum system classically.

Our protocol overcomes the lack of universality plaguing
analogue quantum simulators using the recently developed
notion of universal quantum Hamiltonians (19) and their
strong counterpart (20). These consist of replicating the time
evolution of the Hamiltonian of interest using a strongly universal
Hamiltonian (in particular, the family of XY interactions on a
square lattice)—and an associated encoding denoted by V . The
replication is achieved by simulating the energy spectrum of the
former by that of the latter up to some error " and energy cutoffΔ.
The encoding operation V itself only needs to be correct to some
error �. If � = " = 0 and Δ→∞, the replication is exact. The
efficiency of the encoding is guaranteed by strong universality
and the recipe for obtaining it is summarized in Section 2.B.1.

To overcome the latter obstacle, our protocol builds upon
trap-based quantum interactive proof systems (21, 22). These
have already been used to develop a scalable and practical
accreditation protocol for digital quantum computation in the
circuit model (23, 24). In short, our protocol can be summarized
intuitively as follows: Alongside the simulation of interest (the
“target” simulation), a series of “trap” simulations, designed to
measure the extent and effect of the error in the traps (in terms of
the variation distance between distributions of the actual outputs
of the traps and what the outputs should be), are executed. As
these traps are engineered to experience error similarly to the
target simulation, by only differing from the target simulation
in their single-qubit gates, this measure of the effect of error
on the outcome of the traps also serves as a measure of the
effect of error on the outcome of the target simulation. This
enables us to obtain a bound on the variation distance between
the actual probability distribution of the measurement outcomes
in the target simulations and the probability distribution of
the measurement outcomes that would be obtained if no error
occurred.

The number of trap computations required is independent of
the size and nature of the target simulation, depending rather
on the accuracy and confidence with which the upper bound
is sought. Our protocol thus eliminates the need for classical
simulations, freeing us to accredit simulations of arbitrarily large
systems where quantum simulators offer the most.

This paper is structured as follows: Section 1 lays out the
mathematical definitions. Section 2 lays out the error model
our analogue simulator is subject to and discusses its physical
relevance. It then presents our accreditation protocol, and the
design of the trap simulations. Section 3 concludes with the
explicit steps for an experimental implementation of immediate
relevance.

1. Definitions
We begin with a formal definition of analogue quantum
simulators.

Definition 1: An analogue quantum simulator takes as inputs:

1. The description of an initial product state | 0〉,
2. A time-independent Hamiltonian, H0,
3. A simulation duration, t ∈ R, and
4. A set of single-qubit measurements, M.

The simulator prepares | 0〉, applies the time evolution
generated byH0 to | 0〉 for the duration t, followed by the mea-
surements in M and returns their results. These measurement
outcomes will be samples from a distribution with probability
measure, P : Ω → [0, 1], where Ω is the set of all possible
outcomes of the measurements in M.

The accreditation of analogue quantum simulators relies on
two recent advances—one theoretical and one experimental.

The first, theoretical, advance is the notion of strongly
universal Hamiltonians (20), which builds on the idea that the
physics of any O

(
1
)
-local quantum many-body system can be

“simulated” by families of “universal” spin-lattice models (19).

Definition 2: A family of Hamiltonians is strongly universal
if the eigenspectrum of any O(1)-local Hamiltonian can be
encoded in some low-energy subspace of a Hamiltonian in the
family, allowing the Hamiltonian from the family to simulate
the O(1)-local Hamiltonian. Moreover, the translation from any
O(1)-local Hamiltonian to one in the strongly universal family
takes time at most polynomial in any relevant parameter such as
the number of qubits,* interaction strength, Δ, the reciprocal
errors 1/", 1/�, and outputs a Hamiltonian with parameters
increased at most polynomially (in their original values).

Note that the errors ", �, are not a result of noise in the analogue
simulator and not the kind of error we are concerned with in this
paper. Consequently, these are neglected henceforth.

From all the possible families of strongly universal Hamilto-
nians, we choose that of XY interactions on a square lattice, with
freely varying coefficients (19). We focus on this Hamiltonian
as its semi-translationally invariant nature (20) enables us to
develop our accreditation protocol for a single form of interaction
(XiXj + YiYj), where Xi, Yi denote the Pauli X and Y operators
respectively on qubit i. Consequently, we dub the Hamiltonian
of the XY interaction on a square lattice “accreditable” in the rest
of the paper.

Definition 3: The family of accreditable Hamiltonians captures
the XY interactions on a square lattice and has Hamiltonians of
the form:

H =
∑
〈i,j〉

(
Ji,j

[
XiXj + YiYj

])
, [1]

where 〈i, j〉 denotes the summation is over pairs of indices labeling
qubits that are neighbors on the appropriately sized square lattice
and ∀i, j ∈ Z, Ji,j ∈ R.

Due to the strong universality of accreditable Hamiltonians,
our protocol can be used to efficiently accredit any analogue
quantum simulation after translating it to the former using the
constructive method in ref. 20. This translation is efficient but
approximate with its precision captured by the spectral norm of
the difference of the two Hamiltonians. This lack of precision
is independent of the analogue quantum simulator on which
the accreditable Hamiltonian is subsequently executed and any
errors afflicting its physical implementation. The translation

*Following ref. 20, we use “qubits” instead of “sites.”
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Fig. 1. Circuit representation of a HQS: N is the number of qubits and U1, U2 are arbitrary poly(N)-sized circuits of single and two qubit gates. Each Aj , Bj , Cj ,
Dj (for any j ∈ N≤N ) is an arbitrary single-qubit gate. The input is fixed to | 0〉 = |0〉⊗N for convenience. As the single-qubit gates Aj are arbitrary, any product
state can be prepared as an input to the HQS. Similarly as the single-qubit gates Dj are arbitrary, any product measurement can be performed on the output
of the HQS.

encoding and decoding operations itself, when implemented on
an analogue quantum simulator, is subject to the latter’s errors.
This is accounted for in our protocol in Section 2.

The second, experimental, advance is the ability to apply
single-qubit and two-qubit operations mid-simulation (12),
which can be thought of as “single-qubit and two-qubit gates.”
We formalize this in the definition of a hybrid quantum
simulator.

Definition 4: A hybrid quantum simulator (HQS) takes the four
inputs of the analogue quantum simulator in Definition 1 and

5. an ordered set, G, of single-qubit or two-qubit quantum gates
with corresponding time-stamps {tg |g ∈ G} denoting when
they are applied.

The HQS prepares | 0〉, applies the time evolution generated
by H0 to | 0〉 for the duration t, with interruptions to apply
each gate g in G at time tg , followed by the measurements in
M, and returns their results. These measurement outcomes will
be samples from a distribution with probability measure, P :
Ω → [0, 1], where Ω is the set of all possible outcomes of the
measurements in M.

Our accreditation protocol can be implemented on the
state-of-the-art HQSs already extant. This includes quantum
simulators where the XY interaction Hamiltonians are directly
implementable in experimental systems, most notably using
Rydberg atoms (11), and are embracing the ability to perform
digital gates alongside analogue simulations (12). Recently,
hybrid models of digital–analogue quantum computation have
also been studied theoretically to investigate their computational
capabilities (25).

For the rest of the paper, we depict the operations in a HQS,
including both the Hamiltonian evolutions and the gates, via
circuits, as illustrated in Fig. 1. It is important to note that our
“circuits” do not necessarily fit within the limits of the quantum
circuit model: The set of allowed operators in the HQS cannot
be encapsulated by a finite gate-set as it contains time evolutions
of any permissible Hamiltonian for arbitrary time.

2. Accredited Analogue Quantum Simulation
All physical implementations of quantum simulators will be
afflicted by error. These errors can be considered to occur in
one (or more) of the inputs listed in Definitions 1 and 4 being
implemented incorrectly or affected by noise. For instance, there
could occur some fluctuations in the applications of the Hamil-
tonianH0 or an error in the value of t applied. Consequently, the

outputs actually obtained will be erroneous. Thus, the probability
measure of s ∈ Ω, P̃(s), in the actual, erroneous case differs from
the error-free probability measure, P(s).

The objective of an accredited analogue quantum simulation is
to provide—in addition to the output P̃(s) — an experimentally
accessible upper-bound on the distance between P̃(s) and P(s),
as captured by the total variation distance, defined in Eq. 2 in
the following definition.

Definition 5: An accredited analogue quantum simulation runs
on a HQS. It takes the four inputs of the analogue quantum
simulator in Definition 1 and two parameters �, � ∈ [0, 1). It
returns the same measurement outcomes as an analogue quantum
simulator, and an � ∈ [0, 1), such that

VD
(
P, P̃

)
≡

1
2

∑
s∈Ω

∣∣∣∣P(s)− P̃
(
s
)∣∣∣∣ ≤ �, [2]

where the � is obtained experimentally, with accuracy � and
confidence �.

A. ErrorModel. We model any erroneous implementation of any
part of a HQS as their error-free implementation followed (or
preceded) by an error operator such that:

E1: The error operator is a completely positive trace preserving
(CPTP) map applied on the HQS and its environment.

E2: The error operator in distinct uses of a HQS, where each
use only differs in the single-qubit gates, is independent and
identically distributed (i.i.d).

E3: Replacing identity gates with single-qubit gates in an
otherwise identical simulation does not reduce the variation
distance between P

(
s
)

and P̃
(
s
)
, and changing single-qubit

gates has no effect.

Our error model captures a large class of errors that afflict real-
world analogue quantum simulators. These include spontaneous
emission, crosstalk, and particle loss via E1, and fast noise (6)
such as laser fluctuations via E2. More generally, E2 captures
all fluctuations in the HQS and its environment that occur on
timescales faster than that implements the operations in Fig. 1.
Other common practical issues such as miscalibrations (6) in the
duration of time evolutions or coefficients of the Hamiltonian
being applied, or unintended terms in the Hamiltonian, and
incorrect state-preparation or measurement that occur repeatedly
across multiple implementations of Fig. 1 are captured as well,
subject to E3.

PNAS 2024 Vol. 121 No. 6 e2309627121 https://doi.org/10.1073/pnas.2309627121 3 of 9
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Our error model does not capture slow noise (6) processes such
as those from temperature variations or degradation of device
performance over implementations of Fig. 1. This is because
they violate E2. We discuss means of mitigating this limitation
later.

Our error model is also robust against certain types of coherent
errors. This includes, for instance, unwanted Z interactions
along with the XY interactions. Other coherent errors, such
as those in the coefficients Ji,j in Eq. 1, are missed by our
protocol. This is because such errors cancel out in the trap
circuits (Section C). While these errors are physically possible,
they are mathematically disallowed by our model. However, other
characterization methods such as Hamiltonian learning may be
used to flag their presence.

This error model affecting a HQS admits the following
mathematical simplification.

Lemma 1. Any HQS affected by errors obeying E1–E3 is equivalent
to the single-qubit gates being error-free and the remaining error
being independent of Aj, Bj, Dj (∀j ∈ N≤N ).

Notably, the Lemma 1 excludes Cj from the single-qubit gates
that the remaining error is independent of. This follows from the
Cj gates unfortunate position in the simulation, as can be seen
in the proof of Lemma 1, in SI Appendix, A. This dependence
in no way interferes with our quantum accreditation protocol
presented below.

B. QuantumAccreditation Protocol. We now sketch our accred-
itation protocol, as presented in Algorithm 1. Ours is a trap-based
protocol, inspired by quantum interactive proof systems (22)
and recently adapted for the accreditation of digital quantum
computation in the circuit model (24). As such, it is based on
two different types of simulations— the target and the trap. The
target simulation is the one of interest while the trap simulations
are factitious ones that exist to infer the effect of error in the
target simulations that implemented on a HQS obeying E1–E3.

Both targets and traps rely on the Hamiltonian of interest being
simulated by a strongly universal Hamiltonian (herein, this is the
XY interaction on a square lattice), so in every case, both the
target and trap simulations are a simulation of the XY interaction
Hamiltonian on a square lattice. The traps can then use properties
of the XY interaction to function as required. Chief among these
is that, by surrounding a time evolution according to an XY
interaction Hamiltonian on a square lattice by Pauli Z gates
(which are single-qubit gates) on specific qubits, the direction of
time can be reversed. This depends on the graph representing
the interactions (as edges) between qubits (as vertices) being
two-colorable—as square lattices are. So the chosen family of
universal Hamiltonians has the required two-colorability of the
graph representing the system.

Hence, if the time evolution in the trap and target simulations
is split into two (this must be done to both to maintain the relation
between their error), single-qubit gates can be used to reverse the
second time evolution in traps so it cancels out with the first
(when there is no error). Hence, the ideal/error-free output of
the measurements (which are fixed to be Z basis measurements)
in traps is constant and equivalent to measuring the input state
(which is fixed to be |0〉 for every qubit). Therefore, any error
(conforming to our error model in Section A) in the traps is
equivalent to a CPTP map occurring as the only operator in
the trap simulation. Via Pauli twirling, this error is effectively
reduced to stochastic Pauli error (this is as, for states in the Z -
basis, all Pauli gates either flip the qubit—making their presence

Algorithm 1: Analogue Accreditation Protocol
Input:
• A Hamiltonian, H0
• A real evolution time, t ∈ R
• An initial state, | 0〉
• A vector of measurements for after the time evolution, M
• A desired confidence, �.
• A desired accuracy of the output bound, �.

1. Reduce H0 to an accreditable Hamiltonian, H
2. Calculate the circuit, V , that transforms |0〉⊗N to the

initial state corresponding to | 0〉 after the reduction to
an accreditable Hamiltonian.

3. Calculate the required number of traps Ntr =⌈
2
�2 ln

(
2

1− �

)⌉
+ 1.

4. Pick uniformly at random a number between 1 and N +1
to be the index of the target simulation

5. For i = 1 to Ntr + 1
(a) If simulation i is the target simulation:

Prepare the state |0〉⊗N .
For qubit j:
Apply A′j
Apply V
Apply e−iHt/2.
Apply Identity.
Apply e−iHt/2.
Apply Identity.
Apply V−1

For qubit j:
Apply D′j
Perform measurements & record outcomes.

(b) If simulation i is a trap simulation:
For qubit j:

Choose Pauli gate Pj uniformly at random
Choose h ∈ {0, 1} uniformly at random
Prepare the state |0〉⊗N .
For qubit j:
With probability 0.5 apply a Pauli Z gate to qubit j
Apply PjH h to qubit j
Apply V
Apply e−iHt/2

Apply time inversion circuit
Apply e−iHt/2

Apply time inversion circuit
Apply V−1

For qubit j:
Apply H hPj to qubit j
With probability 0.5 apply a Pauli Z gate to qubit j
Perform measurements & record if correct

6. Calculate � = 2
Number of correct traps
Total number of traps

Return : Target simulation measurement outcome sample and �.

clear in measurements of the qubit—or have no effect, allowing
for a clear and simple quantification of the error) and random
layers of Hadamard gates. The latter transforms the different
Pauli gates between detectable and non-detectable (e.g., a Pauli
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X is mapped to a Pauli Z , and vice versa, by conjugation through
a Hadamard gate), ensuring that any error occurring prevents the
trap from giving the correct outcome (as it would if there were
no error) with probability at least 0.5.

Multiple uses of the traps provide an estimate on the probabil-
ity of error occurring. This is used to upper bound the variation
distance between the ideal and actual probability distributions
over the measurement outcomes in traps (24, Appendix 1) which,
via the similarities between traps and targets, bounds the same
variation distance for target simulations.
B.1. Target simulations. This is the analogue quantum simulation
we are actually interested in. For it to be accredited, it is
implemented on a HQS as illustrated in Fig. 2. In the absence
of any errors, it applies e−iHt to | 0〉 followed by single-
qubit measurements. It requires that the initial states | 0〉 =
⊗

N
j=1
(
A′j
)
|0〉⊗n be encoded to enable simulation by the strongly

universal Hamiltonian. This is denoted by V . Similarly, after the
time evolution, the state must be decoded, before measurement
by M = ⊗N

j=1
(
D′j
)
Z⊗n. This is done via V−1.

The construction of this encoding, and its implementation
via V , is entirely determined by the replication of the spectrum
of the target Hamiltonian H0 by the accreditable Hamiltonian
H. This proceeds, as per ref. 20, by first considering the circuit
for phase estimation corresponding to the time evolution of H0.
After transformations of this circuit to make it spatially sparse
(not detailed here), the Feynman–Kitaev circuit-to-Hamiltonian
mapping is used to obtain a spatially sparse Hamiltonian with
highly degenerate ground states (one for each eigenvector of
the target Hamiltonian, H0), which is modified—by editing the
spatially sparse Hamiltonian to impose state-dependent energy
penalties to some otherwise degenerate states—to replicate the
required spectral features of the target Hamiltonian in its low-
energy spectrum, that is, the set of states that were initially
degenerate after the circuit-to-Hamiltonian mapping.

A sequence of perturbative gadgets are then used to sequentially
replicateH0 in the low-energy subspace of a series of Hamiltoni-
ans within a series of increasingly restrictive sets of Hamiltonians
(e.g., the set of 2-local Pauli interactions without the Pauli Y
operators is one such set of Hamiltonians), until a XY interaction
on a square lattice is obtained. This is the last set of Hamiltonians
in the sequence (19, figure 2). Each perturbative gadget relies on
embedding the spectrum of one Hamiltonian in the spectrum of
another by encoding each qubit of the former Hamiltonian in
multiple qubits of the latter.

The encoding unitary,V , thus captures the sequential mapping
of the state we want to time-evolve according to the target

Hamiltonian, H0 to their representations in the Hilbert spaces
corresponding to each Hamiltonian in the above sequence. It
terminates with a state in the Hilbert space corresponding the
appropriate XY interaction on a square lattice. V−1 functions
to perform this process in reverse and extract the output state
of a time evolution according to H0 from the state obtained
from time evolving the encoded (via V) state according to an XY
interaction on a square lattice. See refs. 19 and 20 for details of
these perturbative gadgets. In particular, (ref. 19, figure 2) shows
part of the sequence used in the sequential replication of H0.
B.2. Trap simulations. For any target simulation as in Fig. 2,
a trap simulation can be obtained by replacing the identities
(I ) with single-qubit gates that invert the time evolution of the
Hamiltonian and changing some pre-existing single-qubit gates
depending on some random parameters, as explained in the cap-
tion of Fig. 3. The former is detailed in Section C. In the absence
of any errors, the trap simulation executes the identity evolution,
which will result in the all-zero output. This can be checked using
resources scaling linearly with the problem size N . Any deviation
from an all-zero output indicates the presence of errors.

Both target and trap simulations (Figs. 2 and 3 respectively)
can be implemented on a HQS (as in Fig. 1) with Ai = A′i, Bi =
Ci = I, Di = D′i,U1 = V ,U2 = V−1, and Ai = PiH hZ ′, Bi =
Ci = Ci, Di = Z ′H hPi,U1 = V ,U2 = V−1 respectively, where
Z ′ denotes a Pauli Z gate applied with probability 0.5.

The goal of the trap simulations is to detect any error on
the HQS that obeys E1–E3 and provide a bound of the form
in Eq. 2. Lemma 2 below establishes a relationship between
the effects of these errors in the trap simulations and the target
simulation. Thus, detecting the errors in the former, via Lemma 3
enables us to bound the variation distance between the error-free
and erroneous probability distributions over the measurement
outcomes of the latter, as per Theorem 1.

Lemma 2. If E3 holds, the variation distance between the prob-
ability distribution over measurement outcomes of an error-free
implementation and that of an erroneous implementation is greater
in a trap simulation than in the target simulation, for any choice of
the random gates in the trap simulation.

Proof: As can be seen in Fig. 2 (depicting a target simulation) and
Fig. 3 (depicting a trap simulation), traps and their corresponding
target simulation differ only in single-qubit gates: Traps are
obtained from the target simulation either by changing them
or replacing identity gates with other single-qubit gates. Due
to this, E3 implies that the variation distance between the

Fig. 2. Target simulation with encoding of initial state | 0〉 = ⊗
N
j=1

(
A′j
)
|0〉⊗n by V , and decoding after the time evolution by V−1 before the measurements

M = ⊗Nj=1
(
D′j
)
Z⊗N . Some of the N qubits may be used as ancilla for preparing the encoded states via V . The identity operations (I) are long enough in duration

to allow for the implementation of single-qubit gates, as explained in Section C.
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Fig. 3. Trap simulation with encoding of initial state, V , and decoding after the time evolution, V−1. H denotes the Hadamard gate, h ∈ {0,1} is a random
bit, Z ′ denotes applying a Pauli Z gate with probability 0.5 (each instance of random operator Z ′ inside the circuit is independent) and ⊗nj=1Cj = C is the time
inversion circuit, H is an arbitrary accreditable Hamiltonian, Pj is a single-qubit Pauli gate, chosen uniformly at random independently for each j, and t is the
duration of the simulation. Note that PjHhZ ′ ’s (where Z ′ is first and Hh is second in time order, but in the opposite order when written as operators) are in the
same box because they can be compiled as a single gate.

probability distribution over measurement outcomes of an error-
free implementation and that of the erroneous implementation
(denoted as VD

(
P, P̃

)
in Eq. 2, though this refers specifically to

the target simulations) is greater in traps than in the target. �

Lemma 3 [Detection of errors]. Any error, or combination of
errors, obeying E1–E3 and occurring within a trap simulation are
detected with a probability of at least 1/2, unless the errors cancel
with each other.

The proof is provided in SI Appendix, B.

Theorem 1. Algorithm 1 performs accredited analogue simulation
as per Definition 5 subject to the error model, i.e., E1–E3, with Ntr
trap simulations, where

Ntr =
⌈

2
�2 ln

(
2

1− �

)⌉
+ 1. [3]

This is our central result. Crucially, the additional resources
required for our quantum accreditation protocol are independent
of the size (N ) as well as the specifics (inputs in Definition 1)
of the analogue quantum simulation. The proof is provided in
SI Appendix, C.

C. Design of Trap Simulation. This section provides fuller details
of the trap simulation used in Section B.2.
C.1. Time inversion of accreditable Hamiltonian. Our trap circuits
use the notion of time-inversion circuits that effectively inverts
the time evolution of the Hamiltonian. We show that such a
circuit exists for accreditable Hamiltonians on a large class of
lattices, of which the square is an instance.

Definition 6: For a specific accreditable Hamiltonian, H, a
time-inversion circuit, C, is an operator such that,

CHC† = −H. [4]

We refer to this as inverting the Hamiltonian.

A circuit, C, conforming to Definition 6 suffices to reverse the
time evolution of an accreditable Hamiltonian due to Lemmas 4
and 5.
Lemma 4. For any unitary, U , Hamiltonian, H, � ∈ C and
t ∈ R:

Ue−�HtU† = e−�UHU
†t . [5]

Lemma 4 is proven in SI Appendix, D.

Lemma 5 [Inverting the Hamiltonian]. Given C, H as in
Definition 6,

Ce−iHtC† = eiHt . [6]

Proof: Via Lemma 4,

Ce−iHtC† = e−iCHC†t . [7]

Definition 6 then implies the lemma. �

The existence of a time inversion circuit, meeting the require-
ments of Definition 6 for an accreditable Hamiltonian, H is
established by Theorem 2.

Theorem 2. For any set of XY interactions, where the interactions
and qubits form a two-colorable graph (such as a square lattice) with
the qubits as vertices and interactions as edges, the corresponding
accreditable Hamiltonian can be inverted by applying a time
inversion circuit consisting of Pauli Z gates on a chromatic subset of
the qubits.

The proof is provided in SI Appendix, D. Some examples of the
use of time-inversion circuits to invert time evolutions are given
in SI Appendix, E.
C.2. Traps in the error-free case. We now present the measure-
ment statistics of the traps in the error-free case. The erroneous
case is more involved and hence is presented in SI Appendix, B.
The measurement statistics are in fact quite simple: The traps
return a known “correct” result when implemented without any
error occurring. This makes use of the time inversion circuits
displayed above and is demonstrated in Lemma 6.

Lemma 6. The error-free implementation of a trap simulation (on
N qubits) always gives the all-zero output with certainty.

Proof: If no errors occur, the trap simulation, as in Fig. 3 gives
the all-zero output with probability

|〈0|⊗N Z ′H hPV−1Ce−iHt/2Ce−iHt/2VPH hZ ′|0〉⊗N
|
2, [8]

where Z ′ denotes a Pauli Z gate on each qubit, with probability
1/2. Each qubit choice is independent so all possible combina-
tions of Pauli Z gates or the identity, e.g., IZI · · · IZ , on N qubits
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occurs with equal probability when a Z ′ gate is implemented. P
is an independent uniformly random string of Pauli (or identity)
gates (one on each qubit). Then, Lemma 5 allows us to re-write
the quantity in Eq. 8 as

|〈0|⊗N Z ′H hPV−1eiHt/2e−iHt/2VPH hZ ′|0〉⊗N
|
2, [9]

= |〈0|⊗N Z ′H hPV−1VPH hZ ′|0〉⊗N
|
2 = 1. [10]

�

C.3. Example errors detectable by the traps. Here, we give two
instructive examples to demonstrate how our traps would detect
specific errors that may occur in hardware.

C.3.1. Example error 1. Interactions in Rydberg systems are not
strictly local, that is, an intention to apply only nearest neighbor
interactions inevitably leads to interactions between all qubits and
have a tail, meaning an attempt to implement the XY interaction
on a square lattice will actually implement the XY interaction
on a graph where all nodes are connected to all other nodes.
In practice, the interaction strength will decay rapidly, as 1/r6,
where r is the distance between the qubits.

C.3.2. Detection of example error 1. We class unintended non-
local (beyond nearest neighbor) interactions as error; regardless
of how or why they occur. Extra non-local interactions prevent
the time inversion circuit from functioning as they would when
no error occurs—as the Pauli Z gates in the time inversion
circuits no longer act on a two coloring of the graph representing
the interactions—and so the time evolutions will not cancel
out. Therefore, the effect of this error would be detected and
quantified.

This can be readily illustrated using a simple example. Consider
a four-qubit square lattice, with the intended Hamiltonian,
Hint, consisting of XY interactions between the following pairs
of qubits: (0,1), (1,3), (0,2), and (2,3). This is represented
Fig. 4.

Then a time inversion circuit for this example, Cexa, consists
of just Pauli Z gates on qubits 1 and 2. If the actual Hamiltonian
applied, Hact, consists of an XY interaction between all pairs of
qubits (i.e., the addition of interactions between qubit 0 and qubit
3, and between qubit 1 and qubit 2), then the time inversion fails
as, considering conjugating the actually applied Hamiltonian
with the relevant time inversion circuit, CexaHactCexa, can be
written as:

Fig. 4. A 2×2 square lattice with an indexing on the vertices. This represents
the system being considered in Section C.3.1.

Z1Z2
(
Hint + J0,3

[
X0X3 + Y0Y3

]
+ J1,2

[
X1X2 + Y1Y2

])
Z1Z2,
[11]

= −Hint + J0,3
[
X0X3 + Y0Y3

]
+ J1,2

[
X1X2 + Y1Y2

]
, [12]

6= −Hact, unless J0,3 = J1,2 = 0. [13]

So the actual Hamiltonian is not inverted, as the intended
Hamiltonian would be, allowing for the detection of the error.

C.3.3. Example error 2. It is possible that extra, unintended,
terms may appear in an XY interaction between two qubits, due
to some error in implementation, and the occurrence of this error
may be correlated with the occurrence of other error. Here, we
take the simple case of unwanted ZZ interactions occurring in
the Hamiltonian. To illustrate the strength of our traps, we just
consider an XY interaction, X1X2 + Y1Y2 + Z1Z2 containing a
single erroneous Z1Z2 term.

C.3.4. Detection of example error 2. First note that the correla-
tion of the error with any aspect of the circuit or error is irrelevant
(from an accreditation perspective): E2 precludes the error from
depending on the single-qubit gates, which guarantees the error
can be Pauli twirled via single-qubit gates to stochastic Pauli
error which can be detected in the traps. It also prevents the error
having any correlation that could cause it to occur in the trap
simulations but not the target. We then consider just the cases
when the error does occur. The time inversion circuits, which
are specifically tailored to invert XX and YY terms, do not invert
ZZ terms. Hence, the time inversion circuits do not correctly
invert any Hamiltonian that contains ZZ terms. This is as the
time inversion circuits—in this case, C = Z2, are constructed
from Pauli Z gates so commute with ZZ terms. This can be seen
mathematically as:

Z2
(
X1X2 + Y1Y2 + Z1Z2

)
Z2 = −X1X2 − Y1Y2 + Z1Z2.

[14]

The failure of the Z1Z2 term in Eq. 14 to gain a minus sign
prevents the time evolutions in the trap from canceling out (as
they would when there is no error i.e., no Z1Z2 term in Eq. 14),
leaving the resulting operator to be Pauli twirled and detected.

3. Discussion
We have presented a quantum accreditation protocol for
quantum analogue simulations that can be applied to extant
experiments and devices. It builds on the theoretical advances
of strongly universal Hamiltonians and quantum accreditation
as well as experimental progress toward the realization of
programmable hybrid analogue–digital quantum evolution.

Our protocol completely eliminates the need for classical
simulations, freeing us to accredit simulations of arbitrarily
large systems where quantum simulators offer the most. Our
error model captures large classes of errors hybrid quantum
simulators experience, including errors in state preparation and
measurement. Additionally, the resource requirements of our
protocol are reasonable: The depth and time overheads are
independent of the size of the system being simulated (N ); the
number of extra single-qubit gates required is at most linear in the
system size; the total duration the time evolution is applied for
remains unchanged from an un-accredited simulation; and the
number of trap simulations required is quadratic in the reciprocal
of the required accuracy of the bound on the variation distance
the protocol outputs.

Consequently, our protocol can be implemented on extant
programmable hybrid analogue–digital quantum simulators

PNAS 2024 Vol. 121 No. 6 e2309627121 https://doi.org/10.1073/pnas.2309627121 7 of 9
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Fig. 5. Example of a trap simulation where the Hamiltonian H, applied to the initial state |0〉⊗4 for time t, is an accreditable Hamiltonian (XY interactions) on
a 2× 2 square lattice. All measurements are in the Pauli Z basis. (Left) Example trap simulation. The random Pauli matrices (as in Fig. 3) are chosen as: P1 = X̂ ,
P2 = Ŷ , P3 = Ẑ, and P4 = Î. Additionally, h = 0, every Z ′ = I, and, due to the choice of simulation, V = V−1 = I. Notice that on the second and third layer of
1-qubit gates the Pauli gates of the inversion circuit, applying on the qubits of the chromatic set, are multiplied with the random Pauli operators. (Right) The
corresponding 2× 2 square lattice, two-colored (with one chromatic set highlighted in red).

(11, 12). It is particularly amenable if the HQS implements
the XY interaction on a 2-colorable graph as it eliminates
the V and V−1 operations in Figs. 2 and 3. It requires the
ability to prepare and measure single-qubit states, perform single
qubit gates (or their equivalent single qubit Hamiltonians), and
apply an accreditable Hamiltonian. Explicit circuits required to
implement our protocol, in the case where the Hamiltonian is an
accreditable Hamiltonian on a 2× 2 square lattice (additionally
choosing the initial state to be |0〉⊗4 and all measurements to
be in the Pauli Z basis), is given in Fig. 5. A more complete
treatment of this example is given in SI Appendix, F. The recipe
can be extended to larger analogue quantum simulators with ease.

With the ability to simulate any desired Hamiltonian es-
tablished via the notion of universal Hamiltonians, our work
to enable accreditation of analogue simulation brings universal
analogue simulators into direct competition with digital gate-
based simulators. We thus discuss the resources requirements
for digital and analogue simulation, to examine which has an
advantage.

First consider the number of qubits required of the simulator
(analogue or digital) to simulate a system of a given size. Universal
analogue simulation often requires the addition of extra qubits
when transforming the target Hamiltonian to the implemented
Hamiltonian (from the universal family), so the simulator
requires more qubits than the target system. The increase in
the number of qubits is dependent on the permitted error in the
simulation. A digital simulator does not require these extra qubits.
However, this must be balanced against the realities of contem-
porary hardware: Analogue quantum simulators can be far larger
than their contemporaneous digital counterparts (4, Table 1);
hence, the disadvantage of these extra qubits is largely mitigated.

Another resource of interest is time. In digital quantum
computing, the gate count of required circuits is often substituted
for considerations of the time requirements of a computation. We
do the same here. The purpose of these gate counts has typically
been to consider the scaling, as the size of the inputs increase,
of algorithms in a device-independent way, as the exact time
required to implement a simulation depends on the hardware
used. If methods such as in ref. 26 are used, digital simulation
requires a greater gate count for simulations with less error—due
to the Trotterization of the time evolution. Analogue simulation
does not share this issue. Once a universal Hamiltonian to
implement has been computed, it can simply be implemented

for the desired time. It does require the application of encoding
and decoding, but the time requirement of these is independent
of both the number of qubits in the target system and the length of
the time evolution. For a more absolute comparison of the time
required, we note the comparison in ref. 4: A time evolution
of the Hubbard model on a 10 × 10 lattice for a duration of
10ℏJ−1 is currently possible on analogue simulators but a digital
quantum computer would require over a million gates to achieve
comparable results across more than 200 qubits. The latter is far
from achievable now.

Our work leaves several potential avenues for improvement,
centered particularly around relaxing E2 and E3 of our error
model. The independence assumed in E2 contributes, via
Lemma 1, to the error in HQS being independent of the single-
qubit gates Aj, Bj, Dj. E2 may be relaxed to allow for error that
depends weakly on single-qubit-gates (24, Appendix 2). This
may be combined with a relaxed identicality assumption as well
by using probability concentration inequalities more permissive
than Hoeffding’s inequality.

Relaxing E3 would require understanding it better in terms
of its physical implications, as it is the most novel and least
explored of our assumptions. Its relaxation may benefit from
inverting the Hamiltonian more than once. This would increase
the overheads of quantum accreditation in terms of time and
single-qubit gates. Finally, the reduction used in our protocol
from an arbitrary Hamiltonian to an accreditable Hamiltonian
can likely be made more efficient (27). This would reduce the
required number of qubits to simulate a given system but could
also decrease the classical computation required.
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