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ABSTRACT Assisted and automated driving systems critically depend on high-quality sensor data to
build accurate situational awareness. A key aspect of maintaining this quality is the ability to quantify the
perception sensor degradation through detecting dissimilarities in sensor data. Amongst various perception
sensors, LiDAR technology has gained traction, due to a significant reduction of its cost and the benefits
of providing a detailed 3D understanding of the environment (point cloud). However, measuring the
dissimilarity between LiDAR point clouds, especially in the context of data degradation due to noise factors,
has been underexplored in the literature. A comprehensive point cloud dissimilarity score metric is essential
for detecting severe sensor degradation, which could lead to hazardous events due to the compromised
performance of perception tasks. Additionally, this scoremetric plays a central role in the use of virtual sensor
models, where a thorough validation of sensor models is required for accuracy and reliability. To address
this gap, this paper introduces a novel framework that evaluates point clouds dissimilarity based on high-
level geometries. Contrasting with traditional methods like the computationally expensive Hausdorff metric
which involves correspondence-search algorithms, our framework uses a tailored downsampling method to
ensure efficiency. This is followed by condensing point clouds into shape signatures which results in efficient
comparison. In addition to controlled simulations, our framework demonstrated repeatability, robustness, and
consistency, in highly noisy real-world scenarios, surpassing traditional methods.

INDEX TERMS 3D point cloud, noise factor, perception and sensing, sensor degradation

I. INTRODUCTION

AUTONOMOUS driving systems hold the promise of
revolutionizing transportation by providing safer and

more efficient mobility [1], [2]. Ensuring the safety and re-
liability of these systems is of paramount importance, and
redundancy of data plays a crucial role in achieving this
goal [3]. Recent advances in semiconductor technology have
propelled LiDAR (Light Detection and Ranging) technology
forward through miniaturization, integration of components,
and providing higher processing power [4]. Thus this tech-
nology has emerged as a key component in Assisted and
Automated Driving (AAD) systems [5]. LiDARs offer de-
tailed high-resolution environmental information in the form
of 3D point clouds. However, before adopting LiDAR tech-
nology extensively for perception tasks in AAD systems, it is

crucial to develop a fundamental understanding of how varied
environmental conditions can significantly impact the point
clouds generated by LiDAR. [6]. This understanding can be
achieved through a thorough quantification of the effects that
these conditions impose on the attributes and fidelity of point
clouds.

A. POINT CLOUD COMPARISON
A method for point cloud comparison finds applications in
diverse areas, including noise detection, sensor degradation
assessment, and 3D model validation. Essential attributes for
these methods are:

• Rigid Body Transformation Invariance: The compar-
ison should not be affected by translation, rotation or
scaling of the point cloud.
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• Robustness: The comparison should be affected only by
overall geometric properties of the point clouds. Small
changes in the point clouds does not necessarily mean
dissimilar point clouds. This is especially true in auto-
motive applications.

• Fairness: The comparison process should adhere to fair
evaluation criteria. For example, when assessing two
point clouds gathered from the same scene using differ-
ent LiDARs with varying resolutions, the method needs
to recognize their shared scene identity. This becomes
particularly critical when downsampling is necessary. In
instanceswhere point clouds, acquired from the sameLi-
DAR but differing due to noise, undergo downsampling
that fails to provide a high-quality representation, it may
lead to inaccurate, high dissimilarity scores.

• Efficiency: The comparison method should be efficient,
especially considering the large volume of point clouds.

In the field of AAD systems, LiDAR point cloud com-
parison has been predominantly used within the localization
pipeline, through registration methods [7]. The underlying
principle of registration method is to find point correspon-
dences between point clouds of sequential captures. Some of
the widely-used registration techniques are Iterative Closest
Point (ICP) and Normal Distribution Transformation (NDT)
[8], [9]. To improve the accuracy of registration (hence lo-
calisation) many variations of these correspondence-based
methods has been proposed [10]–[12]. Besides point cloud
registration methods, only a few other techniques, such as
the Hausdorff or Chamfer distance methods, have been de-
veloped and are used in commercial software [13]. These
techniques employ point-by-point correspondence search al-
gorithms to identify the closest match in the target point cloud
for each point in the reference point cloud [14]. Hausdorff and
Chamfer distances have been developed for a more general
comparison between point clouds, specifically, one prominent
application is pattern recognition [15]. In pattern recognition,
points from various objects surfaces are collected. If the
geometrical distance between two sets of points (the distance
denotes how dissimilar the two sets are) is within a specified
range, the two sets can be assumed to representing the same
object. For instance, these methods are used in classifying
objects into pre-determined categories [16].

Moreover, recently Neural Network (NN) methods have
been used in point cloud comparison either as part of amethod
or independently. Since NN can detect many features and
objects in the scans, they are gaining popularity. However,
the uncertainties associatedwith deep learningmethods needs
to be studied further to make them a practical solution for
AAD applications, especially safety-critical systems [17]. A
deep learning method that is frequently used for point cloud
data analysis is PointNet [18]. PointNet takes a point cloud as
an input and then outputs a feature vector which summarises
the input point cloud and can later be used for comparison
purposes using a distance metric. For example, PointNetLK
uses sum of squared distances cost function to align point

clouds [19]. Another NN method is called DeepPoint3D
where local features of the point cloud are learned using
a Convolutional-NN [20]. Similarly, these features can be
compared for each point cloud. Measuring similarity between
two point-clouds using NNs is still in early stages and needs
to be validated further. Analysing these methods is beyond
the scope of this paper.
Although the methods mentioned so far are effective in

their specific tasks, they fail to achieve a comprehensive
and universally applicable point cloud comparison metric to
quantify different degrees of sensor degradation caused by
environmental conditions [21], [22]. Additionally, point-by-
point comparison of data used in these methods is highly
sensitive to uncertainties and changes in the scene, making
it difficult to distinguish environmental impacts from other
scene changes. Another drawback of these techniques is their
limited capacity to control the degree of change detection.
Consequently, it remains unclear which elements of the scene
exerted a more significant influence on the final compari-
son outcome. Moreover, due to the substantial size of point
clouds, these methods tend to be computationally intensive.
Furthermore, the output of these methods necessitates nor-
malization to enable meaningful comparisons.
Several applications can benefit from a more comprehen-

sive and adaptable point cloud comparison. For instance,
comparing point clouds against reference data allows for
evaluating sensor data quality, particularly in adverse weather
conditions or other degradation events, with respect to AAD
system safety requirements. Previous studies have high-
lighted the significant impact of degradation caused by poor
weather conditions on perception algorithms [5], [6], [23].
Additionally, ensuring the safety of autonomous driving sys-
tems requires extensive testing, which is impractical through
real-world driving alone. As a solution, a hybrid approach
combining simulation and real-world experiments has to be
adopted [24]. To validate the accuracy of simulation environ-
ments, sensor models, and degradation models against real-
world conditions, a quantitative comparison method is indis-
pensable. Moreover, assigning a value to each point cloud
compared to a reference point cloud opens up the possibility
of establishing a relationship between this score and various
tasks in the AAD pipeline, such as the quality of object
detection and decision-making.

B. CONTRIBUTIONS
To address existing shortcomings in point cloud comparison
techniques, an innovative framework is introduced that deliv-
ers distinct and stable dissimilarity scores when comparing
point cloud pairs. This framework aims to robustly and effi-
ciently evaluate dissimilarity in LiDAR point clouds across
different environments. Our key contributions include:

• Range-Based Downsampling: Tailored to LiDAR data,
this method retains critical information while assessing
the overall spatial composition of point clouds.

• Signature-Based Comparison: Using Probability Den-
sity Functions (PDFs) as an example, this feature sim-
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plifies the task of comparison and adds resilience to
changes in the environment, such as the presence of
dynamic objects and occlusions.

• Scale-of-Interest (SoI) Selection: This feature allows
users to specify a minimum SoI, enabling analyses tai-
lored to application-specific requirements.

• Elimination of Point-by-Point Comparison: Unlike
traditional methods that require correspondence detec-
tion, our approach streamlines the comparison process
and significantly reduces computational time.

To validate the framework, both simulations and real-world
LiDAR scans from various settings are used. In real-world
experiments, despite our best efforts, slight changes in data
collection and the environment are inevitable. To address
this challenge, a statistical methodology that accounts for
these variations, enhancing the framework’s applicability and
ensuring consistent comparison results is suggested. The pro-
posed framework’s performance is evaluated against bench-
marks such as Hausdorff distance and ICP, confirming its
efficiency, consistency, and computational advantages.

C. PAPER STRUCTURE
The structure of this study is outlined as follows: In Section
II, a comprehensive review of existing methods employed
in point cloud comparison is presented. Additionally, this
section explores the details of two benchmark methods used
in this work: 1- Iterative Closest Point (ICP), and 2- Hausdorff
distance method. Moving on to Section III, various steps
of the proposed method are described. This begins with an
introduction to a novel range-based downsampling method,
followed by an explanation of point cloud signatures and
their comparison strategy. The subsequent section details the
experimental setups for both simulated and real-world sce-
narios. In Section V, a thorough analysis is conducted, with
a specific focus on rain-induced degradation, occlusion, and
dynamic objects. This analysis draws from datasets obtained
in both simulated and real-world situations. The article con-
cludes with a succinct summary of key findings and potential
directions for future research.

II. RELATED WORK
In this section, an overview of key methods for comparing
point clouds is provided. Among these, two correspondence-
based methods, namely ICP and Hausdorff distance, are
examined in more detail and are employed as benchmarks
for evaluating the hereby proposed point cloud comparison
framework. Additionally, shape-distribution-based methods
are reviewed as well. These methods, primarily employed for
comparing 3D shapes, have served as partial inspiration for
the proposed framework.

A. CORRESPONDENCE-BASED METHODS
Point cloud registration is a well-known shape/scan matching
problem in computer vision and robotics. It aims to identify
the rigid transformation between two or more point clouds by

establishing correspondences between similar points within
those clouds.

1) Iterative Closest Point (ICP) algorithms
One common approach to point cloud registration is to detect
a set of entities, such as points or features, in both point clouds
and then use iterative methods to find the transformation that
aligns the two point clouds based on these correspondences.
The Iterative Closest Point (ICP) algorithm is a popular
method that uses the Euclidean distance between the points
in one point cloud and their correspondences in the other
point cloud by minimizing a cost function [8], [10]. In other
words, ICP seeks to find the best possible match between the
two point clouds by adjusting their relative positions, making
them align as closely as possible. This iterative refinement
process continues until the algorithm converges to an optimal
alignment, improving the overall alignment accuracy between
the point clouds. Othermethods, such as Generalized-ICP and
Trimmed ICP, have been proposed to make the process more
robust to incorrect correspondences and outliers [11], [12].
The Normal Distributions Transform (NDT) algorithm uses
probabilistic methods to fit normal PDFs on points falling in
cubic volumes of the point cloud. The transformation between
two point clouds is estimated by associating the PDFs of these
two point clouds [9].
For comprehensiveness the ICP algorithm with Root Mean

Squared Error (RMSE) cost function is further expanded here
as it is used as a comparison for the proposed metrics.The ba-
sic steps of ICP are briefly summarised in Fig. 1. The method
has been mainly used for localisation applications, therefore
it is usually performed to compare a moving point cloud,
Q, to a reference fixed point cloud, P. The algorithm starts
with an initial estimate of transformation matrix consisting
of rotation and translation elements and applies it to points
in Q. Then the RMSE (which uses Euclidean distances) of
corresponding points is calculated. This process is repeated
until either a minimum target RMSE is achieved or number of
iterations pass a certain user-defined value. Both these limits
are assigned by user and depend on the specific application.

2) Other methods
While correspondence-based methods can provide good re-
sults to compare point clouds from the same scene, they are
computationally expensive and heavily rely on the quality and
correspondence of detected entities. Therefore, there is a need
for more generic and more efficient methods to measure the
similarity or dissimilarity between two point clouds.
A different type of correspondence-based methods that

have been developed specifically for point cloud compar-
ison are Hausdorff and Chamfer distances, which are still
used in point cloud processing commercial software such as
CloudCompare [13]. The proposed framework in this work is
compared to the Hausdorff distance, therefore this distance is
briefly explained here. The Chamfer distance slightly differs
from Hausdorff distance.
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FIGURE 1: Flowchart of a standard Iterative Closest Point
(ICP) algorithm to compare point cloud ‘P’ and ‘Q’ with
RMSE as the cost function. RMSE threshold or maximum
number of iterations are user defined.

The Hausdorff distance measures the maximum distance
(average distance in case of Chamfer distance) from each
point in one set to its nearest point in the other set. In the
context of comparing two point cloudsP andQ, the Hausdorff
distance is defined as follows [25]:

dH (P,Q) = max

{
sup
pi∈P

inf
qi∈Q
∥pi − qi∥, sup

qi∈Q
inf
pi∈P
∥pi − qi∥

}
(1)

Where pi and qi are points belonging to point clouds P andQ,
respectively. The main disadvantage of Hausdorff and ICP-
RMSE is that their output measures are not bounded, making
the comparison among various scenarios under different con-
ditions challenging.

B. SHAPE-DISTRIBUTION METHODS
Shape distributions are statistical models that describe shapes
(with any dimensions). They have been used to quantify
similarity between two shapes in many applications such as
pattern recognition in computer vision. An important aspect
in representing shapes as distributions (e.g. histograms or
probability distributions) is to choose a shape function that
captures distinct signatures of the shape. These shape func-
tions can be distances between two random points on the
surface, angles or areas that any three random points on the

surface make [15].
An advantage of using shape distributions to compare

point clouds is that the arduous tasks of registering the point
clouds, detecting and matching features or model fittings,
are no longer necessary. Furthermore, a whole point cloud
is now represented by a histogram which ensures faster and
more efficient computational effort compared to point-by-
point comparisonmethods. Thismethod has beenmostly used
in computer graphics and biology applications but there have
been a few works that have applied it to point clouds [26],
[27].

III. METHODOLOGY
In this section, the fundamentals of the proposed point cloud
comparison framework are discussed. The framework com-
prises of two key steps: (1)- point cloud range-based down-
sampling, (2)- describing the downsampled point cloud using
Probability Density Functions, and (3)- comparing the PDFs
to generate a dissimilarity score. Due to the selected metric
this score is bounded between 0 and 1. Furthermore, various
techniques have been utilized to ensure a fair comparison
between the PDFs. The overview of the proposed framework
is presented in Fig. 2. Each stage is explained in details in the
rest of this section.

A. NOVEL RANGE-BASED DOWNSAMPLING METHOD
Acknowledging the computational and time-intensive nature
of direct point cloud analysis, a range-based downsampling
method is introduced as the first step in the framework. Li-
DARpoints are generallymore accurate and offer higher reso-
lution in close proximity to the sensor. Therefore, in line with
our objective of efficient and precise point cloud comparison,
our downsampling strategy prioritises points based on their
closeness to the LiDAR sensor. Specifically, a greater number
of points near the sensor and fewer as the distance increases
are collected. This approach not only optimises computa-
tional speed but also retains essential elements necessary for
an effective comparison.
In applications involving AAD, the point clouds can be

remarkably large, often comprising millions of points to rep-
resent a single snapshot of the vehicle’s surroundings. To
ensure manageable processing, downsampling becomes es-
sential. This process entails the removal of a portion of points
from the point clouds. Several downsampling techniques ex-
ist, such as random elimination and grid averaging filtering
methods. Random elimination method removes points by a
user-defined percentage, while grid averagingmethod divides
the point cloud into small cubes and selects representative
points from each cube. These methods do not take into ac-
count that the point cloud is denser near the LiDAR sensor
and the accuracy per point is higher. The accuracy of the
downsampled point cloud is crucial for effective point cloud
comparison.
To address the shortcomings of traditional downsampling

techniques, this paper introduces a novel range-based down-
sampling method. In order to maintain the critical features
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FIGURE 2: Steps of the proposed point cloud comparison framework, with relationship to equations and intermediate steps
outputs

of the original point cloud, this method retains more points
closer to the sensor and the number of retained points de-
creases as the distance from the sensor increases.

The method begins by identifying the maximum radial
range in the point cloud P, denoted as Rmax in Eq. 2, between
the points in the point cloud pi and the LiDAR sensor position
ōL:

Rmax = max
pi∈P

(d(pi, ōL)) (2)

In this equation, d(pi, ōL) is the Euclidean distance between
pi and ōL. Subsequently, Rmax is partitioned into n exponen-
tially growing sections, each represented by ∆ri:

∆ri = Rmax ×
(
1− e−λ·i) (3)

Here,λ is a parameter controlling the exponential growth rate.
Within each section∆ri, a uniform random distribution func-
tion is employed to sample a portion of the points, controlled
by the user-specified parameter N :

P′ = F
(
PSi ,

100

N
× |PSi |

)
(4)

Fig. 3 illustrates a sample implementation of the range-
based downsampling method. The maximum range is divided
into 10 sections (Fig. 3a) and 25% of points in each section
is selected. Due to this selection mechanism and the LiDAR
data collection principle, the number of points in each section
decreases as the distance from the sensor increases (Fig. 3c).
This range-based approach provides a more selective method

for capturing points from the scene compared to conven-
tional random sampling techniques. This innovative range-
based downsampling method facilitates the comparison of
point clouds with different maximum ranges. Consequently, it
enhances the robustness of comparisons, a crucial aspect for
assessing the quality of point clouds, especially in ensuring
the safety of AAD systems.

B. POINT CLOUD SIGNATURES AND COMPARISON
The second step of the proposed point cloud comparison
framework starts with the calculation of a shape function on
the point cloud. Next, a PDF from the shape function is cre-
ated as a point cloud signature. Then, a suitable metric is used
to compare the signatures of different point clouds effectively.
The underlying concept involves condensing the intricate
geometrical information characterizing the point cloud shape
into a compact signature represented by a PDF. This PDF can
be efficiently compared with other PDFs, enabling stream-
lined point cloud comparison. While this approach draws
inspiration from pre-Neural-Networks era shape matching
problems [15], it is tailored and refined to suit our LiDAR
point cloud analysis to accommodate the fundamental char-
acteristics that were defined in the introduction section:

• Rigid Body Transformation Invariance: The point
cloud comparison framework ensures invariant compar-
isons by handling translations and rotations without the
need for registration. It offers an efficient and robust
solution for point cloud analysis, even in scenarios with
less than 30% overlap between point clouds which re-
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(a)

(b)

(c)

FIGURE 3: An example of the implementation of range-
based downsampling method: a) schematic of range sections
and number of points that fall in each section for a sample
point cloud; b) the original point cloud; c) downsampled point
cloud using range-based method with 10 sections and 25% of
points in each section.

sults in unreliable results in registration methods.
• Robustness: To enable effective handling of small per-

turbations, occlusions, and dynamic objects within the

scene. By comparing the point cloud signatures, the
framework remains resilient to partial variations in the
same scenes, making it advantageous for analyzing sen-
sor degradation and validating sensor models.

• Fairness: Elements of the same scale are exclusively
compared with one another in the two point clouds,
providing an equitable and meaningful comparison.

• Efficiency: The proposed framework excels in effi-
ciency compared to traditional point-by-point compar-
ison methods (registration or Hausdorff methods). By
summarizing the geometrical information into point
cloud signatures, the comparison process becomes
streamlined and efficient.

The foundational step in creating point cloud distribution
signatures involves meticulously selecting geometric func-
tions that generate unique distributions characterizing the
point cloud shape. The proposed work focuses on surface
attributes, including distances, angles, and areas, as they
effectively represent the point cloud geometry. This study
specifically employs D2 function. This function calculates
distances between every pair of points within the point cloud.
The result is a square matrix, sized according to the point
cloud, containing all pairwise distances. This matrix effec-
tively captures the spatial relationships among the points in
the point cloud.
In the next step, the PDFs are constructed based on the

D2 functions, representing essential geometric attributes of
the point cloud. The determination of the number of bins for
each PDF is directly influenced by the Scale of Interest (SoI ),
which represents the minimum scale of distance of interest in
centimeters and is defined by user. The number of bins (nbins)
based on SoI and maximum range (Rmax) is defined by:

nbins = ⌈Rmax × 100

SoI
⌉ (5)

By adjusting the SoI , the PDFs are tailored to focus on desired
specific geometric details.
While comparing two point clouds, the challenge arises

when their PDFs have different numbers of bins and varying
data ranges. To address this, an interpolation technique is
adopted, mapping the PDFs onto a third PDF that spans the in-
terval [min(min(f1),min(f2)),max(max(f1),max(f2))] and
separates it into n discrete intervals. This transformation
ensures that the corresponding elements being compared in
each bin align properly, allowing for an equitable comparison
between the PDFs.
Now that the PDFs have been formed in a manner that

ensures fairness in comparison, the next step is to select an
appropriate metric for comparing them. The Hellinger metric
is selected for this matter, due to its following properties [14]:

• Symmetry: The Hellinger distance is symmetric, mean-
ing H(P,Q) = H(Q,P). Therefore, the order in which
the PDFs are compared does not affect the result, ensur-
ing fairness and consistency in the point cloud compari-
son process.
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• Sensitivity: The Hellinger distance is sensitive to even
small differences between PDFs, making it a reliable
metric for detecting subtle variations in point cloud geo-
metric signatures. This property is crucial for identifying
sensor degradation and other critical changes in percep-
tion tasks.

• Interpretability: The Hellinger distance is inter-
pretable, allowing researchers and practitioners to gain
insights into the dissimilarity between point clouds
based on the magnitude of the computed distance. A
higher Hellinger distance indicates more significant dif-
ferences between the PDFs and, consequently, between
the corresponding point clouds.

• Efficiency: Computation of the Hellinger distance in-
volves basic arithmetic operations, making it computa-
tionally efficient and suitable for large-scale point cloud
comparisons, especially in the context of real-time appli-
cations in automated and autonomous driving systems.

The Hellinger distance is a metric widely used for compar-
ing PDFs. Given two PDFsP andQ corresponding to different
point clouds, the Hellinger distance H(P,Q) is defined as
follows:

H(P,Q) =
1√
2

√√√√ n∑
i=1

(
√
pi −
√
qi)

2
, (6)

where pi and qi represent the probabilities at bin i for
PDFs P and Q, respectively. The Hellinger distance ranges
between 0 and 1, with 0 indicating that the two distributions
are identical, and 1 indicating complete dissimilarity [14].

IV. GENERATION OF SIMULATION AND REAL-WORLD
DATASETS
This section presents a comprehensive evaluation of the ef-
ficacy of the proposed point cloud comparison framework.
The assessment involves subjecting the framework to various
degradation levels using carefully controlled simulation data.

A. SIMULATION SETUP
In the simulation setup, the ego vehicle was equipped with a
LiDAR sensor similar to the Velodyne Alpha Prime LiDAR,
which closely replicates real-world LiDAR measurements.
The LiDAR parameters are reported in Table 1. Both the
simulation and the LiDAR sensor update at the same rate of
0.1 seconds (10 Hz) for simplicity.

TABLE 1: Velodyne Alpha Prime LiDAR Parameters

Parameter Value

Update Rate 10 Hz
Number of Channels 128
Vertical Field of View 40◦

Vertical Resolution 0.2◦

Horizontal Field of View 360◦

Horizontal Resolution 0.1◦

Maximum Range 180 meters

The simulation spans a total duration of 126 seconds, al-
lowing ample time to observe and evaluate the framework
performance over an extended period. Throughout the sim-
ulation runs, the LiDAR sensor on the ego vehicle captures
point cloud data at each time step, providing snapshots of
the surrounding urban environment. Fig. 4 presents an ex-
ample scene from the simulation, along with its correspond-
ing LiDAR point cloud. To comprehensively study our pro-
posed framework, variations of the simulation scenario are
designed, namely: under rainfall conditions with various rain
rates, occlusions, and dynamic object presence in the scene.
These scenarios are detailed in following subsections.

(a) A scene from the simulation

(b) LiDAR point cloud scan of the scene

FIGURE 4: An example of a simulated scene and its LiDAR
point cloud scan generated by the virtual sensor.

1) Rainfall Condition
In the context of sensor readings, adverse weather conditions
such as rainfall can significantly impact data quality. To assess
the robustness of the dissimilarity framework under rainfall-
induced degradation, a well known rain model proposed is
used [28], [29].
The model starts by considering range data, where it has

been found that regardless of the rain rate (rr), the error on
range measurements (di) remains below 2% [28]. To model
rain noise on range, a sample is drawn from a normal dis-
tribution, N , with a mean of zero and a standard deviation
determined by di and R:

d ′i = di +N (0, 0.02di(1− e−rr)2)) (7)
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FIGURE 5: Flowchart depicting the implementation of the
rain model on LiDAR point cloud data. The model simulates
the effects of rain, including range data modification and
intensity reduction.

Moreover, considering the impact of rain on point inten-
sities (Ii), a fractional reduction parameter δi is introduced,
representing the extent of intensity reduction for each point.
This parameter is determined by the new range d ′i and the
rain rate rr :

δi =
Ii − Ii0
I0

= e−2arrbd′i − 1 (8)

In this equation, Ii0 represents the new intensity value for
point i, and a and b are fitting parameters set to 0.01 and 0.6,
respectively [29].

To account for significant signal attenuation that may lead
to miss-detection of points, the new intensities Ii are further
compared to the minimum detection threshold set by the
LiDAR manufacturer, denoted as Imin. This threshold serves
as a critical parameter to identify points with intensity values
below the detectable range. The comprehensive process of
this rain model, encompassing both range-based modifica-
tions and intensity reduction, is depicted in Fig. 5.

2) Occlusion Scenario
The proposed Point Cloud Comparison Framework’s strength
lies in its utilization of PDFs as signatures, which suggests
that the dissimilarity score will exhibit tolerance to occlusions
and dynamic objects. To thoroughly investigate the impact of
occlusions, a comprehensive study is conducted using sce-
narios involving multiple vehicles within the LiDAR’s field
of view (FoV), as illustrated in Figure 6.

(a)

(b)

(c)

FIGURE6:Occlusion Scenarios: (a) 6 cars in the field of view
without interfering with each other’s points, (b) 8 cars with 2
of them out of the line of sight of LiDAR, and (c) 12 cars with
6 of them out of the line of sight.

In the scenarios, vehicles were strategically positioned to
ensure that LiDAR beams hitting them do not interfere with
each other, allowing for an isolated analysis of occlusion
effects. To further evaluate the influence of occlusion, addi-
tional vehicles were placed behind the initial setup, resulting
in scenarios with eight and twelve vehicles (Figures 6b and
6c, respectively).
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3) Dynamic Objects
In addition to examining occlusions, our investigation also
explores the influence of dynamic objects on the framework’s
performance. To conduct this assessment, four vehicles and
two bicycles are introduced, strategically positioned with
predefined initial locations and moving at constant velocities,
as depicted in Figure 7. By incorporating dynamic objects
into the scene, the aim is to thoroughly evaluate how the
framework handles complex scenarios with moving elements.
The presence of dynamic objects, such as other vehicles,
pedestrians, and cyclists, in the operational environment of
Autonomous and Automated Driving systems is inevitable.
Therefore, it is crucial to analyse the performance of the
proposed framework in the presence of such objects.

FIGURE 7: The scenario with dynamic objects. The scene
includes four vehicles and two cyclists, all moving at constant
velocities with various directions.

B. REAL-WORLD EXPERIMENT
Real world data was collected at the Carissma Outdoor Test
Facility at the Technical University Ingolstadt of Applied
Sciences in Germany, as part of the EU ROADVIEW project.
The facility is an outdoor enclosed test track; therefore, pro-
vides a controlled environment to perform precise tests. The
LiDAR used was an Ouster OS1 128 channel 360◦ LiDAR.
Water sprinklers were set up along the test facility which
when turned on were designed to create rainy conditions.
There were 16 sprinklers in total, 8 on each side with 16m
separation between them in the longitudinal direction and
8m between them laterally, as shown in Fig. 8. Data was
collected both with the sprinklers turned off, creating the
clear weather condition, and with them turned on, creating the
rainy condition. Rain rate was designed to be the equivalent
of 10mm/h but was measured to have a mean of 8.68mm/h.
A Euro NCAP Car target was placed 28m from the LiDAR
sensor to enable comparison of the LiDAR’s ability to detect
a target. The clear weather and rainy data is compared and the
results are discussed in Section V and shown in Fig. 8.

FIGURE 8: Carissma Outdoor Test Facility.

V. SIMULATION AND EXPERIMENTAL EVALUATION
In this section, the results of the comparative analysis of the
proposed point cloud comparison framework are presented.
The simulation studies were designed to test the framework’s
robustness and accuracy under various scenarios with con-
trolled conditions. On the other hand, the real-world study
was conducted to evaluate the framework in a practical set-
ting. A comparative analysis is also performed between the
proposed framework and the Hausdorff distance and ICP-
RMSE methods, widely used for point cloud processing. The
results of these studies are presented and discussed in detail
below.

A. SIMULATION STUDY
In a preliminary assessment, a comparative analysis is per-
formed using simulated data from both clear and rainfall
weather conditions. The results of the proposed framework
are compared with two other widely used techniques: 1)
Hausdorff distance, and 2) the Root Mean Square Error
(RMSE) obtained from the Iterative Closest Point (ICP) reg-
istration between two point clouds. By Comparing our pro-
posed framework with two current methods in the literature,
it is possible to discuss the shortcomings of these preva-
lent methods and how are proposed framework addresses
them. Furthermore, this will shed light on the possible future
directions of the current research. Fig. 9 showcases three
heatmaps, each corresponding to one of these methods, to
compare five consecutive scans from clear weather (names
starting with clear) to themselves and to their associated rain
condition scans (names starting with rain). The calculations
are conducted using a rain rate of 30 mm/hr.
An immediate advantage of our proposed framework is ob-

served in Fig. 9a, where the dissimilarity scores are presented.
Our method’s output dissimilarity score is always bounded
between 0 and 1, without any post processing required. The
scores calculated by the Hausdorff distance (Fig. 9b) and ICP-
RMSE (Fig. 9c) are both unbounded; in other words, their
output can take on any value up to infinity [14].

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3359300

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a)

(b)

(c)

FIGURE 9: Comparing results of 50 consecutive clear
weather scan from simulation and their associated rainy
scans for: a) Our proposed framework. b)Hausdorff distance
method, and c) ICP-registration’s RMSE.

Another observation from Fig. 9a is that the score of com-
paring a scan with itself is not exactly zero due to random-
ness in the range-based downsampling unlike the Hausdorff
distance and RMSE-ICPmethods which both result in zero or
very small values, respectively. However, the same-scan score
from our framework represents theminimum value in the row.
To minimize the impact of randomness, the percentage of
points selected from each section was adjusted. Ultimately,
25% of points from 30 sections were selected, resulting in
the minimum score value for the same-scan comparison.
Moreover, as scans are consecutive, an increase in the

dissimilarity score is expected as they become further apart.
Our proposed framework in Fig. 9a reflects this expected
behaviour, in contrast to the Hausdorff distance (Fig. 9b) and
ICP-RMSE (Fig. 9c) where the consistency seems somewhat
random. For instance, in the last row of both Figs. 9b and
9c, the unbounded nature of the Hausdorff distance and ICP-
RMSE methods makes interpreting the results challenging,
especially in cases where different sensors with varying spec-
ifications are used.
Another essential advantage of our method is the abil-

ity to select a desired SoI. This flexibility allows us to ei-
ther compare only the general large structures of two point
clouds or focus on specific small effects, such as rain-induced
degradation. In contrast, both the Hausdorff and ICP-RMSE
are point-by-point comparison methods, and considering the
uncertainties present in real-world data, the possibility of
producing inconsistent result is high. This is clearly observed
in Fig. 9b and Fig. 9c.
Furthermore, the ICP-RMSE is designed to register over-

lapping point clouds and slight changes in the environment,
which are common in AAD applications, and may result in
highly different scores. This sensitivity to minor variations
poses challenges in real-world scenarios, where data can be
subjected to clutter and dynamic objects in the scene. More-
over, the ICP-RMSE does not produce symmetric results (i.e.
the results comparing point clouds P and Q is different from
comparing Q and P) which is not desirable for point cloud
comparison III-B. On the other hand, our proposed frame-
work produces symmetric scores observed in Fig. 9a. In fact,
symmetry is one of the motivations for selecting the Hellinger
metric. While efforts have been made to select downsampling
parameters that ensure repeatability of results, a certain de-
gree of randomness persists. In our future work, we aim to
refine the downsampling method to mitigate and eventually
eliminate this remaining randomness. It is noteworthy that
these small variations in the dissimilarity scores observed in
Fig.9a is due to arithmetic rounding and this randomness.
Overall, according to results presented in Fig. 9, our pro-

posed framework addresses limitations associated with con-
ventional LiDAR point cloud comparison. The bounded dis-
similarity score, the ability to set a desired SoI, and the tol-
erance to environmental changes contribute to the versatility
and effectiveness of our method for various applications in
AAD systems. After highlighting the potential of our pro-
posed framework to address drawbacks in conventional point
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cloud comparison methods through its ability to generate
reliable and consistent results, the rest of this section will
investigate other characteristics of our proposed framework.

B. SENSITIVITY ANALYSIS OF DENSITY CHANGE
DETECTION

An evident consequence of degradation in LiDAR point
clouds is the alteration in their density. For instance, when
laser beams interact with raindrops, diffraction often occurs,
resulting in a reduction of received signals below the detection
threshold. As a consequence, the density of collected point
clouds experiences a notable decrease compared to clear
weather conditions [5].

This subsection focuses on investigating the sensitivity of
our proposed point cloud comparison framework to density
changes within the point clouds. To conduct a comprehensive
examination of the effect of density change on dissimilarity,
the analysis is confined solely to study changes in point cloud
density.

To perform the analysis, 100 scans are selected from the
simulation data, and a uniform random sampling method is
employed to generate point clouds with densities ranging
from 0.1 to 0.9 times that of the original. Each downsampled
scan is then compared to its original scan. By systematically
varying the densities while keeping other factors constant, the
impact of density changes on the framework performance can
be effectively observed and evaluated.

The objective of this investigation is to gain insights into
how our framework responds to varying point cloud densities,
providing valuable information for assessing its robustness
and applicability across different density scenarios.

Figure 10 showcases the calculated scores resulting from
the density analysis, which includes nine generated point
clouds for each of the 100 total scans, leading to a total of
900 scans.

The analysis utilizes parameters determined in the preced-
ing section, with the number of repetitions, radial sections,
and percentage of points in each section set to 10, 30, and
25%, respectively. To avoid exceeding the number of points in
the scanwith a relative density of 0.1, a relatively larger Scale-
of-Interest (SOI) of 30 centimeters is chosen. Furthermore,
this ensures that the representative PDFs will not be sparsed
which will result in inflated dissimilarity scores.

The results reveal a clear trend: as more points are selected,
the average score decreases. This outcome aligns precisely
with our expectations for this analysis: that when a larger
number of points from both the original and generated point
clouds overlap, a lower dissimilarity score is anticipated.
However, due to the inherent randomness in the selection
process, the dissimilarity score does not reach zero.

These findings provide valuable insights into how our pro-
posed point cloud comparison framework responds to varia-
tions in point cloud density.

FIGURE 10: Analysis of Point Cloud Density’s Impact on
Calculated Scores. The generated point clouds have relative
density of 0.1 to 0.9 times the original point cloud. The score
is calculated by comparing each generated point cloud with
its original one. The framework’s parameters are from the
previous section, with a Scale-of-Interest of 30 cms. The
mean score decreases as the number of points in both point
clouds become closer.

1) Degradation Level Detection
LiDAR point clouds are susceptible to noise, leading to dis-
turbances and inaccuracies in the collected data. Factors such
as atmospheric conditions, surface reflectance properties, and
other interferences can contribute to noise, resulting in un-
certainties within the point cloud data [5]. Motion artifacts,
sensor imperfections, and hardware limitations can further
exacerbate noise levels, affecting the accuracy of subsequent
analyses.
In the study, varying rain intensities corresponding to dif-

ferent rain rates were simulated. Scans were collected from
clear weather conditions, and various rainfall scenarios were
applied. A comparative analysis was then performed by com-
paring each rain scan with its respective clear weather scan
counterpart. The goal was to quantitatively assess the qual-
ity degradation caused by adverse weather conditions and
evaluate the effectiveness of our Point Cloud Comparison
Framework in identifying such scenarios.
Fig. 11 illustrates the dissimilarity scores averaged for

the comparison of 20 scans in each rain rate condition. The
examination of these scores demonstrates that our framework
effectively quantifies the impact of rain-induced degradation
on LiDAR point clouds. As the rain rate increases, the dis-
similarity score also increases, indicating a higher level of
dissimilarity between the point clouds. This finding aligns
with expectations, as rain-induced noise and degradation pose
challenges in accurately representing the scene.
These results have important implications for our frame-

work applications. By quantifying the impact of rain on point
cloud data, our framework can validate LiDAR rain models
and assess their accuracy in replicating real-world scenarios.
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FIGURE 11: Effect of Rainfall on Dissimilarity Scores:
Higher rain rates results in increased dissimilarity between
point clouds, showcasing the framework’s ability to quantify
rain-induced degradation.

The ability to set a dissimilarity score threshold allows for the
detection of significant deviations between clear weather and
rain-induced scans, which is critical in safety-critical appli-
cations. The framework empowers researchers and engineers
to make informed decisions regarding data quality and safety
assessment in diverse weather conditions. For instance, in
the heavy rain conditions the dissimilarity score demonstrates
difference in the point clouds provided from the same scene.
This information can be used to start a mitigation protocol
to ensure the accuracy and safety of decisions that are made
using these point clouds.

2) Obstruction and Dynamic Objects Effect
This subsection addresses the challenges faced by AAD
systems, operating in diverse environments, including urban
cities and small towns. The operational environment intro-
duces complexities such as occlusions and the presence of
dynamic objects within the scene. Our point cloud compar-
ison framework exhibits a crucial advantage in handling such
scenarios by leveraging the general geometric properties of
point clouds, enabling it to tolerate obstructed views and
moving elements effectively. This section focuses on com-
prehensively examining how these occurrences impact the
outcomes of our framework.

The dissimilarity scores resulting from the occlusion effect
are presented, using the range-based downsampling method
with standardized and optimized parameters. Various scenar-
ios were evaluated, comparing LiDAR point clouds under
different conditions with different numbers of vehicles in the
scene: No car, 6 cars, 8 cars, and 12 cars, as depicted in Fig. 6.
The dissimilarity scores are illustrated in a heatmap (Fig. 12),
with each row and column representing a scenario as depicted
by the corresponding sketch.

FIGURE 12: Heatmap of the dissimilarity score for vari-
ous scenarios containing different number of vehicles in the
scene. The occlusion from 12 cars scene, causes the similarity
score to decrease.

Upon analyzing the dissimilarity score matrix, it is ob-
served that the main diagonal elements (where the scenarios
are compared to themselves) contain relatively low scores, as
expected. This result validates the effectiveness of the range-
based downsampling method in preserving the point cloud’s
structure when compared to itself.
The off-diagonal elements of the matrix reveal the dis-

similarity scores between different scenarios. As anticipated,
the dissimilarity scores increase as the number of occluding
vehicles (e.g., "6Cars," "8Cars," and "12Cars") in the LiDAR
point cloud’s field of view increases. An interesting observa-
tion is the decrease of the dissimilarity score between 12Cars
and 6Cars scenarios. This can be explained by considering
the detection of the vehicles occluded by the ones closer
to LiDAR. Therefore, as overall geometric properties of the
point cloud in the form of a PDF are being analysed, these oc-
clusions are ignored, resulting in a lower dissimilarity score.
For the evaluation of the proposed point cloud compar-

ison framework under the presence of dynamic objects (as
described in Section IV-A), the dissimilarity scores obtained
from 10 scans were analysed. The mean dissimilarity score
was found to be 0.23655, with a very low standard deviation
of 0.000373 (Table 2). These closely clustered values indi-
cate that our framework exhibits a high level of tolerance
towards dynamic objects within the scene. The consistency
of the dissimilarity scores suggests that the framework can
effectively handle the presence of dynamic objects and main-
tain stable performance across multiple scans. The ability to
obtain consistent and closely clustered dissimilarity scores
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showcases the robustness of our framework in assessing point
cloud comparison, even in scenarios where dynamic objects
introduce temporal variations in the point cloud data.

TABLE 2: Scores for 10 scans in a scenario involving various
dynamic objects with mean and standard deviation, σ.

# Score

Scan 1 0.237365
Scan 2 0.236107
Scan 3 0.236385
Scan 4 0.236854
Scan 5 0.236457
Scan 6 0.236251
Scan 7 0.236745
Scan 8 0.236704
Scan 9 0.236355
Scan 10 0.236277

Mean 0.236550
σ 0.000373

C. REAL-WORLD EXPERIMENT
In this section, an illustrative example demonstrating the prac-
tical application of our point cloud comparison framework for
quantifying and distinguishing between point clouds captured
under diverse weather conditions is presented. Specifically,
the framework effectiveness in assessing changes within the
point cloud caused by rainy weather conditions, as described
in Section IV-B, is showcased. Our dataset comprises of 326
dissimilarity scores obtained from repeated pairwise compar-
isons of 11 scans acquired in clear weather settings (clear-
clear score), along with an additional 121 dissimilarity scores
resulting from comparisons of 11 scans taken during rainy
weather conditions relative to the reference scans in clear
weather from the same scene (rain-clear scores). The rain
intensity is at 10 mm/hr for the rainfall condition.

Furthermore, it is important to acknowledge that real-world
LiDAR readings are subject to the influences of multiple
factors, including ambient light, signal scattering, and absorp-
tion, leading to dissimilarity scores that differ even among
scans captured in the same weather condition. Despite these
intricate variables, our framework effectively demonstrates
its ability to precisely quantify the degradation within point
clouds. The probability distribution for the clear-clear and
rain-clear scores are illustrated in Fig. 13a and Fig. 13b,
respectively.

Since no clear recognizable ormutual distribution is seen in
this data, and for inclusiveness, the permutation test was used.
This non-parametric and robust method is employed in hy-
pothesis testing for data with unknown distributions. The goal
is to assess whether the dissimilarity scores derived from rain-
clear comparison exhibit statistically significant differences
from those of the clear-clear. Furthermore, by calculating a
statistical threshold (critical value) with sufficient confidence,
boundaries for clear weather and rainfall conditions (in this
article only 10mm/hr rain condition) can be established.
Formally, let X represent the dissimilarity scores for the rain-
clear group, and Y denote the dissimilarity scores for the

(a)

(b)

FIGURE 13: Probability distribution for a) 326 clear-clear
scores and b) 121 rain-clear score.

clear-clear group. The null hypothesis (H0) and alternative
hypothesis (H1) are defined as:

H0 : No significant difference between two groups (9)

H1 : Significant difference between two groups (10)

In the context of hypothesis testing, the metric that de-
scribes the differences between two samples’ parameters,
used to reject or not reject H0, is called test statistic. Here,
the test statistic should adequately measure the difference in
dissimilarity between the two sets of point clouds. In this
study, the observed difference (δobs = mean(group1) −
mean(group2)) is calculated as the test statistic.
The core principle of permutation testing is shuffling the

group labels (clear-clear and rain-clear groups) and recalcu-
lating the test statistic multiple times to create a distribution
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of test statistic values under the null hypothesis. The permu-
tation test procedure entails the following steps:

1) Compute the observed test statistic ∆x̄ = x̄X − x̄Y ,
where x̄X and x̄Y are the means of the rain-clear and
clear-clear groups, respectively.

2) Shuffle the group labels, randomly assigning the dis-
similarity scores to new groups. Calculate the test statis-
tic for each permutation, creating a distribution of test
statistic values under random assignment.

3) Compare the observed test statistic ∆x̄ to the distribu-
tion of test statistic values generated from permutations.
The p-value is calculated as the proportion of permuta-
tion test statistics that are more extreme than the ob-
served test statistic. In other words, p-value represents
the probability of observing a test statistic as extreme as
the one computed from the actual data, assuming that
the null hypothesis is true.

You can find the step-by-step process for hypothesis testing
in Algorithm 1.

Algorithm 1 Permutation Test Algorithm

Require: n observations in group A,m observations in group
B

1: Compute the observed test statistic Tobs
2: Initialize the number of permutations Nperm

3: Initialize an empty list to store permutation test statistics:
Tperm ← []

4: for i from 1 to Nperm do
5: Shuffle the observations in groups A and B randomly
6: Compute the permutation test statistic T i

perm
7: Append T i

perm to Tperm
8: end for
9: Compute the p-value as the proportion of Tperm values that

are more extreme than Tobs:

p←
count{Tperm > Tobs}

Nperm

return p, Tobs

The observed difference inmeans∆x̄ was 0.1182, resulting
in a p-value of 0.0001 for 10000 permutations. The p-value
is below the conventional significance level (α = 0.05),
allowing us to reject the null hypothesis. This outcome pro-
vides strong evidence that the dissimilarity scores effectively
differentiate between rainy and clear weather conditions. The
result of permutation test is illustrated in Fig. 14a .

Furthermore, an investigation was conducted to determine
whether a subset of the rainy weather dissimilarity scores
can be identified as belonging to the specific rain condition.
A sample of 50 rainy weather scores was selected, and the
permutation test was conducted for 10000 permutations. The
observed difference in means was -.0013, resulting in a p-
value of 0.5357. The p-value exceeded α = 0.05, indicating
that the subset of scores did not significantly differ from the
complete rainy weather group. This finding showcases the

(a)

(b)

FIGURE 14: Permutation test results for a) clear-clear and
rain-clear groups, and b) 50 new rain-clear and previous rain-
clear group.

framework’s ability to recognize samples consistent with the
specific rain condition with 10mm/hr intensity.
To sum up, our real-world experiment demonstrates the

effectiveness and reliability of our proposed LiDAR point
cloud comparison framework in identifying the impact of
rain-induced degradation on point clouds. It has been at-
tempted to apply ICP and Hausdorff in the real-word dataset,
however due to their huge sizes, the current computational
resource was insufficient. This also demonstrate the need
for our proposed framework to ensure the efficiency of the
point cloud comparison. Our future plan for this aspect in-
volves conducting additional experiments with varying rain
intensities and calculating dissimilarity score thresholds for
each condition. This step can serve as a training phase. Then,
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these thresholds can be validated through testing using more
scans. Subsequently, these scores can be correlated with the
results of other AAD systems (such as perception or decision-
makingmodules) to assess the influence of sensor data quality
on these tasks.

VI. CONCLUSIONS
In summary, the proposed Point Cloud Comparison Frame-
work has proven to be a powerful and versatile tool for as-
sessing the dissimilarity between LiDAR point clouds under
various environmental conditions. The framework showed
robust and interpretable performance, adequate for AAD ap-
plications, compared to the state-of-the-art point cloud com-
parison methods. Through extensive evaluation with simu-
lation data and real-world scans, the framework exhibited
robustness in handling occlusions, dynamic objects, and rain-
induced noise. It’s ability to generate bounded dissimilarity
scores between 0 and 1 facilitates meaningful comparisons of
point clouds from different scenarios, making it invaluable for
safety-critical applications in autonomous driving systems.

As future work, the aim is to enhance the range-based
downsampling method to minimize randomness and improve
the consistency of dissimilarity scores. Achieving more reli-
able assessments will further strengthen the framework reli-
ability. Additionally, our next step involves establishing the
relationship between the calculated dissimilarity scores and
their impact on perception tasks, such as object detection.
Gaining insights into how degradations affect perception al-
gorithms can contribute to enhancing the framework practical
applications and furthering the advancement of autonomous
driving technology. In conclusion, our Point Cloud Com-
parison Framework holds promise as a crucial tool in ad-
vancing LiDAR data analysis and perception tasks, with its
robustness, interpretability, and applicability to real-world
scenarios, making it a valuable asset in the pursuit of safe and
reliable autonomous driving solutions.
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