

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/180637

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/180637
mailto:wrap@warwick.ac.uk

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 1

Efficient Parallel Processing of All-Pairs Shortest
Paths on Multicore and GPU Systems

Mohammed H Alghamdi*, Member, IEEE, Ligang He*, Member, IEEE, Shenyuan Ren* Member, IEEE, and
Mohammed Maray Member, IEEE,

Abstract—Finding the shortest path between any two nodes
in a graph, known as the All-Pairs Shortest Paths (APSP), is a
fundamental problem in many data analysis problems, such as
supply chains in logistics, routing protocols in IoT networks that
involve consumer electronics as well as data analysis for social
networking apps and Google Maps apps used by the general
public on their smartphones. In this work, we present a novel
approach to solve the APSP problem on multicore and GPU
systems. In our approach, a graph is first pre-processed by
partitioning the graph into sub-graphs. Then, each sub-graph is
processed in parallel using any existing shortest path algorithm
such as the Floyd-Warshall algorithm or Dijkstra’s algorithm.
Finally, the distance results in individual sub-graphs are ag-
gregated to obtain the distances of APSP for the entire graph.
OpenMP and CUDA are used to implement the parallelization
on multicore CPUs and GPUs, respectively. We conduct the
extensive experiments with both synthetic and real-world graphs
on the JADE (Joint Academic Data Science Endeavour) cluster
at the University of Oxford, which is part of the Tier-2 high
performance computing facilities in the UK. In the experiments,
we compared our methods with three existing APSP algorithms
in the literature, including n-Dijkstra, ParAPSP and SuperFW.
The results show that our methods outperform the existing
algorithms, achieving the speedup of up to 8.3x over Dijkstra.

Index Terms—All-Pairs Shortest Path, Graph partition, paral-
lel processing, supply chain process, sheared memory parallelism,
GPU programming.

I. INTRODUCTION

DETERMINING the shortest path between two or more
nodes in a graph is a common task in solving various

data analysis problems [1]. The algorithms used to determine
the shortest paths have a multitude of applications, includ-
ing supply chains in logistics [2], routing protocols in IoT
networks that involve consumer electronics, as well as data
analysis for social networking apps and Google Maps apps
used by the general public on their smartphones [3], [4]. All-
pairs shortest path (APSP) is a type of shortest path algorithm.
Given a directed or undirected weighted graph G(V,E,w),

M. Alghamdi, Department of Information and Technology Systems, College
of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi
Arabia.
E-mail: mhalghamdi@uj.edu.sa

L. He, Department of Computer Science, University of Warwick, Coventry,
UK
E-mail: ligang.he@warwick.ac.uk

S. Ren, Beijing Jiaotong University, Beijing, China, and Visiting Scientist,
Clarendon Laboratory, Department of Physics, University of Oxford, UK
E-mail: syren@bjtu.edu.cn

M. Maray, College of Computer Science and Information Systems, King
Khalid University, Abha, Saudi Arabia
E-mail: mmarey@kku.edu.sa

* Corresponding author

where V is the set of nodes in the graph, E is the set of
weighted edges connecting the nodes, and w is the weight
of that edge, the APSP algorithm returns the shortest path
between any two nodes V ∈ G, where the shortest path is
defined as the minimum sum of edge weights on the path that
connects two nodes in the graph. There are various algorithms
for examining the all-pairs shortest paths, such as Johnson’s
algorithm [5] and Floyd-Warshall algorithm [6]. Another well-
known algorithm is Dijkstra’s algorithm [7], which is initially
used to solve the Single Source Shortest Path (SSSP) problem.
However, when it runs from all nodes in the graph, it can solve
the APSP problem for graphs that do not contain edges with
negative weights.

Recently, there has been a noticeable increase in using
graphs to model real-world problems, which consequently
demands the development of efficient methods for graph pro-
cessing [8]. The massive computational load needed to solve
the APSP problem makes sequential processing an impractical
solution. Consequently, attention to parallelizing the APSP
process has been rising lately. Multicore computers and GPUs
are two mainstream types of parallel processing architectures.

In this work, we present two approaches, called SM-CNA
and HybridCNA, to parallelizing the processing of APSP
for a weighted graph. SM-CNA is a parallelization approach
on shared-memory architectures such as multicore computers
while HybridCNA utilizes both multicore CPUs and GPUs
to solve the APSP problem in parallel. In both approaches,
the graph is partitioned into subgraphs, and all-pairs shortest
paths in each subgraph are computed in parallel. Next, the
local results in subgraphs are aggregated to obtain the all-pairs
shortest paths in the entire graph. In both approaches, the steps
of partitioning the graph and finding APSP of the subgraphs
are parallelized on a multicore CPU using OpenMP. The dif-
ference between SM-CNA and HybridCNA is that in SM-CNA
the step of aggregating the local results in individual subgraphs
is performed on the multicore CPU too, while the aggregating
step in HybridCNA is performed on GPU (implemented in
CUDA). In HybridCNA, two parallelization methods, called
Hybrid Thread (H-Thread) and Hybrid Block (H-Block), are
designed to aggregate the local results, which aim to achieve
two goals: i) minimizing the communication between the CPU
and the GPU, and ii) taking full advantage of the GPU’s power
by launching appropriate kernels. Additionally, we extend the
parallelization methods to work in a server with multiple GPUs
to further accelerate the processing.

The calculation of APSP involves irregular accesses to the
graph data, including both vertices and edges. This irregularity

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 2

limits the degree of parallelism achievable during APSP cal-
culation, resulting in underutilization of parallel computing re-
sources. To tackle this challenge, this paper introduces a novel
graph partitioning strategy that significantly enhances the par-
allelism of APSP calculations. Moreover, the proposed strate-
gies craftly exploit common vertices between graph partitions
to combine local APSP results. This combination approach is
especially designed for high parallelism. By incorporating the
graph partition strategy, parallel APSP computation, and the
parallel combination of local APSP results, we achieve a high
degree of parallel processing throughout the APSP computa-
tion steps. Consequently, our approaches outperform existing
APSP algorithms in the literature. We conducted the extensive
experiments to evaluate the performance of our methods with
both synthetic graphs of different sizes and real-world graphs
such as social networks and road networks. We compared our
methods with three existing APSP algorithms in the literature,
including n-Dijkstra [9], ParAPSP [10] and SuperFW [11].
The experimental results show that the parallelization methods
developed in this paper can outperform the existing APSP
algorithms in the literature, achieving the speedup of up to
8.3x over Dijkstra.

The contributions of this paper are summarized below.
• A novel graph partitioning strategy is proposed to enable

higher degree of parallelism in APSP calculations.
• A parallelization algorithm called SM-CNA is proposed

to compute APSP on share-memory computing architec-
tures, such as multi-core computers.

• The HybridCNA algorithm is further proposed to accel-
erate the SM-CNA algorithm by parallelizing the combi-
nation of local APSP results on GPU.

• We implement SM-CNA and HybridCNA using OpenMP
and CUDA, and evaluate their performance on the JADE
platform at Oxford, which is part of the Tier-2 high
performance computing facilities in the UK. The exper-
imental results show that the parallelization approaches
developed in this paper can outperform the existing APSP
algorithms, achieving the speedup of up to 8.3x over
Dijkstra.

The rest of this paper is organized as follows. Related
work is discussed in Section II. The SM-CNA algorithm for
shared-memory architectures is presented in Section III. The
HybridCNA algorithm for GPU is presented in Section IV. The
proposed parallelization approaches are evaluated in Section
V. Finally, this paper is concluded in Section VI.

II. RELATED WORK

In graph theory, determining shortest paths is termed as the
basic operation. The primary challenge in solving the APSP
problem is that it needs a considerable amount of computation
to determine APSP [12]. Therefore, with GPU devices being
improved over time, the mechanisms for parallelizing the
APSP on GPU have been developed [13]. Okuyama et al.
[14] show that GPU can be used to accelerate the solving
of APSP. They presented an algorithm with the capability of
solving the APSP problem on the CUDA-enabled GPU. The
scheme, which was based on the SSSP-based algorithm, was

able to solve multiple SSSP problems in parallel because of
efficient usage of the on-chip shared memory. The algorithm
allowed stream processors (SPs) to concurrently access similar
data since every SP participates in solving one of the tasks.
Notably, this kind of access, which is common, reduces the
access of data to the off-chip memory.

Another work that used multi-SSSP to solve the APSP on
GPU is proposed in [15]. It presents a multi-search abstraction
as a method for expressing the algorithms that execute the BFS
algorithm simultaneously. This research involves an efficient
implementation of the abstraction, which is demonstrated to
outperform the existing GPU methods implicitly for large
graphs of various diameters by more than a factor of two. The
authors further demonstrated that a single GPU can be used
to solve the APSP problem on sparse graphs with millions of
nodes. Their BFS algorithm works only on unweighted sparse
graphs, and solves the APSP problem with the complexity of
O(mn) (where m is the number of edges and n is the number
of nodes).

A work that used the Floyd-Warshall algorithm is described
in [16], which presented a blocked algorithm to solve the
APSP problem on a hybrid CPU-GPU system. They proposed
a united algorithm that can solve the APSP problem for a graph
whose size is greater than the capacity of the GPU memory.
The total number of operations for this algorithm is 2n3 (n
is the number of nodes). Their algorithm achieved the peak
performance when the number of vertices in the graph is larger
than a few thousand.

The work in [17] implemented a GPU version of the
adjacency matrix (ADJ-APSP) and the breadth-first search
(BFS-APSP). In addition, they developed two versions of
their method. The first version is implemented by OpenMP,
while the second one is a hybrid implementation by OpenMP
and MPI. They conducted the experiments on an unweighted
graph only. The results showed that parallelizing ADJ-APSP
on a single GPU improved the performance by up to 16.53
times over the single-CPU implementation. On the other
hand, parallelization over multiple GPUs achieved even more
performance improvement, with the recorded speedup of up
to 101.10 times over the single-GPU implementation.

On the investigation concerning a parallel implementation
of Johnson’s algorithm, reference [18] developed the approach
which has the capability of solving the APSP problem based
on the current or recent GPU architecture. The objective of the
new approach was formulated to increase the speed of APSP
computation for large graphs in relation to the CPU. Since
GPU can provide high computational cost at a minimal cost,
it has been utilized as a substantial alternative. Additionally,
to enhance the execution of operations on GPU, the opera-
tions are programmed using the framework such as CUDA.
The study experimented on three parallel implementations of
Johnson’s APSP algorithm on the GPU. It further compared
the three implementations based on their execution times to
determine their advantages and drawbacks.

SuperFW is a recently proposed parallel APSP algorithm
[11]. Its main objective is to enhance the well-established
Floyd-Warshall algorithm by exploiting the algebraic relation-
ship between Floyd-Warshall and Gaussian elimination. Su-

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 3

perFW incorporates several optimization techniques to reduce
computaiton, improve locality and enhance parallelism.

This paper is part of the comprehensive research presented
in Alghamdi’s PhD thesis [19], where we aim to solve the
APSP problem in parallel on different types of parallel archi-
tectures.

III. SM-CNA

Given a directed weighted graph G(V,E,W), where V is
the set of nodes in the graph, E is the set of weighted edges
connecting the nodes, and W is the set of weights of the edges.
In the case of an unweighted graph, we assume that all edges
have equal weights. The shortest path between two nodes, vi
and vj , is denoted by S(vi, vj), while T (vi, vj) denotes the
temporary (intermediate) value of the shortest path between
vi and vj . The weights of the shortest path between vi and
vj is represented by W (vi, vj). Our method can also work on
undirected graphs. When dealing with undirected graphs, we
can treat them as directed graphs where there are two directed
edges between any pair of connected nodes with the same
weight.

In this work, we solve the All-Pairs Shortest-Path (APSP)
problem for G by partitioning G and processing each par-
tition in parallel. P denotes the number of partitions (sub-
graphs) after the partition of the graph G. In this section,
we present the parallelization approach on a multicore CPU,
which is called SM-CNA (Shared-Memory-based paralleliza-
tion through Common Nodes Algorithm). There are three
stages in SM-CNA: i) partitioning the graph, ii) finding the
APSP in each subgraph, iii) aggregating the results of the
shortest paths in individual subgraphs, which are presented
next.

Fig. 1: Rearranging the vertices in each subgraph using the
index

A. Partitioning the Graph

We partition the graph in this stage. We first run the BFS
(Breath-First Search) algorithm on the graph and transform
the graph into a multi-leveled graph. The root node of the
graph (the node from which BFS starts the search) has level
0. When BFS visits any of the successor nodes of the root, it
labels it with level 1. When BFS is completed, every graph
node is labelled with a level, and the graph is effectively

transformed into a multi-levelled graph. Then, the graph is
partitioned across the nodes at some particular levels. If the
graph is partitioned at a level, the level is called the boundary
level of the two neighbouring partitions. The nodes on the
boundary level are duplicated in both neighbouring partitions.
In general, after graph partitioning, each partition Pi contains
a number of levels and assigned to a CPU core. Since we
duplicate the boundary level, the last level in Pi is the first
level in Pi+1. We call the nodes in the duplicated level the
Common Nodes (CN). The set of common nodes duplicated
in the neighbouring partitions Pi and Pi+1 is denoted by Ci.

After transforming the graph into a multi-levelled graph, a
node in level i only has the direct connection to a node in level
i+1. For the nodes beyond level i+1 (e.g., level j, j >i+1), the
node in level i needs to pass through at least one node in
levels i+1, i+2, ...,j-1. For example, a node in level 0 needs
to pass through at least one node in level 1 and at least one
in level 2 to reach a node in level 3. This indicates that the
shortest path between two nodes in different levels is the path
with the minimum cost crossing the levels. The relation can be
modelled in the following equation 1, where P is the number
of partitions.

(W (vLi
, vLi+2

) = Min{W (vLi
, vLi+1

) +W (vLi+1
, vLi+2

))

|1 ≤ i ≤ P − 1}
(1)

We use this relation to choose boundary levels and duplicate
the common nodes between two neighbouring partitions. The
common nodes can be regarded as the interface between two
neighbouring partitions. Take the graph in Figure 1 as an
example. In the graph, the nodes in level 2 are duplicated.
If node 1 in partition P1 wants to reach node 8 in partition
P2, then the path contains at least one node from level 2.

Graph’s name The number of nodes
in a level

The number of nodes that
need to be duplicated

Western US Power Grid 258 183
out.ego-facebook 471 5
road-minnesota 56 40

SW-Trial 77 42
rt israel. 732 200

TABLE I: The number of nodes actually duplicated on exem-
plar real-world networks

Duplicating a node does not mean that we have to process it
twice because the edges of the node are not doubled. The only
edges that are duplicated are those connecting the common
nodes themselves. Suppose that s is a node in the duplicated
level i. It has five edges with two connecting to the nodes
in level i − 1 and three to level i + 1. When we examine
s, two edges will be processed in first subgraph and three
in the second subgraph. The total number is five, same as
that when we process the entire graph without partitioning. In
general, after graph partitioning, the total number of operations
for processing a graph is the same, but the nodes and edges
in each subgraph are processed in parallel. If a node on the
boundary level is not connected to the next level, this node is
not be duplicated. When a graph is relatively sparse, there are

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 4

usually a limited number of nodes that are connected to the
next level. Table I list the examples in real world networks.

The graph partitioning stage also involves reordering the
nodes in the partitions by renaming the nodes with the order
in which BFS visits the nodes, which we call the indices of the
nodes. The idea is to assign the nodes to the partitions in the
ascending order of index. Taking the graph in figure 1 as the
example, we have 9 nodes named 0, 1, 2, ..., 8. If the graph is
partitioned without reordering the nodes, nodes (4,6,0,1,5,7)
are assigned to P1 while nodes (1,5,7,8,2,3) assigned to P2.
After reordering, P1 contains nodes (0,1,2,3,4 and 5), while
P2 contains nodes (3,4,5,6,7 and 8). There is no additional
cost incurred by reordering since it is conducted while BFS
runs. Besides, the information about the partitions is stored in
an array. The size of this array is equal to the total number of
partitions plus one, i.e., P + 1. Element i of the array holds
two values regarding partition i: the first value is the reordered
index of the first node in partition i while the second value
is the total number of common nodes between partitions i
and i + 1. For the last element of the array, the first value is
effectively the size of the entire graph while the second value
is set to zero. Algorithm 1 shows the reordering process.

The reordering method can improve the performance
significantly. To understand the benefits of reordering, let us
take a look at how to find the shortest paths between the
nodes in two neighbouring partitions (to be performed in
the aggregating stage). To calculate these paths, three pieces
of information are needed in our method: the node in one
partition, the node in the other partition and the common
nodes between the two partitions. The straightforward
way is to store the nodes of each partition in a separate
array, and store the common nodes between each pair of
neighbouring partitions in another array. This means that
P + P − 1 arrays are needed to store the information, which
makes it inefficient to loop through the information. For
example, in order to pick a source node from a partition,
we need to loop through the common nodes to make
sure the source node is not one of the common nodes. It
is similar for picking the destination node from another
partition. After reordering, the node indices are now in the
ascending order. We can use only one array (denoted by
Ar[*]) to store and derive the information. For example, if
we need to find a node in partition Pi, then its index is in
the range of (Ar[Pi].firstnode,Ar[Pi+1].firstnode).
The indices of the common nodes between
two neighbouring partitions Pi and Pi+1 are in
range (Ar[Pi+1].firstnode,Ar[Pi+1].firstnode +
Ar[Pi].commonnode)).

The time complexity of graph partitioning is O(|V |+ |E|).
Graph partitioning can be parallelized by applying the existing
methods of running the BFS algorithm in parallel [20] [21]
[22] [23]. When applying an existing parallel BFS algorithm,
we can assign level labels to the nodes in the same way as in
sequential BFS algorithm. For example, suppose the root node
is connected to two nodes, vi and vj , both labelled as level
1. If the BFS algorithm is executed in parallel, with node vi
being processed by one thread and node vj by another, all the
nodes connected to vi and vj will be labelled as 2 (the levels of

vi and vj plus one). This outcome is equivalent to running the
BFS algorithm sequentially. As for duplication of the common
nodes, it only occurs after the BFS traversal is complete.
Therefore, if the BFS is run in parallel, the duplication step
remains unaffected and does not present any issues.

In order to achieve the node balance among partitions, we
set a counter when running the BFS algorithm. When BFS
visits a node and the counter is equal to N/P , where N is
the number of nodes in graph G and P is the number of sub-
graphs we decide to partition the graph G into, the level that
contains that node is selected as the boundary level.

It is also worth noting that we conducted several exper-
iments to determine the optimal choice for the root node
when transforming the graph into a multi-level form. These
experiments involved selecting the nodes with the highest
degree, average degree, lowest degree, or even a leaf node as
the root. Surprisingly, we found that the choice of the root node
has minimal impact on performance. Therefore, the root node
can be chosen randomly. The reason behind this phenomenon
is that even if many nodes appear in one level, which becomes
the boundary level, any node on the boundary level that is not
connected to the next level will not be duplicated. This means
that when the graph is relatively sparse, there tends to be only
a limited number of nodes that are connected to the next level.
Furthermore, our experiments focused on real-world networks,
and we found that in relatively sparse graphs, there tends to
be only a limited number of nodes that have connections to
the next level (as shown in Table 1). This further supports
the conclusion that the choice of the root node has minimal
impact on the overall performance.

Algorithm 1 Partitioning the Graph
Input: BFS(G, s), where G is the weighted graph, s is the

source node to start the BFS from.
Output: Indexing Array
Let q be a Queue;
Index[Vi] array with size equal to the total number of vertexes
in G
count = 0;
Add label to s = count;
Index.insert(s,count);
q.enqueue(s)
while q is not empty do

n = q.dequeue;
for all neighbours w of n in Graph G do

count = n.label;
if w is not labled then

lable w with count+1;
Index.insert(w,count);
q.enqueue(w)

B. Calculating the APSP in Each Subgraph

In this stage, the APSP in each subgraph is calculated in
parallel. Before this stage starts, a 2-Dimensional (2D) matrix,
which is called the distance matrix is created to store the

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 5

distance of the shortest path between the nodes. An advantage
of using a matrix is that searching and updating the matrix
are efficient with the time complexity of O(1). The matrix
size is N ∗ N , where N is the total number of nodes in
the graph. A row or a column corresponds to a node, while
an element [i, j] in the matrix holds the weight of the edge
connecting node i and j. When the stage starts, the elements
in the diagonal of the matrix are set to 0 (representing the
distance from a node to itself), while other elements are set
to infinity (∞) (representing the temporary distance between
a node and another node). Since SM-CNA is for the shared
memory architecture, each CPU core can access the matrix and
update the values. At the end of our method, the matrix will
be completed with the distances of the shortest paths between
any two nodes in the graph.

OpenMP is used to implement the processing of a sub-graph
on a CPU core (by a thread) in parallel and to synchronize the
running of multiple threads. First, every thread calculates the
shortest path between the common nodes in its subgraph and
update the distance matrix if the calculated value is smaller
than that calculated and stored by the other thread (the thread
that processes the neighbouring subgraph). After all threads
complete the work, the stored values are the weights of the
edges connecting the common nodes themselves. Next, we
apply the Floyd-Warshall algorithm [6] (or any existing all-
pairs shortest path algorithm) and find the APSP in each
partition in parallel. After this stage, we can obtain the shortest
paths between two nodes in the same partition.

The bigger the graph, the more memory space is needed to
store 2D distance matrix) proposed above, whose size is n2.
In the aggregating stage, the information required to find the
shortest path between the source node s and the destination
node t is the distance of the shortest path between s and a
common node and that from the common node to t. Other
data are not needed. This motivates us to design a more
memory-efficient results storing scheme than the 2D distance
matrix. The new storing scheme requires a 3D matrix, which
is called 3D distance matrix. In the 3D distance matrix, only
the weights needed to calculate the shortest distances of other
paths are stored. More specifically, the size of this 3D distance
matrix is c ∗ n ∗ 2, where c (rows) is the total number of
the common nodes between all partitions, n (columns) is the
total number of nodes in the graph, and the third dimension
holds two values: i) the distance of the shortest path from
the common node ci to the node nj (denoted by W (ci, nj)),
and ii) the distance from the node nj to the common node ci
(i.e., W (nj , ci)). In the case of undirected graphs, we do not
need the third dimension since the two values are the same.
Since c (the total number of common nodes after the graph
partitioning) is much less than n (the total number of nodes
in the graph). The 3D distance matrix is much more memory-
efficient than the 2D counterpart. Consequently, larger-scale
graphs can be processed by our method.

C. Aggregating the Results in Individual Subgraphs

In this stage, we aggregate the local results obtained in two
neighbouring partitions and obtain the shortest distance of a

path that crosses these two partitions (i.e., the source node is
in a partition and the destination node is in the neighbouring
partition). The shortest path between vi ∈ Pi and vj ∈ Pj must
passes at least one common node between the two partitions.
We make use of this insight to aggregate the local results in
two neighbouring partitions. The calculation is presented as
follows.

Assume vk1 , vk2 , ...vkr is the set of common nodes that are
connected to both vi and vj . Then the distance of the shortest
path between vi and vj , W (vi, vj), can be calculated by Eq.
2.

W (vi, vj) = Min{W (vi, vkm
) +W (vkm

, vj)|1 ≤ m ≤ r}
(2)

After Eq. 2 is applied to two neighbouring partitions, the
shortest paths between any two nodes in these two partitions
are obtained. The two partitions can be merged as one bigger
partition. Eq. 2 is then applied to calculate the APSP between
this newly merged partition and its neighbouring partition.
This process iterates until the result between all graph par-
titions are aggregated. The number of iterations in the results
aggregation is

∑Pi−1

i=2 Pi − i (where Pi is the total number
of partitions). After this stage is completed, the shortest path
between any two nodes in the graph is obtained and the APSP
problem is solved. The algorithm for aggregating the results
in subgraphs is outlined in Algorithm 2.

Note that the aggregation step of our method is executed in
parallel to enhance efficiency. The parallelization is achieved
by assigning each subgraph to a separate thread. Each thread
is responsible for finding the shortest path to all other nodes
in the remaining subgraphs. This task is accomplished by per-
forming simple mathematical operations outlined in Equation
2.

In case where the number of subgraphs exceeds the number
of available threads, we divide the total number of subgraphs
by the number of threads to determine the workload allocation.
Consider an example where there are three subgraphs and only
two threads. In this case, one of the threads will handle two
subgraphs, while the other will be assigned to process a single
subgraph. The objective of this approach is to evenly distribute
the computational load among the available threads. By divid-
ing the subgraphs evenly, or as evenly as possible, across the
threads, we can maximize parallel processing efficiency. This
allocation strategy ensures that each thread has a fair share of
the workload, even if the number of subgraphs is greater than
the number of threads available.

IV. HYBRIDCNA

The HybridCNA approach is proposed to further accel-
erate the SM-CNA approach presented in section III. The
acceleration works by processing the stage of aggregating the
subgrahs’ results on GPU. In this section, we present the
details of HybridCNA. In particular, we describe the steps
executed on the CPU and those on the GPU. Moreover, we
will present two parallelization strategies for the GPU threads
to aggregate subgraphs’ results.

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 6

Algorithm 2 aggregating the results in subgraphs
Input: Ar (the partitioning array withe the size of (P+1)), M

(the matrix holding the distances of the shortest paths
between nodes in graph G)

parts = total number of partition
Rank = partition rank(0 to parts-1);
for x = Rank +1 to parts do

for i = Arrank,0toArrank+1,0 do
for j = Ar(x,0)+(x−1,1)toAr(x+1,0)+(x,1) do

for c = Ar(x,0)toAr(x,0)+(x−1,1) do
if Mi,j > Mi,c + Mc,j then

Mi,j = Mi,c + Mc,j ;
end

end
end

end
end

A. Processing on CPU

The steps that are run on the CPU (host) start with read-
ing the graph and partitioning it into a certain number of
subgraphs. Then the 3D distance matrix is created, which
is updated with the distances of the shortest paths when
subgraphs’ results are aggregated. OpenMP is used to generate
threads and each thread runs on a CPU core to process a
subgraph. All CPU threads run simultaneously to find the
shortest path between the nodes in the same subgraph. Each
thread updates the distance matrix with the distances of newly
found shortest paths. After the stage of finding the APSP
in each subgraph is completed, CPU allocates the device
memory for the 3D distance matrix on GPU and copy the 3D
distance matrix from CPU memory to GPU memory. Unlike
the existing GPU-based methods for solving the shortest path
problem, our method do not need to copy the graph itself to the
GPU, but only copy the distance matrix once, which reduces
the communication cost and also allows us to solve the APSP
problem for even bigger graphs that cannot be fit in the GPU
memory. When the graph is so big that the corresponding 3D
matrix is bigger than the GPU memory, we can partition the
matrix along the rows and send a partition of the distance
matrix to the GPU at a time.

After the 3D distance matrix has been copied to GPU, the
execution is shifted to GPU by lauching the kernel function,
which aggregates the subgraphs’ results and find the shortest
paths between the nodes in different subgraphs. When the
aggregating stage is completed on GPU, GPU transfers the
final distance matrix, which holds the distances of the shortest
paths between any two nodes in the entire graph, to the host.

B. Processing on GPU

The threads on the GPU run simultaneously and apply
the following equation to aggregate the local results in each
subgraph and find the shortest paths between the nodes in
different sub-graphs.

W (vi, vj) = Min{W (vi, vCm
) +W (vCm

, vj)|1 ≤ m ≤ r}
(3)

The threads find the values W (vi, vCm) and W (vCm , vj) in
the distance matrix, which is received from the CPU. Then
the threads update the distance matrix by adding the newly
calculated distance values (W (vi, vj)).

We refer to the step of aggregating the results of two sub-
graphs as a Subgraph-Combination (SC) operation. Namely,
every two subgraphs takes one SC operation to calculate
the shortest paths between their nodes. Assuming a graph
is partitioned into P subgraphs, the total number of SC
operations can be calculated by the following equation:

P−1∑
i=1

(P-i) P is the total number of partitions (4)

Now we use an example to illustrate the SC operations.
Suppose that a graph is partitioned into five subgraphs (i.e.,
partitions), which are indexed from 0 to 4. The SC operations
needed to aggregate the results are illustrated in Table II, where
“0 to 1” represents aggregating the results of partitions 0 and
1, namely finding the shortest paths between the nodes in
partitions 0 and 1.

We have identified two types of parallelism, namely
subgraph-level parallelism and node-level parallelism, for ag-
gregating results from multiple subgraphs. In the subgraph-
level parallelism, multiple independent SC operations are run
simultaneously. In Table II, the SC operations in different
columns are independent and can be run in parallel. For
example, SC operation (0 to 1) and SC operation (1 to 2)
in Table II) can be run in parallel. The SC operations in the
same column in the table have the dependency and must be
run in sequence. For example, the operation (0 to 2) can only
start after (0 to 1) has been completed since partition 1 is
partition 0’s neighbour but partition 2 is not.

In node-level parallelism, the shortest paths starting from
different nodes in a subgraph are computed in parallel. For
example, assuming s1 and s2 are two nodes in partition 0,
the process of finding the shortest paths from s1 to the nodes
in partition 1 can be performed in parallel with finding the
shortest paths from s2 to the nodes in partition 1.

This work proposes two parallelization strategies, H-Thread
and H-Block, to achieve subgraph-level and node-level paral-
lelism, respectively, in order to fully leverage the potential
of GPUs. H-Block assigns a thread block to aggregate the
results for a certain number of subgraphs (i.e., aggregate
the results between the subgraphs assigned to the block and
other subgraphs). Multiple blocks aggregate the results for
different subgraphs in parallel, which achieves subgraph-level
parallelism. H-Thread assigns a thread in a thread block to
aggregate the results for a certain number of nodes in the
subgraph. Different threads in a block can then aggregate
the results for different nodes in the subgraph in parallel,
which achieves node-level parallelism. The rest of subsection
presents H-Thread and H-Block strategies in detail.

1) H-Thread and node-level parallelism: ni denotes the
total number of nodes in subgraph i. The H-Thread strategy
works by assigning a certain number of nodes in a subgraph
(e.g., subgraph i) to a GPU thread. Assume k nodes are as-
signed to be processed by a thread. When the thread completes

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 7

TABLE II: Case study of aggregating the result of five
subgraphs

0 to 1
0 to 2
0 to 3
0 to 4

1 to 2
1 to 3
1 to 4

2 to 3
2 to 4 3 to 4

the calculation of the shortest paths from these k nodes and
all nodes in subgraph i+ 1, the thread continues to calculate
the shortest paths from these k nodes to all nodes in subgraph
i+ 2 until the shortest paths from these k nodes to the nodes
in all other subgraphs have been calculated.

Consider the example in table II. Assume subgraph 0 is
assigned to a thread block. Each thread in the block is assigned
to calculate the shortest paths between a number of nodes (e.g.,
k nodes) in subgraph 0 and all nodes in subgraph 1. After the
first SC operation (0 to 1) is completed for the k nodes, the
thread moves on run the second SC operation (0 to 2) for the
k nodes. The procedure goes on until the last SC operation,
(3 to 4), has been completed for the k nodes. Algorithm 3
outlines the steps in the H-thread strategy.

Algorithm 3 The H-Thread Strategy
Let Mr be the distance matrix;
Let P be the total number of partitions;
Let Ci,j be the list of common nodes between subgraphs i
and j;
index = blockIdx.x * blockDim.x + threadIdx.x;
x= index;
for i in range(0 to P − 1) do

x= x+ rank of first node in i;
for j in range(i+ 1 to P − 1) do

for y in j nodes do
for c in Ci,j do

if Mr[x][y] > Mr[x][c] + Mr[c][y] then
Mr[x][y] = Mr[x][c] + Mr[c][y];

The number of nodes assigned to a thread is (ni

Ti
, Ti ≤ ni),

where ni is the total number of nodes in subgraph i and
Ti is the number of threads in the thread block assigned to
process subgraph i. The maximum number of threads that
can be launched equals to the total number of nodes in the
biggest subgraph. The time that a thread takes to complete
a SC operation for the nodes assigned to the thread (i.e.,
aggregating the shortest distances from the thread’s ni

Ti
nodes

to all the nodes in another subgraph), denoted by tsc(i), can be
modelled as follows, where ci,i+1 is the number of common
nodes that connect subgraphs i and i+ 1.

tsc(i) =
ni

Ti
× ci,i+1 × (ni+1 − ci,i+1) (5)

Thus the total time that a thread takes to complete all the
SC operations for the ni

Ti
nodes (denoted by tallsc(m)) can be

modelled by Eq. 6, where P is the total number of subgraphs
and m is the index of the calling thread.

tallsc(m) =

P−1∑
i=0

(
ni

Ti
×

P−1∑
j=i+1

ci,j × (nj − ci,j)) (6)

Since all threads in a block run in parallel, we can use
Eq. 7 to model the computation time that the thread block
(assuming it is block k) takes to finish the aggregation stage
with the H-Thread strategy, denoted by tb(k).

tb(k) = max{tallsc(m)} (7)

2) H-Block and subgraph-level parallelism: In the H-Block
strategy, a number of thread blocks are generated with each
containing a number of threads. We schedule different thread
blocks to run the SC operations in parallel. For instance, if we
schedule four thread blocks to run the SC operations in table
II, the SC operations 0 to 1, 1 to 2, 2 to 3 and 3 to 4 will be
run by the four thread blocks in parallel, which is subgraph-
level parallelism. Moreover, the threads in each block use the
H-Thread strategy to perform a SC operation with different
nodes in parallel. Therefore, both subgraph- and node-level
parallelism are achieved. Algorithm 4 outlines the H-Block
strategy.

Algorithm 4 The H-Block Strategy
1.20 Let Mr be the result matrix;
Let P be the total number of partitions;
Let Ci,j be the list of common nodes between subgraphs i
and j;
index = threadIdx.x;
i = blockIdx.x;
x= index+ rank of first node in Pi;
for j in range(i+ 1 to P − 1) do

for y in j nodes do
for c in Ci,j do

if Mr[x][y] > Mr[x][c] + Mr[c][y] then
Mr[x][y] = Mr[x][c] + Mr[c][y];

Based on Eq. 7, the total computation time for a GPU
to complete the aggregation stage with the H-Block strategy,
denoted by tGPU can be modelled as Eq. 8. We will compare
the H-Thread and H-Block approaches in Section V.

tGPU = max{tb(k)} (8)

The HybridCNA method can also be deployed on a server
with a multicore CPU and multiple GPUs. In a system with
multiple GPUs, the CPU schedules the SC operations to run
across multiple GPUs. The CPU sends the required data to
each GPU and launch the kernels, and then all GPUs process
the SC operations in parallel. The distance matrix is copied to
all GPUs. The distance matrix will hold the distances of the
shortest paths between any nodes in the entire graph after all
GPUs complete their work. When launching the kernels, we
still use the H-Block and H-Thread strategies to manage the
threads in each GPU. Consider the example in Table III. In
GPU1 and GPU2, we can use the H-Thread strategy only since

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 8

GPU 1 GPU 2 GPU 3
0 to 1
0 to 2
0 to 3
0 to 4

1 to 2
1 to 3
1 to 4

2 to 3
3 to 4

TABLE III: An example of processing a graph on three GPUs;
the graph is partitioned into five subgraphs

the SC operations depend on each other. On GPU3, however,
we can use the H-Block strategy since the two SC operations
are independent of each other.

V. EVALUATION

In this section, we evaluate the efficiency of the SM-CNA
and HybridCNA methods. First, we compare the performance
between the serial implementation and parallel implementa-
tion. Then, we conduct ablation studies regarding the perfor-
mance of two strategies, H-Thread and H-Block, with various
graph sizes. Next, we compare the HybridCNA method with
the SM-CNA. Finally, we evaluate the effectiveness of the
HybridCNA method with a real-world graph.

The experiments were run on the Joint Academic Data
Science Endeavour (JADE) server at the Oxford University
[24]. It consists of eight NVIDIA Tesla V100 GPUs inter-
connected by NVIDIA’s NV link interconnect technology.
The specification of CPU is Dual 20-Core Intel Xeon E5-
2698 v4 2.2 GHz. The main Memory is 512 GB 2,133 MHz
DDR4 RDIMM. Cuda 10.1 and OpenMP 3.0.0 are installed
to implement the HybridCNA method.

We conduct the experiments with different graph sizes from
2k to 16k. The graph generator [25] is used to generate the
graphs following the power-law distribution, which has been
shown to be the property of real-world graphs. To evaluate
the impact of the common nodes, we first ran the experiment
with a different number of common nodes from 2 to 1000.
After that, we set the total number of common nodes to be
200 for the rest of the experiments, which is the highest
number of common nodes in the real-world graph used in
our experiments.

A. Speedup of Parallelization

Fig. 2: The performance of our two parallel implementations
comparing to the serial implementation; The graph size is 16K

We first run the serial implementation of our SM-CNA
method, in which after the graph is partitioned, the shortest

paths between the nodes in all the subgraphs are found in
sequence and local results in individual subgraphs are also
aggregated in sequence. We implement SM-CNA in two
different ways as follows.

i) Parallel-1: the graph is partitioned into a fixed number of
subgraphs, and then the subgraphs are assigned to a different
number of cores for processing;

ii) Parallel-2: the number of subgraphs that the graph is
partitioned into is the same as the number of cores in the
multicore computer with each subgraph being assigned to a
core.

Figure 2 shows the comparison between the serial im-
plementation and the two parallel implementations of SM-
CNA. The graph size used in this experiment is 16K. The
graph is partitioned into 2, 4, 8 and 16 subgraphs. When the
graph is partitioned, the cost of finding the APSP is reduced
significantly. This is because the time spent in solving APSP
grows exponentially as the graph size increases. Therefore,
partitioning the graph into smaller subgraphs reduces the
time of each subgraph exponentially. However, the benefit of
reducing the time of finding the APSP in each subgraph is
partly cancelled by the increased time spent in aggregating
the results between subgraphs as the graph is partitioned into
more subgraphs. However, the increase in aggregation time is
much lower than the decrease in the time of calculating APSP.
As the result, we can observe that the more partitions, the
faster the algorithm is for solving the APSP problem. Figure
5 shows the speed up of serial SM-CNA as the number of
partitions increases.

Parallel-2 in figure 2 is the parallel implementation of SM-
CNA with each subgraph being assigned to a CPU core, i.e., all
subgraphs are processed simultaneously. It can be seen from
figure 5(b) that our SM-CNA delivers the outstanding speedup
over the serial SM-CNA.

In parallel-1 implementation of SM-CNA, the number of
partitions is fixed to 16, which are then processed on a different
number of cores (2, 4, 8 and 16). We can see from figure 2
that parallel-1 is faster than parallel-2 when the number of
cores is small. Parallel-2 catches up as the number of partitions
increases.

B. Evaluating H-Thread and H-Block

In this section, we compare the two strategies, H-Thread
and H-Block, proposed to assign the workload to the GPU
threads. We ran the experiment on a graph with the size of
16k and partitioned the graph into 2, 4, 8 and 16 subgraphs.
The experimental results are shown in Figure 6, where the
y-axis is the time taken to aggregate the results between
the subgraphs (GPU time) with each approach. We does not
count the communication time between the CPU and the GPU
(copying the data to the GPU memory) because it is the same
in both approaches.

As shown in figure 6, when the number of the partitions
is small (two and four), the H-Thread approach achieves
better performance than H-Block. However, as the number
of partitions increases, H-Block overtakes H-Thread. This is
because when a graph is partitioned into a small number of

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 9

Fig. 3 Fig. 4

Fig. 5: Speedup of serial (a) and parallel (b) CNA, Graph size is 16K

SM-CNA HybridCNA

Number of
Common node aggregating Time Total time GPU Time Total time

10 0.296 7.008 0.477 7.136

100 2.196 8.88 0.629 7.346

500 11.109 17.809 1.259 7.92

1000 24.284 30.967 1.814 8.475

TABLE IV: Case study of finding APSP of a graph with the size of 4k and partitioned into two subgraphs.

Fig. 6: Comparing the H-Thread strategy with the H-Block
strategy. The graph size is 16k

subgraphs, the number of nodes in each subgraph is big. Since
in H-Thread the nodes in an operation are parallelized and
the operations are handled one at a time, there will be more
threads engaged in the computation simultaneously than when
the graph is partitioned into a smaller number of subgraphs.
Additionally, in H-Block, at least one block completes its
task and terminates after each iteration, which means a fewer
number of threads run simultaneously after each iteration
(i.e, the decrease in the degree of parallelism). The effect is
noticeable if the number of threads in each block is large (such
as the four partitions in figure 6). However, when the number
of partitions increase to 8 and 16, a fewer number of GPU
threads are terminated and more threads work simultaneously
for longer time (i.e., the increase in the degree of parallelism).
This is when H-Block starts performing better than H-Thread.
Also, we can notice that unlike H-Thread, the number of
partitions does not affect much the performance of the H-
Block approach. Since the operations are run in parallel in

H-Block, all nodes in the subgraphs are assigned to the GPU
threads and run at the same time.

To summarize, we can conclude that both H-Theard and
H-Block can achieve excellent performance in different con-
ditions. When we have a large subgraph, it is better to use the
H-Thread approach. When we have many small subgraphs,
using H-Block is more beneficial.

C. Comparing HybridCNA with SM-CNA

In this subsection, we compare HybridCNA with SM-CNA
against three parameters: the number of common nodes, the
graph size, and the number of partitions.

As previously discussed, the number of common nodes has
a significant impact on the performance of our method, as
it affects the number of SC operations required to aggregate
local results. To investigate the effect of this parameter, we
conducted an experiment on a graph of size 4k partitioned
into two subgraphs. We increased the number of common
nodes from 10 to 1000 and recorded the time taken for the
aggregating step, as well as the total time. The results are
shown in Table IV.

The results indicate that for both methods, as the number
of common nodes increased, the time taken to aggregate the
local results also increased. However, the rate of increase in
time is much higher for SM-CNA than for HybridCNA. SM-
CNA took 0.2 seconds to aggregate results when there were 10
common nodes and 24.2 seconds when the number of common
nodes increased to 1000, which is about 82 times slower. On
the other hand, HybridCNA took 0.4 seconds when the number
of common nodes was 10 and 1.8 seconds when it increased
to 1000, which is only about 3.8 times slower. The reason for
this is the significantly higher power of the GPU, which can

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 10

support the simultaneous execution of many more threads than
the number of CPU cores that can be generated in SM-CNA.

Another observation from Table IV is that when the number
of common nodes is small (e.g., 10), SM-CNA is faster than
HybridCNA. This is because the communication overhead
between the host and the device in HybridCNA is higher, as
we will discuss in the next subsection.

In the next experiment, we evaluated the performance of
HybridCNA and SM-CNA with different graph sizes, with
each graph partitioned into up to 16 subgraphs. We recorded
the time taken by each method for the aggregating step. The
aggregation time of HybridCNA includes the kernel time as
well as the time taken to copy data between the CPU and the
GPU. For this evaluation, we set the number of common nodes
to be 200.

Fig. 7: Comparing HybridCNA with SM-CNA. The graph size
is 16k

Fig. 8: Comparing HybridCNA with SM-CNA. Graph size is
8k

As shown in Figures 7, 8, 9, and 10, the aggregation time in
HybridCNA is consistently lower than that in SM-CNA across
all graph sizes. Furthermore, as the graph size increases, the
performance gap between the two methods also increases. For
example, as shown in Figure 10 for the graph with a size of 2k
and partitioned into two subgraphs, HybridCNA is about 3.2
times faster than SM-CNA. For the graph with a size of 16k,
HybridCNA is 12.8 times faster, as shown in Figure 7. This is
because as the graph size increases, more SC operations need
to be performed and the GPU can execute these operations in
parallel, which gives it an advantage over SM-CNA.

When we investigated the effect of the number of partitions
on the performance of the two methods, we observed that as

Fig. 9: Comparing HybridCNA with SM-CNA. Graph size is
4k

Fig. 10: Comparing HybridCNA with SM-CNA. Graph size is
2k

the number of partitions increases, the time required for SM-
CNA decreases while the time for HybridCNA either remains
the same or slightly increases. This is because the more
subgraphs we partition the graph into, the more CPU cores
are needed by SM-CNA to find the shortest paths between the
subgraphs, whereas the number of threads used in HybridCNA
is not affected by the number of partitions. However, even
with the increased time required by SM-CNA, HybridCNA
still achieves better performance, with at least a 3x speedup
over SM-CNA.

Figure 11 shows the total time achieved by HybridCNA
and SM-CNA when running graphs of different sizes. As
expected, HybridCNA outperforms SM-CNA in all cases. This
is because the aggregation time significantly impacts the total
time of the methods, and HybridCNA’s faster aggregation time
translates into overall faster execution times.

D. Evaluating HybridCNA on a system with multiple GPUs

In this section, we evaluate the performance of HybridCNA
on a computer equipped with multiple GPUs. We conducted
experiments using up to four GPUs and evaluated HybridCNA
on three different graph sizes: 4k, 8k, and 16k.

To start, we needed to copy the distance matrix from
the CPU to the GPU. The JADE architecture [24] has a
memory layer where multiple GPUs can share memory, giving
us the option to either copy the matrix once to the shared
GPU memory or copy it multiple times to the local memory
inside each GPU. Table V shows the difference between

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 11

2*Copying way 1GPU 2GPUs 3GPUs
copy time kernel time Total GPU time copy time kernel time Total GPU time copy time kernel time Total GPU time

one copy 536 2131 2667 536 4887 5423 536 10644 11180
Multi copying 536 2131 2667 631 1639 2270 740 1386 2126

TABLE V: A case study comparing multi-copying with single copying strategy for a graph size of 8K partitioned into 8
subgraphs. The time is measured in milliseconds.

these two copying strategies. As we can see, copying the
data once reduces the communication cost between the CPU
and the GPU and requires less time than copying the data
multiple times. However, we noticed that the kernel time
increased significantly when copying the matrix only once.
This is because thousands of GPU threads are trying to read
and write to the same memory address, causing a racing
condition and a dramatic increase in kernel time. On the
other hand, when using the multi-copying strategy, the more
GPUs engaged in the computation, the more time needed for
the copying process. Nonetheless, copying the data multiple
times achieved better performance in terms of the total kernel
time. Therefore, we will use the multi-copying strategy in the
following experiments.

Fig. 11: Total time of HybridCNA and SM-CNA methods in
different graph size

Figure 12 and 13 show the total GPU time (data copying
time plus the kernel time) of running HybridCNA on graphs
with sizes of 8K and 16K. From these figures, we observe
that HybridCNA achieves better performance as the number
of GPUs increases. Running with two GPUs achieved an
excellent speedup (up to 1.6). Similarly, running with 4 GPUs
achieved up to 2.5 speedup. This performance is affected by
the graph size and the number of partitions. For example, as
shown in 12, when the graph is partitioned into 16 subgraphs,
running with 4 GPUs took longer than with 3 GPUs when
the graph size is 8K. However, when processing the graph
with the size of 16K, running with 4 GPUs achieved better
performance than with 3 GPUs, as shown in 13.

Figure 14 displays the total time required for processing
graphs of varying sizes using multiple GPUs in HybridCNA.
The figure reveals that for the 4K graph, processing it with
2 GPUs results in a slightly better performance. Increasing
the number of GPUs beyond 2 does not lead to further
performance improvement. However, for the 16K graph, using
2 GPUs achieves excellent speedup. Further increasing the
number of GPUs to 3 and 4 results in even better performance.

Fig. 12: Comparing the kernel time of running with 1 GPU
and running with Multiple GPUs. The graph size is 8k

Fig. 13: Comparing the kernel time of running with 1 GPU
and running with Multiple GPUs. The graph size is 16k

Therefore, we can conclude that using multiple GPUs is
beneficial when the graph size is large.

Fig. 14: Comparing the total time between running with 1 GPU
and running with Multiple GPUs on different graph sizes

E. Evaluating HybridCNA with Real-world Graphs

To demonstrate the effectiveness of our SM-CNA and
HybridCNA, we evaluated them with real-world graphs and

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 12

Fig. 15: Testing SM-CNA and HybridCNA methods on real-world networks

Network’s Name Size Number of
partition

Total number of
common nodes

Preparing
(time in milliseconds)

road-minnesota 2.6K 2 40 103
Western-US.Power 4.9K 3 183 360

Tweeter israel. 3.6K 2 200 180
out.ego-facebook 2.8K 2 5 141

SW-Trial 10k 7 43 660

TABLE VI: The real networks used in the experiments

compared them with the n-Dijkstra algorithm [9] and the
ParAPSP algorithm [10]. The n-Dijkstra algorithm parallelizes
the traditional Dijkstra algorithm by running the algorithm
from multiple nodes in parallel. The nodes of the graph are
divided among the cores and are processed simultaneously
until the shortest paths between all nodes are found. The
ParAPSP algorithm is a modified Dijkstra’s algorithm, which
utilizes the information obtained in previous iterations during
the processing and uses an ordering approach based on node
degree to reduce the parallel overhead. We used a diverse set of
graphs, including social media networks, road networks, and
power networks. Table VI lists the datasets of these networks,
showing the size of the graph, the number of subgraphs we
partitioned it into, the total number of common nodes, and
finally, the time needed to pre-process the graphs. All the real
graphs used in this paper were obtained from SNAP [26],
KONECT [27], and Network Repository [28].

Figure 15 shows the comparison between SM-CNA, Hybrid-
CNA, n-Dijkstra, and ParAPSP. Observing the performance
of SM-CNA and HybridCNA, we can see that when the
number of common nodes is small (such as the out.ego-
facebook network), SM-CNA achieves better performance.
However, if the number of common nodes is large (such as
Western-US.Power and Tweeter-israel), HybridCNA delivers
much better performance. We can draw the same conclusion
when comparing SM-CNA with ParAPSP. Furthermore, from
the performance of n-Dijkstra and SM-CNA in Figure 15, we
can see that SM-CNA is faster than the n-Dijkstra algorithm in
all cases. However, the gap between them decreases when the
number of common nodes increases. This outcome matches the
results of the experiments conducted on the simulated graph.
It motivated us to develop HybridCNA, which achieves higher
performance than all other compared algorithms.

Graphs SuperFW SM-CNA HybridCNA
Western-US.Power 3.8 3.3 5.07

Synthetic graph (16k) 6.1 4.09 8.3

TABLE VII: Speedups achieved by SuperFW, SM-CAN, and
HybridCNA over Dijkstra

F. Comparing with SuperFW

SuperFW is a recently published parallel APSP algorithm
[11]. Its main objective is to enhance the well-established
Floyd-Warshall algorithm by exploiting the relationship be-
tween Floyd-Warshall and Gaussian elimination. We compared
the speedups (over Dijkstra) achieved by our methods and
SuperFW using both synthetic and real-world graphs. The
synthetic graph used has the size of 16k, which is the largest
size used in the experiments in previous subsections. We used
the real-world graph named Western-US.power, which is also
the graph used in [11]. The results are listed in Table VII.

As indicated in the table, HybridCNA achieved a speedup
of 5.07x on Western-US.Power, surpassing SuperFW’s 3.8x
speedup. When using the synthetic graph of size 16k, Hybrid-
CNA achieved a speedup of 8.3x, outperforming SuperFW’s
6.1x speedup. It is worth noting that SM-CNA performs
less favorably compared to SuperFW. This is because SM-
CNA soly harnesses the multi-core computing capabilities.
The design considerations behind SM-CNA are geared towards
optimizing the integration between CPU and GPU, with the
aim of minimizing the communication between them and
maximizing parallelism on the GPU.

VI. CONCLUSION

In this work, we proposed two novel parallelization meth-
ods, SM-CNA and HybridCNA, for solving the all-pairs
shortest paths (APSP) problem on multicore and GPU systems.
SM-CNA parallelizes the processing of APSP on a multicore
computer while HybridCNA utilizes both CPU and GPU to
further accelerate the processing. We developed two strategies,
H-Thread and H-Block, to efficiently schedule GPU threads.
Both strategies showed excellent performance on specific types
of graphs. Additionally, HybridCNA can be easily deployed
to a system with multiple GPU, achieving up to 2.5x speedup
compared to a single GPU. To evaluate our proposed method,
we conducted experiments on both synthetic and real-world

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, MARCH 2023 13

graphs. The results demonstrate that HybridCNA achieved up
to 8.3x speedup over the Dijkstra algorithm, outperforming
the existing methods, i.e., n-Dijkstra, ParAPSP, and SuperFW,
compared in this paper.

ACKNOWLEDGMENTS

The authors extend their appreciation to the Deputyship for
Research & Innovation, Ministry of Education in Saudi Arabia
for funding this research work through the project number
MoE-IF-UJ-22-04330351-1.

REFERENCES

[1] K. Deb, Multi-objective optimization using evolutionary algorithms,
vol. 16. John Wiley & Sons, 2001.

[2] S. Rasmussen, M. Talla, and R. Valverde, “Case study on geocoding
based scheduling optimization in supply chain operations management,”
WSEAS Transactions on Computer Research, vol. 7, pp. 29–35, 2019.

[3] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[4] E. Cantú-Paz, “A summary of research on parallel genetic algorithms,”

1995.
[5] D. B. Johnson, “Efficient algorithms for shortest paths in sparse net-

works,” Journal of the ACM (JACM), vol. 24, no. 1, pp. 1–13, 1977.
[6] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the

ACM, vol. 5, no. 6, p. 345, 1962.
[7] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[8] Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale distributed graph

computing systems: An experimental evaluation,” Proceedings of the
VLDB Endowment, vol. 8, no. 3, pp. 281–292, 2014.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[10] J. W. Kim, H. Choi, and S.-H. Bae, “Efficient parallel all-pairs shortest
paths algorithm for complex graph analysis,” in Proceedings of the 47th
International Conference on Parallel Processing Companion, p. 5, ACM,
2018.

[11] P. Sao, R. Kannan, P. Gera, and R. Vuduc, “A supernodal all-pairs short-
est path algorithm,” in Proceedings of the 25th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp. 250–261,
2020.

[12] M. Alghamdi, L. He, Y. Zhou, and J. Li, “Developing the parallelization
methods for finding the all-pairs shortest paths in distributed memory
architecture,” in 2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC), pp. 1–8, IEEE, 2019.

[13] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on gpus:
Where are the bottlenecks?,” in 2014 IEEE International Symposium
on Workload Characterization (IISWC), pp. 140–149, IEEE, 2014.

[14] T. Okuyama, F. Ino, and K. Hagihara, “A task parallel algorithm for
computing the costs of all-pairs shortest paths on the cuda-compatible
gpu,” in 2008 IEEE International Symposium on Parallel and Distributed
Processing with Applications, pp. 284–291, IEEE, 2008.

[15] A. McLaughlin and D. A. Bader, “Fast execution of simultaneous
breadth-first searches on sparse graphs,” in Parallel and Distributed
Systems (ICPADS), 2015 IEEE 21st International Conference on, pp. 9–
18, IEEE, 2015.

[16] K. Matsumoto, N. Nakasato, and S. G. Sedukhin, “Blocked united
algorithm for the all-pairs shortest paths problem on hybrid cpu-gpu
systems,” IEICE TRANSACTIONS on Information and Systems, vol. 95,
no. 12, pp. 2759–2768, 2012.

[17] M. Nakao, H. Murai, and M. Sato, “Parallelization of all-pairs-shortest-
path algorithms in unweighted graph,” in Proceedings of the Inter-
national Conference on High Performance Computing in Asia-Pacific
Region, pp. 63–72, 2020.

[18] O. Taştan, O. C. Eryüksel, and A. Temizel, “Accelerating johnson’s all-
pairs shortest paths algorithm on gpu,”

[19] M. Alghamdi, Developing the parallelization techniques for finding the
all-pairs shortest paths in graphs. PhD thesis, University of Warwick,
2020.

[20] R. E. Korf and P. Schultze, “Large-scale parallel breadth-first search,”
in AAAI, vol. 5, pp. 1380–1385, 2005.

[21] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 1–
12, 2011.

[22] J. Barnat, L. Brim, and J. Chaloupka, “Parallel breadth-first search ltl
model-checking,” in 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings., pp. 106–115, IEEE, 2003.

[23] H. Guo, L. Huang, Y. Lü, J. Ma, C. Qian, S. Ma, and Z. Wang,
“Accelerating bfs via data structure-aware prefetching on gpu,” IEEE
Access, vol. 6, pp. 60234–60248, 2018.

[24] JADE: Joint Academic Data Science Endeavour,
“https://www.arc.ox.ac.uk/jade.” Accessed: 15/08/2023.

[25] P. Holme and B. J. Kim, “P. holme and bj kim, phys. rev. e 65, 026107
(2002).,” Phys. Rev. E, vol. 65, p. 026107, 2002.

[26] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection.” http://snap.stanford.edu/data, June 2014.

[27] J. Kunegis, “Konect - the koblenz network collection,” 2013.
[28] R. A. Rossi and N. K. Ahmed, “The network data repository with

interactive graph analytics and visualization,” 2015.

Mohammed H Alghamdi has a Ph.D. in Com-
puter Science from the University of Warwick, UK.
His research interest in Distributed Systems, HPC,
Parallel Computing, Cloud Computing, and IoT.
Currently, he is working as an Assistant Professor at
the College of Computer Science and Engineering,
University of Jeddah, KSA.

Ligang He is a Reader in the Department of Com-
puter Science at the University of Warwick, UK. His
primary research interest lies in the area of parallel
and distributed computing. He has published more
than 190 papers in the area.

Shenyuan Ren received her Bachelor’s degree in
Computer Science from Sichuan University, China,
in 2014, and her PhD degree in Computer science
from the University of Warwick, UK, in 2018.
Following that, she was a postdoctoral researcher
at the University of Oxford, UK, from 2018 to
2021. She is currently a lecturer in the School of
Computer and Information Technology at Beijing
Jiaotong University, China, and also a Visiting Sci-
entist in the Clarendon Laboratory, Department of
Physics, University of Oxford, UK. Her research

interest focuses on high performance Computing, and the intersection of high
performance computing and Physics.

Mohammed Maray received the Ph.D. degree from
Warwick University, U.K. He is currently an As-
sistant Professor at King Khalid University, Saudi
Arabia, and working as an Assistant Researcher at
Petras Project 2020. His current research interests
include cloud, the IoT, fog and edge networks,
computational offloading, MEC, and MCC. He is
a member of ACM, CISSP, and Saudi Academy of
Engineering.

http://snap.stanford.edu/data

	Introduction
	Related Work
	SM-CNA
	Partitioning the Graph
	Calculating the APSP in Each Subgraph
	Aggregating the Results in Individual Subgraphs

	HybridCNA
	Processing on CPU
	Processing on GPU
	H-Thread and node-level parallelism
	H-Block and subgraph-level parallelism

	Evaluation
	Speedup of Parallelization
	Evaluating H-Thread and H-Block
	Comparing HybridCNA with SM-CNA
	Evaluating HybridCNA on a system with multiple GPUs
	Evaluating HybridCNA with Real-world Graphs
	Comparing with SuperFW

	Conclusion
	References
	Biographies
	Mohammed H Alghamdi
	Ligang He
	Shenyuan Ren
	Mohammed Maray

