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a b s t r a c t 

Traditionally, nonlinear time history analysis (NLTHA) is used to assess the performance of structures under fu- 

ture hazards which is necessary to develop effective disaster risk management strategies. However, this method 

is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale. 

Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple 

structures under different hazard scenarios. However, creating a comprehensive database for surrogate mod- 

elling at the city level presents challenges. To overcome this, the present study proposes meta databases and a 

general framework for surrogate modelling of steel structures. The dataset includes 30,000 steel moment-resisting 

frame buildings, representing low-rise, mid-rise and high-rise buildings, with criteria for connections, beams, and 

columns. Pushover analysis is performed and structural parameters are extracted, and finally, incorporating two 

different machine learning algorithms, random forest and Shapley additive explanations, sensitivity and explain- 

ability analyses of the structural parameters are performed to identify the most significant factors in designing 

steel moment resisting frames. The framework and databases can be used as a validated source of surrogate 

modelling of steel frame structures in order for disaster risk management. 
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. Introduction 

Structural engineering faces challenges in mitigating natural hazards

ike earthquakes and floods, requiring a comprehensive understanding

f building vulnerability. Assessing the resilience of individual buildings

s impractical due to the computational resources needed for continuous

nalysis. Disaster risk management requires a city-wide approach. 

For example, performance-based earthquake engineering (PBEE)

rovides a systematic probabilistic approach to characterising earth-

uakes, assessing their impact on building response, and mapping engi-

eering demand parameters to decision variables [1–3] . However, de-

pite recent advancements in finite element modelling, nonlinear time

istory analyses (NLTHAs) still impose a significant computational bur-

en. While studies such as Montuori et al. [4] and Lin and Miranda

5] proposed a simplified yet reliable approach utilising an equivalent

ingle-degree-of-freedom (SDOF) system to estimate the maximum roof

isplacement of multistorey buildings, the assessment of the exact re-

ponse of a collection of buildings at a discrete level through NLTHA

emains challenging and excessively time-consuming. Moreover, within

he framework of PBEE, there are inherent uncertainties stemming

rom modelling assumptions, material properties, section properties,

ecord-to-record variation, and other factors [6–8] . Incorporating all of

hese uncertainties in the evaluation of engineering demand parame-
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ers (EDPs) adds to the computational demands of PBEE, making it even

ore challenging to assess the exact response of buildings accurately.

herefore, there is growing interest in adopting a versatile and efficient

ramework in civil engineering and risk management for accurate build-

ng analysis. Surrogate models have gained popularity as a statistical ap-

roach, offering various algorithms and strategies. They serve as a viable

lternative to NLTHAs in probabilistic seismic risk assessment (PSRA).

urrogate models are trained using input-output parameters from simu-

ation data, efficiently capturing structural responses. By mapping struc-

ural and ground motion parameters to EDPs, they streamline the anal-

sis process without extensive NLTHA simulations for each scenario. 

. State-of-the-art on surrogate modelling in structural 

ngineering 

In recent years, structural and earthquake engineers have started

tilising surrogate modelling techniques to assess resilience and anal-

se risks associated with assets exposed to different types of natural and

ven man-made hazards. This section presents a comprehensive review

f previous studies on the use of metamodelling in the field of struc-

ural engineering. In this regard, several models have been proposed

o address a single hazard scenario, where in most cases, earthquake is

egarded as the most common natural hazard. As an example, Zhong
 December 2023 
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Table 1 

Literature review of the recent studies on surrogate modelling in the field of structural engineering. 

Study Year Case study Best Surrogate models Hazard 

Zhong et al. [9] 2022 12-storey building PLoM Earthquake 

Sudret and May [10] 2013 3-storey building Polynomial chaos expansion Earthquake 

Gidaris et al. [11] 2015 4-storey building Kriging Earthquake 

Gidaris et al. [12] 2016 4-storey building Kriging Earthquake 

Du and Padgett [13] 2020 Highway bridge PLSR-ANN Earthquake 

Vaseghiamiri et al. [14] 2020 6- and 12-storey buildings SDOF Earthquake 

Gudipati and Cha [15] 2021 6- and 4-storey buildings ANN Earthquake 

Aristizábal and Caballero [16] 2019 A 9 m embankment ANN Earthquake 

Dang-Vu et al. [17] 2021 Piloti-type low-rise building DNN Earthquake 

Cavalagli et al. [18] 2019 Church PC Earthquake 

Micheli et al. [19] 2022 40-storey building Kriging Wind 

Micheli et al. [20] 2019 39-storey building RBF Wind 

Micheli et al. [21] 2020 39-storey building AWN Wind 

Javadian et al. [22] 2018 3-storey building ANN Vehicle collision 

Zhang et al. [23] 2023 Train–bridge system AS Wheel load of train 

Zheng et al. [24] 2023 42-storey building BP-ANN Earthquake and Wind 

Xing et al. [25] 2022 A high-rise building Kriging Earthquake and Wind 

Esteghamati and Flint [26] 2021 3–6 storey buildings SVR Earthquake and Global warming 
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t al. [9] employed a surrogate model called probabilistic learning on

anifolds (PLoM) to estimate the seismic response of a 12-storey build-

ng. The surrogate model was able to incorporate factors such as ground

otion uncertainty, design variability, and modelling variability to ac-

urately account for parameters such as maximum storey drift ratio and

eak floor acceleration. Sudret and May [10] employed a polynomial

haos expansion technique to estimate seismic fragility curves for a 3-

torey building. The researchers used a surrogate model to approximate

DPs of interest and subsequently computed the corresponding struc-

ural responses under various seismic records. Gidaris et al. [11] and

idaris et al. [12] employed kriging for surrogate modelling. The for-

er tried to establish a connection between the structural response and

round motion parameters for the seismic risk assessment of a 4-storey

uilding while the latter aimed at floor isolation systems (FIS) installed

n the second floor to protect a computer server. In their study, Du

nd Padgett [13] investigated various surrogate models for the mean

esponse hypersurface and different models for correlated model errors

n the context of a typical three-span concrete-girder highway bridge in

he United States. They compared different approaches and concluded

hat partial least squares regression (PLSR) and artificial neural network

ANN) were the most effective for capturing systematic trends in the

ean response. Vaseghiamiri et al. [14] introduced a surrogate single-

egree-of-freedom (SDOF) model specifically designed for special steel

oment resisting frame (SMRF) buildings. This surrogate model offers a

eans to estimate the probability distribution of the roof drift ratio for

MRFs, providing accurate results while keeping computational costs

ow. Gudipati and Cha [15] , Aristizábal and Lopez-Caballero [16] , and

ang-Vu et al. [17] explored the use of different surrogate models and

nally came up with the ANN and deep neural network (DNN) as the

est surrogate models for their investigation, respectively. By using a

olynomial chaos (PC) based surrogate model, Cavalagli et al. [18] were

ble to monitor the structural health of the Basilica of Santa Maria degli

ngeli in Italy more efficiently and effectively. The model allowed for

eal-time or near-real-time assessments of the structural response, en-

bling early detection of potential issues or changes in the structural

ntegrity. 

In other studies, wind is considered the most dominant hazard.

icheli et al. [19] introduced a multi-surrogate model approach, which

nvolves dividing the structural system into several sub-systems. Each

ub-system is then assigned its own dedicated surrogate model, which

andles a relatively small number of inputs and outputs. Micheli et al.

20] focused on quantifying the risk associated with a 39-storey build-

ng that was equipped with damping devices. They employed fragility

unctions to assess the building’s vulnerability to different hazard lev-

ls. To efficiently estimate the responses required for the fragility func-
21
ions, they utilised a metamodel known as a radial basis function (RBF).

icheli et al. [21] investigated the application of kriging surrogate and

daptive wavelet network (AWN) models as surrogate models for a 39-

torey building equipped with semi-active friction devices under wind

xcitation. Javadian et al. [22] combined neural networks with the

hifted integration-Gauss technique to develop a surrogate model for

he collapse assessment of a steel-framed structure under vehicle im-

act loads. This integrated approach allowed for the evaluation of the

ollapse potential of the structure more efficiently. They leveraged neu-

al networks and created a powerful computational tool capable of cap-

uring the complex relationships between the structural response and

ehicle impact loads. Zhang et al. [23] conducted a comparison between

daptive sampling (AS) and one-stage sampling (OS) surrogate models

ased on Gaussian process regression (GPR). The objective was to es-

imate the maximum dynamic response of a train-bridge system. The

ndings of the study demonstrated that the AS approach outperformed

he OS approach in terms of accurately predicting the failure probability

f trains on the bridge. 

On the other hand, readers can find few studies on surrogate mod-

ls for multi-hazard scenarios. Zheng et al. [24] utilised backpropaga-

ion (BP) and ANN techniques to develop a surrogate model for tall

uildings that are subjected to the combined effects of earthquakes and

inds. The researchers considered various uncertainties, ranging from

leatory to epistemic, in the development of these surrogate models.

ing et al. [25] developed a surrogate model via kriging metamodels for

igh-rise buildings equipped with different outrigger systems exposed to

ulti-hazard scenarios of earthquake and wind and the metamodel was

hen used to capture the fragility parameters of buildings. Esteghamati

nd Flint [26] focused on 720 mid-rise concrete office buildings in the

SA. They aimed to assess the seismic resiliency and seismic-induced

mbodied carbon footprint of these buildings. To accomplish this, the

esearchers explored the use of five different surrogate models: multi-

le regression, random forest, extreme gradient boosting, support vector

achine, and k-nearest neighbours. Table 1 , tabulates the recent studies

n surrogate modelling in civil engineering practices. 

The current research was motivated by several factors. Firstly, it was

bserved from the existing literature that determining the input param-

ters and selecting the data points for constructing a surrogate model,

lso known as the design of experiments (DOE) or sampling, is a cru-

ial step. The accuracy and precision of the surrogate model depend on

he number of samples used. However, the process of evaluating these

ata points involves running expensive simulations, resulting in a sig-

ificant computational burden. To address this challenge, appropriate

ampling strategies are needed to maintain the quality of the surrogate

odel while minimizing the sampling cost [27] . In this study, the au-
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Fig. 1. Flowchart of methodology for generating meta databases and sensitivity analysis. 
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hors aimed to develop meta databases for surrogate models of special

teel moment resisting frames (SMRFs) that could be applied to various

egions with minimal modifications. Instead of designing a large number

f SMRFs, which would require extensive computational resources, or

elying on overly simplified representative models, this paper proposes a

rade-off approach. The framework established preliminary criteria for

esigning buildings and then generated the DOE randomly on a large

cale. This approach allowed for the construction of surrogate models

ithout incurring excessive computational costs. 

Another motivation for this research was the need to identify the im-

ortant factors and eliminate redundant ones, particularly when deal-

ng with a large feature set. Since the selection of input parameters sig-

ificantly affects the accuracy and reliability of surrogate models, it is

rucial to determine which parameters have a significant impact on the

onlinear response of the meta database. To address this issue, machine-

earning-based sensitivity analysis techniques were employed. By apply-

ng these methods, the influence of different random parameters on the

esponse of the meta database is assessed. This analysis allowed them to

dentify the key factors that played a vital role in shaping the nonlinear

esponse behaviour. 

The third motivation for this research was to move away from con-

entional deterministic assumptions for material, geometry, and capac-

ty parameters in generating the meta database of SMRFs. Instead, al-

ost all of the crucial parameters are considered random variables. This

pproach aimed to reduce uncertainties associated with the properties

f buildings and enhance the robustness and reliability of the final sur-

ogate model for end-users. By treating these parameters as random

ariables, the inherent variability and uncertainty present in real-world

tructural systems were adequately captured. This approach acknowl-

dges the fact that material properties, geometric dimensions, and ca-

acity parameters can exhibit significant variations in practice. By in-

orporating these random parameters into the meta database generation

rocess, the resulting surrogate model will become more representative

f the actual structural behaviour and can provide more reliable predic-

ions. 

Lastly, the inclusion of low-rise, mid-rise, and high-rise buildings

n the meta database allows for the exploration of the full spectrum

f structural responses, from simpler systems to more complex and

all structures. This not only enhances the versatility of the surrogate

odel but also improves its applicability to a wide range of practical

cenarios. 
i  

22
The research presented in this paper provides a valuable frame-

ork and workflow for developing suitable surrogate models for SMRFs.

ig. 1 illustrates the workflow that was followed throughout this study.

t serves as a template that can be adapted and applied to other types of

tructures and different locations of interest. 

The first step is focused on the methodology employed to gener-

te the meta database. This section describes the process of creating

 comprehensive and diverse set of structural models, considering var-

ous random parameters to capture the uncertainty in the properties of

he SMRFs. The meta database serves as the foundation for the subse-

uent analyses and surrogate model development. The second step tries

o show the meta databases are validated and reliable enough to be used

n further steps. In steps 3 and 4, the pushover analysis results and se-

ected pushover parameters are discussed. These parameters are crucial

n characterizing the nonlinear response behaviour of the SMRFs and

re used as inputs in the sensitivity analysis conducted in the study.

he pushover analysis provides valuable insights into the structural re-

ponse under lateral loads and helps identify key performance indica-

ors for further investigation. The final step presents the results of the

ensitivity analysis. This analysis aims to identify the most influential

arameters that govern the nonlinear response of the SMRFs. By em-

loying machine-learning-based sensitivity analysis techniques includ-

ng Random Forest (RF) and SHAP (SHapely Additive exPlanations), the

tudy determines the relative importance of different random parame-

ers in the meta database. This information is crucial for understanding

he key factors that contribute to the variability and uncertainty in the

tructural response. Finally, in Section 4 , the research findings are dis-

ussed, and conclusions are drawn based on the results obtained. This

aper aligns with two United Nations Sustainable Development Goals

UNSDGs), namely Goal 9 and Goal 11. These goals are set to promote

he establishment of resilient infrastructures and to enhance the safety,

esilience, and sustainability of our cities and settlements. 

. Motivation for selecting SMRF and RBS connection 

Experimental evidence has provided confirmation that SMRFs ex-

ibit exceptional ductility as lateral load resisting systems when appro-

riately detailed [28] . To achieve this desirable ductile behaviour, SM-

Fs are typically designed to concentrate yielding in plastic hinges lo-

ated at the end of the beams throughout the entire height of the build-

ng [29] . This design approach aims to prevent plastic hinging of the
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Table 2 

Member sizes for beams and columns for reference 2-storey building. 

Storey Beam Size Exterior Column Size Interior Column Size 

1 W30 × 132 W24 × 131 W24 × 162 

2 W16 × 31 W24 × 131 W24 × 162 

Table 3 

Member sizes for beams and columns for the 8-storey reference building. 

Storey Beam Size Exterior Column Size Interior Column Size 

1 W30 × 108 W24 × 131 W24 × 162 

2 W30 × 116 W24 × 131 W24 × 162 

3 W30 × 116 W24 × 131 W24 × 162 

4 W27 × 94 W24 × 131 W24 × 162 

5 W27 × 94 W24 × 131 W24 × 131 

6 W24 × 84 W24 × 131 W24 × 131 

7 W24 × 84 W24 × 94 W24 × 94 

8 W21 × 68 W24 × 94 W24 × 94 

Table 4 

Member sizes for beams and columns for the 20-storey reference building. 

Storey Beam Size Exterior Column Size Interior Column Size 

1 W33 × 169 W14 × 426 W24 × 335 

2 W33 × 169 W14 × 426 W24 × 335 

3 W33 × 169 W14 × 426 W24 × 335 

4 W33 × 169 W14 × 426 W24 × 335 

5 W33 × 169 W14 × 398 W24 × 335 

6 W33 × 169 W14 × 398 W24 × 335 

7 W33 × 169 W14 × 370 W24 × 335 

8 W33 × 169 W14 × 370 W24 × 335 

9 W33 × 141 W14 × 311 W24 × 279 

10 W33 × 141 W14 × 311 W24 × 279 

11 W33 × 141 W14 × 283 W24 × 250 

12 W33 × 141 W14 × 283 W24 × 250 

13 W33 × 141 W14 × 233 W24 × 250 

14 W33 × 141 W14 × 233 W24 × 250 

15 W30 × 108 W14 × 159 W24 × 162 

16 W30 × 108 W14 × 159 W24 × 162 

17 W30 × 108 W14 × 132 W24 × 162 

18 W30 × 108 W14 × 132 W24 × 162 

19 W24 × 62 W14 × 132 W24 × 103 

20 W24 × 62 W14 × 132 W24 × 103 

4
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olumns, which could result in an undesirable soft storey. The remain-

ng components of the SMRF are designed to remain elastic, either by

tilising the capacity design criteria or by employing the over-strength

eismic load. By adopting these measures, stable plastification can be

chieved without compromising the structural integrity, thus minimis-

ng the risk of collapse [28] . 

However, past seismic events such as the 1994 Northridge and 1995

obe Earthquakes revealed unexpected brittle fractures occurring at the

elded beam-to-column connections in SMRFs [ 30 , 31 ]. These fractures

ed to significant repair costs, amounting to a combined total of $280

illion [ 32 , 33 ], in order to rectify the damage inflicted upon the steel

rames [34] . Consequently, in the aftermath of these earthquakes, the

educed beam section (RBS) connection emerged as a promising solu-

ion and was swiftly incorporated into American and European design

tandards [35] . The RBS connection is characterised by a reduction in

he beam section, allowing for the formation of inelastic deformations

n the reduced section. This connection type offers notable advantages,

ncluding increased rotation capacity and enhanced energy absorption

apacity when subjected to seismic actions [ 36 , 37 ]. 

Moreover, prior research conducted by Guan et al. [38] has sug-

ested that in terms of the archetype concept for seismic performance

f building structures, SMRFs with RBS connections are allowed with-

ut any limitations in ASCE 7–16 [39] for buildings that exceed a height

f 160 ft (48.77 m) in regions with high seismic activity. Another ben-

fit of SMRFs with RBS connections is that they eliminate the need for

iagonal braces, resulting in a simplified structural model in software

nd reduced forces on foundations compared to other structural sys-

ems. Consequently, this leads to more cost-effective sub-structure sys-

ems [40] . Due to these advantages, SMRFs can be extensively utilised in

he construction of low- and mid-rise residential and commercial build-

ngs, especially when software simulations require the analysis of nu-

erous building cases to systematically capture variations in key struc-

ural characteristics. As a result, considering the aforementioned advan-

ageous characteristics of SMRFs and RBS connections, this study chose

hese as the candidates for generating a meta database for buildings. 

. Generating meta databases 

.1. Description of reference buildings 

The study introduces a framework for generating a comprehensive

atabase of SMRFs, addressing the challenge of a limited number of

amples. Three prototype buildings represent different types of SMRFs,

erving as reference structures for database generation. The first 2-storey

MRF captures low-rise characteristics, the second 8-storey SMRF fo-

uses on mid-rise design and performance, and the third 20-storey SMRF

eflects taller structures. 

They are all located in Los Angeles Downtown (LADT), USA. The

uildings are obtained from federal emergency management agency

uidelines for quantification of building seismic performance factors

FEMA P695) [41] and their designs are in line with the American So-

iety of Civil Engineers (ASCE 7–16) [39] , and the seismic provisions of

merican Institute of Steel Construction (AISC) (AISC 2010) [42] , with

eismic design category of 𝐷𝑚𝑎𝑥 . The buildings mainly vary only in their

eight and have natural periods ( 𝑇1 ) of 0.92, 2.17, and 4.01 s with to-

al heights of 8.40 m, 31.80 m, and 35 m for the 2-,8-, and 20-storey

MRFs, respectively. The extracted 𝑇1 values are very close to those of

he reference building specified by Table 6 - 4 of FEMA-P695 (0.91, 2.29,

nd 4.47 s for 2-, 8-, and 20-storey buildings, respectively). Also, for all

MRFs, the first storey’s height is 4.5 m and other stories have a typical

eight of 3.90 m. Furthermore, the gravity loads include a dead load

f 4.78 kN/m2 and a live load of 2.38 kN/m2 applied to all floors. The

ladding load is applied as a perimeter load of 1.20 kN/m2 . Also, the size

f beams and columns for three buildings are those in Tables 2–4 . Fig. 2

llustrates the elevation and the plan view of the archetype structures.

ther characteristics of the buildings can be found in [43] . 
23
.2. Modelling reference buildings 

The finite element models of the reference buildings are developed

n the open-source software OpenSees [44] as per state-of-the-art con-

iderations. The beam-column connections are considered RBS connec-

ions in accordance with the recommendation of AISC-341–16 [42] and

ISC-358–16 [37] . In OpenSees, to capture hinge properties of RBS,

niaxialMaterial Bilin is borrowed. As per Fig. 3 , the beam and col-

mn elements are modelled as linear elastic elements and the hys-

eretic behaviour of the beam-column connections is modelled using

barra-Medina-Krawinkler (IMK) bilinear model using nonlinear rota-

ional springs provided at the ends of the elements [45] . The cyclic

egradation in flexural strength and stiffness of steel components under

yclic loading can be effectively captured by the IMK bilinear model.

o confine the modified IMK model, a backbone curve is introduced,

s shown in Fig. 4 (a). Fig. 4 (b) presents the initial backbone curve in

 simplified manner by eliminating the cyclic phase. The characteris-

ics of this curve are defined by a set of rules that govern the hysteretic

ehaviour and deterioration rate. Within this figure, the effective yield

trength and rotation are denoted by 𝑀𝑦 and 𝜃𝑦 , respectively, while the

ffective stiffness is represented by 𝐾𝑒 = 𝑀𝑦 ∕𝜃𝑦 . For monotonic loading,

he capping strength and its associated rotation are illustrated by 𝑀𝑐 and

𝑐 , respectively. The pre-capping rotation capacity and post-capping ro-

ation capacity are denoted by 𝜃𝑝 and 𝜃𝑝𝑐 , respectively. Furthermore,
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Fig. 2. Plan and elevation views for reference building of 2-storey, 8-storey, and 20-storey buildings. 

Fig. 3. Details of modelling in OpenSees. 
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he residual strength and ultimate rotation capacity are represented by

𝑟 and 𝜃𝑢 , respectively. The rate of cyclic deterioration is taken into ac-

ount through the parameter Λ. In this study, to determine these param-

ters for different elements such as beams and columns, regression equa-

ions calibrated on over 300 experiments on steel wide flange beams,

s revealed by ASCE/SEI 41–17 [46] and Lignos et al. [ 47 , 48 , 49 ], are

tilised. The panel zones are simulated as a hinge parallelogram assem-

ly connected by rigid elements, having a nonlinear spring in one of the

orners to capture shear distortion [50] . Finally, to consider P- Δ effects,

 leaning column is modelled with Elastic Beam-Column Element and
24
oaded with half of the plan-building’s gravity on each floor, connected

o the SMRFs via Truss elements [51] . Table 5 . shows, also, the first

hree modes’ participation factors and natural periods of the SMRFs.

n order to validate the accuracy of the models created in OpenSees,

he pushover curves of the reference buildings are compared with those

rovided by the NEHRP guidelines [41] . According to [41] , a pushover

nalysis is performed for each archetype, utilising a lateral load distribu-

ion that aligns with the fundamental mode shape and mass distribution

f the structure. The comparison is made in terms of the ratio of base

hear to the total weight of the building (y-axis) against the drift ratio
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Fig. 4. Moment-rotation relationship for plastic hinges of moment frame: (a) with cyclic phase [adapted from [47] ];(b) without cyclic phase. 

Fig.5. Comparison of pushover curves extracted by OpenSees with NEHRP (2000). 

Table 5 

SMRFs’ modal properties of reference buildings. 

2-storey 8-storey 20-storey 

First period ( sec ) 0.9161 2.17048 4.00521 

Second period ( sec ) 0.2179 0.76007 1.452728 

Third period ( sec ) 0.1477 0.41665 0.836197 

First mode mass participation 94.57 81.35 80.56 

Second mode mass participation 100 93.75 92.74 

Third mode mass participation 100 97.34 96.56 
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f the building (x-axis). Fig. 5 illustrates the comparison results, demon-

trating a close agreement between the pushover curves obtained from

penSees and the ones extracted from [41] for both the 2-storey and

0-storey buildings. This finding indicates that the models developed in

penSees accurately capture the behaviour of the reference buildings as

epicted by [41] . However, it should be noted that the NEHRP guideline

nly provides pushover curves for 2-, 4-, and 20-storey buildings. As a

esult, the authors were unable to directly compare the pushover curves

or the 8-storey reference building. Nonetheless, the good agreement ob-

erved for the 2-storey and 20-storey buildings enhances the confidence

n the accuracy of the OpenSees models and their ability to simulate the

tructural response of the reference buildings. 
25
.3. Types of random and deterministic parameters 

To generate meta databases for steel frame buildings, the first step

nvolves defining different parameters for the sampling process. These

arameters can be categorised into three types: random, deterministic,

nd casual random parameters. 

Random parameters: they include beam-sections and column-

ections; yield strength of steel (𝐹𝑦 ) ; elastic module ( 𝐸𝑠 ) ; height of typ-

cal stories (𝐻𝑠𝑡𝑜𝑟𝑦 (𝑡𝑦𝑝𝑖𝑐𝑎𝑙 ) ) ; mass value (𝑀𝑎𝑠𝑠 ) ; ratio of length of bays

o the height of first storey ( 𝐿𝑏𝑎𝑦 

𝐻𝑠𝑡𝑜𝑟𝑦 
) . Table 6 provides the nominal val-

es and distribution functions for these random parameters. It should

e noted that for 𝐻𝑠𝑡𝑜𝑟𝑦 , its upper and lower bounds are selected based

n engineering judgment. 

Deterministic Parameters: Deterministic parameters consist of the

umber of stories and the number of bays. These parameters remain

onstant during the sampling process for each reference building. 

Casual Random Parameters: Casual random parameters are those

hat change alongside random parameters. They include the height of

he first storey (𝐻𝑓𝑖𝑟𝑠𝑡 − 𝑠𝑡𝑜𝑟𝑦 ) ; pre-peak rotation (𝜃𝑝 ) ; post-peak rotation

𝜃𝑝𝑐 ) ; ratio of elastic stiffness to the pre-peak stiffness (𝐴𝑠𝑟𝑎𝑡𝑖𝑜 ) based on

he Modified Ibarra-Medina-Krawinkler (IMK) hysteretic model shown

n Fig. 4 (b); flange width (𝑏𝑓 ) ; flange thickness (𝑡𝑓 ) ; web height (ℎ𝑤 ) ;
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Table 6 

Random parameters for the sampling process. 

Random 

Variable 

Distribution Mean/Nominal or lower and upper 

bond 

Coefficient 

of Variation 

Reference 

𝑀𝑎𝑠𝑠 Normal 1.05 0.10 Fayaz and Zareian [52] 

𝐹𝑦 Log-normal 1.18 0.13 Ellingwood et al. [53] 

𝐸𝑠 Log-normal 1.18 0.13 Ellingwood et al. [53] 
𝐿𝑏𝑎𝑦 

𝐻𝑠𝑡𝑜𝑟𝑦 

Uniform Lower bound = 1.25 

Upper bound = 2 
— Vaseghiamiri et al. [14] 

𝐻𝑠𝑡𝑜𝑟𝑦 Uniform Lower bound = 0.75 × nominal 

Upper bound = 1.25 × nominal 

— Engineering judgment 

Table 7 

Geometric, material, and spring parameters for 2-storey reference buildings. 

Input Parameters 

Geometric Parameters Material Parameters Spring Parameters 

𝐻𝑠𝑡𝑜𝑟𝑦 𝐸𝑠 𝜃𝑝 _𝐶𝑜𝑙𝐸𝑥 1 , 𝜃𝑝 _𝐶𝑜𝑙𝐸𝑥 2 
𝐿𝑏𝑎𝑦 

𝐻𝑠𝑡𝑜𝑟𝑦 

𝐹𝑦 𝜃𝑝𝑐 _𝐶𝑜𝑙𝐸𝑥 1 , 𝜃𝑝𝑐 _𝐶𝑜𝑙𝐸𝑥 2 

𝐶 𝑜𝑙𝐸𝑥 1 , 𝐶 𝑜𝑙𝐸𝑥 2 𝑀𝑎𝑠𝑠 𝐴𝑠𝑟𝑎𝑡𝑖𝑜 _𝐶𝑜𝑙𝐸𝑥 1 , 𝐴𝑠𝑟𝑎𝑡𝑖𝑜 _𝐶𝑜𝑙𝐸𝑥 2 
𝐴𝑐 𝑜𝑙𝐸𝑥 1 , 𝐴𝑐 𝑜𝑙𝐸𝑥 2 – 𝜃𝑝 _𝐶𝑜𝑙𝐼𝑛𝑡 1 , 𝜃𝑝 _𝐶𝑜𝑙𝐼𝑛𝑡 2 
𝐼 𝑐𝑜𝑙𝐸𝑥 1 , 𝐼 𝑐𝑜𝑙𝐸𝑥 2 – 𝜃𝑝𝑐 _𝐶𝑜𝑙𝐼𝑛𝑡 1 , 𝜃𝑝𝑐 _𝐶𝑜𝑙𝐼𝑛𝑡 2 
𝐶 𝑜𝑙𝐼𝑛𝑡 1 , 𝐶 𝑜𝑙𝐼𝑛𝑡 2 – 𝐴𝑠𝑟𝑎𝑡𝑖𝑜 _𝐶𝑜𝑙𝐼𝑛𝑡 1 , 𝐴𝑠𝑟𝑎𝑡𝑖𝑜 _𝐶𝑜𝑙𝐼𝑛𝑡 2 
𝐴𝑐 𝑜𝑙𝐼𝑛𝑡 1 , 𝐴𝑐 𝑜𝑙𝐼𝑛𝑡 2 – 𝜃𝑝 _𝐵𝑒𝑎𝑚1 , 𝜃𝑝 _𝐵𝑒𝑎𝑚2 
𝐼 𝑐𝑜𝑙𝐼𝑛𝑡 1 , 𝐼 𝑐𝑜𝑙𝐼𝑛𝑡 2 – 𝜃𝑝𝑐 _𝐵𝑒𝑎𝑚1 , 𝜃𝑝𝑐 _𝐵𝑒𝑎𝑚2 
𝐵 𝑒𝑎𝑚1 , 𝐵 𝑒𝑎𝑚2 – 𝐴𝑠𝑟𝑎𝑡𝑖𝑜 _𝐵𝑒𝑎𝑚1 , 𝐴𝑠𝑟𝑎𝑡𝑖𝑜 _𝐵𝑒𝑎𝑚2 
𝐴𝑏𝑒𝑎𝑚1 , 𝐴𝑏𝑒𝑎𝑚2 – –

𝐼 𝑏𝑒𝑎𝑚1 , 𝐼 𝑏𝑒𝑎𝑚2 – –

Number of stories – –

Number of bays – –
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eb thickness (𝑡𝑤 ) ; the moment of inertia (𝐼𝑠𝑒𝑐 ) ; plastic section module

𝑍𝑠𝑒𝑐 ) ; cross sectional area (𝐴𝑠𝑒𝑐 ) . These parameters can be categorised

nto geometric, material, and spring parameters. By modifying the main

andom parameters, new buildings can be generated. When the main

andom parameters change, the associated cross-sectional properties

nd hysteretic parameters of beams or columns are updated accordingly,

esulting in new parameters known as casual random parameters. These

asual random parameters implicitly change throughout the process and

an be considered as the children of the main random parameters. 

To illustrate the parameters involved in generating random build-

ngs, Table 7 provides an example for 2-storey buildings. In the case of

andom buildings, it is assumed that for all three types of buildings (low-

ise, mid-rise, and high-rise), the exterior columns at each storey level

ave the same cross-sectional dimensions, as the interior columns. Sim-

larly, all the beams have the same properties at each storey level. For

id-rise and high-rise buildings, the columns and beams are grouped

very two stories. Therefore, " 𝐶𝑜𝑙𝐸𝑥 1 " refers to the exterior columns at

he first storey, while " 𝐶𝑜𝑙𝐼𝑛𝑡 1 " represents the interior columns at the

ame level. 

.4. Python-based module for generating random buildings 

After defining random and deterministic parameters, a Python-based

odule is developed to generate meta databases from the three refer-

nce buildings. These datasets will be used for developing surrogate

odels. The module is designed to generate random buildings that sat-

sfy specific criteria. Two main criteria are considered for generating

teel moment resisting frame (SMRF) buildings, ensuring that the final

uildings are highly validated for any usage in surrogate modelling. The

rst criterion is the resiliency criteria, which are as follows: 

1) (
∑

𝑀𝑝𝑐 ∑
𝑀𝑝𝑏 

) ≥ 1 : 
∑

𝑀𝑝𝑐 the sum of the moments in the column above

nd below the joint at the intersection of the beam and column center-

ines and 
∑

𝑀𝑝𝑏 the sum of moments in the beams at the intersection of

he beam and column centerlines). According to AISC 341 Chapter E3

42] , the column-beam moment ratio should be greater than 1.0 to meet
26
he strong-column-weak-beam (SCWB) design criterion. Therefore, this

riterion must be satisfied at each intersection of beams and columns in

he buildings during the generation process. 

2) 𝐼𝑐𝑜𝑙,𝑖𝑛𝑡 ≥ 𝐼𝑐𝑜𝑙,𝑒𝑥𝑡 : It is a common assumption in building design

hat the interior columns should have greater strength than the exte-

ior columns [38] . 

3) 𝐼𝑏𝑒𝑎𝑚,𝑖𝑛𝑡 = 𝐼𝑏𝑒𝑎𝑚,𝑒𝑥𝑡 : FEMA-P695 [41] recommends that interior and

xterior beams at each storey level can have the same section size. 

4) 𝐼𝑏𝑒𝑎𝑚,𝑏𝑜𝑡 ≥ 𝐼𝑏𝑒𝑎𝑚,𝑡𝑜𝑝 and 5) 𝐼𝑐𝑜𝑙𝑢𝑚𝑛,𝑏𝑜𝑡 ≥ 𝐼𝑐𝑜𝑙𝑢𝑚𝑛,𝑡𝑜𝑝 : According to the

EMA-P695 [41] guidelines, the sizes of beams and columns in the lower

tories should not be smaller than those in the upper stories. This ensures

hat the structural members have sufficient strength and capacity as the

uilding progresses vertically. 

6) 𝐼𝑐𝑜𝑙,𝑖𝑛𝑡 = 𝐼𝑐𝑜𝑙,𝑖𝑛𝑡 and 𝐼𝑐𝑜𝑙,𝑒𝑥𝑡 = 𝐼𝑐𝑜𝑙,𝑒𝑥𝑡 : In the design of steel frame

uildings, it is common practice to adopt the same size for two exte-

ior columns at each storey level, as well as for two interior columns

t each storey level. Similarly, in mid-rise and high-rise buildings, the

ame member size is typically used in every two adjacent stories. Ad-

itionally, it is common to have deeper columns in the lower stories

o accommodate splice connections, while the beams at the lower floor

evels are typically deeper and stronger compared to the beams in the

pper stories. These design considerations ensure proper structural in-

egrity and load distribution throughout the building [ 39 , 42 , 29 ]. 

The second set of criteria, known as the Practically criteria , further

efines the preliminary design of the SMRF buildings by imposing addi-

ional constraints on the beam and column section sizes. These criteria

re as follows: 

The ratio of the plastic section modulus of the beam ( 𝑍𝑏𝑒𝑎𝑚 ) to the

lastic section modulus of the interior column ( 𝑍𝑐𝑜𝑙,𝑖𝑛𝑡 ) should be be-

ween 0.45 and 0.8 [ 38 , 29 ]. 

The ratio of the moment of inertia of the exterior column ( 𝐼𝑐𝑜𝑙,𝑒𝑥𝑡 ) to

he moment of inertia of the interior column ( 𝐼𝑐𝑜𝑙,𝑖𝑛𝑡 ) should be between

.6 and 0.8 [54] . 

.5. Workflow of generating random SMRFs 

Fig. 6 illustrates the workflow for generating random SMRFs based

n the reference buildings. The process involves several steps to ensure

he generation of structurally valid and compliant buildings. The work-

ow can be summarised as follows: 

Selection of reference buildings: The appropriate reference buildings

2-storey, 8-storey, and 20-storey) are chosen as representatives of low-

ise, mid-rise, and high-rise structures, respectively. 

Initialization of beam and column sizes: The sizes of beams and

olumns are initially assigned based on the selected reference buildings.

Checking and verification of sizes: The sizes of beams and columns,

s well as their connections, are checked to ensure they meet the rel-

vant strength requirements and satisfy preliminary design criteria. If

ny discrepancies or issues are found, the member sizes are revised ac-

ordingly. 

Combination with random parameters: The final columns and beams,

hich have been verified and adjusted, are combined with random pa-

ameters. These random parameters may include variations in material

roperties, geometric dimensions, or other relevant factors. 
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Fig. 6. Framework for generating random SMRF samples from reference buildings. 
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Fig. 7. Indexing columns and beams for a 2-storey reference building. 
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Creation of the final random SMRF building: By combining the re-

ised member sizes with the random parameters, the final random SMRF

uilding is generated. This building is a representative example of a

tructurally valid SMRF that satisfies the defined criteria and can be

sed for further analysis and surrogate modelling. 

Each of these steps plays a crucial role in ensuring the generation of

andom SMRF buildings that are both valid and suitable for subsequent

nalyses and modelling. The details of each step are elaborated further

n the following sections of the study. 

Steps 1 and 2: To facilitate the selection of SMRF beam and column

izes, an electronic database of wide flange sections provided by the

merican Institute of Steel Construction (AISC) is utilised. This database

ontains a wide range of section sizes for beams and columns. In this

tudy, the section sizes for beams and columns are chosen to be one or-

er higher and lower than those of the reference building. For example,

f the reference building requires a minimum beam size of W21 ×68 and

 maximum beam size of W30 ×108 (as shown in Table 2 ), the selected

eams for random buildings will fall within the range of W18 to W33

ccording to the AISC database. Therefore, only beam sections from the

ISC database within this range are considered as potential options for

he SMRF column or beam sections. Furthermore, the adoption of RBS

onnections imposes additional requirements on the beam and column

ections. Specifically, the section depth, weight, and flange thickness

f beams must be less than W36, 300 lb/ft, and 1.75 inches, respec-

ively. The column section depths must also be less than W36. Based on

hese requirements, the original database is filtered to create two sub-

atabases: one for beam sections and another for column sections. The

ection sizes in each sub-database are listed in ascending order of the

oment of inertia (𝐼𝑠𝑒𝑐 ) and the plastic section modulus (𝑍𝑠𝑒𝑐 ) . An index

s assigned to each section, starting from zero and incremented by one,

o denote the order of section sizes (with zero representing the weakest

ection). If two sections have the same 𝐼𝑠𝑒𝑐 , the section with the mini-

um 𝑍𝑠𝑒𝑐 is placed first in the sub-database. During the generation of

andom buildings, the algorithm selects a random index from the sub-

atabase for each beam and column at each storey level. This ensures

hat the selected beam and column sizes satisfy the criteria outlined by

he AISC database and the RBS connection requirements. 

Step 3: At this step, a sub-algorithm is employed to optimize the

ember sizes in order to meet the relevant preliminary requirements,

ncluding the resiliency and practical criteria outlined in Fig. 6 . Two

mportant coefficients, namely the moment of inertia ratio between the
 t  

27
xterior and interior columns and the plastic section modulus ratio be-

ween the beam and interior column, are defined as the practical criteria.

hese criteria are based on a review of industry-generated SMRF designs

nd are intended to ensure appropriate proportions and compatibility

etween beam and column sizes. The typical range for ( 𝐼𝑐𝑜𝑙,𝑒𝑥𝑡 
𝐼𝑐𝑜𝑙,𝑖𝑛𝑡 

) is 0.6 to

.8 [54] , while the range for ( 𝑍𝑏𝑒𝑎𝑚 

𝑍𝑐𝑜𝑙,𝑖𝑛𝑡 
) varies depending on the building

eight. For buildings with less than 10 stories, the typical range is 0.7 to

.8, while taller buildings typically have a range of 0.45 to 0.7 [ 38 , 29 ].

hese criteria help to ensure structural stability and performance in the

esigned SMRF buildings. In addition to the practical criteria, all the

esiliency criteria mentioned earlier must be satisfied. If any of the cri-

eria are not met at each storey level or each node (intersection of beams

nd columns), the algorithm will restart by randomly selecting another

ndex for the beams and columns until all the resiliency and practical

riteria are fulfilled. 

Step 4: At this stage, the algorithm has successfully generated mem-

er sizes for the SMRF that satisfy all design requirements. For exam-

le, in Fig. 7 , the left exterior column at the first storey ( 𝐸𝐶1_1 ), shown

ith solid red colour, is assigned with the number 0. Accordingly, the

ight exterior column ( 𝐸𝐶2_1 ) should also be assigned the same num-

er to maintain symmetry. To ensure a reasonable design, the left in-

erior column ( 𝐼𝐶1_1 ), shown with red colour, must have an equal or

igher number than 𝐸𝐶1_1 and 𝐸𝐶2_1 to indicate a size that is equal

r stronger. Similarly, for the second storey, the left exterior column

 𝐸𝐶1_2 ) and the right exterior column ( 𝐸𝐶2_2 ) should have the same or

tronger sizes compared to 𝐸𝐶1_1 and 𝐸𝐶2_1 , respectively. In this case,

hey are assigned the number 2 to indicate their size. This numbering
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Fig. 8. Exemplifying the first sample SMRF. 
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cheme ensures that the member sizes are properly assigned and follow

 logical progression within the SMRF building. It allows for consistency

nd maintains the required design strength across different stories and

olumns. 

Step 5: Once the sizes of beams and columns have been finalised, the

ext step is to generate random parameters as listed in Table 6 . These

andom parameters will be generated randomly and combined with the

ection sizes of beams and columns to construct 2-dimensional frame

tructures. In Fig. 8 , the generated random parameters are applied to the

rame structure, resulting in the complete representation of the SMRF

uilding. This includes the dimensions, connections, and other relevant

haracteristics of the beams and columns in the structure. 

To ascertain the beam and column sizes an electronic database from

ISC is utilised instead of a probability density. The sizes of beam and

olumn sections for 10,000 buildings are randomly selected from the

ISC database, with the sizes being one order higher and lower than

hose of the reference building designed by FEMA-P 695 and other

uidelines. Then, the original database is filtered to create two sub-

atabases: one for beam sections and another for column sections. The

ection sizes in each sub-database are listed in ascending order based

n the moment of inertia (𝐼𝑠𝑒𝑐 ) and the plastic section modulus (𝑍𝑠𝑒𝑐 ) .
he framework will assign an index to each section, starting from zero

nd incrementing by one, to indicate the order of section sizes. Next, the

lgorithm selects a random index from the sub-database for each beam

nd column at each storey level. This ensures that the chosen beam and

olumn sizes meet the criteria specified by the AISC database and the

equirements of RBS connections. 

If we envisage the entire process as dicing a dice, each time a dice is

olled, a column section and beam section are selected from the database
Fig. 9. The process of generating random buildings from AI

28
ist of AISC. Then, their associated casual random parameters ( 𝐼𝑠𝑒𝑐 ; 𝑍𝑠𝑒𝑐 ;

𝑠𝑒𝑐 ) are checked in a loop to determine if they meet all the resiliency

nd practical criteria. If they do, the selected column and beam sec-

ions are finalised, and a new SMRF is generated, as shown in Fig. 9 .

his process is repeated to generate 10,000 buildings for each reference

uilding. 

The same procedure as described earlier is followed for generating

andom SMRF buildings for 8-storey and 20-storey structures. The main

ifference is that in these cases, the columns and beams are the same

or every two-storey level, whereas, in the 2-storey building, they may

ary for each storey level. Similarly, the sub-databases of column and

eam sizes are selected based on the corresponding reference buildings.

his ensures that the generated random buildings for each structure

ype adhere to the specific size ranges and design requirements. The fi-

al databases for the 2-storey, 8-storey, and 20-storey buildings, which

nclude the selected column and beam sizes along with the associated

andom parameters, can be accessed here for further analysis and uti-

ization. 

. Validation of database 

After generating sample buildings and a meta database for each ref-

rence building, to ensure the suitability of the created database for

eveloping surrogate models, several parameters are evaluated beyond

esilience and practicality criteria, aiming to maximize the validation

f the database. To adhere to page limits, only the figures and tables

ssociated with 2-storey building are presented here; however, the dis-

ussion of the additional scenarios (8-storey and 20-storey buildings)

s included as usual. Figs. 10 and 11 , as the representative figures, dis-
SC database by estimating casual random parameters. 
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Fig. 10. Distribution of 𝐼33 for the database of 2-storey reference building, considering various ratios: a) EC1_1/ IC1_1; b) EC1_2/ IC1_2; c) IC1_1/ IC1_2; d) EC1_1/ 

EC1_2; e) EB1_1/EB1_2;f) EB1_1/(EC1_1 + EC1_2); g) EB1_2/ EC1_2. 
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lay histograms depicting different ratios of 𝐼33 and 𝑍33 for 2-storey

eference buildings. The results in Fig. 10 (a) demonstrate that the ra-

io of 𝐼33 for 𝐸𝐶1_1 to 𝐼𝐶1_1 falls between 0.6 and 0.8, satisfying the

ractical criteria. A similar observation can be made for Fig. 10 (b),

hich shows the ratio of ( 𝐼33 𝐸𝐶1_2 
𝐼33 𝐼𝐶1_2 

) . Both practical criteria are well met

or the 2-storey reference building. Furthermore, Fig. 10 (c) illustrates
29
hat the internal column at the first storey, 𝐼𝐶1_1 , is stronger than the

ne at the second storey, 𝐼𝐶1_2 . However, for most sample buildings in

his database, there is not a significant difference in size between the

olumns at the first and second stories, confirming that the final build-

ngs are not overdesigned. This finding is also supported by the results

f Fig. 10 (d) for external columns at the first and second stories. 
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Fig. 11. Distribution of 𝑍33 for the database of 2-storey reference building, considering various ratios: a) EC1_1/ IC1_1; b) EC1_2/ IC1_2; c) IC1_1/ IC1_2; d) EC1_1/ 

EC1_2; e) EB1_1/EB1_2; f) EB1_1/(EC1_1 + EC1_2); g) EB1_2/ EC1_2. 
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Regarding the comparison of 𝐼33 ratios for beams, Fig. 10 (e) clearly

hows that the dimensions of the beams in the first storey are equal to

r greater than those in the second storey. For the majority of sample

uildings, the beams at the bottom storey are not significantly larger

han those at the top storey. Finally, the ratio of 𝐼33 at the intersection

f beams and columns at the second storey is analysed and depicted in
30
igs. 10 (f-g), where Fig. 10 (f) displays this value at the bottom intersec-

ion and Fig. 10 (g) shows the ratio at the top intersection, confirming

hat the condition of SC-WB from the resilience criteria is satisfied for

he second storey. 

Fig. 11 presents similar results for 𝑍33 in 2-storey buildings. The re-

ults show that histograms for 20-storey buildings are less distributed
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Fig. 12. Typical Force-Roof displacement curve and pushover parameters. 
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cross different intervals compared to the 2-storey and 8-storey build-

ngs. This can be attributed to the increased number of conditions for

esilience and practicality criteria at each intersection of beams and

olumns. As a result, the candidates for beams and columns at the first

torey level that satisfy all the criteria become limited, leading to re-

tricted column and beam sizes for each storey level and, consequently,

ewer ranges for 𝐼33 and 𝑍33 in 20-storey buildings. 

. Pushover results 

The pushover curve of a multi-degree-of-freedom (MDOF) system es-

ablishes a relationship between the base shear of a structure and its roof

isplacement. Previous studies [ 24 , 55 ] have highlighted the wide uti-

ization of the pushover method and experiments in developing capacity

odels. As per Fig. 12 , the pushover parameters including 𝑉𝑐 (maximum

trength); 𝑉𝑦 (yield strength); Ω (overstrength factor); 𝛿𝑦 (displacement

orresponding to yield strength); 𝛿𝑢 (displacement corresponding to ul-

imate strength); 𝜇 (ductility capacity); 𝑇1 (fundamental period of struc-

ure), and 𝑀𝑃1 (modal participation ratio at the fist mode of vibration)

re extracted from Force-Roof Displacement curve. For each 2-storey, 8-

torey, and 20-storey SMRFs database, pushover analysis is performed

n nearly 10,000 building models, employing a lateral load pattern pro-

ortional to the fundamental mode of vibration. The pushover curves

re displayed in Fig. 13 , with the vertical axis normalised by the total

eight of the building and the horizontal axis representing roof drift

alues. The grey curves represent the pushover curves of randomly gen-

rated frames, while the red solid and dashed lines represent the median

nd the 16th and 84th percentiles of the results, respectively. 

This figure indicates a decrease in both ductility capacity and maxi-

um normalised strength as the number of stories increases. The de-

rease in ductility capacity is attributed to the significant P- Δ effect

bserved in taller buildings. As anticipated, taller buildings necessitate

ower design base shears to ensure structural stability. 

During the verification process of the design of 30,000 buildings,

he criteria of resiliency and practicality are taken into consideration.

esides, to ensure the validity of the design, the acceptable design range

f random buildings is evaluated as depicted in Figs. 10 and 11 . 

Fig. 14 displays a box plot that represents the first and third quartiles,

s well as the median values of 𝑇1 for 10,000 buildings in each database.

he mean value is indicated by a cross mark within the box plot. The

ertical lines, known as whiskers, extend from the ends of the box to

llustrate the minimum and maximum values. According to Fig. 14 , the

ean values of 𝑇1 for all reference buildings (1.10, 2.74, and 4.56 s for

-, 8-, and 20-storey buildings, respectively) are very close to those of
31
he reference building specified by FEMA-P695 (0.91, 2.29, and 4.47 s

or 2-, 8-, and 20-storey buildings, respectively). 

. Validation of the number of building samples 

Sensitivity analysis is done on the number of required samples for

he meta databases to make sure that the generated number of samples

s sufficient for developing surrogate models. In this regard, four ran-

om parameters including fundamental period of structure (𝑇1 ) , mass

f building (𝑀𝑆𝑡𝑜𝑟𝑦 ) , overstrength (Ω) , and normalised base shear ( 𝑉𝑦 
𝑊 

)
re considered and their Mean and standard deviation (𝑆𝑡𝑑 .𝑑 𝑒𝑣 ) are ex-

racted for different numbers of building samples. As per Fig. 15 , there

s no considerable fluctuation in the mean and standard deviation after

0,000 buildings, leading us to select 10, 000 as the sufficient number

f samples for generating random buildings. 

. Feature importance study 

Previous studies have employed machine learning techniques to

xplore the interrelationships between different parameters. For in-

tance, Kim et al. [56] considered various design parameters as ran-

om variables and highlighted the significance of beam yield strength

or moment-resisting frame buildings, while column yield strength was

ound to be crucial for dual system buildings. Zhang et al. [57] ex-

mined the influence of uncertain parameters on the fire resistance of

einforced concrete slabs, illustrating their sensitivity using linear re-

ression, random forest, gradient-boosting decision trees, and extreme

radient boosting. Nguyen and Dang [58] conducted sensitivity and re-

iability analysis on random variables across different stages of a hor-

zontal steel frame in a one-storey industrial building with a crane in

ietnam. Javadian and Kim [59] developed a fuzzy sensitivity model to

nvestigate the impact of input parameter uncertainty on output uncer-

ainty, employing a truss structure and a four-storey reinforced concrete

ramed structure. Rodríguez et al. [60] performed sensitivity analysis

n steel moment-resisting frames with semi-rigid bolted connections,

ssessing the sensitivity of progressive collapse to design criteria and

olumn-loss scenarios. Tipu et al. [61] utilised random forest to deter-

ine feature importance and identify the influence of different concrete

omponents on compressive strength. SHAP (SHapely Additive exPlana-

ions) was employed by Somala et al. [62] to examine the impact of indi-

idual input variables on predicting peak ground motion parameters in

ew Zealand, with the magnitude being the most important feature for

eak ground velocity estimation and rupture distance for peak ground
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Fig. 13. Pushover curves for: a) 2-storey buildings database; b) 8-storey buildings database; c) 20-storey buildings database. 
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cceleration. Le et al. [63] analysed the relationship between input pa-

ameters affecting the shear strength of FRP-RC beams and the output

shear strength) using feature importance analysis and SHAP values.

imilarly, Truong et al. [64] identified the most critical factor, effec-

ive footing depth, for predicting punching shear strength of reinforced

oncrete (RC) column footings through feature importance analysis. 

These studies demonstrate the application of machine learning tech-

iques to assess the influence of input parameters on output param-

ters across various structural systems and phenomena. This research

lso explores the impact of various input parameters on output parame-

ers. However, there is a challenge in this regard as there are numerous

ethods available in the literature for conducting feature importance

nalysis. Rajbahadur et al. [65] have classified feature importance anal-

ses into two main categories: (1) classifier-specific (CS) methods such

s Random Forest, Neural Networks, Regression Trees, Logistic Regres-

ion, etc., and (2) classifier-agnostic (CA) methods like permutation im-

ortance (Permutation) and SHapley Additive ExPlanations (SHAP). The

S methods typically utilise a given classifier’s internals to calculate the

eature importance scores, while CA methods determine the importance

f a feature by treating the classifier as a "black-box," i.e., without using

ny classifier-specific details. They also noted that different feature im-

ortance methods may result in different feature importance ranks even

or the same dataset and classifier. 

On one hand, the authors chose RF due to its lower computational

osts compared to other methods. Additionally, Saarela and Jauhiainen

66] discussed the advantages of RF and concluded that RF outper-

ormed other linear methods like logistic regression. On the other hand,
32
HAP is one of the more recent global feature importance methods that

s theoretically guaranteed to produce optimal feature importance ranks

67] compared to permutation, which is one of the oldest CA methods.

lthough SHAP was proposed by Lundberg and Lee [68] only in 2017,

t has already garnered over 2000 citations. Furthermore, Hooker et al.

69] demonstrated that while permutation importance is a very attrac-

ive choice for model interpretation, it has several problems, especially

hen working with correlated features. 

As a result of this research, RF and SHAP have been chosen as the

epresentatives of CS and CA techniques, respectively. The aim is to

nalyse how distinct feature importance methods lead to varying crucial

arameters for each SMRF building database. 

.1. Random forest (RF) 

The random forest regressor (RFR) is an ensemble learning algorithm

hat builds upon the classification and regression tree (CART) method.

t was first introduced by Breiman [70] and has been widely used in the

eld of machine learning. By combining multiple CARTs, random forests

nhance the accuracy of regression and prediction tasks. In the RFR

odel, each decision tree operates independently, while all the CARTs

ork together to generate the final output. The working principle of

FR involves creating multiple CART estimators, and the final output is

btained by averaging the outcomes of these estimators. This approach

nsures improved prediction performance for each individual CART. In

 random forest, each tree is constructed using a random subset of ob-
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Fig. 14. The box and whisker plots of 𝑇1 (Sec) for: a) 2-storey database; b) 8-storey database; c) 20-storey database. 
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ervations, and splits within each tree are based on random subsets of

andidate variables [ 71 , 72 ]. 

The process of RFR can be summarised into three main steps: first,

 regression trees are constructed using bootstrapped subsets, which

re generated by randomly sampling from the database; second, at each

ode of each tree, K segmentation variables are randomly selected, and

he best branching criterion is used to determine the splits; finally, each

egression tree starts from the top and proceeds with top-to-bottom

ranching until the termination criterion for segmentation is met. Math-

matically, the RFR can be represented by Eq. (1) : 

̂ = 1 
𝐵 

𝐵 ∑
𝑑=1 

𝑓𝑑 ( 𝑥) (1) 

here 𝑦̂ represents the output of the random forest regressor, and 𝑓𝑑 ( 𝑥 )
epresents the output of an individual decision tree and 𝐵 is the number

f trees. 

In the RF model, feature importance is determined by evaluating

he impurity at each node. The importance of a feature is measured by

ssessing its contribution to reducing impurity across all the trees in

he forest. The mean squared error (MSE) is used as the loss function

n the RF model to quantify the error. To calculate the importance of

ach node individually, Eq. (2) is employed, where each feature’s im-

ortance is estimated from the forest’s weighted average of all the trees.

ubsequently, the importance of each feature is determined by applying

q. (3) . 

𝑖,𝑗 =
𝑛𝑖 

𝑁 

.

[ 
𝑀 𝑆𝐸 −

( 

𝑛𝑖,𝑙𝑒𝑓 𝑡 

𝑁 

× 𝑙𝑒𝑓 𝑡 𝑀 𝑆𝐸 

) 

−
( 

𝑛𝑖,𝑟𝑖𝑔ℎ𝑡 

𝑁 

× 𝑟𝑖𝑔ℎ𝑡 𝑀 𝑆𝐸 

) ] 

(2) 

𝑖 =
∑

𝑁𝑗 ∑
𝑁𝑖𝑗 

(3) 

In Eq. (2) , 𝑁𝑖,𝑗 is the 𝑖𝑡ℎ node importance for 𝑗𝑡ℎ feature, 𝑛𝑖,𝑙𝑒𝑓 𝑡 and

𝑖,𝑟𝑖𝑔ℎ𝑡 are the samples at the left and right node, respectively, 𝑁 refers
33
o the total number of samples. Also in Eq. (3) , 𝐹𝑖 represents the im-

ortance of the 𝑖𝑡ℎ feature, 𝑁𝑗 represents the importance of the 𝑗𝑡ℎ node,

nd 𝑁𝑖𝑗 denotes the importance of all nodes that have the 𝑖𝑡ℎ feature.

his equation quantifies the contribution of each feature to the overall

mportance within the random forest 

In this study, the RF algorithm is applied in three different scenarios.

irstly, it is utilised to determine the key cross-sectional properties that

ignificantly impact the spring parameters of beams and columns, such

s 𝜃𝑝 , 𝜃𝑝𝑐 , and 𝑎𝑠𝑟𝑎𝑡𝑖𝑜 . Secondly, RF is employed to examine the influence

f only random parameters on the output parameters. In this case, the

ocus is solely on understanding the impact of random factors. Thirdly,

he RF algorithm is extended to include both random and non-random

arameters, allowing for the identification of the most important factors

verall. By considering all input and output parameters, the RF model

an provide insights into the crucial role they play in the structural per-

ormance of buildings. 

According to Fig. 16 , when analysing spring parameters in beams of

-storey buildings, 𝑍33 emerges as the most influential parameter among

he various spring parameters. However, according to the results, for 8-

torey and 20-storey buildings, parameter 𝐴 takes on the role of being

he most critical factor. Furthermore, 𝐴. 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 of utmost importance

or columns across all building heights, including 2-storey, 8-storey, and

0-storey structures. 

In the feature importance analysis involving all random and casual

andom parameters, different trends emerge for the target parameters

f 2-storey buildings. As shown in Fig. 17 , for parameters such as 𝛿𝑦 ,

𝑐 , 𝑉𝑐 , Ω, 𝛿_0 . 8 and 𝜇, the mass of the building takes the top spot in

erms of importance, while material properties rank second. It should

e noted that due to the large number of parameters involved, only the

op twenty most important parameters are plotted in the figure. How-

ver, for the target parameter 𝑀𝑃1 , the moment of inertia of beams at

he second storey ( 𝐼𝐵𝑒𝑎𝑚2 ) plays the most significant role, while the

ross-sectional properties of columns at the first storey have a relatively

ower importance. For 𝑉𝑦 , the parameter 𝐸𝑠 takes the lead as the most

mportant factor, followed by the mass of the buildings. Lastly, for 𝑇1 ,
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Fig. 15. Sensitivity analysis on the number of building samples for: (a) 2-storey building database; (b) 8-storey building database; (c) 20-storey building database. 
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𝜇  
𝑝𝑐 __𝐶𝑜𝑙_𝐼𝑛 1 is identified as the most critical parameter, with the height

f the storey being the second most important. Additionally, according

o the results in Fig. 17 (f), it is observed that for the parameter 𝜃𝑝𝑐 __𝐶𝑜𝑙,

he cross-sectional area holds the highest importance, leading 𝐴_𝐶𝑜𝑙_𝐼𝑛 1
o influence the value of 𝑇1 significantly. 

In the case of 8-storey buildings, as per the results, the importance

f parameters varies for different target parameters. For 𝛿𝑐 and 𝑇1 , the

eight of the first storey plays the most crucial role. On the other hand,

or 𝑉𝑐 , 𝑉𝑦 , 𝛿_0 . 8 , the cross-sectional properties of interior columns at the

hird storey hold significant importance. For the parameters 𝛿𝑦 , Ω and 𝜇,

he cross-sectional properties of beams at the third storey are of great im-

ortance. In the case of 𝑀𝑃1 , the moment of inertia of beams at the first

torey ( 𝐼𝐵𝑒𝑎𝑚1 ) is the most important parameter, indicating its strong

nfluence on the target parameter. 

In the case of 20-storey buildings, when assessing RF feature impor-

ance analysis, it is observed that for most parameters, except 𝑇1 and

𝑃1 , the mass of the buildings has the greatest impact on the output

arameters. The mass of the buildings is a significant factor influenc-

ng the structural performance. For the parameter 𝑇 , the height of the
1 

34
rst storey plays the most important role. This suggests that the height

f the initial storey significantly affects the fundamental period of the

uilding. Regarding 𝑀 𝑃1 , 𝜃𝑝 __𝐶𝑜𝑙_𝐼 𝑛 1 emerges as the most important

arameter. On the other hand, we know that the cross-sectional area

f an interior column is the most important factor for 𝜃𝑝 __𝐶𝑜𝑙, implying

hat the cross-sectional properties, specifically the area of the interior

olumn ( 𝐴𝑐𝑜𝑙_𝐼𝑛 1 ), have a strong influence on the modal participation

atio of the 20-storey buildings. 

During RF analysis considering only random parameters, the follow-

ng findings are observed for 2-storey buildings as per Fig. 18 . (1) For

arameters such as 𝛿𝑦 , 𝛿_0 . 8 , Ω, and 𝜇, the mass of the buildings is iden-

ified as the most important factor. It has the highest impact on these

utput parameters and material properties rank second in terms of im-

ortance. (2) For 𝛿𝑐 , 𝑉𝑐 , and 𝑉𝑦 , the parameter 𝐸𝑠 is identified as the

ost important. (3) The height of the first storey has the greatest influ-

nce on the parameter 𝑇1 and in the case of 𝑀𝑃1 , the length of the bay

merges as the most important parameter. 

For 8-storey buildings, when examining parameters such as 𝛿𝑐 , 𝛿𝑦 ,

, 𝑇1 , 𝑉𝑐 , 𝑉𝑦 , it became evident that the height of each storey played the
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Fig.16. Random Forest feature importance for spring parameters of 2-storey buildings for target parameter:(a) 𝑎𝑠𝑟𝑎𝑡𝑖𝑜 _𝐵𝑒𝑎𝑚 ; (b) 𝑎𝑠𝑟𝑎𝑡𝑖𝑜 _𝐶𝑜𝑙𝑢𝑚𝑛 ; (c) 𝜃𝑝 _𝐵𝑒𝑎𝑚 ; (d) 

𝜃𝑝 _𝐶𝑜𝑙𝑢𝑚𝑛 ; (e) 𝜃𝑝𝑐 _𝐵𝑒𝑎𝑚 ; (f) 𝜃𝑝𝑐 _𝐶𝑜𝑙𝑢𝑚𝑛. 
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ost pivotal role. Interestingly, in the case of Ω, it was the elastic modu-

us of the material, 𝐸𝑠 , that emerged as the most significant determinant.

urthermore, when investigating the parameter 𝛿_0.8, it was discovered

hat the yield strength itself ( 𝐹𝑦 ) held the utmost importance. Lastly, fo-

using on the modal participation ratio ( 𝑀𝑃1 ), it was revealed that the

ass of the buildings emerged as the most critical parameter. 

The results of this study show that for 20-storey buildings, the analy-

is reveals that for the parameter 𝛿_0 . 8 , the most significant factor is 𝐹𝑦 .

onversely, for parameters such as 𝛿𝑐 , 𝛿𝑦 , 𝑉𝑐 , 𝑉𝑦 , the mass of buildings

merges as the most influential parameter. When it comes to Ω and 𝑇1 ,

he height of the storey proves to be the critical factor impacting the

esults. Additionally, for the parameter 𝑀𝑃1 , it is the length of the bay

hat takes precedence, while for 𝜇, the parameter 𝐸𝑠 demonstrates the

reatest importance. 

.2. SHAP (SHapely additive exPlanations) 

With the advancement of explainable techniques like SHAP, it is now

ossible to explain the prediction of machine learning algorithms and
35
nvestigate the impact of each feature on the model’s prediction. To

chieve an effective model, two levels of explainability are necessary:

lobal and local [63] . Global explainability refers to understanding the

ffect of each variable on the prediction model, while local explainabil-

ty helps us comprehend why a particular prediction is made. SHAP

rovides insights into the impact of each input variable individually,

hus contributing to global interpretability [ 73 , 74 ]. Additionally, SHAP

alues can measure the importance of features for individual samples at

 local level, enabling local interpretability. SHAP can also explain the

verall importance of each feature (input parameter) on the complete

ataset. It accomplishes this by employing a linear model of coalitions,

s shown in Eq. (4), to make the model interpretable. SHAP value serves

s an effective tool for investigating the output of a machine learning

odel, with the ultimate goal of enhancing its understandability. By as-

igning weights to each feature, SHAP can be used to explain the predic-

ion outcomes of any machine learning model. It represents the output

odel as a linear sum of the input variables, allowing each observa-

ion to obtain its corresponding SHAP value. SHAP can also determine

hether an input variable has a positive or negative effect on the out-



D. Samadian, I.B. Muhit, A. Occhipinti et al. Resilient Cities and Structures 3 (2024) 20–43

Fig. 17. Random Forest feature importance considering all random and casual random parameters of 2-storey buildings considering target parameter of: (a) 𝑉𝑦 ; (b) 

𝛿𝑦 ; (c) 𝑉𝑐 ; (d) 𝛿𝑐 ;(e) Ω; (f) 𝛿_0 . 8 ; (g) 𝜇; (h) 𝑇1 ; (i) 𝑀𝑃1 . 
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ut. While there are alternative methods for estimating SHAP values,

his research utilises the Tree SHAP method, which is optimised for tree-

ased machine learning models such as decision trees, random forests,

nd gradient-boosted trees. Tree SHAP evaluates tree-based models in

onjunction with an NxM dimensional input dataset (X), generating an

 × M -dimensional matrix containing the SHAP values (N represents the
36
umber of samples). The use of SHAP interaction values ensures consis-

ent explanations for interaction effects on individual predictions. One

f the benefits of SHAP is the ability to compute global interpretation

y calculating the Shapley values for the entire dataset and combining

hem. For a more detailed explanation of SHAP and its associated proof,

nterested readers are encouraged to refer to [ 71 , 75 ]. 
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Fig. 18. Random Forest feature importance considering only random parameters of 2-storey buildings for target parameter of: (a) 𝛿_0 . 8 ; (b) 𝛿𝑐 ; (c) 𝛿𝑦 ; (d) 𝜇; (e) 𝑀𝑃1 ; 

(f) Ω; (g) 𝑇1 ; (h) 𝑉𝑐 ; (i) 𝑉𝑦 . . 
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In Fig. 19 , the overall SHAP values are presented. In this figure,

he red colour indicates a positive impact, while the blue colour de-

otes a negative influence. A positive impact signifies an increase in

rediction with an increase in the corresponding input variable. From

igs. 19 (b,d,f), it can be observed that for the spring properties of

olumns, the cross-sectional area has the most positive impact. On the

ther hand, for beams, the second-order moment of inertia has the most
37
ositive influence on 𝜃𝑝 _𝐵𝑒𝑎𝑚 , as per Fig. 19 (c). For other spring proper-

ies of beams, the cross-sectional area is identified as the most important

arameter, as per Figs. 19 (a,e). This observation holds true for the 8-

nd 20-storey buildings as well. 

On the other hand, when considering random parameters for SHAP

nalysis, the results are as follows: For 2-storey buildings and 𝛿_0 . 8 , Ω,

𝑃1 , 𝑉𝑐 , the key parameter is the length of the bay, as per Fig. 20 .
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Fig. 19. SHAP values in predicting the plastic hinges parameters for 2-storey buildings for target parameter of: (a) 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝐵𝑒𝑎𝑚 ; (b) 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝐶𝑜𝑙𝑢𝑚𝑛 ; (c) 𝜃𝑝 _𝐵𝑒𝑎𝑚 ; 

(d) 𝜃𝑝 _𝐶𝑜𝑙𝑢𝑚𝑛 ; (e) 𝜃𝑝𝑐 _𝐵𝑒𝑎𝑚 ; (f) 𝜃𝑝𝑐𝐶𝑜𝑙𝑢𝑚𝑛 . 
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or 𝛿𝑦 and 𝑉𝑦 , the most important parameter is the mass of the storey.

owever, for 𝜇 and 𝑇1 , the height of the storey is crucial. Lastly, for 𝛿𝑐 ,

he most important parameter is 𝐸𝑠 . 

For 8-storey buildings except for 𝛿_0 . 8 and Ω, where 𝐹𝑦 is the most

mportant parameter, the height of the storey plays a key role in all

ther random parameters. When it comes to 20-storey buildings, for 𝑇1 ,

𝛿_0 . 8 , and 𝛿𝑐 , the height of the storey has the most significant impact.

or 𝜇, Ω, 𝛿𝑦 , the most important factor is 𝐸𝑠 , while for 𝑉𝑦 and 𝑉𝑐 , 𝐹𝑦 

s the key parameter. Finally, for 𝑀𝑃1 , the length of the bay plays the

ost important role. 

Finally, when all random and casual random parameters are included

n the SHAP analysis for the 2-storey building database, the results in-

icate the following: 

• For 𝑇1 and 𝑉𝑦 , 𝜃𝑝𝑐 __𝐶𝑜𝑙_𝐼𝑛 1 is the most important parameter, as per

Fig. 21 . Fig. 19 (f) illustrates that the cross-sectional area of the col-

umn ( 𝐴𝐶𝑜𝑙𝑢𝑚𝑛 ) plays the greatest role for 𝜃𝑝𝑐 __𝐶𝑜𝑙_𝐼𝑛 1 , making it the

most crucial factor for 𝑇1 and 𝑉𝑦 . 

• For 𝛿_0 . 8 and 𝛿𝑐 , 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝐶𝑜𝑙_𝐸𝑥 1 and 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝐶𝑜𝑙_𝐼𝑛 1 are the most

important parameters, respectively. Again, referring to Fig. 19 (b), it

can be observed that 𝐴𝐶𝑜𝑙𝑢𝑚𝑛 has the greatest influence, making it

the most critical factor for 𝛿_0 . 8 and 𝛿𝑐 . 

• For 𝜇 and 𝑉𝑐 , the mass of the building is the most important param-

eter. 

• For 𝛿𝑦 , the most important parameter is 𝜃𝑝 __𝐵𝑒𝑎𝑚 2 or 𝐼𝐵𝑒𝑎𝑚 2 , as

shown in Fig. 19 (c). 

• Similarly, for 𝑀𝑃1 , 𝐼𝐵𝑒𝑎𝑚 2 has the greatest impact, as depicted in

Fig. 21 (e). 

• For Ω, 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝑏𝑒𝑎𝑚 2 is the most important parameter, and

Fig. 19 (a) confirms that 𝐴𝐵𝑒𝑎𝑚 2 is the key factor for Ω. 

For 8-storey buildings, the crucial factors vary depending on the spe-

ific parameter: 

• For 𝛿𝑐 and 𝑇1 , the height of the storey is the most important factor. 

• For 𝜇 and 𝛿𝑦 , 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝐵𝑒𝑎𝑚 3 plays the most significant role. 𝐴𝐵𝑒𝑎𝑚 3 
can be concluded as the most important parameter for 𝜇 and 𝛿𝑦 

• 𝜃𝑝𝑐 __𝐶𝑜𝑙_𝐼𝑛 3 is the most important parameter for 𝑉𝑦 and 𝑉𝑐 . 𝐴𝐶𝑜𝑙𝑢𝑚𝑛 

is the crucial factor for 𝜃𝑝𝑐 __𝐶𝑜𝑙_𝐼𝑛 3 . 
• For Ω, 𝑀𝑃1 and 𝛿_0 . 8 , the most important parameters are 𝐴𝐵𝑒𝑎𝑚 3 ,
𝐼𝑏𝑒𝑎𝑚 1 , and 𝑍𝑏𝑒𝑎𝑚 5 , respectively. p  

38
For 20-storey buildings, for 𝜇 and 𝑉𝑐 , 𝐸𝑠 is the most important param-

ter. For 𝛿𝑐 , and 𝛿𝑦 , 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝐵𝑒𝑎𝑚 17 with its crucial factor being 𝐴𝐵𝑒𝑎𝑚 ,

s the most important parameter. For 𝛿_0 . 8 , 𝑎𝑠𝑅𝑎𝑡𝑖𝑜− 𝐶𝑜𝑙_𝐼𝑛 1 (or 𝐴𝐶𝑜𝑙𝑢𝑚𝑛 )

s the most crucial factor. For 𝑀 𝑃1 , 𝐴𝐶𝑜𝑙 _𝐼 𝑛 1 indirectly plays the most

mportant role, while for Ω, 𝐼𝐵𝑒𝑎𝑚 13 is the most important factor indi-

ectly. Similarly to 2- and 8-storey buildings, for 20-storey buildings,

he height of the storey remains the most important factor for 𝑇1 . Fi-

ally, for 𝑉𝑦 , 𝐴𝐶𝑜𝑙𝑢𝑚𝑛 at the 19th storey is indirectly the most important

arameter. 

iscussions 

To summarize the results presented in this work, and to understand

traightforwardly which random or casual random parameters are of

tmost importance for each database, for Fig. 17 and for RF results of

-storey and 20-storey buildings, a cut-off value of 0.05 is defined for

eature importance values and those feature names whose their feature

mportance value is greater or equal than 0.05 are identified for each

tructural parameter of 𝛿_0 . 8 , 𝛿𝑐 , 𝛿𝑦 , 𝜇, 𝑀𝑃1 , Ω, 𝑇1 , 𝑉𝑐 , 𝑉𝑦 , and then, a

eighted average is applied to find out the top feature name for each

atabase. As reported in Fig. 22 (a) and for 2the -storey database, among

ll random and casual random parameters, 𝜃𝑝𝑐 __𝐶𝑜𝑙_𝐼𝑛 1 , plays the most

mportant role when considering all structural parameters of 𝛿_0 . 8 , 𝛿𝑐 ,

𝑦 , 𝜇, 𝑀𝑃1 , Ω, 𝑇1 , 𝑉𝑐 , 𝑉𝑦 combined. On the other hand, from the results

f RF for spring parameters as shown in Fig. 16 (f), we know that for

𝑝𝑐 __𝐶𝑜𝑙_𝐼𝑛 1 , cross-sectional area of column influence the most, lead-

ng parameter 𝐴__𝐶𝑜𝑙_𝐼𝑛 1 to be the most important parameter for the

atabase of 2-storey building. For the 8-storey database, however, the

oment inertia of interior columns at the third storey can be regarded

s the most crucial feature name, as reported in Fig. 22 (b). The results

n Fig. 22 (c) show that the height of the first storey comes at the top

eature for the 20-storey database. 

On the other hand, Table 8 compares the results extracted by RF

nd SHAP analyses for four main structural parameters of 𝜇, Ω, 𝑀𝑃1 ,

nd 𝑇1 . It is interesting that for three databases of 2-storey, 8-storey,

nd 20-storey buildings, both RF and SHAP lead to the almost same re-

ults. For the 2-storey building database, mass of building is the most

mportant factor for the ductility parameter, while for the modal partici-

ation ratio, the moment inertia of beams at the second storey is of great
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Fig. 20. SHAP values in predicting only random parameters for 2-storey buildings for target parameter of: (a) 𝛿_0 . 8 ; (b) 𝛿𝑐 ; (c) 𝛿𝑦 ; (d) 𝜇; (e) 𝑀𝑃1 ; (f) Ω; (g) 𝑇1 ; (h) 𝑉𝑐 ; 

(i) 𝑉𝑦 . . 

Table 8 

Comparison between RF and SHAP analyses for four main structural parameters for low-rise, mid- 

rise, and high-rise buildings’ databases. 

𝜇 𝑀𝑃1 Ω 𝑇1 
RF SHAP RF SHAP RF SHAP RF SHAP 

2-storey database 𝑀𝑎𝑠𝑠 𝑀𝑎𝑠𝑠 𝐼𝐵𝑒𝑎𝑚 2 𝐼𝐵𝑒𝑎𝑚 2 𝑀𝑎𝑠𝑠 𝐴𝐵𝑒𝑎𝑚 2 𝐴𝑐𝑜𝑙_𝐼𝑛 1 𝐴𝑐𝑜𝑙_𝐼𝑛 1 
8-storey database 𝐴𝐵𝑒𝑎𝑚 3 𝐴𝐵𝑒𝑎𝑚 3 𝐵𝑒𝑎𝑚 3 𝐼𝑏𝑒𝑎𝑚 1 𝐴𝐵𝑒𝑎𝑚 3 𝐴𝐵𝑒𝑎𝑚 3 𝐻𝑠𝑡𝑜𝑟𝑦 𝐻𝑠𝑡𝑜𝑟𝑦 

20-storey database 𝑀𝑎𝑠𝑠 𝐸𝑠 𝐴𝑐𝑜𝑙_𝐼𝑛 1 𝐴𝑐𝑜𝑙_𝐼𝑛 1 𝑀𝑎𝑠𝑠 𝐼𝐵𝑒𝑎𝑚 13 𝐻𝑠𝑡𝑜𝑟𝑦 𝐻𝑠𝑡𝑜𝑟𝑦 

39
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Fig. 21. SHAP values in predicting all random parameters for 2-storey buildings 

for target parameter of: (a) 𝛿_0 . 8 ; (b) 𝛿𝑐 ; (c) 𝛿𝑦 ; (d) 𝜇; (e) 𝑀𝑃1 ; (f) Ω; (g) 𝑇1 ; (h) 

𝑉𝑐 ; (i) 𝑉𝑦 . . 
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mportance. The interior columns at the first storey influence the fun-

amental period of buildings the most. RF leads mass of building to be

he most important parameter for the overstrength parameter whereas

HAP results 𝐴𝐵𝑒𝑎𝑚_2 as the key factor for Ω. For the 8-storey database,

t can be concluded that cross-sectional properties of beams at the third
40
torey play the greatest role for 𝜇, Ω, and 𝑀𝑃1 . For 𝑇1 , however, height

f first storey is the crucial factor. For the 20-storey building’s database,

imilar to the 8-storey database, height of first storey plays a pivotal

ole in 𝑇1 . For 𝑀𝑃1 , cross-sectional area of interior column at the first

torey emerges as the most important parameter. While in RF, the mass

f building is the most important factor for 𝜇, and Ω, explainability anal-

sis regards 𝐸𝑠 and 𝐼_𝐵𝑒𝑎𝑚 13 to be the most influential parameter for

and Ω, respectively. 

onclusions 

The framework presented in this study can address the challenge

f obtaining a validated yet easily generatable database of steel frame

tructures by striking a balance between accuracy and computational ef-

orts. It achieves this by considering the preliminary design of SMRF and

mplementing specific criteria to validate the database to the greatest

xtent possible. Additionally, all the significant parameters, excluding

he number of bays and stories, are treated as random variables, re-

ucing uncertainties associated with the material, geometry, and spring

roperties of the buildings. Once the framework is validated, the meta

atabase for low-rise, mid-rise, and high-rise SMRF buildings are created

nd following this, pushover analysis is performed. Next, feature impor-

ance analysis is accomplished via RF and SHAP on various random and

asual random structural parameters from the geometry of buildings to

lastic hinges parameters to find out which ones are of great importance

or SMRF buildings. 

The main results from the feature importance analysis are as follows:

• When all random and casual random parameters are taken into con-

sideration: 

○ For the database of 2-storey reference building, cross-sectional

area of interior columns at the first storey, 𝐴__𝐶𝑜𝑙_𝐼𝑛 1 , is sup-

posed to be the most important parameter. 

○ For the 8-storey database, the moment inertia of interior columns

at the third storey plays the most crucial random parameter. 

○ For the 20-storey database, the height of first storey accommo-

dates the top feature. 

• Considering four main structural parameters of 𝜇, Ω, 𝑀𝑃1 , and 𝑇1 ,

the results show that RF and SHAP come up with almost the same

results for low-rise, mid-rise and high-rise building databases. 

○ For 2-storey building’s database, mass of building and the mo-

ment inertia of beams at the second storey are the most important

factors for 𝜇 and 𝑀𝑃1 , respectively. 

○ The interior columns at the first storey influence 𝑇1 the most. RF

and SHAP result mass of building and 𝐴𝐵𝑒𝑎𝑚_2 as the most impor-

tant parameters for Ω, respectively. 

○ For both databases of 8-storey and 20-storey buildings, the height

of first storey is the crucial factor for 𝑇1 . 

○ For the 8-storey building database, cross-sectional properties of

beams at the third storey plays the most pivotal role for 𝜇, Ω, and

𝑀𝑃1 . 

○ For the 20-storey building database and for 𝑀𝑃1 , cross-sectional

area of interior column at the first storey emerges as the most

important parameter. 

○ While RF will result the mass of building to be the most important

factor for 𝜇 and Ω, SHAP regards 𝐸𝑠 and 𝐼_𝐵𝑒𝑎𝑚 13 to be the most

influential parameter for 𝜇 and Ω, respectively. 

• Deploying RF and SHAP for plastic hinge parameters shows that

cross-sectional area can be regarded as almost the most important

parameter for all three databases. 

From the results of this investigation and as a practical application

f this study, it can be clarified that for designing low-rise and mid-

ise buildings, designers will be encouraged to devote paramount impor-

ance to the interior columns at the bottom level of buildings. Moreover,
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Fig. 22. Weighted average feature importance extracted by RF for: (a) 2-storey database; (b) 8-storey database; (c) 20-storey database. 
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or high-rise buildings, choosing a proper range for the height of first

torey can influence the overall performance of structures markedly. 

It might be interesting for readers that the present study has some

imitations. First, the framework for generating random buildings is only

esigned for steel frame structures with RBS connections. Second, the

reliminary databases for the dimensions of beams and columns are

xtracted from AISC electronic database and one should modify the
41
atabase for buildings designed for other locations. To extend beyond

he findings of this investigation, future studies can be accomplished

o develop meta databases for other types of buildings such as RC and

asonry buildings or structures with other occupancies such as bridges,

ospitals, schools, etc. The next step of this research involves utilising

he meta databases generated here for developing surrogate models via

ifferent techniques considering earthquakes and floods, separately as
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he dominant natural hazards. Besides, to account for multi-hazard sce-

arios, a separate surrogate model will be developed for meta databases

f low-rise, mid-rise, and high-rise buildings combined. 

elevance to resilience 

Resilience aims to aid decision-makers in planning for societies that

an withstand natural disasters like earthquakes, floods, and man-made

vents such as terrorist attacks. Quantifying resilience for physical and

rganisational systems has been explored. However, structural engineer-

ng faces challenges in dealing with inevitable hazards like earthquakes

nd floods in terms of quantifying resilience on a city scale. To cope

ith the challenge of NLTHA, surrogate models are proposed that have

ained increasing attention, offering statistical approaches for proba-

ilistic seismic risk assessment (PSRA). This investigation introduces a

eta database and a framework for surrogate modelling of steel struc-

ures. This approach necessitates structural geometry details like sto-

ies, bay lengths, beam, and column dimensions. Leveraging machine

earning algorithms, sensitivity analyses were conducted on structural

arameters to pinpoint the most influential factors in designing steel

oment-resisting frames. 
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