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Abstract—In this paper, we design a resource block (RB)
oriented power pool (PP) for semi-grant-free non-orthogonal
multiple access (SGF-NOMA) in the presence of residual errors
resulting from imperfect successive interference cancellation
(SIC). In the proposed method, the BS allocates one orthogonal
RB to each grant-based (GB) user, and determines the acceptable
received power from grant-free (GF) users and calculates a
threshold against this RB for broadcasting. Each GF user as an
agent, tries to find the optimal transmit power and RB without
affecting the quality-of-service (QoS) and ongoing transmission
of the GB user. To this end, we formulate the transmit power
and RB allocation problem as a stochastic Markov game to
design the desired PPs and maximize the long-term system
throughput. The problem is then solved using multi-agent (MA)
deep reinforcement learning algorithms, such as double deep Q
networks (DDQN) and Dueling DDQN due to their enhanced
capabilities in value estimation and policy learning, with the
latter performing optimally in environments characterized by
extensive states and action spaces. The agents (GF users) un-
dertake actions, specifically adjusting power levels and selecting
RBs, in pursuit of maximizing cumulative rewards (throughput).
Simulation results indicate computational scalability and minimal
signaling overhead of the proposed algorithm with notable gains
in system throughput compared to existing SGF-NOMA systems.
We examine the effect of SIC error levels on sum rate and user
transmit power, revealing a decrease in sum rate and an increase
in user transmit power as QoS requirements and error variance
escalate. We demonstrate that PPs can benefit new (untrained)
users joining the network and outperform conventional SGF-
NOMA without PPs in spectral efficiency.

Index Terms—Distributed power control, Internet of things,
multi-agent reinforcement learning, non-orthogonal multiple ac-
cess, semi-grant-free transmission

I. INTRODUCTION

NON-orthogonal multiple access (NOMA) is a promising
multiple access paradigm for one of the most important

use cases in the fifth-generation and beyond cellular network,
namely massive machine type communication (mMTC) [1].
Providing massive connectivity to satisfy the explosive in-
crease in the number of mobile devices is the main challenge
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for mMTC. To this end, power-domain NOMA has become
a suitable solution as it allows multiple users or devices to
share limited spectrum resources rather than solely occupying
them [2]. In particular, NOMA multiplexes different users
in the same time/frequency resource block (RB) using su-
perposition coding at the transmitter side and the successive
interference cancellation (SIC) method at receivers [3]. To
enable the accomplishment of mMTC, as well as to ensure
quality of service (QoS) with low-latency communication and
small signaling overhead, NOMA with two types of access
methods, i.e., grant-free (GF) and grant-based (GB) access,
has been proposed [4]. In GB transmission, a user processes
handshakes before actual data transmission, leading to a signal
overhead and high access latency. In addition, GB transmission
is not suitable for some Internet of Things (IoT) scenarios
where IoT applications require a low data rate but massive
connectivity [5]. In GF transmission, the user transmits data
directly, without any handshakes or schedule requests [6].
Therefore, GF transmission provides massive connectivity for
short-packet IoT applications. However, GF transmission leads
to frequent collisions because of the absence of base station
(BS) involvement in the scheduling of orthogonal RBs [7] [8].
Recently, a hybrid version of GF and GB NOMA, known as
semi-grant-free (SGF) NOMA, has been considered for uplink
transmission owing to its potential to enhance connectivity
and reduce access latency by allowing GF and GB users to
share the same RB [9]. It is worth noting that SGF-NOMA
also guarantees the QoS of GB users because it only allocates
redundant resources of GB users to GF users. However, this
uplink transmission depends heavily on the power control (PC)
method, especially in the presence of residual errors owing to
imperfect SIC.

A. Related SGF-NOMA Works
Recently, pure GF and GB NOMA transmission schemes

have been extensively studied from various perspectives. By
leveraging the distance-dependent path loss characteristic, a
location-based power pool (PP) [4] is developed for pure GF
IoT networks using a cooperative multi-agent Double Deep
Q Network (MA-DDQN) algorithm. Each GF user is able to
randomly choose one transmit power from the received PP for
uploading messages. As a result of this efficient design, the
PP reduces signal overhead.

To ensure the QoS of GB users and limit the number of
GF users, two techniques are proposed in [9]. In the proposed
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scheme, contention control mechanisms have been developed
to effectively regulate the number of GF users in order to
suppress interference to GB users. In the first technique, the
BS decodes the GB user’s signal in the initial stage of SIC,
i.e., only GF users with weak channels are permitted to share
resources with GB users. For the second scheme, the BS
decodes the GF user’s signals first, i.e., users with strong
channel gain can share resources with GB users. Therefore,
the first scheme is ideal for cell-edge users who are GF users.
However, the second scheme is more suitable for scenarios
where GF users are close to the BS. In [10], the QoS of
GB users was ensured by utilizing the flexibility to select
the NOMA decoding order. This new scheme combines the
two schemes discussed in [9] with additional benefits. In
comparison to the previous two schemes, the approach in
[10] effectively mitigates error floors in outage probability
and significantly increases transmission robustness without
requiring precise PC between users. The authors in [11]
investigate SGF-NOMA in two different scenarios. In the first
scenario, GF users are considered as cell-center users, and GB
is considered as cell-edge users. In the second scenario, GF
users are located at the edge of the cell, while GB users are
distributed near the BS. To determine whether GF users can
share the channels occupied by GB users, the authors proposed
a dynamic protocol to establish a dynamic channel quality
threshold in order to reduce unexpected interference to GB
users. The proposed dynamic protocol demonstrates superior
results for both scenarios compared to open-loop protocols. In
the study by [12], the received power of GB users is utilized
as a dynamic quality threshold, and closed-form expressions
for GF and GB users are derived. The maximum rate of GF
users and the ergodic rate without an error floor for GB users
have been observed. An adaptive power allocation strategy
for GB users is implemented in [13] to address performance
degradation issues caused by GF users. A scheduling scheme
based on maximum data rate is proposed in [14]. GF users
that produce more data rates are scheduled to be paired with
GB users.

B. Motivation and Contributions
Although NOMA-assisted SGF transmissions have been

studied in the aforementioned work, the following critical
issues still remain unresolved:

• Imperfect SIC: NOMA performance critically depends
on the SIC process, especially when considering uplink
transmission. Therefore, it is necessary to consider the
effect of imperfect SIC on SGF-NOMA schemes.

• Distributed Power Control: Channel conditions and in-
terference levels are subject to rapid changes in dynamic
wireless environments. To ensure dependable communi-
cation and adapt to fluctuating network conditions, users
should consistently monitor their environment and adjust
their transmit power accordingly. Therefore, IoT users
must be able to autonomously acquire appropriate power
levels based on their local information (e.g., channel
conditions), as it is impractical to expect them to interact
frequently with the BS, given their limited resources [15],
[16].

• Designing Scalable ML Based Algorithms: Reinforce-
ment learning (RL) has the potential of taking deci-
sions and performing learning simultaneously [17], [18].
However, training RL models requires extensive com-
putational resources and may take a long time. It can
limit the practicality and scalability of RL applications,
particularly in a new resource-constrained environment
with a large number of agents and time-sensitive or real-
time settings.

As discussed in [4], PP is an efficient design to reduce signal
overhead. However, location-dependent PP is not suitable for
users with heterogeneous priorities as in SGF-NOMA. More
specifically, regardless of the user’s location, the GB user
has the highest priority. Therefore, its transmit power cannot
be sacrificed in order to increase GF access. To this end,
the design needs to shift from being location-oriented to
RB-oriented. Therefore, this paper focuses on designing RB-
oriented received PP for SGF-NOMA. The main contributions
are outlined as follows:

1) MA-DRL Framework for SGF-NOMA: We address the
throughput optimization problem by formulating it as a Multi-
Agent Markov Decision Process (MA-MDP) and employing
the MA-Dueling DDQN algorithm for solutions. This method
optimizes system performance and facilitates the formation of
a RB-oriented power control policy. The defined action space
comprises the joint selection of RB and received power level,
promoting optimal outcomes. Agent coordination is enhanced
through state-informed interactions from the BS, obviating
the need for explicit message passing. A systematic approach
based on user dynamics is presented to derive a feasible
reward function that ensures relevance and applicability. The
integration of Dueling architecture with double DQN improves
generalization in the learning process and helps to reduce
overestimation biases associated with Q-values.

2) Autonomous and Distributed PC via Power Pool: We
have designed a RB-oriented PP for each RB, which allows
for a distributed open-loop PC (DPC) strategy during the
execution phase. To achieve optimal received power levels for
each PP, GF users in the network act independently as agents.
They learn and implement a policy that guides them to adjust
their transmit power adaptively to ensure that interference
remains below the QoS threshold of GB users. Additionally,
the proposed algorithm is executed without any message
exchange or online coordination among the users (agents). The
PP design brings significant benefits, especially for new users
who join the network without prior training. Simulation results
have shown a significant increase in spectral efficiency, with a
20.19% improvement compared to the conventional method.

3) Performance Analysis: We demonstrate that our pro-
posed algorithm is scalable to large-scale IoT networks with
minimal signal overhead. Moreover, to reduce training time,
we eliminate the received power levels (invalid actions) that
cannot be opted for uplink transmission due to users’ transmit
power constraints. The numerical results show that agents re-
ceived more rewards when using the network-centered reward
function compared to the self-centered and cluster-centered
approaches. We demonstrate that MA-Dueling DDQN per-
forms equivalently to MA-DDQN in networks with fewer
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TABLE I: Table of Notations

Symbol Definition Symbol Definition
U The set GF IoT users V The set of GB IoT users
R Cell radius NG Number of (GF, GB) active users
B Total bandwidth M Number of orthogonal sub-channels
rm,j Distance between the BS and GF IoT user j rm,i Distance between the BS and GB user i
Bs Sub-channel bandwidth n0 Additive white Gaussian noise
PGB
i Transmit power of i-th GB user hGB

i Channel gain of i-th GB user
PGF
j Transmit power of j-th GF user hGF

j Channel gain of j-th GF user
γGB
m,i SINR of i -th GB user on sub-channel m γGF

m,j SINR of j -th GF user on sub-channel m
RGB

m,i i-th GB user data rate on sub-channel m RGF
m,j j-th GF user data rate on sub-channel m

τ Target data rate threshold for GB users τ̄ Target data rate threshold for GF users
Qm Set of GF users share sub-channel m with GB users ϕm Interference threshold of GB user on sub-channel m
N The set of agents km,j j-th GF user select sub-channel m
C̄ Network throughput Ls Maximum GF users on a sub-channel
Pt Matrix for received power levels PNP Number of available power levels
Kt Matrix for sub-channel selection Ts Total duration of long-term communication

states and actions but outperforms in environments with more
extensive state and action spaces. Furthermore, our proposed
algorithm outperforms existing SGF-NOMA systems and pure
GF-NOMA IoT networks in terms of throughput. Finally, we
investigate the impact of varying SIC error levels on the sum
rate and average transmit power of the users.

II. SYSTEM MODEL

We consider SGF transmission in IoT networks, as shown
in Fig. 1, where a single BS is located at the geographic
center with radius R. We assume that two types of users (GB
and GF users) equipped with a single antenna are randomly
distributed and transmit uplink data to the BS. The set of users
U = {1, 2, ...NGF} represents GF users, whereas GB users
are denoted by V = {1, 2, ...NGB}. The locations of GF and
GB users are modelled as two homogeneous Poisson point
processes with densities λGF and λGB. Therefore, the number
of GB and GF users follows a Poisson distribution. At one
time slot t, the probability of the number of active users NG

(where, G ∈ {GB,GF}) equalling to Nt ≥ 0 is given by

Pr{NG = Nt} =
λNt

G exp(−Nt)

Nt!
. (1)

The probability density function of a random user with
distance rG is given by fr(rG) = 2rG

R2 . We define the
channel gain and transmit power of i-th GB users as hGB

i =
|hi|2(ri, GB)

−α and PGB
i respectively. Similarly, the channel

gain of j-th GF user with transmit power PGF
j is given as

hGF
j = |hj |2(rj, GF)

−α. The hi, hj , ri, rj , and α are the
small-scale Rayleigh fading of user i ∈ V and user j ∈ U,
communication distances of user i and user j, and path loss
exponent, respectively. Table I summarises all of the notations
and their definitions for clarity.

A. SGF-NOMA Transmission

Note that a large portion of IoT users in mMTC does
not require ultra-high data rates [5]. The conventional GB
transmission is based on prior handshakes with the BS, which
provides limited connectivity and more capacity for most IoT
applications than required. This extra capacity can be utilized

to enhance the connectivity via GF transmission that forms
SGF-NOMA transmission. More specifically, in the SGF-
NOMA scheme, GB and GF users share the same or a part
of the same RB for uplink transmission. Assuming the total
number of orthogonal RBs (sub-channels) is M , the combined
information received at the BS on sub-channel m in a time slot
ts is

ym(ts) =

NGB,m∑
i=1

√
PGB
m,i (ts)h

GB
m,i(ts)xm,i(ts)+

NGF,m∑
j=1

√
PGF
m,j(ts)h

GF
m,j(ts)xm,j(ts) + n0(ts), (2)

where NGB,m and NGF,m are the numbers of GB and GF
users in the m-th sub-channel, respectively. In the m-th sub-
channel, the xm,i is the transmitted signal from the i-th GB
user, and the xm,j is that from the j-th GF user. The n0 is the
additive white Gaussian noise for each sub-channel with zero
mean and variance σ2.

B. Signal Model

We assume that the GB users have the highest priority (e.g.,
a sensor for healthcare monitoring) and provide the strongest
received power at the receiver. Thus, the BS always decode
the GB user in the first stage of SIC to avoid long latency.
After that, the BS turns to decode the GF users according to
the received power strength order [2]. To simplify the analysis,
this work considers a typical scenario that each RB has one
GB user1. Moreover, we allow a random number of GF users
to be clustered with a GB user in a given RB. Therefore, the
received power strength order, i.e., the decoding order, at the
BS can be expressed as

PGB
m,1h

GB
m,1(ts) ≥ PGF

m,1h
GF
m,1(ts) ≥ PGF

m,2h
GF
m,2(ts) · · · · · · ≥

PGF
m,NGF,m

hGF
m,NGF

(ts). (3)

1We allocate a dedicated RB to a GB user. We can multiplex more than
one GB user in each NOMA cluster; however, if we group more than one GB
user into one NOMA cluster, we are required to satisfy the QoS of multiple
GB users.
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Fig. 1: An illustrative structure of the cluster-based SGF-NOMA IoT network: Top-left sub-figure shows the distribution of GF and GB users in different NOMA clusters. Top-right
sub-figure represents the power level of GF and GB users on the same RB from PP1. The bottom-left sub-figure shows the GB transmission, and the bottom-right sub-figure shows
the GF procedure.

This work considers imperfect SIC. In real scenarios, perfect
SIC is unfeasible due to error propagation. As a result of
imperfect SIC, signals from j−1 interferers cannot be decoded
perfectly in a NOMA cluster, leaving residual noise for user
j. Let the original signal from j-th user on sub-channel m

is ym,j(ts) =
√
PGF
m,j(ts)h

GF
m,j(ts)xm,j(ts) and the estimated

signal at the BS can be represented as ŷm,j . After SIC, the
residual interference ISICm,j to j-th user on sub-channel m is

ISICm,j =

j−1,m∑
ĵ=1

|ym,ĵ(ts)− ŷm,ĵ(ts)|
2

=

j−1,m∑
ĵ=1

PGF
m,ĵ

(ts)|hGF
m,ĵ

(ts)|2|xm,ĵ(ts)− x̂m,ĵ(ts)|
2.

(4)

After cancelling the ĵ-th user on sub-channel m, the fractional
error is a random variable and approximated by a Gaussian
distribution with variance σ2

ε like [19] and can be given as
εm,ĵ = E

{
|xm,ĵ(ts) − x̂m,ĵ(ts)|2

}
. The interference due to

residual error that j-th user may have on sub-channel m can
be expressed as

ISICm,j =

j−1,m∑
ĵ=1

PGF
m,ĵ

(ts)|hGF
m,ĵ

(ts)|2ε2m,ĵ
. (5)

The signal-to-interference-plus-noise ratio (SINR) for the i-th
GB user on sub-channel m in time slot ts is given by

γGB
m,i(ts) =

PGB
m,ih

GB
m,i(ts)∑NGF,m

j=1 PGF
m,jh

GF
m,j(ts) + σ2

. (6)

The SINR of the j-th GF user can be expressed as

γGF
m,j(ts) =

PGF
m,jh

GF
m,j(ts)∑NGF,m

j′=j+1 P
GF
m,j′h

GF
m,j′(ts) + ISICm,j + σ2

. (7)

To guarantee the SIC process and maintain the QoS of GB
and GF users, the following constraints are applied:

RGB
m,i(ts) = Bs log2(1 + γGB

m,i(ts)) ≥ τ, (8a)

RGF
m,j(ts) = Bs log2(1 + γGF

m,j(ts)) ≥ τ̄ , (8b)

where RGB
m,i(ts) and RGF

m,j(ts) is the data rate of GB users
i and GF user j in time slot ts, respectively. Furthermore,
τ is the required target data rate to ensure the QoS of GB
users, and τ̄ is the target threshold for GF users. The Bs is
the bandwidth of each sub-channel obtained from Bs = B/M ,
where B is the total bandwidth. Although (8b) is not necessary
for GF transmission, it is important for the PP design since
this constraint is able to limit the number of potential GF users
for each RB, which enhances the connectivity of GF users.



FAYAZ et al.: TOWARD AUTONOMOUS POWER CONTROL IN SEMI-GRANT-FREE NOMA SYSTEMS: A POWER POOL-BASED APPROACH 5

Fig. 2: An illustrative structure of GF and GB users sharing the same RB and PP against each RB.

C. RB-Oriented Power Pool

In conventional SGF-NOMA, users transmit with fixed
power. However, determining the optimal power for each
user requires a closed-loop PC, which can be costly for
IoT applications. This paper demonstrates the capability of
MA-DRL techniques to achieve distributed open-loop PC by
generating a PP for each RB, i.e., {PP1,PP2, . . . ,PPM},
where PPm ⊂ Pt = {P1, P2, · · · , PNP } as shown in Fig.
2. In each sub-channel, there is a GB user with varying
levels of QoS requirements. Since GB users have diverse
QoS requirements, the redundant resources allocated to GF
users are unique in each sub-channel. Therefore, these various
redundant resources are utilized in designing PPs. As a result,
the PPs are specific to each GB user’s QoS. We assume that the
BS broadcasts these PPs to GF users in the network. A GF
user selects a power level randomly from the PP associated
with the chosen RB. After selecting a power level, each GF
user adjusts its transmit power to the specified level for uplink
transmission. For example, if a GF user j wants to transmit
on sub-channel 1, it selects one received power level from
PP1 for uplink transmission. Selecting a received power level
from PP corresponds to each RB restrict the interference to
a tolerable threshold ϕ that ensures the QoS of the GB users.

Remark 1. In GF transmission, active users should randomly
select a RB and received power without any grant, making
MUD complex, and BS needs to accurately estimate the
varying number of users transmitting over a specific RB [20].
In order to keep MUD simple using a SIC receiver, the BS can
use the PP to estimate the number of users in each RB. More
specifically, in a PP, if a received power level is idle [21]
(i.e., no packet is transmitted on this power level), the BS can
estimate the number of users from the remaining power levels
used for transmission.

Remark 2. These PPs enable GF users to transmit at the opti-
mal power levels without requiring training. More specifically,

new users joining the network receive optimal power levels
(PPs) from the BS, and they can select transmission power
without prior training. Selecting the power level from the PP
prevents training complexity and reduces energy consumption.
Furthermore, the specified power levels in the PPs give
GF users with the flexibility to select their transmit power,
accommodating various QoS needs. GF users can select a
power level that meets their specific QoS needs while ensuring
that interference remains below the QoS threshold for GB
users.

III. RB-ORIENTED PP GENERATION AND PROBLEM
FORMULATION

The objective is to regulate the received power at the base
station by controlling the transmit power of GF users so that
each GB user achieves the desired QoS. We assume that a
single GB user i is connected to the BS through sub-channel
m. Let Qm

q represent the number of GF users who share the
same sub-channel m with GB user and can be expressed as
Qm

q ⊂ U = {q : 0 ≤ q ≤ NGF}. To design the PPs, and
restrict interference for maintaining uplink QoS of GB users,
the BS has the following steps, shown in Fig. 3.

• The BS obtains the complete CSI and transmit power of
the GB user.

• Leveraging the above information, the BS determines the
acceptable received power from GF users and calculates
interference threshold ϕm a GB user can tolerate and
allocate it to the channel m where the user can attain
the same performance as in OMA [9].

• Following this, the BS formulates a global power pool
Pt = {P1, P2, · · · , PNP } and broadcasts it to GF users,
along with the interference threshold.

After receiving the global power pool, GF users choose a
RB and a power level from the broadcasted pool. The pivotal
element is user training. As users undergo this training, they
learn to determine the optimal power levels for their uplink
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Fig. 3: An illustrative structure of SGF transmission and throughput maximization process.

transmissions, resulting in the formulation of a distinct PP for
each RB. We assume that each GF user is allowed to select
at most one sub-channel occupied by a GB user in a time
slot ts, as shown in Fig. 2. For this constraint, we define a
sub-channel selection variable k, as follows:

km,j(ts) =


1, user j ∈ U select sub-channel m

which is occupied by GB user i

0, otherwise.

(9)

We aim to jointly optimize the power allocation Pt =
{P1, P2, · · · , PNP } and sub-channel assignment Kt =
{k1,1, · · · , km,j , · · · , kM,NGF

} to determine a set of power
levels for a given PP to ensure that each GB user can meet its
target QoS requirements and maximize the system throughput.

The cumulative capacity can be given as

C̄(P, km,j)=Bs

Ts∑
ts=1

M∑
m=1

[NGB,m∑
i=1

log2

(
1+

PGB
m,ih

GB
m,i(ts)

NGF,m∑
j=1

PGF
m,jh

GF
m,j(ts)+σ2

)

+

NGF,m∑
j=1

km,j log2

(
1 +

PGF
m,jh

GF
m,j(ts)

NGF,m∑
j′=j+1

PGF
m,j′h

GF
m,j′(ts)+ISICm,j + σ2

)]
(10)

Based on (10), the optimization problem can be formulated
as

maximize
Pt,Kt

C̄(P, km,j) (11)

s.t. (3) (11a)
NGF,m∑
j=1

Pm,j∈U(ts)≤Pmax, ∀m,∀ts, (11b)

M∑
m=1

ki,j∈U(ts) ≤ 1, ∀j,∀ts, (11c)

NG,m(ts) ≥ 2, ∀m,∀ts, (11d)
M∑

m=1

RGB
m,i(ts) ≥ τ, ∀i,∀ts, (11e)

M∑
m=1

RGF
m,j(ts) ≥ τ̄ , ∀j,∀ts, (11f)

M∑
m=1

NGF,m(ts) ≤Ls, ∀ts, (11g)

where (11a) is the SIC decoding order and GB user is decoding
in the first stage of SIC. The maximum transmit power limit
of a user j is given in (11b). Constraint (11c) restricts the
IoT users to select at most one sub-channel in a time slot ts,
(11d) represents the minimum number of IoT users to form a
NOMA cluster. (11e) is the required data rate of GB users to
ensure QoS, and (11f) represents the minimum required data
rate threshold for GF users. (11g) shows the maximum number
of GF users on each sub-channel.

IV. MA-DRL FRAMEWORK FOR SGF-NOMA SYSTEMS

DRL method aims to find good quality policies for decision-
making problems and is able to evaluate the best utility among
available actions with no prior information about the system
model. DRL algorithms were originally proposed for a single
agent interacting with a fully observable Markovian environ-
ment with guaranteed convergence to an optimal solution.
Recently, MA-DRL has been widely used in more complex
environments and shows stronger performance than single-
agent DRL algorithms [22].



FAYAZ et al.: TOWARD AUTONOMOUS POWER CONTROL IN SEMI-GRANT-FREE NOMA SYSTEMS: A POWER POOL-BASED APPROACH 7

A. Modelling the Formulated Problem as a Stochastic Markov
Game

Stochastic games model the dynamic interactions of players
(agents), where the environment changes in response to the
players’ behavior. Stochastic games progress in stages, during
which each player selects the actions available to them in the
current state. The chosen action has two effects: 1) it produces
a stage reward, and 2) it determines the probability of the
next state. Consequently, players (agents) receive a reward or
penalty in the current state and strive to attain high rewards
in the next state. A Markov Game is an abstraction of the
MDP [23]; MDPs are commonly used in modern RL problems
to model the interaction between the environment and the
agent. An MDP is a tuple of (N,S,A, R(·),P(·)), where N
represents the number of agents, S represents the set of states
in the environment, A represents the set of actions that can be
performed by an agent, R(·) represents the immediate reward
signal an agent receives from the environment for a given state-
action pair, and P(·) shows the transition probabilities between
states. Agents act in the environment according to a specific
policy π(·), which determines the probabilities that guide the
agent’s decision to take an action based on the current state
of the environment. In RL algorithms, the agent’s objective is
to maximize its long-term rewards by iteratively adjusting its
policy based on the rewards it receives from the environment
after taking action. Briefly, these functions can be expressed
mathematically as

P(s, a, s′) = P [St+1 = s′|St = s,At = a] ,

R(s, a) = E [Rt+1|St = s,At = a] ,

π(s, a) = P [At = a|St = s] ,

where St represents the state of an agent at a learning step t
of an episode. The At is the action the agent takes at that step.
The Rt+1 is the reward received by the agent corresponding
to the state-action pair. Detailed definitions are given below.

• Set of Agents N : We define the GF IoT user as an agent
who interacts with the wireless communication environ-
ment. Multiple IoT users collaboratively explore the en-
vironment and gain experiences for their policy π design.
IoT users adjust their policies based on the insights gained
from environmental observations. All agents adjust their
actions (sub-channel and power level selection) to obtain
an optimal policy π∗ by maximizing the reward [24]. At
each time-step (TS) t, each agent j receive a statesj(t),
and performs an action aj(t) that forms a joint action
a(t) = (a1(t), a2(t), · · · , aj(t), · · · , aN (t)).

• State space S : All agents collectively explore the wire-
less environment by observing various states within the
environment. More specifically, we represent the data rate
of GF users as the current state sj(t) ∈ Sj in learning
step t as follows

Sj =
{
RGF

1,1 (t), R
GF
2,1 (t),· · ·RGF

m,j(t),· · · , RGF
M,NGF

(t)
}
,

(12)

where RGF
m,j is the data rate of GF user j on sub-channel

m and depends on previous time slot (t− 1).
• Action Space A : We define the action of a GF user j

as a selection of power level and sub-channel. The action
space of agent j can be expressed as

Aj(t) = {1, 2, · · ·pm, · · ·, PNPM}. (13)

We use a set of discrete power levels Pt =
{P1, P2, · · · , PNP }. Agent j is only allowed to select
one power level in time slot t to update its transmit
power strategy. All agents have same action space [A1 =
A2 = · · · = Aj = · · · = AN ] for ∀j ∈ N. Action space
dimension is M ×PNP , where M is the number of sub-
channels and PNP is the number of available discrete
power levels.

• Reward Engineering Re : The reward function evaluates
the actions of an agent as either positive or negative. The
design of the reward function is not a trivial task. As it
directly impacts the optimization function and accelerates
the learning process [25]. Based on the optimization
problem under consideration, we present a systematic
approach for developing a viable reward function by
incorporating user dynamics (user behavior).

1) Self-Centred: Agents exhibiting this type of behav-
ior are short-sighted and act in a completely selfish
manner. The agent only considers its own interests
and chooses actions that may harm other users’
rewards in order to enhance its own reward. For
example, if an agent j (IoT user) receives its data
rate as a reward, it will select a high power (action)
to maximize the reward. However, selecting a high
power level creates intense intra-RB interference,
which degrades the rewards of other users. Thus,
agents following this approach receive varying re-
wards based on their individual behavior, leading to
a greedy strategy. The reward function for such an
approach can be defined as

rj(t) =



RGF
m,j(t), if RGF

m,j(t+ 1) ≥ RGF
m,j(t)

and ensure constraints given

in (11a)-(11g),

0, otherwise.
(14)

2) Cluster-Centred: Agents exhibiting cluster-centered
behavior have a wider field of vision and make
decisions based on the rewards associated with their
clusters (RBs). According to the problem formula-
tion, a user needs to balance its power within its RB.
Thus, users should select the power level that min-
imizes intra-RB interference and maximizes cluster
throughput. Agents who receive cluster throughput
as a reward only prioritize their selected RB and fo-
cus on maximizing cluster throughput. For example,
a user creating high interference in one RB might
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be a low-interference user in another RB.

rj(t) =


C, if C(t+ 1) ≥ C(t) and ensure

constraints given in (11a)-(11g),

0, otherwise,
(15)

where C is the cluster throughput given by C =
NGF,m∑
j=1

RGF
m,j(t).

3) Network-Centred: Finally, agents with network-
centered behavior receive a global reward (such
as network throughput in our case) and provide
support beyond their individual interests. Therefore,
users select the power levels and sub-channels that
maximize network throughput (reward). Based on
the problem formulation, this type of reward informs
the users that we desire to optimize (maximize C̄)
the network throughput. Therefore, all agents (IoT
users) coordinate with each other to adjust their
actions, as the IoT user selects a NOMA cluster
and power level that either increases or decreases
intra-RB interference. Markov games, in which all
agents receive the same reward, are known as Team
Markov Games [26]. The reward function of each
agent j ∈ N at learning step t is given by

rj(t) =


C̄, if C̄(t+ 1) ≥ C̄(t) and ensure

constraints given in (11a)-(11g),

0, otherwise.
(16)

We have included (11a) in reward function to ensure
the given decoding order.

• Transition Probability P : The state transition proba-
bility function is the probability of transitioning to next
state s(t + 1) after taking a joint action a(t) in current
state s(t).

Remark 3. After decoding all users’ information, the BS
learns the data rates of GF users. As a result, the state s(t)
and the reward r(t) are available at the BS in each time slot.
Therefore, providing data rates of users to the agents as a state
can prevent direct collaboration among the agents, thereby
reducing signaling overhead and energy consumption.

We define Q function Qπ
j (sj(t), aj(t)) associated with policy

π as the expected cumulative discounted reward for each agent
j after taking action aj in state sj i.e.,

Qπ
j (sj , aj) = Eπ

[
Re(t)

∣∣sj(t) = s, aj(t) = a
]
, (17)

where Re is the long-term accumulated and discounted reward
and calculated as

Re =

K∑
k=0

βkr(t+k+1), 0 < β ≤ 1, (18)

where β, k and K represent the discount factor, epoch and
maximum epoch, respectively. The policy π map the state s(t)

to the corresponding Q-value under action a(t). All agents aim
to maximize the expected reward, which leads them to derive
an optimal policy π∗. Once the optimal Q function Q∗(s, a)
is obtained, each agent determines an optimal policy π∗ such
that Q∗(s, a) ≥ Q(s, a) ∀s ∈ S and a ∈ A. In a stochastic
TMG, the joint optimal policy is known as Nash equilibrium
(NE) and can be described as π∗ = (π∗

1 , π
∗
2 , · · · , π∗

N ). The NE
is a combination of policies from all agents, with each policy
representing the best retaliation to other policies. Therefore,
in a NE, each agent’s action is the best response to the other
agent’s action choice.

The classic Q learning algorithm [23] maintains a Q-table to
record Q-values for each state-action pair. However, in the IoT
scenario, the size of the Q-table increases with the expanding
state-action spaces (i.e., an increase in IoT users), making Q-
learning costly in terms of memory and computation. There-
fore, the Deep Q learning algorithm [27] is proposed to over-
come the aforementioned problem by integrating Q learning
with a Deep Neural Network (DNN) with weights denoted as
θ for Q function approximation, represented as Q(s, a; θ). In
MA-DRL, each agent consists of a primary (online) network,
a target network (both networks with the same architecture),
and a replay memory. During the training phase of DNN,
the learnable parameters (weights and biases) are updated
based on the system’s transition history, which consists of a
tuple (sj(t), aj(t), r(t), sj(t+ 1)). This process enhances the
accuracy of the Q-function approximation. In a learning step
t, each agent j inputs the current state sj to the DQN and
receives Q-values corresponding to all actions as output. The
agent selects the action with the highest Q-value and obtains an
experience in the form of a tuple (sj(t), aj(t), r(t), sj(t+ 1)),
which is then stored in the replay memory. To update the
weights θ of the target Q-network, a mini-batch of data is
randomly sampled from the replay memory. The target value
generated by the target Q-network from a randomly sampled
tuple is

yj(t) = r(t) + β argmax
aj(t+1)∈Aj

Q(sj(t+ 1), aj(t+ 1); θ). (19)

In DQN, agents use the same Q-values for both action se-
lection and action evaluation. This leads to a Q-value overes-
timation problem and causes the algorithm to converge with
a non-optimal solution, as the max operator uses the same
value for both purposes. To address this issue and enhance
the learning efficiency of agents, the following versions of
DQN are proposed.

B. Double Deep Q-Network Algorithm

The DDQN [28] prevents the aforementioned problem by
decoupling the max operation in the target network for action
selection and action evaluation. More specifically, we use two
neural networks (NNs) DQN1 and DQN2, where DQN1 is
used to select actions and DQN2 is used to evaluate the
corresponding Q-value of those actions. For DDQN, the target
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(a)

(b)

Fig. 4: DNN structures of the proposed algorithms: (a) DNN structure for DDQN algorithm, which consist of input layer followed by hidden layers and an output layer. (b) DNN
structure for Dueling DDQN algorithm.

of DQN can be rewritten as:

yj(t) = r(t) + βQ

(
sj(t+ 1),

argmax
aj(t+1)∈Aj

Q

(
sj(t+ 1), aj(t+ 1); θ

)
; θ

)
. (20)

Using a variant of stochastic gradient descent (SGD), the
primary Q-network can be trained by minimizing the loss
function.

Loss(θ) = (yj(t)−Qj(t)(sj(t), aj(t); θ))
2. (21)

The proposed MA-DDQN algorithm for power and sub-
channel selection with proposed DNN architecture depicted
in Fig. 4(a) is given in Algorithm 1.

C. Dueling Double Deep Q Network Algorithm

The conventional DQN algorithm calculates the value of
each action in a given state. However, different policies
may lead to the same value function in certain states. This
phenomenon may impede the learning process of identifying
the best action in a given state. Dueling architectures have the
advantage of efficiently generalizing state values across similar
states. As the value approximations are decoupled from the
action advantages, the value function can be shared and reused
across different actions, reducing redundancy. As a result, the

generalization capabilities are improved, and computational
resources are used more efficiently. The dueling DQN [29]
is an enhanced version of DQN. In this model, the Q-network
consists of two streams (sequences) Q-function (i.e., the state-
action value function is decomposed), namely the state value
function Vπ(s) and the advantage function Aπ(s, a). This
decomposition of the Q-function accelerates convergence and
improve the efficiency. The value function Vπ(s) represents
the expected return from a particular state under policy π,
while the advantage function Aπ(s, a) quantifies the relative
importance of taking a specific action compared to other
actions in a given state. The output of the dueling network
is obtained by combining these two streams to create an
aggregate module and a single output Q-function.

Qπ(s, a; θ, θ
V , θA) = Vπ(s; θ, θ

V ) +Aπ(s, a; θ, θ
A), (22)

where, θ, θV , and θA represent the parameters of the common
network, the value stream parameters, and the advantage
stream parameters, respectively. Practically, the agent cannot
distinguish between Vπ(s) and Aπ(s, a). Since the agent may
not be able to obtain a unique solution for Qπ(s, a; θ, θ

V , θA),
it may be unidentifiable and result in poor performance. To
solve this problem, the Q-values for each action a in state s
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Algorithm 1 Proposed MA-DDQN based SGF-NOMA Algorithm

1: Initialize primary network with random weights θ
2: initialize target Q-network with same weights as primary network
3: Initialize replay memory with size Z, and other training param-

eters β, ϵ
4: for episode = 1 to M do
5: reset initial state of the environment
6: for time-step = 1 to N do
7: Input state s(t)
8: Take joint action a(t) following ϵ−greedy policy, receive

next state s(t+ 1) and reward r(t)
9: Store s(t), a(t), r(t), s(t+ 1) in replay memory Z

10: Sample mini-batches from memory Z
11: minimize the loss between the primary network and target

network using SGD:[
r(t) + βQ(sj(t+ 1), argmax

aj(t+1)∈Aj

Q(sj(t+ 1), aj(t+ 1)))

−Qj(t)(sj(t), aj(t); θ)
]2

12: if episode% ==Usteps then
13: copy primary network weights to target Q-network

weights
14: end if
15: end for
16: end for

are generated by the aggregation layer as follows:

Qπ(s, a; θ, θ
V , θA) = Vπ(s; θ, θ

V ) +Aπ(s, a; θ, θ
A)

− 1

|A|
∑

a(t+1)

Aπ(s(t), a(t+ 1); θ, θA). (23)

The operation of (23) ensures that the primary function of
each action in this state remains unchanged and reduces the
range of Q-values and excess degrees of freedom, thereby
enhancing stability. In particular, it reduces variance in learned
action values and enables policy updates to be more stable and
reliable. As a result, learning and decision-making processes
are smoother and more consistent. The proposed MA-Dueling
DDQN algorithm is presented in Algorithm 2, and the DNN
architecture used is depicted in Fig. 4(b).

D. Proposed MA-SGF-NOMA Algorithms

In our proposed MA-DRL algorithms, each GF user acts as
an agent and runs an independent DQN. All agents collectively
explore the wireless environment and learn an optimal policy
to find a NE. For the exploration and exploitation trade-off, we
use the ϵ-greedy method. To fully explore the environment and
find the action with the best reward, the agent considers taking
a random action with a probability ϵ ∈ [0, 1]. To improve
performance, the GF user chooses the best action linked to
the highest Q-value in a given state with a probability 1−ϵ.
In a single learning step t, each GF user j uploads the current
state sj(t) to its primary Q-network and retrieves all the Q-
values associated with all actions. The agent then decides
its action according to the ϵ-greedy method and takes the
joint action a(t). The environment transitions to a new state
s(t+1) with probability P , and all agents (GF users) receive
the same reward, which is the system throughput. In each

Algorithm 2 Proposed MA-Dueling DDQN based SGF-NOMA
Algorithm

1: Repeating lines 1-10 in Algorithm 1
2: Calculate two streams of the evaluated deep network Vπ(s; θ, θ

V )
and Aπ(s, a; θ, θ

A), and combine them using (22)
3: minimize the loss between the primary network and target

network using SGD:[
r(t) + βQ(sj(t+ 1), argmax

aj(t+1)∈Aj

Q(sj(t+ 1), aj(t+ 1)))

−Qj(t)(sj(t), aj(t); θ)
]2

4: if episode% == Usteps then
5: copy primary network weights to target Q-network weights
6: end if

time step t, agents create a new experience by interacting
with the wireless environment and store it in memory Z as
a tuple (s(t), a(t), r(t), s(t + 1)). To calculate the Q-value
of the target network, we randomly sample mini-batches of
stored transitions from the replay memory2. In each training
iteration, to improve the policy π, the primary Q-network
is trained by minimizing the error between the actual value
and the predicted value using the SGD method with (21).
After a set number of training iterations, the primary network
weights are copied to the target Q-network. At the end of
the training process, each agent j finds an optimal policy π∗

j ,
which contributes to the formation of the global (joint) optimal
policy π∗.

E. Analysis of the Proposed Algorithm

1) Computational Complexity: Floating Point Operations
(FLOPs) are used to measure the computational com-
plexity of our algorithm for a single prediction (pre-
dicting the power and sub-channel selection policies) or
operation. The computational complexity of our model
for a single prediction, considering a DNN with L layers
and each layer l having gl nodes, and X as the size of
the input layer, is given by:

O

(
2Xg1 +

L−1∑
l=1

2glgl+1 +

L∑
l=1

gl

)
.

The computational complexity in terms of FLOPs for
the whole learning process can be expressed as:

O

(
Nt ·M ·N ·

(
2Xg1 +

L−1∑
l=1

2glgl+1 +

L∑
l=1

gl

))
.

In the above expression, Nt represents the total number
of agents, M denotes the number of episodes, and N
signifies the learning steps involved.

2) Signalling Overhead: The overhead is determined by
the number of information bits required to provide
feedback on sub-channel indicators, channel status data,
and a specific user’s transmission power over a sub-
channel [32]. Moreover, in ML-based approaches, the

2The dueling DDQN, an additional step is required: calculating
Vπ(s; θ, θV ) and Aπ(s, a; θ, θA) and combining them using (22).
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TABLE II: Quantitative comparison of the signalling overhead

Reference Overhead for U GF and V GB users Power decision Optimization method
[9]

(
4V︸︷︷︸
power

+ 2V︸︷︷︸
CSI

+ 2︸︷︷︸
channel quality threshold

or 2U︸︷︷︸
beacon transmission

)
bits BS Conventional

[10]
(
4V︸︷︷︸
power

+ 2V︸︷︷︸
CSI

+ 2︸︷︷︸
data rate threshold

)
bits BS Conventional

[14]
(

2︸︷︷︸
pilot

+ 2V︸︷︷︸
SNR

+ 2V︸︷︷︸
CSI

+ 2︸︷︷︸
target rate

+ 2︸︷︷︸
decoding threshold

+ 2︸︷︷︸
SNR threshold

)
bits Conventional

[30]
(

2︸︷︷︸
pilot

+ 4V︸︷︷︸
power

+ 2V︸︷︷︸
CSI

+ 2︸︷︷︸
interference threshold

)
bits BS Conventional

[31]
(
10U︸︷︷︸
state

+ 2︸︷︷︸
reward

)
bits User RL based

Proposed
(
2U︸︷︷︸
state

+ 2︸︷︷︸
reward

+ 16︸︷︷︸
PPs

)
bits User RL based

transfer of states and rewards between the agent and
the environment also impacts the overhead. Similar to
[32], we assume the set {16, 4, 4} as the number of
information bits to transmit channel status, sub-channel
indicators, and the transmission power in the feedback
process, and 2 bits for obtaining a single value of a
state and reward. Conventional optimization methods
typically lead to high overhead because they depend
on instantaneous CSI and other threshold information.
ML-based approaches, as illustrated in [31], can also
result in significant overhead, particularly when the
environment states comprise multiple values, such as
current channel gain, transmit power, and sub-channel
indicator. Therefore, the ML-based approach outlined
in [31] also leads to significant overhead because it
includes three values in the environment states: current
channel gain, transmit power, and sub-channel indica-
tor. The signaling overhead in our proposed Dueling
DQN model is significantly influenced by the essential
information exchange inherent in the learning process.
This includes the data rates of the users within the
state, feedback on reward signals, and broadcast of PPs.
A detailed quantitative comparison considering these
aspects of signaling overhead is presented in Table II,
offering a comprehensive understanding of how our
model differs from other approaches in terms of the
generated overhead.

V. NUMERICALS RESULTS

In this section, we evaluate the performance results of our
proposed scheme. BS is located at the centre of a circle with
a radius of 1000m. The GF and GB users follows a Poisson
distribution across the cell area. We set the path-loss exponent
α = 3.0, n0 = −90 dBm and the sub-channel bandwidth is
10 KHz [33]. In addition, the GB users transmit data at a fixed
power, while GF users select the power from the available
power levels {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} w, and
choose among the 3 sub-channels occupied by GB users. To
ensure the QoS of GB users, we have set a threshold data
rate of τ = 4 bps/Hz. Next, we define the hyperparameters
used for the architecture of our DQN algorithm. Our pro-
posed algorithm trains a DQN with three hidden layers, each
containing 250, 120, and 60 neurons, denoted as X1, X2,

and X3, respectively. We employ this relatively small network
architecture for training purposes to ensure that the agent can
make decisions (actions) as quickly as possible. We use the
Rectified Linear Unit as an activation function to accelerate
the learning rate and achieve fast convergence. We set the
learning rate to 0.001 and the discount factor β = 0.9 [33].
We set the memory size to Z = 10000, with a batch size of 32
and a target network update frequency of 1000. Additionally,
the initial value of ϵ is set to 1.0 and gradually decreases to a
final value of 0.01 to balance the exploration and exploitation
phenomena. The training lasts for 500 episodes, with each
episode consisting of 100 time steps.

A. Optimizer and Reward Function Selection
In ML, an optimizer with an appropriate learning rate

significantly impacts the model training. An optimizer with a
low learning rate progresses slowly, while an optimizer with a
high learning rate is susceptible to instability and divergence.
Therefore, it is crucial to carefully select an optimizer with
the appropriate learning rate, as it can significantly impact
the effectiveness of training. Fig. 5(a) displays the average
loss value of each agent using Adam and the RMSProp
optimizers for two different learning rates. It is evident that
the loss value decreases significantly for both optimizers when
using a learning rate of 0.001. However, the Adam optimizer
performs well and a chieves a minimum loss value within
130 episodes. The loss value of both optimizers decreases
slowly with a relatively low learning rate and reaches its
minimum in almost 230 episodes for Adam and 270 for
RMSProp. It is concluded that the Adam optimizer with a
learning rate of 0.001 converges faster than RMSProp with the
same learning rate. Fig. 5(b) shows the throughput obtained
using various reward functions. The users with a self-centered
reward function obtained less throughput compared to those
with cluster and network-centered reward functions. In this
type of approach, the agents interact with the environment in
a greedy manner and converge to a locally optimal solution.
In the cluster-centered method, agents aim to maximize their
reward within their respective cluster. In the network-centered
approach, agents identify actions that contribute to network
throughput. This means that agents select power levels that
create less interference for other users and choose clusters
where they can provide the highest data rates.
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Fig. 5: The loss and reward value: Sub-figure (a) shows the loss value of Adam
and RMSProp optimizers with different learning rates. Sub-figure (b) illustrates the
throughput obtained using different reward functions.

B. Proposed Algorithm Learning Performance

Fig. 6(a) illustrates the comparison of learning effi-
ciency and convergence between MA-DDQN and MA-dueling
DDQN-based SGF-NOMA algorithms using a relatively small
set of actions and states. Both algorithms perform similarly
in terms of learning and reward gain. It can be concluded
that MA-DDQN performs better on problems with a limited
action space. As a result, MA-DDQN can be applied to
problems with a limited set of actions, unlike MA-Dueling
DDQN, which necessitates training a distinct neural network
to calculate the function estimator. Moreover, identifying the
optimal actions and critical states is particularly important
in large action and state spaces to enhance the learning
process, making MA-Dueling DDQN the most suitable choice.
Fig. 6(b) shows the comparison of learning efficiency and

convergence between MA-DDQN and MA-dueling DDQN-
based SGF-NOMA algorithms across a large number of action
and state spaces. The initial performance of both algorithms is
the worst due to random action selection during the exploration
phase. However, after gaining experience from interacting with
the wireless environment, MA-Dueling DDQN demonstrates
better learning performance compared to the MA-DDQN
algorithm. In the MA-dueling DDQN algorithm, agents learn
and refine their policies more rapidly, typically converging
after approximately 100 episodes. On the other hand, agents in
the MA-DDQN algorithm learn slowly and begin to converge
after 220 episodes. This occurs because different policies may
result in the same value function in certain states, and this phe-
nomenon hinders the learning process in determining the best
action for a specific state. However, the MA-Dueling DDQN
generalizes the learning process for all actions and can quickly
identify the best actions and important states without having to
learn the effects of each action for each state, thus accelerating
the learning process for each agent. During the exploitation
phase, both algorithms’ agents exploit the environment by
taking better actions, gradually increasing the reward value,
and reaching its maximum in 300 episodes. However, the MA-
Dueling DDQN demonstrates rapid learning efficiency and
superior performance in terms of reward (system throughput)
acquisition.

C. Scalability of the Proposed Algorithm

One of the main challenges with MA-DRL algorithms
is scalability. One solution to this problem is to utilize
decentralized learning with networked agents, which allows
agents to share information about their actions, states, or
policies with other agents [34]. However, such communication
among agents increases communication overhead and reduces
energy efficiency. To minimize communication overhead, our
proposed algorithm involves agents indirectly receiving in-
formation (data rate) of other users from the BS as a state
and updating their policies in a decentralized manner. More
specifically, agents (users) are independent learners and cannot
communicate with each other directly. This is advantageous
for applications with high communication costs or unreliable
communications, such as in UAV networks or IoT networks.
We illustrated the scalability of our proposed algorithm in Fig.
7(a). It is evident that our proposed algorithm converges in
almost the same number of episodes across different numbers
of users. With N = 9 agents, the algorithm begins to converge
after approximately 255 episodes and reaches its maximum
reward value after about 325 episodes. A similar performance
can be observed when we increased the density, i.e., the
number of agents to N = 12, N = 15, N = 24, and
N = 30. Increasing this number further makes it difficult
for power-domain NOMA to successfully decode more than
10 users in a NOMA cluster. Furthermore, new agents can
be added to the existing trained agents by simply copying the
NN parameters of the trained agents. This approach allows for
the generalization of the proposed method to diverse scenarios.
Therefore, our proposed algorithm is suitable for SGF-NOMA
IoT networks with a large number of users.
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Fig. 6: The convergence comparison: Sub-figure (a) shows the performance against small
action and state spaces. Sub-figure (b) represents the convergence comparison against
large action and state spaces.

D. Impact of the Number of Power Levels

We discretize the received power into different levels in or-
der to assess the network performance with varying numbers of
power levels. Fig. 7(b) illustrates the impact of the number of
power levels on network performance in terms of throughput
and convergence. A small number of power levels reduces the
state and action spaces to (M ×PNP , (3×1 = 3)), leading to
quick convergence. It can be observed that after approximately
100 episodes, each agent (GF user) discovers an optimal
policy and receives a consistent reward in terms of throughput.
However, this leads to the lowest network throughput because
each GF user has a limited range of power levels to choose
from. Network with PNP = 3 increases the action space
from 3 to 9 (i.e., 3 × 3 = 9), which requires more training
episodes to explore favorable states and identify an optimal
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Fig. 7: Scalability and impact of the number of power levels and performance comparison:
Sub-figure (a) shows the scalability of our proposed algorithm with increasing number
of agents. Sub-figure (b) represents network throughput w.r.t. different number of power
levels.

policy. From the figure, it can be seen that after 175 episodes,
agents receive a reward in the form of throughput. With higher
received power levels, the network throughput increases as
each user selects power fairly based on the channel gain,
which reduces interference to other users in the cluster. Next,
we evaluate network performance w.r.t. PNP = 5, which
yields the best performance results compared to the other
power levels. The throughput increases continuously from
200 episodes, reaches its peak throughput at 300 episodes,
and remains stable until the end of the training. When the
algorithm has PNP = 7 and PNP = 9, users spend more time
training to explore the environment for optimal actions, while
achieving the same throughput as PNP = 5. With more power
levels, most of the actions (with high power level) become
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invalid due to users’ transmit power constraints in each sub-
channel. Thus, increasing the number of power levels does
not always improve system performance. It becomes difficult
to determine the best states because the number of actions
directly impacts the state space in our proposed method.

E. Performance Comparison of the Proposed Algorithm

Fig. 8(a) shows the performance improvement achieved
by the proposed MA-DDQN-based SGF-NOMA and MA-
dueling DDQN-based methods. SGF-NOMA with the DPC
mechanism was compared to other methods, including pure
GF-NOMA and SGF-NOMA [9]. It is evident that MA-
DDQN-based SGF-NOMA and MA-dueling DDQN-based
SGF-NOMA with a DPC mechanism outperform bench-
marks in terms of throughput. The proposed MA-dueling
DDQN-based SGF-NOMA achieved 22.2% and 17.5% higher
throughput than pure GF-NOMA and SGF-NOMA, respec-
tively. This is because, in our proposed algorithm, only a
subset of GF users are permitted to transmit on a sub-
channel exclusively occupied by GB users, resulting in inter-
ference within a tolerable threshold for GB users. Unlike the
benchmark scheme mentioned in [9], all GF users transmit
at a fixed power, regardless of their channel gain. In our
proposed algorithm, GF users distribute transmission power
based on their channel gain and geographical location. Each
GF user acts as an agent to maximize its reward, which is
the network throughput. Therefore, GF users select the power
level that minimizes interference with other users, forming a
NOMA cluster, thereby increasing the system throughput. In
the pure GF IoT network, all GF users are allowed to transmit
data, leading to strong interference on the sub-channels. This
increases the intra-RB interference and results in low network
throughput.

F. SIC Error Impact

SIC performance depends on several factors, including the
power level of the interfering signal, complexity of the signal-
processing algorithm, and the quality of the receiver hardware.
Therefore, power control is a technique used to achieve reli-
able communication in the presence of imperfect SIC errors.
In a system with an imperfect SIC, power control can be
implemented by adjusting the transmit power of each user
according to the estimated interference level at the receiver.
Fig. 8(b) shows the impact of the increasing variance of
the Gaussian distribution on the sum rate3 and the transmit
power of users with different QoS requirements. It can be
observed that a small variance value and QoS requirements
lead to the highest sum rate. It is also important to note that
this high sum rate is achieved with minimal average user
power consumption. With a slight variation, the distribution
will have fewer widely dispersed values and less fluctuation
in SIC error, leading to reduced residual interference. As QoS
requirements and variance values are further increased, the

3For the primary comparisons and evaluations, throughput is the metric we
have adhered to. However, as an indicator of the inherent system capability,
we have provided additional discussions on the maximum achievable sum
rate.

0 100 200 300 400 500

No. of Episodes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
h
ro

u
g
h
p
u
t

10
5

MA-Dueling DDQN-SGF with DPC

MA-DDQN-SGF with DPC

SGF-NOMA (Benchmark)

MA-DDQN-GF with DPC (Benchmark)

400 450 500
3.6

3.8

4

10
5Throughput gain 22.2%

Throughput gain 17.5%

(a) Performance comparison

(b) Impact of error in SIC

Fig. 8: Performance comparison and impact of SIC error level: Sub-figure (a) shows the
performance comparison of the proposed MA-Dueling DDQN based SGF-NOMA and
MA-DDQN based SGF-NOMA with pure GF-NOMA scheme [4] and SGF-NOMA [9].
Sub-figure (b) shows the impact of the SIC error level on the throughput.

sum rate decreases, and the average transmission power of the
users increases. Due to the increased variation, the residual
interference also increases, requiring users to transmit at higher
power levels to ensure QoS requirements are met. With high
variance and large QoS requirements, the proposed power
allocation scheme performs poorly in terms of the sum rate and
average user transmission power consumption. However, due
to the intelligent power control, the decoding process remains
successful even in the presence of imperfect SIC.

G. The Designed RB Oriented PPs

The designed PPs associated with each sub-channel are
shown in Fig. 9(a). We utilized three sub-channels that are
pre-occupied by GB users but are available to GF users for
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uplink transmission. From the figure, it can be observed that
we have identified the optimal received power levels for each
PP and mapped them to the corresponding RBs. The BS
broadcasts PPs and other information to all GF users in the
network. After receiving this information, GF users randomly
select the power received from the PP associated with the
selected RB. This PP approach enables the DPC, as each GF
user chooses an appropriate power level from the available
power levels within the PP based on its local information
(e.g., channel conditions). Furthermore, the channel conditions
and interference levels are susceptible to rapid changes in
dynamic wireless environments. However, the DPC enables
users to adapt to these changes in real time, ensuring consistent
performance. To ensure consistent communication and adapt to
changing network conditions, users should regularly monitor
their environment and adjust their transmit power as needed.
Therefore, the proposed SGF-NOMA provides a distributed
open-loop PC with low signaling overhead and low latency.

H. PP Advantages for New Users
Training RL models requires extensive computational re-

sources, which may take hours, days, or even weeks to
complete the training process. This limitation can hinder the
practicality and scalability of RL applications, especially in
resource-constrained environments with time-sensitive or real-
time requirements. New users joining the network need train-
ing to optimize system performance, which is impractical and
wasteful of resources. We demonstrate that new users joining
the network can benefit from an RB-oriented PP. Fig. 9(b)
illustrates a performance comparison in terms of the spectral
efficiency of trained users with PP, untrained (new) users
with PP, and untrained users without PP (conventional). When
trained users selected the action with the highest Q-value, they
achieved the highest spectral efficiency. New users joining the
network without training receive PPs containing the optimal
received power levels from the BS via a broadcast signal. To
transmit uplink signals, users randomly select a RB and adjust
the transmission power. Compared to conventional systems,
RB-oriented PPs achieve higher spectral efficiency in all load
scenarios. The low spectral efficiency of untrained users with
PP is due to potential power collisions in comparison to trained
users. In this scenario, the BS is unable to decode the signals
from colliding users. As the number of users in each RB
increases, the probability of collisions also increases, leading
to a decrease in spectral efficiency. However, conventional
systems (without PPs) suffer from collisions, and they may
select suboptimal power levels that cannot guarantee GB users
and their own QoS requirements.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, we have proposed an MA-DRL-based SGF-
NOMA algorithm to generate a PP and map it to each RB,
which enables a distributed open-loop PC. In the proposed
scheme, a single user is granted access to the sub-channel
through a GB protocol, and GF users are admitted to the
same sub-channel via the GF protocol. The designed network-
centered reward function provides higher throughput com-
pared to self-centered and cluster-centered functions. We have
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Fig. 9: The designed PPs and performance with and without PPs. Sub-figure (a) shows
the PP corresponding to RBs. Sub-figure (b) Represents the performance of trained users
with PP and untrained (new) users with and without PP.

demonstrated that the proposed algorithm is computationally
scalable, regardless of the number of users. Numerical re-
sults show that the proposed MA-DRL-based SGF-NOMA
outperforms the SGF-NOMA system and networks with pure
GF protocols, achieving gains in system throughput of 17.5%
and 22.2%, respectively. We have demonstrated the impact
of the error level in SIC on network performance and the
average transmit power of users. Finally, the benefits of PP
are presented to new users. Investigating user fairness in terms
of energy consumption and received power collisions is a
promising direction for future research. Exploring adaptive and
power-efficient implementations of multiple antenna systems
in the context of SGF-NOMA is another promising future
research direction.
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