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Abstract—At the network edges, the multi-tier computing
framework provides mobile users with efficient cloud-like com-
puting and signal processing capabilities. Deploying digital twin-
s in the multi-tier computing system helps to realize ultra-
reliable and low-latency interactions between users and their
virtual objects. Considering users in the system may roam
between edge servers with limited coverage and increase the
data synchronization latency to their digital twins, it is crucial to
address the digital twin migration problem to enable real-time
synchronization between digital twins and users. To this end,
we formulate a joint digital twin migration, communication and
computation resource management problem to minimize the data
synchronization latency, where the time-varying network states
and user mobility are considered. By decoupling edge servers
under a deterministic migration strategy, we first derive the
optimal communication and computation resource management
policies at each server using convex optimization methods. For
the digital twin migration problem between different servers, we
transform it as a decentralized partially observable Markov de-
cision process (Dec-POMDP). To solve this problem, we propose
a novel agent-contribution-enabled multi-agent reinforcement
learning (AC-MARL) algorithm to enable distributed digital
twin migration for users, in which the counterfactual baseline
method is adopted to characterize the contribution of each agent
and facilitate cooperation among agents. In addition, we utilize
embedding matrices to code agents’ actions and states to release
the scalability issue under the high dimensional state in AC-
MARL. Simulation results based on two real-world taxi mobility
trace datasets show that the proposed digital twin migration
scheme is able to reduce 23%-30% data synchronization latency
for users compared to the benchmark schemes.

Index Terms—Digital twin migration, multi-tier computing,
multi-agent reinforcement learning

I. INTRODUCTION

The emerging applications, e.g., holographic telepresence,
brain-computer interaction, and extended reality, will enable
a merger of digital and physical worlds. These applications
have diverse performance requirements regarding the quality
of experience, latency, and reliability, which are challeng-
ing to be fulfilled by traditional wireless systems [2]. To
address these challenges, integrating digital twin technology
with wireless networks becomes a promising solution to offer
efficient interaction management for various entities under
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these applications [3]. Digital twin is a promising technology
to establish the connection between physical objects and their
corresponding digital virtual representations [4]. The digital
twin of physical objects, e.g., mobile users and vehicles, are
constructed according to their historical data and real-time
running status. Digital twin objects utilize the real-time data
generated by physical network entities to perform simulations
and analysis in the digital space, which helps to enable
close monitoring and provide intelligent decision-making for
network entities [5].

To efficiently mirror and serve the physical network entities,
the digital twins require continuously collecting real-time
data from them and using machine learning for dynamic
analysis, estimation, and prediction [6]. It involves low-latency
interactions between network entities and their digital twins.
The conventional cloud-based digital twin framework that
deploys twin objects at the cloud centre may suffer significant
latency and high communication costs for digital twin data
synchronization, which reduces the service quality for mobile
users [7]. To tackle these issues, the multi-tier computing
paradigm integrating a large number of geographically dis-
tributed wireless edge servers is proposed to support services
with different levels of intelligence and efficiency [8]. A
primary research direction in multi-tier computing systems is
to utilize computation offloading technology to alleviate users’
resource bottlenecks when computing tasks [9]. Generally, a
task can be divided into sub-tasks and offloaded to multiple
edge servers for cooperative computing. Based on this, existing
computation offloading schemes can be divided into sequential
offloading and parallel offloading [10]. In sequential offloading
[11], the sub-tasks are offloaded to servers in a time-sequential
manner over a shared communication channel. For parallel
offloading [12], [13], sub-tasks are offloaded simultaneously
to servers over orthogonal communication channels. This work
aims to deploy digital twins in multi-tier computing systems
to enable signal processing and computing for twin objects at
the network edge, which is able to handle the long latency
issue caused by the conventional cloud-based structure. The
digital twin objects are modelled and maintained by the edge
servers instead of users, and they utilize the real-time status
data of users to perform analysis in the digital space [4].
Note that there are no dependencies between data, and the
user data are all processed by the digital twin models at the
edge servers. Therefore, user data is concurrently offloaded to
servers for processing, and the data synchronization process
can be regarded as parallel data offloading.

Although multi-tier computing effectively improves relia-
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bility and latency performance for the interactions between
users and digital twins, it also leads to operational complexity
during service runtime due to the massively connected users
and complex network dynamics [14]. Thus, it is essential to
design an efficient digital twin access method for twin signal
processing in multi-tier systems [2], [6]. To this end, there
are two main aspects related to accessing the twin objects for
mobile users: 1) Digital Twin Placement: In multi-tier com-
puting systems, massive users may deploy and maintain their
digital twins at edge servers. Due to the resource-intensive
nature of maintaining digital twins, the digital twin placement
strategy for users should be judiciously designed to reduce
interaction latency between users and the digital twins [15]. 2)
Communication and Computation Resource Management: To
enable close monitoring of users at their corresponding digital
twins, users are required to upload their real-time data to
their corresponding digital twins for processing. Thus, wireless
resources in multi-tier computing networks should be allocated
for users to communicate with their digital twins. In addition,
computing resources are required for digital twins to process
users’ data before applying for real-time applications. One
server in the network may maintain multiple digital twins of
different users. Thus, the computing resources management
policies at the servers should be carefully designed [16].

To reduce the data synchronization latency from users to
their corresponding digital twins, existing works focused on
two aforementioned problems. Specifically, in [17], a potential
game-based network selection approach was developed to
reduce the data synchronization latency between the digital
twin and vehicular users in heterogeneous vehicular networks.
A reinforcement learning approach was proposed in [18] to
optimize the network selection and power allocation strategies,
which significantly reduced the delay and energy consumption
of digital twin data synchronization in heterogeneous access
networks. The multi-dimensional optimization of offloading
policies, user association strategies, and transmit power in [19]
efficiently reduced users’ computation latency in the digital
twin network. In [20], by integrating ultra-reliable and low la-
tency communications into a digital twin-enabled mobile edge
computing network, the co-design of the communication and
computation scheme efficiently reduced the digital twin syn-
chronization latency. The deep reinforcement learning-based
digital twin association and bandwidth allocation scheme in
[21] achieved a balance between twin model accuracy and
latency. The joint digital twin placement and migration policy
in [22] effectively reduced the system cost for maintaining
digital twins in a wireless edge network.

Although the above digital twin placement and network
resource management approaches in [17]–[21] improve the
data transmission efficiency from physical objects and digital
twin models, user mobility is less considered in designing
placement strategies. In practical networks, users may move
away from the coverage of the edge servers running their digi-
tal twin models to the area of other edge servers, which results
in the temporally disconnecting of services. To tackle this
issue, the digital twin models should be dynamically migrated
to a more suitable server to improve the quality of service
(QoS). In addition, the digital twin migration solution in [22]

is a centralized algorithm and requires knowing the complete
system-level information (including all users’ communication
conditions, data profiles, and workloads of all the edge servers)
before making migration decisions. In practical multi-tier
computing systems, gathering this information brings high
signalling overheads. Moreover, the centralized solution has
a scalability issue since the complexity rapidly scales with the
number of users. To tackle thses issues, this work considers
a decentralized digital twin migration framework where users
make migration decisions for their digital twins with partially
observed system information. To enable effective digital twin
migration, we propose an agent contribution-aware multi-
agent reinforcement learning (AC-MARL)-based digital twin
migration algorithm to allow each user to learn a distributed
migration policy. Note that the conventional MARL algorithms
in [23], [24] utilize joint actions of agents to compute global
rewards without measuring the contribution of each agent to
the cooperative result. This may fail to encourage individual
agents to sacrifice for greater global rewards. In this work, we
compute a separate baseline for each agent to estimate their
contributions to the global reward and facilitate cooperation
among agents. The main contributions of this work are sum-
marized as follows:

• We formulate an online digital twin migration and re-
source management problem in multi-tier computing net-
works to reduce data synchronization latency between
the digital twin and the user. To solve this problem
and enable distributed resources management, we first
derive the optimal communication and computation re-
source allocation policies at each edge server by convex
optimization methods. Then, we model the digital twin
migration problem as a decentralized partially observable
Markov decision process (Dec-POMDP) to capture the
intrinsically complex system dynamics.

• To solve the Dec-POMDP, we develop an AC-MARL
algorithm with centralized training and distributed ex-
ecution to enable users to learn cooperative migration
strategies for data synchronization latency minimization.
Since using a global reward for each user may not
encourage individual users to sacrifice for the greater
global reward, we adopt a counterfactual baseline method
to compute a separate baseline for each agent to estimate
agents’ contribution to the global reward and facilitate
cooperation among agents. In addition, directly using the
users’ observations as the input of actor and critic net-
works may improve the learning complexity and hinder
convergence. To this end, we devise an embedding matrix
for coding agents’ actions and states to accelerate the
training of the proposed AC-MARL algorithm.

• We conduct simulations on two real-world mobility trace
datasets, i.e., taxi mobility traces at Rome and San
Francisco, to verify the effectiveness of the proposed
algorithm. Specifically, the proposed digital twin migra-
tion approach is able to reduce 30% and 23.1% latency
compared to the benchmark migration algorithms on the
datasets of Rome and San Francisco, respectively.

The rest of this paper is organized as follows: Section
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Fig. 1. Illustration of the considered digital twin network.

II introduces the system model and the long-term latency
minimization problem. In section III, we derive the optimal
communication and computation resource management strat-
egy for each edge server and transform the original problem
into a digital twin migration problem. Section IV illustrates
the proposed AC-MARL-based digital twin migration algo-
rithm. Section V evaluates the effectiveness of the proposed
approaches by simulations. The conclusion is presented in
Section VI.

TABLE I
NOTATION SUMMARY

Notation Definition
K; K; Set of users; size of K
M; M Set of MEC servers; size of M
Wk the size of user k’s digital twin model
x
(t)
k,m Digital twin placement indicator of user k at

m-th server
z
(t)
k,m: Connected indicator of user k to server m in

slot t
ψt Network bandwidth along the migration path
φM

t Migration latency coefficient
Bm Total bandwidth of MEC server m
β
(t)
k,m Allocated bandwidth ratio for user k when it

connected to MEC server m in slot t
h
(t)
k,m Uplink channel gain from user k to MEC

server m
pk Transmit power of user k
Fm Available computation resource of MEC server

m

f
(t)
k,m Allocated computation resources to user k in

time slot t
ck,t Required computing resources by user k to

process its data in time slot t
ψbh

t Bandwidth of the backhaul network
φbh

t Backhaul latency coefficient
Dk,t the generated data size of user k in slot t

II. SYSTEM MODEL

As shown in Fig. 1, we consider a digital twin-empowered
multi-tier computing network, where K mobile users move
in a geographical area covered by a set of M base stations

connected to a cloud center. Each BS is equipped with an
edge server to provide computing service for users. Users can
connect to the edge servers through wireless channels and re-
quest computing services. The edge servers are interconnected
via stable backhaul links, and each server can communicate
with the cloud server via the wired fiber links. The cloud
center is equipped with abundant computing and storage
resources to efficiently handle computationally intensive tasks
requiring global analysis. For simplicity, we denote the set
of users by K = {1, 2, · · · ,K}, the set of edge servers by
M = {1, 2, · · · ,M}. Each user k (k ∈ K) has a digital
twin, which is constructed by extracting the running state for
serving specific applications. Similar to many existing works,
e.g., [22], we consider that the digital twins of mobile users
are modeled and maintained by the edge servers. In general,
the number of users in the system is much larger than the
number of edge servers. Thus, an edge server may maintain
multiple users’ digital twins, and all digital twins maintained
in the same server share the communication and computing
resources.

To better capture digital twin operation states and user
mobility, we consider the system operates in a time-slotted
structure, and the timeline is discretized into time frames,
T = {1, 2, · · · , T}. The time-slotted model is widely utilized
to characterize the service maintenance system, e.g., [21], [22],
which can be regarded as a sampled version of a continuous-
time model. In each time slot t (t ∈ T ), each user may
generate some new data that required to be synchronized to
its digital twin model for processing.

A. Digital Twin Placement Model

In the considered system, each mobile user possesses a
digital twin maintained at one of the edge servers. To enable
the digital twins to monitor their corresponding users closely,
users are required to upload the real-time operational data
to their digital twin for processing. In each time slot t,
each user selects the edge server providing the strongest
average signal strength as its locally connected server. Let
z
(t)
k,m denote the access association indicator of user k to server
m, where z(t)k,m = 1 when user k is connected to server m,
z
(t)
k,m = 0 otherwise. For each user k (k ∈ K), the server

that maintained its digital twin may be the locally connected
server or other servers, called its digital twin server. We use
x
(t)
k,m to denote the digital twin placement indicator of user k,

where x(t)k,m = 1 represents that user k’ digital twin is placed
at the server m in time slot t, and x

(t)
k,m = 0 otherwise. For

ease of presentation, we use xk,t = (x
(t)
k,1, x

(t)
k,2, · · · , x

(t)
k,M )

to represent the digital twin placement decision of user k
in time slot t and xt = (x1,t,x2,t, · · · ,xK,t) to denote all
users’ digital twin placement decisions in time slot t. Due
to the resource-intensive nature of maintaining digital twins,
maintaining digital twins in each edge server for each user
incurs expensive transmission load, computation overhead, and
energy consumption. In this work, we consider each digital
twin can only be maintained by one edge server. Thus, we
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have the following constraints for the digital twin placement
decision: ∑M

m=1
x
(t)
k,m = 1, ∀k ∈ K, ∀t. (1)

In practice, the digital twin placement policy is closely related
to its maintenance costs. To reach the desirable QoS, the
digital twin should be dynamically migrated across servers
as the user moves [2], [6]. In this work, we utilize latency
as the measurement for the QoS, encompassing migration,
computation, and communication latencies. Note that each
user’s digital twin can be deployed on multiple edge servers in
practical systems. Our proposed solution in Section IV can be
generalized to this case by repeating the process of finding the
digital placement policy and removing the placement decision
from the action space until reaching the number of digital twin
maintenance servers.

B. Migration Latency Model

The migration latency is incurred when a user’s digital twin
is moved out from the previous server, which involves the
digital twin model’s backhaul transmission, processing, and
queuing latencies among the servers on the migration path
[25]. In general, the digital twin migration latency of each
user k (k ∈ K) increases with its digital twin model size and
the hop distance from its original server to the current server.
Specifically, the digital twin migration latency of user k from
server m to server n can be expressed as [26]

TM,m→n
k,t =

{
0, if m = n,

Wk

ψt
+ φM

t d(m,n), if m ̸= n.
(2)

where Wk is the size of user k’s digital twin model, d(m,n)
denote the hop distance between server m and server n, ψt
is the transmit rate for digital twin migration (i.e., the latency
required to transmit one unit of data along the migration path),
and φM

t is a positive coefficient. It is worth mentioning that if
the original server m is same as the current server n, i.e., m =
n, there is no migration of user k’s digital twin model, thus
the migration latency is TM,m→n

k,t = 0. Thus, the migration
latency of user k in time slot t can be expressed as

TM
k,t =

M∑
m=1

M∑
n=1

x
(t−1)
k,m x

(t)
k,nT

M,m→n
k,t . (3)

C. Communication Latency Model

In each time slot, the users generate new data and synchro-
nize the data to their digital twin models for processing and
maintenance. It is noted that user k (k ∈ K) may not directly
connect with its digital twin server. In this case, when user
k requires to synchronize its data to its digital twin model, it
first uploads its data to its locally connected server through
wireless uplink transmission, and then the data is transmitted
from its locally connected server to its digital server through
backhaul links. Thus, the communication latency is composed
of wireless uplink transmission latency and backhaul link
transmission delay. In the following, we analyze these two
kinds of latencies.

• Wireless Transmission Latency: In this work, we con-
sider a frequency-division multiple access protocol for
users transmitting their data to their locally connected
servers, in which each edge server m (m ∈ M) provides
a total bandwidth BmHz. Let β(t)

k,m denote the allocated
bandwidth ratio for user k in slot t when it connected to
edge server m and βt = {β(t)

k,m : ∀k ∈ K, ∀m ∈ M} to
denote all servers’ bandwidth allocation decisions for all
users in time slot t. Note that the wireless bandwidth
policy for each edge server is only determined by its
connected users and is not related to users’ digital twin
placement policy. Denote the uplink channel gain from
user k to edge server m in time slot t as h

(t)
k,m, and

the transmit power of user k is pk. The achievable
transmission data rate of user k to server m is:

r
(t)
k,m = β

(t)
k,mBm log

(
1 +

pkh
(t)
k,m

σ2

)
, (4)

where σ2 is the noise power. For each user k (k ∈ K),
let Dk,t denote the generated data size that is required
to upload to its digital twin server for processing in time
slot t. Thus, the uplink transmission delay of user k to
upload its generated data to its local connected server in
slot t can be expressed as

T up
k,t =

M∑
m=1

z
(t)
k,m

Dk,t

r
(t)
k,m

. (5)

• Backhaul Transmission Latency: The backhaul delay
is incurred when the digital twin server and the locally
connected server of user k are different. The backhaul de-
lay primarily decided by the hop distance of the shortest
path from the locally connected server to the digital twin
server and the generated data size of user k. Specifically,
the backhaul transmission latency of user k’s data from
edge server m to server n in time slot t is given by

T bh,m→n
k,t =

{
0, if m = n,

Dk,t

ψbh
t

+ φbh
t d(m,n), if m ̸= n.

(6)

where ψbh
t is transmit rate of the backhaul network,

φbh
t is a positive coefficient of the backhaul latency.

Especially, when the locally connected server and the
digital twin server of user k are them same, there is
no backhaul transmission costs. Therefore, the backhaul
transmission lateny of user k to transmit its generated
data from its local connected server to its digital twin
server is

T bh
k,t =

M∑
n=1

M∑
m=1

z
(t)
k,mx

(t)
k,nT

bh,m→n
k,t . (7)

Through the above analysis, the overall communication
latency of user k in time slot t is given by:

TComm
k,t = T up

k,t + T bh
k,t. (8)

D. Computation Latency Model
At each time slot t, the users upload their data to their digital

twin servers for processing to maintain their digital twins.
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Denote the available computation resource of edge server m
as Fm. When multiple users maintain their digital twins at
the same server, they share the computation resources of the
server to maintain their digital twins [27]. The computing
delay depends on three parts: 1) Processing capability of each
server m; 2) The total number of devices that sharing server m
and their computation load; and 3) The requested computing
resources of the user k’s data at time slot t. Let ck,t denotes the
amount of computing resources (in CPU cycles) required by
user k to process its data on its digital twin model in time slot
t. Denote f (t)k,m as the allocated computation resources to user
k at edge server m in time slot t. For the sake of presentation,
we use ft = {f (t)k,m : ∀k ∈ K, ∀m ∈ M} to represent
the computation resource allocation decisions of all the edge
servers to all users in time slot t. Thus, the computation latency
of user k in time slot t is

TComp
k,t =

M∑
m=1

x
(t)
k,m

ck,t

f
(t)
k,m

. (9)

Since the allocated computation resources of server m
(m ∈ M) cannot exceed its overall computation resources,
the computation allocation policy of server m should satisfy

K∑
k=1

x
(t)
k,mf

(t)
k,m ≤ Fm. (10)

E. Problem Formulation

According to the above analysis, the latency for user k
in time slot t to synchronize its data to its digital twin for
processing is given by:

Tk,t = TM
k,t + TComm

k,t + TComp
k,t . (11)

In this work, our objective is to jointly optimize the digital twin
migration policies for each user, as well as the communication
and computation resources management strategies at each edge
server to minimize the long-term time-averaged digital twin
synchronize latency for all users. To this end, we formulate
the optimization problem as:

P : min
{xt,βt,ft,}T

t=1

lim
T→∞

1

T

∑T

t=1

∑K

k=1
Tk,t (12)

s. t.
∑K

k=1
β
(t)
k,m ≤ 1, ∀m ∈ M, ∀t, (12a)∑K

k=1
x
(t)
k,mf

(t)
k,m ≤ Fm, ∀m ∈ M, ∀t, (12b)∑M

m=1
x
(t)
k,m = 1, ∀k ∈ K, ∀t, (12c)

x
(t)
k,m ∈ {0, 1} ,∀k ∈ K, ∀m ∈ M, ∀t, (12d)

0 ≤ β
(t)
k,m ≤ 1, ∀k ∈ K, ∀m ∈ M, ∀t, (12e)

0 ≤ f
(t)
k,m ≤ Fm, ∀k ∈ K,∀m ∈ M, ∀t. (12f)

In problem P , constraint (12a) signifies that the wireless
bandwidth allocated to all users on each server cannot exceed
its total available bandwidth resource. (12b) stipulates that
the allocated computation resources to all users at any edge
server cannot exceed its available computation resources.
Constraints (12c) and (12d) impose restrictions on the digital

twin placement decision, indicating that each digital twin can
only be maintained by one edge server. Additionally, (12e)
and (12f) restrict the wireless bandwidth and computation
resources allocated to each user.

Finding the optimal solution for problem P is intractable
since it requires exact user mobility patterns and complete
system information over the entire horizon. However, it is
impractical to collect all the relative information in advance
in real-world scenarios. To tackle this challenge, we propose
an efficient solution for problem P in the following sections
to enable online resource management at the edge server and
distributed digital twin migration for each user.

III. ONLINE RESOURCE MANAGEMENT AND PROBLEM
TRANSFORMATION

In this section, we propose an efficient communication
and computation resources management algorithm at each
edge server and transform P into an equivalent optimization
problem that optimizes the digital twin migration policies
for users. To this end, we decompose the computation and
communication resource management problems from problem
P at each edge server and derive their corresponding optimal
communication and computation resource allocation policies
by using convex optimization methods.

A. Communication and Computation Resource Management
According to the formulation of problem P , the commu-

nication and computation resources allocation decisions in
any time slot t, i.e., βt and ft, only affects the digital twin
synchronization latency in time slot t, and do not affect the
digital twin synchronization latency in other slots. In addi-
tion, the communication and computation resource allocation
decisions at each server do not interfere with that at other
servers. In other words, the communication and computation
resource allocation decisions can be solely optimized by each
server at each time slot t. Inspired by this, we focus on the
communication and computation resources allocation problem
at a specific edge server m (m ∈ M) in a specific time slot
t, and derive the optimal communication and computation
allocation policies. It is worth mentioning that the derived
communication and computation allocation policies can be
generalized to other edge servers at any time slot t. To this end,
we first decompose the communication resources allocation
problem at server m in time slot t as:

P1 : min
{β(t)

k,m:∀k∈K}

K∑
k=1

z
(t)
k,m

Dk,t

r
(t)
k,m

(13)

s.t. (12a), (12e).

For problem P1, the second-order derivatives of the objec-
tive function (13) is given by

∂2
(

K∑
k=1

z
(t)
k,mDk,t

r
(t)
k,m

)
∂β

(t)
k,m∂β

(t)
k,n

=


2z

(t)
k,mDk,t(β

(t)
k,m)3

Bm log

(
1+

pkh
(t)
k,m

σ2

) , m = n,

0, m ̸= n.

It is straightforward to see that the Hessian matrix of the
objective function (13) is semi-positive. Thus, the objective
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function (13) is a convex function. In addition, the constraints
of problem P1 are all linear functions. Consequently, problem
P1 is a convex optimization problem. By solving the Karush-
Kuhn-Tucker conditions of P1, we obtain its optimal solution
as follows:

β
(t,∗)
k,m =

√
z
(t)
k,mDk,t

Bm log(1+
pkh

(t)
k,m

σ2 )

K∑
i=1

√
z
(t)
i,mDi,t

Bm log(1+
pih

(t)
i,m

σ2 )

, ∀k ∈ K, ∀m ∈ M. (14)

From the optimal wireless bandwidth allocation policy in (14),
if user k is not connected to server m, i.e., z(t)k,m = 0, server m
will not allocate wireless bandwidth resource to it. In addition,
when multiple users are connected to server m, they will share
the available wireless bandwidth resources of server m. In this
case, the allocated bandwidth for each user is decreased, and
their digital twin synchronization latency would be increased.

Then, we decompose the computation resources allocation
problem at server m in time slot t as:

P2 : min
{f(t)

k,m:∀k∈K}

K∑
k=1

x
(t)
k,m

ck,t

f
(t)
k,m

(15)

s.t. (12b), (12f).

Problem P2 is also a convex optimization problem, its
proof is similar to the proof of problem P1, and thus omitted
for brevity. Similar to the communication resource allocation
problem, i.e., P1, we obtain the optimal solution of problem
P2 by solving its Karush-Kuhn-Tucker conditions. The opti-
mal computation resources allocation decision at server m in
time slot t is given by:

f
(t,∗)
k,m =

√
x
(t)
k,mck,t

K∑
i=1

√
x
(t)
i,mci,t

Fm, ∀k ∈ K, ∀m ∈ M. (16)

Similarly, from the optimal computation resources allocation
decision at the server m in (16), the users that their digital
twins do not maintained at server m (i.e., x(t)k,m = 0) will not
obtain computation resources from server m. When multiple
users deploy their digital twins on the same edge server,
they collectively utilize the server’s computational resources
to update their digital twins based on the uploaded real-time
data. This sharing of resources has the potential to result in
an increase in synchronization latency for users’ digital twins.
Thus, it is essential to judiciously design the digital twin
migration policies for users to reduce their synchronization
latency as the users’ mobility.

B. Problem Transformation
Up to now, each edge server can solve its optimal com-

munication and computation resource management policies
under any user access and digital twin placement state. In
other words, we can compute users’ optimal digital twin
synchronization latency under any users’ access state ({z(t)k,m :
∀k ∈ K,∀m ∈ M}) and digital twin placement state
xt. Based on the optimal communication and computation

resource management policies at the servers, i.e., β(t,∗)
k,m and

f
(t,∗)
k,m , the digital twin synchronization latency for user k

(k ∈ K) is given by

T ∗
k,t = TM

k,t + T bh
k,t +

M∑
m=1

z
(t)
k,mDk,t

β
(t,∗)
k,m Bm log(1 +

pkh
(t)
k,m

σ2 )

+
M∑
m=1

x
(t)
k,m

ck,t

f
(t,∗)
k,m

. (17)

Thus, problem P can be transformed into the following
equivalent digital twin migration problem:

P3 : min
{xt}T

t=1

lim
T→∞

1

T

T∑
t=1

K∑
k=1

T ∗
k,t (18)

s.t. (12c), (12d).

Note that, in the above analysis, we derive the optimal com-
munication and computation resources management policies
for each edge server and substitute them into problem P .
As a result, problem P is transformed into problem P3. This
transformation does not change the optimality of problem P .

Directly solving problem P3 is impractical because it re-
quires precise knowledge of user movement and system-level
information throughout the entire time horizon. In addition,
the digital twin of each user is managed by itself. Each user
can only obtain a part of the system information instead of the
complete system information. Based on the objective function
(18), users’ digital twin migration decisions interfere with each
other. When multiple users maintain their digital twins at the
same edge server, their computation delay may increase since
they share the computation resources on this server. Thus, it is
important to carefully design the digital twin migration policy
for each user with their incomplete system information.

IV. ONLINE DIGITAL TWIN MIGRATION

In this section, we develop an efficient AC-MARL algorithm
that solves problem P3 to enable distributed digital twin
migration. Specifically, we first reformulate problem P3 as
a Dec-POMDP, in which each agent only has its local obser-
vation instead of the complete system state to make its digital
twin migration decision. To tackle this issue, we proposed
a centralized training and distributed execution framework to
enable collaborative learning among agents. Finally, to further
facilitate agents’ cooperation, we propose estimating agents’
contribution to the global reward by computing a separate
baseline for each agent in the training process.

A. Dec-POMDP Formulation

According to the above analysis, the digital twin migration
problem P3 is intrinsically a sequential decision-making prob-
lem where each user with a partially observable environment.
Thus, it is natural to model problem P3 as a Dec-POMDP
and utilize the multi-agent reinforcement learning (MARL)
approaches to solve it. To this end, we formulate the Dec-
POMDP as a tuple of G =

⟨
K,S, {Ak}k∈K,P,O,R, γ

⟩
,

where K = {1, 2, · · · ,K} is the set of K agents. In this
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work, each user k corresponds to the agent k. S is the system
state space. Ak is the action space of user k, i.e., the set of
available actions of user k. Let A = A1 × A2 × · · · × AK

denote the joint action space. In each time step, each agent
k (k ∈ K) simultaneously chooses an action ak,t ∈ Ak,
forming a joint action at = (a1,t, a2,t, · · · , aK,t) ∈ A. In this
work, each agent in time slot t only has a partial observation
ok,t of the system state st (st ∈ S) to make local action
decisions. All the agents’ local observations form the global
state, i.e., st = (o1,t,o2,t, · · · ,oK,t). O is the observation
probability function, which gives the probability of observing
ok,t if action ak,t−1 is executed and the resulting state is st
(st ∈ S). P denotes the transition function from any state
st ∈ S to any state st+1 ∈ S for the joint action at ∈ A.
Since the objective of problem P3 is to minimize the sum of
all users’ digital twin synchronization latency, the agents all
share the same reward function, R : S×A→ R. γ ∈ [0, 1] is
a discount factor.

The agents interact with the environment in each time
slot to enhance their policies for reducing their digital twin
synchronization latency. Specifically, in each slot t, each agent
k obtains its observation ok,t from the global environment
state st = {ok,t : ∀k ∈ K}, then it takes action ak,t ∈ Ak and
obtains a reward rk,t. Then, the environment transfer to a new
state st+1. The formulation of the Dec-POMDP elements of
each user are given as:

• Observation: The observation of each user k (k ∈ K) is
its accessible information, which is defined as a tuple of
its channel gain hk,t, the generated data size Dk,t, the
required CPU cycles for its digital twin to process the
generated data ck,t, its digital twin model size Sk,t, and
locally connected server’s ID, i.e, mL

k,t =
∑M
m=1 z

(t)
k,mm.

Thus, the observation of user k in time slot t can be
expressed as

ok,t =
⟨
mL
k,t, hk,t, Dk,t, ck,t, Sk,t

⟩
. (19)

• Action: In each time slot t, each user k can migrate its
digital twin model to any of the servers. Thus, the action
of each user k is defined as ak,t ∈ M (k ∈ K).

• Reward: Since the objective of problem P3 is to min-
imize the sum of all users’ digital twin synchronization
latency, all agents receive the same reward. In each time
slot, the rewards of the agents are

r1,t = r2,t = · · · = rK,t = −
∑K

k=1
T ∗
k,t. (20)

The primary challenges of solving the above Dec-POMDP
arise from the intricate interplay between users and the com-
plex dynamics of the multi-tier computing network. In this
work, we adopt a MARL-based approach to solve the Dec-
POMDP. In general, there are three MARL frameworks, i.e., 1)
centralized training with centralized execution, 2) distributed
training and distributed execution, and 3) centralized training
with distributed execution [28]. For the centralized training
with centralized execution framework, all agents are required
to communicate their local observations in both the training
and execution stages, which may induce expensive communi-
cation costs. In addition, the distributed training and distributed

execution framework enables each agent to independently
learn a policy based on its historical experience data. Since
each agent can only obtain its local observation instead of the
complete system state in the training and execution stages, in-
dependent agent learning is hard to learn cooperative migration
strategies due to the lack of interactions between agents.

To efficiently solve the Dec-POMDP, we develop an AC-
MARL-based digital twin migration algorithm to learn co-
ordinated migration policies for users. Considering the fact
that the agents only have their local observations for the
decision-making, the proposed AC-MARL algorithm adopts
the actor-critic framework to enable centralized training and
decentralized execution. Specifically, each agent has an actor
network, and a centralized critic network is deployed at the
cloud server to evaluate the actions chosen by the agents’ actor
networks. The framework of the developed AC-MARL-based
migration algorithm is shown in Fig. 2(a). In the training
phase, the critic network is responsible for estimating the
state value (or state-action value) based on the global state of
the environment to facilitate agents’ actor networks to learn
cooperative migration strategies. After training, each agent
independently makes decisions based on local observations
only using its local actor network.

B. AC-MARL-based Digital Twin Migration Framework

In this subsection, we introduce the proposed AC-MARL-
based digital twin migration algorithm. To better illustrate the
proposed AC-MARL-based digital twin migration algorithm,
we first briefly introduce the conventional multi-agent actor-
critic algorithm. In the conventional multi-agent actor-critic
algorithms, the critic network uses the global state st as
its input and outputs the state value v(st;w), where w
is the critic network parameter. Then, the critic network
estimates the temporal difference (TD) error as δt = rt +
γv(st+1;w)−v(st;w) and return to each actor network. Each
actor network computes its policy gradient based on the policy
gradient theorem as gk(st,at;θk) = (rt + γv(st+1;w) −
v(st;w))∇θk

lnπ(ak |ot;θk ). Finally, the critic network and
the actor network of each agent k (k ∈ K) are updated as{

w = w − ηcδt∇wv(st;w),
θk = θk + ηagk(st,at;θk),

(21)

where ηc and ηa are the learning rate of the critic network and
agent k’s actor network, respectively. However, the TD error
in the conventional multi-agent actor-critic algorithms only
considers the global rewards. The computed policy gradient
for each actor network, i.e., gk(st,at;θk), does not measure
the contribution of each agent to the global rewards. This may
fail to encourage individual agents to sacrifice for the greater
global reward. To tackle this issue, we adopt the counterfactual
baseline method proposed in [29] to compute a separate
baseline for each agent to estimate agents’ contribution to the
global reward and facilitate cooperation among agents.

To estimate the contribution of agents, the critic network
is utilized to compute the state-action values (i.e, Q(st,a))
for all agents’ available actions instead of the state value
v(st) in the conventional multi-agent actor-critic algorithms,
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Fig. 2. The architecture of the AC-MARL-based digital twin migration algorithm : (a) the overall architecture of the AC-MARL algorithm, (b) the architecture
of the critic network, (c) the architecture of the actor network.

as shown in Fig. 2(b). To this end, an intuitive method is
to input the state st to the critic network and output the
corresponding state-action value Q(st,a) : ∀a ∈ A. However,
this intuitive method is impractical to train the critic network
since it requires the number of neurons in the output layer of
the critic network to equal the size of the joint action space,
i.e., MK , which scales with the number of agents and the
size of their available actions. Thus, we use the critic network
to estimate one agent’s Q-values in a single forward process.
The critic network moves other agents’ actions as part of the
input when it estimates the Q-values for a specific agent. For
ease of presentation, we use ak to denote agent k’s action
and a−k,t to denote all agents’ actions except agent k. For
each agent k, the critic network estimates the Q-values of
its available actions, i.e., {Q(st, (a−k,t, ak)) : ∀ak ∈ M}
based on the system state st = {o1,t,o2,t, · · · ,oK,t} and
the fixed actions of other agents a−k,t. Specifically, when the
critic network computes the Q-values for agent k, it uses the
global state st, other agents’ actions a−k,t, and the agent id
of user k as its input, then output the Q-values for agent k,
i.e., (Q(st, (a−k,t, ak)) : ∀ak ∈ M).

For the input of the critic network, the agents’ locally
connected server and agents’ action is represented by the
server order number, and the agents’ ID is defined as the user
order number. For example, ak,t = m ∈ M indicates that
agent k deploys its digital twin model at the m-th server in
time slot t. The conventional design directly uses all agents’
locally connected server {ml

k,t ∈ M, k ∈ K}, the agents
actions (ak,t = m ∈ M), and the agent ID k(k ∈ K) as the
input variables of the critic network. In this method, the server
order number and agent order number would affect the output
of the critic network. To eliminate the influence of servers’
order numbers and agents’ order numbers on the output of the
critic network, many existing works, e.g., [29], use the one-
hot coding of the server order and agent order as the input of
the critic network. However, the one-hot coding scheme would
induce a large input space that scales linearly in the number
of agents and actions, i.e., KM input variables for the locally
connected server state and agents’ actions, as well as K input
variables for the agent ID. This may negatively affect learning

convergence. To tackle this issue, we provide a new design
of the critic network as shown in Fig. 2(b), which adopts
embedding matrices to code the locally connected server state,
the agents’ actions and the agent ID to reduce the dimension
of the input space. Note that each agent’s locally connected
server and action are represented as the corresponding server
order number. Thus, we use the same embedding matrix to
code these two variables. For the agent ID, we also use an
extra coding matrix to code it into a low-dimensional vector.

Through the above analysis, the centralized critic network
is constructed to estimate the Q-values for agents. When
estimating agent k’s Q-values, the critic network uses the state
st, other agents’ actions a−k,t, and agent k’s ID as the input,
in which all agents’ locally connected server state and actions,
as well as the agent k’s ID are encoded by the corresponding
embedding matrices. Then, these input variables are passed
through the critic network and output agent k’s Q-values, i.e.,
(Q(st,a−k,t, ak) : ∀ak ∈ M). The critic network is trained
using the TD(λ) scheme. In particular, the critic network is
update by gradient descent to minimize the following loss
function:

Lc
t(w) =

(
y
(λ)
t −Q(st,a−k,t, ak,t)

)2

, (22)

where the target y(λ)t is y(λ)t = (1−λ)
∑∞
n=1 λ

n−1Gnt , where
Gnt =

∑n
l=1 γ

l−1rt+l + γnQ(st+n,a−k,t+n, ak,t+n) is the
n-step return.

Based on the above analysis, the critic network can compute
the Q-values for each agent. In the following, we introduce the
agents’ actor network design and training. In the considered
system, users can only obtain their local observations for
decision-making because the global state is latent for users.
The agents cannot choose their actions directly based on the
state. However, it is possible for each agent k (k ∈ K) to infer
a belief over states based on its historical observations and ac-
tions, i.e., the probability of each state p(st|ok,0:t−1, ak,0:t) =
bt, and then use this information to decide upon an action
[30]. Let {ok,0, ak,0, · · · ,ok,t−1, ak,t−1,ok,t, ak,t} to denote
user k’s historical observation-action up to time slot t. When
user k executes action ak,t with the current belief bk,t and
obtain the next observation ok,t+1, the next belief is estimated



9

by

bt+1(st+1) =

O(ok,t+1|st+1, ak,t)
∑

st∈S
bt(st)P(st+1|st, ak,t)∑

st+1∈S
O(ok,t+1|st+1, ak,t)

∑
st∈S

bt(st)P(st+1|st, ak,t)
. (23)

However, computing the above equation is impractical since
it requires the exact knowledge of transition for the system
state and agents’ observations. To address this issue, similar
to many existing works, e.g., [26], [31], we utilize an gate
recurrent unit (GRU), a kind of recurrent neural network, to
encode the full history (the agent’s local observations and
actions) and use the output hidden state of GRU to represent
the latent system state and as the input of the remianing
part of the actor network. Then, the actor network output
the action probabilities. The architecture of the applied actor-
network is shown in Fig. 2(c). Specifically, each agent uses
its local observations and its action as the input of its actor-
network. Then, the actor-network outputs the probabilities of
the actions.

The objective of each actor network is to find an optimal
action in each time step to maximize the accumulated reward.
To train the actor-network for each agent k, we use the
centralized critic network to estimate the Q-values of agent
k’s all available actions, i.e., Q(st, (a−k,t, ak)) : ∀ak ∈ Ak,
and the actor network to compute the action probabilities of
all the available actions based on its local observations. Then,
the advantage function of agent k is given by:

Ak(st, (a−k,t, ak,t)) = Q(st, (a−k,t, ak,t))

−
∑

a∈Ak,a ̸=ak,t

πk(a|ok,t)Q(st, (a−k,t, a)). (24)

The advantage function estimates a baseline for agent k to
reveal how its actions contribute to the global reward. Finally,
agent k computes its gradient as

gk,t = ∇θk
log π(ak,t|ok,t)Ak(st, (a−k,t, ak,t)) (25)

and update its actor network as θk = θk − ηagk,t.
For clarity, we summarize the detailed training steps of the

proposed digital twin migration algorithm in Algorithm 1. For
Algorithm 1, we have the following theorem:

Theorem 1. The AC-MARL-based digital twin migration
algorithm, i.e., Algorithm 1, is convergent. That is, with a
compatible TD(1) critic network, the expected policy gradients
satisfy

lim inf
t
∥gt∥ = 0. (26)

where gt is the policy gradient in training step t.

Proof. Please see Appendix A.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
online digital twin migration approach using two real-world
taxi mobility traces in Rome, Italy [32] and San Francisco,

Algorithm 1 AC-MARL-based Digital Twin Migration Train-
ing

1: Initialize the critic network with random parameters w and
copy to the target critic network w̄; initialize the actor network
parameters for each agent; Initialize buffer memory size B

2: for each epoch i do
3: Empty the buffer memory
4: for episode e = 1 : B do
5: while t < T do
6: Each agent choose an action based on its current

observation ok,t

7: Receive reward rt
8: t = t+ 1
9: Append episode e to buffer memory

10: for time slot t = 1 : T do
11: Unroll states, actions and rewards in buffer memory B;
12: Compute TD(λ) target y(λ)t using target critic network;
13: y

(λ)
t = (1− λ)

∑∞
n=1 λ

n−1Gn
t

14: Gn
t =

∑n
l=1 γ

l−1rt+l + γnQ(st+n,a−k,t+n, ak,t+n)

15: for time slot t = T : 1 do
16: Unroll states, actions and rewards in buffer memory B;
17: Compute critic gradient as gw=∇w(y

(λ)
t −Q(st,at))

18: Update the critic network as w = w − ηcgw

19: Every C steps copy w to w̄

20: for time slot t = T : 1 do
21: Compute the advantage for each agent based on (24)
22: Compute policy gradient for each agent based on (25)
23: Update each actor network as θk = θk − ηagk,t

TABLE II
SIMULATION ENVIRONMENT SETTINGS

Parameter Value
CPU frequency of edge server m: Fm 50 GHz
White Gaussian noise variance σ2 2× 10−13

Bandwidth resources of server m: Bm 10 MHz
Path loss exponent α 2
Maximum data generation rate λmax 50
Maximum digital twin model size Smax 50
Maximum data processing density ρmax 500
Transmit power of user k: pk 30 dBm
Bandwidth of backhaul network ψbh

t 500 Mbps
Coefficient of migration latency φM

t 0.02 s/hop

USA [33]. Similar to many works, e.g., [26], [34], we mainly
focus on the taxi mobility traces in the central parts of these
two cities. If not specified, the simulation settings are given
as follows: We consider K = 100 users are moving in an
8 km × 8 km geographical area, where M = 64 edge
servers are evenly deployed to provide computation services
for users. Each server covers of 1 km × 1 km grid area. We
calculate the hop distance between any two servers using the
Manhattan distance. In each time slot, the data generation
at each user k follows a Poisson process with parameter
λk, where λk is randomly sampled from [25, λmax]. The
digital twin model size of each user is uniformly sample
from [5, Smax] MB. The required CPU cycles of each digital
twin model to process one unit data, i.e., the data processing
density, is uniformly selected from [100, ρmax] cycles/bit. The
coefficient of backhaul latency φbh

t is randomly selected from
[1.0, 3.0]s/hop. The channel gain from user k to server m is
modelled as hk,t = ρk,td

−α
k [35], [36], where ρk,t ∼ exp(1)



10

TABLE III
HYPERPARAMETER OF LEARNING ALGORITHM

Parameter Value
GRU hidden units 256
Actor hidden units 128
Actor hidden units 256
Embedding dimension of actions 2
Embedding dimension of agent ID 6
Total training steps 1000
Length of an episode 20
Learning rate of actor 0.0001
Learning rate of critic 0.001
Discount factor γ 0.9
Discount factor λ 0.95
Optimizer Adam

is the small-scale fading gain between device k and server m,
dk is the distance from device k to server m, and α is the
path loss exponent. Unless otherwise stated, other simulation
environment settings and hyperparameters of the proposed AC-
MARL algorithm are summarized in Table II and Table III,
according to parameter settings of a typical edge computing
network [26], [27], [35], [36]. To evaluate the effectiveness
of the proposed approach, we compare it with the following
benchmarks:

• Always migration (AM): The digital twin model of each
user always migration to its locally connected server in
each time slot.

• Never migration (NM): All users’ digital twin models
are placed on the servers that they are first placed on, no
matter where the users that they belong to are moving to.

• Independent advantage actor-critic-based migration (I-
A2CM): Each user possesses an actor and a critic network
and independently trains its actor and critic network
based on the advantage actor-critic (A2C) algorithm [37]
using its local observation-action history. The agents
do not communicate with each other and do not share
their observations, actions, and parameters. Note that the
applied critic network in I-A2CM is the same as the
adopted fully-connected neural network in the proposed
AC-MARL, while its actor network is a fully-connected
neural network formed by removing the GRU unit in the
actor network of the proposed approach.

• Multi-agent A2C-based migration (MA-A2CM): Similar
to the proposed digital twin migration algorithm, MA-
A2CM adopts the centralized training and decentralized
execution framework. All the actor networks at each
agent and the centralized critic network use the fully-
connected neural networks. The input of each actor
network is the corresponding user’s observations, while
the critic network’s input is the global state. The training
algorithm is similar to the A2C algorithm.

• Multi-agent recurrent A2C-based migration (MAR-
A2CM): MAR-A2CM is a variant of the MA-A2CM
approach. It replaces the fully connected actor network
architecture in MA-A2CM with the actor-network ar-
chitecture of the proposed approach but uses the same
training algorithm as MA-A2CM.
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Fig. 3. Comparison of learning performance of different algorithms (a) on
Rome dataset; (b) on San Francisco dataset.

In Fig. 3, we evaluate the learning performance of the
proposed digital twin migration algorithm using the afore-
mentioned two datasets. Each dataset includes K randomly
selected mobility traces where each trace has 2000-time slots
of the three-minute length of each. Note that we show the
final performance of the always migration and never migration
approaches since they do not involve the training of neural
networks. For the learning-based migration schemes, it is
observed that their rewards increase with the training process
and then reach stable values. As expected, the proposed
approach obtains a larger reward than the benchmarks on these
two mobility trace datasets. Specifically, Fig. 3(a) evaluates
all migration schemes’ performance based on the Rome taxi
trace. We can see that the proposed approach outperforms
the benchmarks, and the rewards of the benchmarks satisfy
MAR-A2CM > MA-A2CM > I-A2CM. The behind reasons
are explained as follows: 1) Using the counterfactual baseline
computes an agent-specific advantage function for each agent
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to evaluate the contribution to the global reward is able to fa-
cilitate the users’ cooperation to obtain a larger global reward.
2) Deploying GRU in the actor networks of agents is able to
extract temporal features from agents’ historical observations
and estimate the hidden state of the Dec-POMDP. 3) The
MARL algorithm is able to learn coordinated strategies among
agents and achieve better performance than the independent
agent learning, i.e., I-A2CM. I-A2CM may fail to exploit
the interference among agents due to the lack of interactions
between agents. Fig. 3(b) evaluates the proposed approach
based on the taxi trace in San Francisco, showing a similar
result to Fig. 3(a). These results verified the effectiveness of
the proposed digital twin migration approach.

In Fig. 4, we show the impact of the server’s computation
capability on the average latency of users of the proposed
scheme and the five baselines. It is observed that the average
latency of all the evaluated algorithms decreases with the
growth of servers’ computation capabilities since the data
processing latency can be reduced with the increase of servers’
computation capabilities. The results show that the proposed
algorithm adapts well to different computation capabilities of
servers and outperforms the baseline algorithms. Specifically,
from the evaluation results on Rome dataset in Fig. 4(a), the
proposed algorithm is able to reduce around 30% latency
compared to the MAR-A2CM algorithm. The performance
gain mainly comes from using the counterfactual baseline to
estimate each user’s contribution to the global reward and thus
facilitate users to sacrifice themselves to further reduce the
average latency. From the results on the San Francisco dataset
in Fig. 4(b), the proposed scheme saves 23% of time for digital
twin synchronization compared to the benchmarks.

Fig. 5 shows how users’ average latency varies with the
available wireless bandwidth resources at the servers. Fig. 5(a)
evaluates the proposed approach and benchmarks based on
the Rome dataset. It is observed that the proposed approach
achieves lower average latency than the benchmarks across all
the available bandwidth configurations. Notably, the proposed
approach is capable of reducing 27.4% of latency compared to
the best benchmark scheme, i.e., MAR-A2CM. The evaluation
on the San Francisco dataset in Fig. 5(b) shows a similar
conclusion to Fig. 5(a). Specifically, the proposed approach
saves up to 21.3% synchronization time for users’ digital
twins compared to the benchmarks. In addition, the average
latency of all the schemes keeps decreasing with the increase
of available bandwidth at servers because large bandwidth
resources would reduce the wireless transmission latency for
users.

Fig. 6 presents the performance of the proposed digital
twin migration approach and MAR-A2CM under different
maximum data generation rates (i.e., λmax) and user numbers.
It is observed that the average latency of these two approaches
keeps increasing with the increase of λmax and user number
on both Rome and San Francisco mobility trace datasets.
The reason is that the growth of λmax and user number
will increase the generated data size of each user, as well as
the total computation and communication load in the multi-
tier computing network in each time slot, leading to the
increase of the digital twin synchronization latency of all users.
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Fig. 4. Impact of the servers’ computation capability on average latency of
users: (a) on the Rome dataset; (b) on the San Francisco dataset.

In addition, the proposed approach outperforms MAR-A2C
across different settings of λmax and user number. Specifically,
from Fig. 6(a), the proposed approach is able to reduce 28.1%
latency compared to the MAR-A2CM scheme. This is because
the proposed approach calculates a separate baseline for each
user to characterize their contribution to the global reward in
the training phase and facilitates users to sacrifice themselves
for greater global reward. The experiment on the San Francisco
dataset in Fig. 6(b) shows a similar conclusion to the results on
the Rome dataset. Specifically, compared to MAR-A2CM, the
proposed approach obtains lower digital twin synchronization
latency and reduces up to 21.8% latency when K = 80 users
are in the system.

Fig. 7 presents the impacts of maximum data processing
density (i.e., ρmax) on the average digital twin synchronization
latency of users of the proposed approach and MAR-A2CM.
Fig. 7(a) shows the results on the Rome dataset. Compared to
the MAR-A2CM approach, the proposed approach achieves
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Fig. 5. Effect of servers’ available bandwidth on average latency of users:
(a) on the Rome dataset; (b) on the San Francisco dataset.

lower latency for users. In addition, along with the increases
in ρmax, the proposed approach has a lower latency increasing
speed than MAR-A2CM. The latent reason is that the proposed
approach is more beneficial to enable users to learn a coop-
erative migration strategy than the MAR-A2CM approach. A
similar simulation is conducted on the San Francisco dataset,
as shown in Fig. 7(b). It is also observed that the proposed
approach achieves a lower latency increasing speed along with
the increases of ρmax compared to MAR-A2C. These results
indicate that the proposed scheme is able to reduce the digital
twin synchronization latency for users efficiently.

VI. CONCLUSION

In this work, we have investigated the digital twin migration
and resource management problem in the multi-tier com-
puting system to minimize the data synchronization latency
from users to their corresponding digital twins. To enable
distributed resource management and digital twin migration,
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Fig. 6. Effect of users’ maximum data generation rate on average latency of
users: (a) on the Rome dataset; (b) on the San Francisco dataset.

we first derived the optimal communication and computation
resource management policies for each edge server using
convex optimization methods. Then, we formulated the digital
twin migration problem as a Dec-POMDP, in which users can
only obtain partially observed system information to make
migration decisions. To solve the Dec-POMDP, we proposed
an AC-MARL-based digital twin migration approach. Unlike
the conventional MARL algorithms, we adopted the coun-
terfactual baseline to compute a separate baseline for each
user to estimate its contribution to the global reward in the
training process and facilitate cooperation among agents to
reduce the overall latency. In addition, we devised embedding
matrices to code users’ observations and actions to accelerate
the learning convergence for the proposed AC-MARL-based
migration approach. Simulation results show that the proposed
approach is able to capture users’ mobility behaviour and
facilitate users to learn a cooperative migration strategy for
efficiently reducing their average data synchronization latency.
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(a)

(b)

Fig. 7. Effect of the maximal data processing density on the average latency
of users: (a) on Rome dataset; (b) on San Francisco dataset.

APPENDIX

A. Proof of Theorem 1

To prove the convergence of the proposed AC-MARL-based
digital twin migration algorithm, we prove its expected policy
gradient is equivalent to the policy gradient of the single-
agent actor-critic algorithm in [38]. Firstly, the expected policy
gradient of the Algorithm 1 in training step t is:

gt = Eπ

[∑
k

∇θk
log πk (ak|ok,t;θk)Ak (st,a−k,t, ak,t)

]
,

(27)

where Ak (st,a−k,t, ak,t) is the advantage function
of user k defined in (24). Let b(st,a−k,t) =∑
a∈Ak

πk(a|ot)Q(st, (a−k,t, a)) denote the counterfactual
baseline of user k. Thus, the expected policy gradient gt
satisfy

gt = Eπ

[∑
k

∇θ log π (ak|ok,t;θk)Q (st,a−k,t, ak,t)
]

− Eπ

[∑
k

∇θ log π (ak |ok,t;θk ) b (st,a−k,t)
]
, (28)

where θ is the parameters of all the actor networks, i.e.,
θ = {θ1,θ2, · · · ,θK}. Firstly, we consider the impact of the
counterfactual baseline b(st,a−k,t) on the gradient gt, i.e., the
second term on the right-hand side (RHS) of (28), we have

gb = −Eπ

[∑
k

∇θ log π (ak |ok,t;θk ) b (st,a−k,t)
]
, (29)

where the expectation is with respect to the state-action
distribution, induced by the joint policy π. Let dπ(s) be the
discounted ergodic state distribution as defined in [39]. Then,
the gradient gb can be written as

gb = −
∑
st

dπ(s)
∑
k

∑
a−k

π (a−k,t|st − ok,t) ·∑
ak

πk(ak|ok,t;θk)∇θ log πk (ak|ok,t;θk) b (st,a−k,t)

= −
∑
st

dπ(s)
∑
k

∑
a−k

π (a−k,t|st − ok,t) ·∑
ak

∇θπk (ak|ok,t;θk) b (st,a−k,t)

=−
∑
st

dπ(s)
∑
k

∑
a−k

π (a−k,t|st − ok,t) · b (st,a−k,t)∇θ1

= 0. (30)

Thus, b(st,a−k,t) do not affect the expected policy gradient
gt. That is, the counterfactual baseline b(st,a−k,t) do not
affect the convergence of the the proposed AC-MARL-based
digital twin migration algorithm. Substituting (30) into (28),
we have

gt = Eπ

[∑
k

∇θ log πk (ak|ok,t;θk)Q (st,a−k,t, ak,t)
]

= Eπ

[
∇θ log

∏
k

πk (ak|ok,t;θk)Q (st,a−k,t, ak,t)
]

= Eπ [∇θ log π (at|st)Q (st,a−k,t, ak,t)] , (31)

where at = (a1,t,a2,t, · · · ,a3,t) is the joint actions of
all users. According to [38], the expected gradient of the
AC-MARL algorithm is equivalent to the policy gradient of
the single-agent actor-critic algorithm that has already been
proved to be convergent under the following conditions: 1)
The policy π is differentiable. 2) The learning rates of actor
and critic networks are sufficiently low and satisfy ηa < ηc.
Thus, the proposed MARL-based digital migration algorithm
is converged.
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