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Abstract—As the data resources grow, providing
recommendations that best meet the demands has become
a vital requirement in business and life to overcome the
information overload problem. However, building a system
suggesting relevant recommendations has always been a point
of debate. One of the most cost-efficient techniques in terms
of producing relevant recommendations at a low complexity
is Product Quantization (PQ). PQ approaches have continued
developing in recent years. This system’s crucial challenge is
improving product quantization performance in terms of recall
measures without compromising its complexity. This makes
the algorithm suitable for problems that require a greater
number of potentially relevant items without disregarding
others, at high-speed and low-cost to keep up with traffic.
This is the case of online shops where the recommendations
for the purpose are important, although customers can be
susceptible to scoping other products. A recent approach has
been exploiting the notion of norm sub-vectors encoded in
product quantizers. This research proposes a fuzzy approach to
perform norm-based product quantization. Type-2 Fuzzy sets
(T2FSs) define the codebook allowing sub-vectors (T2FSs) to be
associated with more than one element of the codebook, and
next, its norm calculus is resolved by means of integration. Our
method finesses the recall measure up, making the algorithm
suitable for problems that require querying at most possible
potential relevant items without disregarding others. The
proposed approach is tested with three public recommender
benchmark datasets and compared against seven PQ approaches
for Maximum Inner-Product Search (MIPS). The proposed
method outperforms all PQ approaches such as NEQ, PQ, and
RQ up to +6%, +5%, and +8% by achieving a recall of 94%,
69%, 59% in Netflix, Audio, Cifar60k datasets, respectively.
More and over, computing time and complexity nearly equals
the most computationally efficient existing PQ method in the
state-of-the-art.

Index Terms—Recommender System, Fuzzy, Product
Quantization, Norm-Explicit Product Quantization (PQ), Fuzzy
Norm-Explicit PQ

I. INTRODUCTION

THE nature of recommender systems has a certain
characteristic: incremental progress and performance

improvement using user experience. Hence, organizations can
improve by uninterruptedly learning from their recommenders
[1]. In practice, it has been reported that about 80% of what
people follow on Netflix is the result of the recommendations,
and a combination of penalization and recommendation
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effect save Netflix more than $1B annually [2]. Similarly,
in [3] is stated that 35% of amazon purchases come from
recommendation lists. The application of recommender
systems is not solely limited to commercial purposes, and it
has been popular in healthcare decision-making during recent
years, among others [4].

Model-based approaches have been actively studied for
years in the recommender systems field. In this sense, the
core of model-based methods is to formulate user-item
preference in terms of the inner product of the user and
the item’s vectors [5]. The most preferred item by a user
is predicted to be the one that has the maximum inner
product with the user query vector (i.e., MIPS). However, an
exhaustive search through the inner product space of billion
vectors in the largest dataset due to its high complexity
of both space and time and thereby costs (e.g., increasing
processing units, cloud computing, semiconductors) brings
up the necessity of a technique to increase the computational
efficiency [6]. By constructing a linear transformation, MIPS
is redefined to the Nearest Neighbor Search problem, and
this is where product quantization is proved to come through
the task of cutting down largely the computational cost
[7]. To reduce the norm error in Product Quantization, the
Norm-explicit Quantization technique has been proposed,
which has proven to be successful in providing a better
estimation of MIPS than other vector quantization methods
such as PQ, Optimized PQ (OPQ), RQ, and AQ in terms of
recall as the measure of performance. Besides, this method
has proven to be efficient with respect to recall even with
large quantization errors and/or less number of codebooks
in comparison to its counterparts because quantizing the
norm of items reduces the norm error, which leads to better
performance.
Why MIPS-based recommender systems? There are varied
ways to build a recommender system, either as a collaborative
filter or content-based, modeling via matrix factorization to
neural networks; [8] [9] [10] [11] each approach has its
cons and pros. Choosing a method, in this case, could
be highly dependent on the nature of the problem. MIPS
is a well-established method for recommender systems
that are computationally efficient and scalable to large
multidimensional datasets [12]. It is also proven efficient in
many recommendation tasks, yielding fast search time. It can
be combined with other algorithms in frameworks to yield
higher or improved performance. In business systems, it is
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frequent that performance requirement standards such as time,
space complexity, and amount of relevant items successfully
retrieved are factored in. Deep neural networks mark the
ceiling of precise recommendations in all benchmarks.
Still, their computational complexity and minimum hardware
requirements could spiral costs if a business aims to scale for
the highest customer traffic possible to ensure more sales and
revenues.
What is norm-explicit product quantization (NEQ)?
Product Quantization is an efficient baseline method in terms
of time and space complexity to address the nearest search
problem. NEQ is its upgraded version [13]. This approach
exploits that the norm is essential for MIPS because it is used
in calculating the inner product, which is the basis of the
similarity of the vectors. Further, the vector set is quantized
into an approximated sub-vector forming a codeword of a
codebook, similar to a divide and conquer or data compression
strategy, which permits encoding of the norm separately and
reduces the error. However, the association of a vector with
a codeword is a hard association, which can impact the
estimation of query vectors within the codebook’s boundaries.
Therefore, the objective is to integrate fuzziness in NEQ by
making the basis of computation in the codebook a collection
of T2FSs whose boundaries are defined via soft clustering. The
codebooks, as well as being computationally cost-effective in
the stage of codebook construction [14], are formed of T2FSs
(codewords) to implement quantization, and vectors have more
than one soft association with several codewords.
The highlights and findings of this work are:

• Proposing a novel method based on a fuzzy type-2
clustering algorithm to construct the fuzzy codebooks and
then fuse the results of the fuzzy codebooks using Sugeno
Integral to implement norm-explicit quantization.

• This method can be run on a large set of data with
a surprisingly low running time and high performance
measured by the recall to indicate the relevance of the
output.

• The proposed approach improves the recall per item rate
in comparison to Norm-Explicit Product Quantization and
other similar approaches such as PQ or OPQ on Netflix,
Audio and Cifar60k datasets.

Next, section II provides a related comparative work
to the proposed method. Section III provides an overview
and preliminaries about the recommender system, Nearest
Neighbour Search (NNS), and MIPS, its different types, and
recent relevant research on the subject. The following section
IV describes Fuzzy-2 NEQ in every detail. Subsequently, the
results and comparison of our method with baseline methods
are presented in section V. Finally, section VI presents a
conclusion of the research and questions for further studies.

II. RELATED WORK

In this section, a number of related research works are
reviewed to give a better picture of what has already been
done. Jegou et al. introduced PQ, which defines M sub-dataset
out of the original dataset with a size of d/M features. In
this method, K-means is used to train the codebooks of each

dataset independently. A codeword in this approach would
be a d/M -dimensional vector. This way, the approximated
value of x is a fusion of its corresponding codewords [15].
OPQ uses an orthonormal matrix R to rotate the items by
Rx before using PQ. OPQ leads to lower quantization error
when either the features are correlated, or some features
show a larger value of variance in comparison to others.
However, the codebook training phase in OPQ is slightly
more complex as it contains multiple rounds of alternating
optimization of the codebooks and the rotation matrix R [16].
In 2010 Chen et al. suggested the RQ approach in which
each codebook covers whole features, and each codeword is
a d-dimensional vector. The original data are used to train
the first codebook with K-means, and the concept of residues
is used to train the second codebook. The training phase is
carried out recursively, which means m-th codebook is trained
based on the residues from (m− 1) previous codebooks [17].
Babenko et al. introduced AQ, which collectively improved
RQ by optimizing all M codebooks. In this approach, they
use Beam search [18] to do encoding of the codebook (e.g.,
finding the optimal codeword indexes of an item within
the codebooks) and a least-square relation to optimize the
codebooks subject to the proposed encoding [17]. In 2020,
Dai and his colleagues tried using signal compression like
other vector quantization-based methods [19]. Applying
this idea which separately quantizes the magnitude and
direction of a signal to have a fair level of efficiency, leads
to a decrease in performance. However, the Norm-Explicit
approach quantizes direction and norm separately, resulting
in a more efficient performance for the problem of maximum
inner product search (MIPS) [13]. Quantizing the norm has
also been claimed to reduce the quantization error while the
dynamic range of data is rather large [20]. Norm-Explicit
Product Quantization has signified advancements in terms of
performance in comparison to the methods discussed above.
Nevertheless, it relies on discrete quantization. If we remove
this constraint, we can have a method that can operate with
a less restricting and smoother definition of the codebook,
augmenting its quality.

III. BACKGROUND

To start with this section, a more or less formal definition of
the recommender system is worth revising. Briefly speaking,
a recommender system, or a recommendation system (the
word ’system’ may be interchangeable with similar words
like ’engine’ or even ’platform’), is a subclass of information
filtering system that delivers suggestions for items that are
most to the point to a specific use. Elaine Rich introduced the
idea of a recommender system in 1979 [21]. She looked for a
way to recommend a user a book they might be interested
in. Her idea was to make a system that asks a particular
user question and assigns them stereotypes subject to their
responses. Depending on a user’s stereotype, they would
then get a recommendation for a book they might like [22].
In recommender systems, two problems convertible to one
another need to be discussed. The first is NNS, and the other
is Maximum Inner Product Search (MIPS).
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A. Recommender Systems, NNS and MIPS

Recommender systems are used in a wide range of
applications, ranging from playlist generators for video and
music services, product recommenders for online shops,
content recommenders for social media platforms, and open
web content recommenders [23]. Recommender systems
have also been developed to explore research articles [24]
collaborators [25], financial services, [26] and predicting
cancer drug response [27]. These systems usually employ
collaborative filtering and/or content-based filtering method
separately or together [28]. Besides, they might use similar
systems like knowledge-based systems. Collaborative filtering
approaches build a model based on a user’s previous
behaviours (items previously bought or chosen and/or ratings
given to those items), and analogous decisions made by other
users could be a source of information for this approach [9].
This model is then utilized to predict items or ratings of the
item that the user may be inclined to [29]. Content-based
filtering approaches use a set of discrete, pre-tagged attributes
of an item to recommend additional items with similar
properties [30]. Each type of system has its advantages and
disadvantages. Collaborative filtering may need a great deal
of information to start with, which is an example of the cold
start problem, and is a frequent topic in collaborative filtering
research [31] [32]. In contrast, content-based filtering can be
done by having a limited scope of information and without
information about user behaviours, which users may not be
willing to share. Fast recommendations can enhance user
experience when user behavior data is not available. Enabling
rapid prototyping, users could quickly and actively find what
they are looking through engaging with an interactive website
or application [33].

A fast way for finding the preferred items for a specific user
is by searching through the inner products of items by user
query vectors and finding vectors with the maximum value
of the inner product. Maximum Inner Product Search (MIPS)
using a simple manipulation could be viewed equivalently to
Nearest Neighbor Search (NNS) in which maximization of
inner product in MIPS is considered as the same as distance
minimization in NSS [7]. The fundamental relations of MIPS
and NNS are as follows:

x = argminxi∈D||xi − q||2 (1)

x = argmaxxi∈DxT
i q (2)

In which D is frequently a massive dataset queried from, xi is
a database vector, q is the given query, ||.||2 is L2-norm, and
x would be the nearest neighbor for the query q or maximum
inner product value identically using a simple trick or more
specifically a linear transformation. Utilizing the following
relations facilitates the construction of the transformation:

ϕ = maxxi∈D||xi||2 (3)

zi = (
√
ϕ2 − ||xi||22,xT

i )
T (4)

qz = (0, qT )T (5)

as it is observed, zi and qz are modified item and query
vectors respectively, and ϕ represents the maximum norm of
items in the dataset [6]. Using the relations (3)-(5), we have
the following theorems with proofs [34]:

Theorem 3.1: For every zi, ||zi||22 = ϕ
Proof 3.1: Using the relation (4), we have ||zi||22 = ||xi||22−

||xi||22 + ϕ □
Theorem 3.2: For every xi, zi we have zT

i qz = xT
i q

Proof 3.2: Since the first component of qz equals zero, we
know that (wT )T = w for an arbitrary vector w. Hence, we
have (

√
ϕ2 − ||xi||22,xT

i ).(0, q
T )T = 0+ xT

i (q
T )T = xT

i q.
Consequently, zT

i qz = xT
i q □

Having the mentioned relations, the linear transformation
based on the inner product term is simply as follows:

||qz − zi||22 = ||qz||22 − 2ziq
T
i + ||zi||22 = ||q||22 + ϕ2 − 2xT

i q
(6)

relation (6) shows the distance relation in NNS can be written
in terms of the inner product of item and query vectors which
is the transformation of interest to make the nearest neighbor
search problem identical to MIPS [34].

B. Product Quantization

As a general concept, Product Quantization (PQ) is a
vector quantization approach representing high dimensional
vectors as a Cartesian product of sub-spaces for quantizing
them separately. Before explaining the basic idea of product
quantization, we provide some insight into the structures of
this method. From a mathematical point of view, the definition
of a quantizer [14] is well-worth discussing.

Definition 3.1 (Quantizer): a quantizer is a function q
mapping a D-dimensional vector x ∈ RD to a vector
q(x) ∈ C = {ci; i ∈ I}, where the index set defines as I
for simplicity considered to be finite: I = 0, .., k − 1.

We have used a fuzzy clustering technique called
Interval Type-2 Fuzzy Possibilistic C-means, which has been
introduced in [35] to add fuzzy quality to the process of the
algorithm.

Using weights as exponents, this algorithm uses ξ and η to
describe the fuzziness and possibility, representing an interval
or simply a range rather than an exact value [36]. The choice
of the best parameters for the fuzzy interval is carried out by
using Genetic Algorithm [37] (a color-map of grid values is
added as an appendix). The best set of values for ξ1, ξ2 are
8.5, 9.1 respectively.

IV. FUZZY-2 NEQ

Vector quantization, as one of the data compression
methods, could largely reduce the cost of MIPS by encoding
the input into a lower dimensional subspace using codebooks.
An ordinary vector quantization may have issues such as
the high-running time by growth in the number of inputs
or space complexity challenges to store many records for a
D−dimensional vector.
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A. Codebook Definition

The reproduction values ci mentioned in the background
section are normally called centroids, and it would be the
initial notion to define codebooks effortlessly as below:

Definition 4.1 (Codebook): The set of reproduction values
C is, in fact, the codebook of size k.
But how our model as fuzzy-2 NEQ would be convergent as
a quantization method needs to be satisfied Lloyd’s properties
[38]. In quantization, the input space is partitioned into a set
of convex regions called Voronoi cells.

Definition 4.2 (Voronoi Cell): The set Vi of vectors mapped
to a given index i called as a Voronoi Cell defines as following:

Vi ≜
{
x ∈ RD : q(x) = ci

}
. (7)

the Lloyd’s optimality properties are as follows:

q(x) = arg min
ci∈C

d (x, ci) (8)

ci = EX [x | i] =
∫
Vi

p(x)xdx (9)

the first condition simply states that each reproduction value
ci is assigned to its nearest data point. the second condition
points out that the value of ci must be the expected value
of the vectors in Voronoi Cell of index i (e.g., Vi). Interval
Type-2 Fuzzy Possibilistic C-means comes up with a near-
optimal codebook that is less susceptible to noise than other
variations of fuzzy c-means [35]. It works by assigning vectors
to centroids to meet the optimality criteria. Then, we fuse the
result of the fuzzy clustering algorithm, a set of nearly-optimal
codebooks using the Sugeno integral since Sugeno integral is
an ordinal aggregation method which can grade similarity and
in the case of our problem, it is used for fusing the set of
codebooks as the output of the fuzzy clustering method to
a single crisp codebook. Besides, adding a stop condition of
improvement at the 7th step of the algorithm helps us to have
at least a local optimum result. In the product quantization
case, the proposed issues are settled by selecting the number
of components that should be quantized separately. To clarify
by an example, an input vector denoted by x is split into
m distinct sub-vectors oj of dimension D∗ = D/m where
m is a divisor of D and 1 ≤ j ≤ m. The sub-vectors
are quantized separately using m distinct quantizers. Dividing
the primary vector into sub-vectors provides two significant
advantages. Firstly, it aids in preserving the local structure of
the data. Secondly, it facilitates dimensionality reduction. By
segmenting the vector into smaller elements, we can better
comprehend the inherent features and correlations within the
data. This offers a computational advantage by reducing the
complexity of the problem. Since each sub-vector is separately
quantized using its own quantizer, it enables customized
quantization for each sub-vector. Therefore, the quantization
process is tailored to the distinct features and distribution of
every sub-vector. The selection of the number of sub-vectors
(m) in product quantization impacts the balance between
accuracy and complexity. A large m helps in seizing more
detailed information but simultaneously boosts computational
complexity. Conversely, utilizing smaller sub-vectors more

efficiently captures local information. However, overly small
sub-vectors might lead to a loss of global information.
Subsequently, the vector x which has been chopped into m
number of D∗−dimensional vectors would be mapped into a
vector q(x) using the quantizer function as below:

x1, ...,xD∗︸ ︷︷ ︸
o1

, ... ,xD−D∗+1, ...,xD︸ ︷︷ ︸
om

7→ q1(o1(x)), ... , qm(om(x))

(10)
where qj is a low-complexity quantizer associated with the
j-th sub-vector. With the sub-quantizer qj , the index set Ij ,
the codebook Cj and the corresponding reproduction values
cj,i are being associated. A reproduction value of the product
quantizer is identified by an element of the product index set
I = I1 × ... × Im The codebook is therefore defined as
the Cartesian product of C = C1×, ...,×Cm and a centroid
of this set is the concatenation of centroids of the m sub-
quantizers. Based on the assumption that all sub-quantizers
share the same finite number k∗ of reproduction values, the
total number of centroids yielded by k = (k∗)m. Then the
number of codebooks is m containing k∗ codewords of length
D∗. In order to learn the codebooks, a clustering technique is
employed on each of them separately, and then as has been
mentioned earlier, estimated item x denoted by ẋ worked
out by concatenation of its corresponding D∗ dimensional
codewords [13].

B. Fuzzy Norm-Explicit Quantization

To improve the performance of product quantization,
the point of using norm values has been introduced as a
complementary idea conjunctive to the notion of PQ to
reduce the error of quantization and, consequently, improve
the performance of product quantization [13]. MIPS would
take advantage of methods that explicitly cut down the error
rate in the norm since an accurate norm is significant to MIPS
performance. Hence, the core of Norm-Explicit quantization is
to quantize the norm ||x||2 and the direction vector, which is
unit vector x of the items distinctively. The norm is encoded
explicitly using separate codebooks to achieve a small error,
while the direction vector can be quantized using an existing
vector quantization approach without making notable changes.

In detail, the m codebooks in NEQ are split into
two parts. The first part, referred to as m′, consists of
codebooks that are considered as norm codebooks, denoted
by Lp for p ∈ {1, ...,m′} in which each codeword
lp[n] ∈ R for 1 ≤ n ≤ k∗. The other m − m′ codebooks
cm′+1, cm′+2, ..., cm are vector codebooks for the direction
vector. To calculate ẋ in this method, the following formula
is applicable (further detail be consulted in [13]):

ẋ =

 m′∑
m=1

lm[imx ]

 ·

(
m∑

m=m′+1

cm[imx ]

)
(11)

in which imx represents the m-th codeword index of the item
x. the inner product introduced in relation (16) can be worked
out by Algorithm 1 using ẋ, which is the approximation of
the item x indeed. The next step to solving the problem
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Algorithm 1 Estimation of Inner Product Algorithm

Require: Query q, m Codewords of the item x e.g i1x, ..., i
m
x

Ensure: An estimation of qTx
1: l = 0, r = 0
2: while s = 1 to m′ do
3: l = l+ ls[i

s
x]

4: s = s+ 1
5: end while
6: while s = m′ + 1 to s = m do
7: r = r + qT cs[i

s
x]

8: s = s+ 1
9: end while

10: return l · r

Algorithm 2 Codebook Training

Require: dataset D, number of codebooks m, number of
norm codebooks m′

Ensure: m′ trained codebooks of the norms, m−m′ trained
vector codebooks

1: Compute the direction vector x′ = x
||x||2

2: Train m − m′ vectors using the type-2 fuzzy clustering
approach to build set of fuzzy codebook C̃

3: Aggregate the fuzzy codebooks generated in the previous
step using Sugeno integral

4: Encode x′ by the vector codebooks, obtain an estimation
of x̄ of x′ based on the codebooks

5: Compute relative norm by ||x||
||x̄||

6: Train m′ norm codebooks to quantize relative norms
7: Return m codebooks

in the big picture is to train vector codebooks and norm
ones. The second and third steps of algorithm 2 generate
fuzzy codebooks and then fuse the results using the Sugeno
integral to obtain a crisp codebook so it becomes consistent
with the next stage of the algorithm. After discussing vector
quantization and, more specifically, NEQ, we will get to the
stage of employing a fuzzy approach to carry out the vector
quantization task specified at the second step of Algorithm 2.

Although NEQ has been shown to improve existing
vector quantization method in terms of performance, having a
fuzzy view in this problem is worth considering due to nature
of large and sparse datasets which increases the likelihood
of datum in overlapping clusters. Instead of using hard
clustering to train the vectors (e.g., K-means), we employed
a soft Interval type-2 Fuzzy Possibilistic C-means clustering
to train the codebooks. As a short explanation of this fuzzy
clustering algorithm, it consists of an expansion of Fuzzy
Possibilistic C-Means employing a Fuzzy Type-2 approach
[35]. The next step would be training the codebooks using
the proposed fuzzy clustering algorithm to ensure we used
the property of fuzziness, which considers soft margins to
the clusters and overlapping clusters. However, there is a
challenge when a fuzzy algorithm constructs codebooks, and
the challenge would be the structure of the fuzzy output,
which is a tensor for each cluster. Having a fuzzy codebook

vector as an output on hand compels us to think of an idea
to transform the tensor made up of fuzzy codebook vectors
into a consistent input for the next stage of the algorithm.
Therefore, to use Algorithm 2, having a crisp result is
necessary for setting the next steps that can be done through
aggregation. Hence, the codebooks would train using a type-2
fuzzy approach resulting in a fuzzy output. To achieve a
result which is crisp, aggregation would be significant. In
this case, to fuse the resulted data, we decided to use Sugeno
Integral because of its non-linear integration capability [39],
and showing better performance than Choquet integral as
a similar aggregation function in our case as well as its
nature of weighted aggregation [40], which can be crucial for
handling the complex and non-linear relationships typical in
high-dimensional recommender system data. Sugeno Integral
mathematically defines over the fuzzy set of the codebooks
C̃ of the function h h refers to cluster centers for the fuzzy
measure g as:∫

C̃
h(x) ◦ g =

∫
X
[hC̃(x) ∧ h(x)] ◦ g (12)

where hC̃(x) is the membership function of the fuzzy set of
codebooks C̃, and X is the domain of the function h [41]. In
addition, the product has been used as a t-norm of Sugeno
integral. Product quantization involves dividing a high-
dimensional space into smaller subspaces and quantizing each
of these subspaces separately. We propose that each subspace
has its own codebook, which is utilized to encode the data.
Our approach employs the Sugeno Integral during the fuzzy
codebook aggregation phase to merge the fuzzy memberships
of the codewords from different fuzzy codebooks. This
is accomplished by computing the weighted average of
inputs based on their membership values and predetermined
weights. The aim is to combine the fuzzy memberships of
the codewords, taking into account their respective weights,
in order to produce a final output that is a composite of all
the individual inputs.

The aggregation approach in our model serves the aggregation
inference phase and yields a crisp and compatible result
for the algorithm’s next step, which is encoding the vector
codebooks [42]. Finally, The resulting codebooks that are
produced consist of items that have been fragmented and
compressed and subsequently arranged in order to identify
the top 20 preferred items which are used for the purpose of
recommendation. As the type-2 fuzzy set is capable of dealing
with higher level of uncertainty in comparison to the type-1
fuzzy set, it could excel in handling the inherent uncertainty
and fuzziness in user preferences, providing a more detailed
and accurate representation of user behavior which this can
lead to improved personalization in recommendations. To
exemplify, we can consider a scenario where a user’s interests
are not sharply defined but rather fuzzy. For example, if a
user shows a preference for both action and drama movies,
but with varying degrees of interest, their vector can be
associated with codewords representing both categories, but
with different membership degrees. This fuzzy association
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allows for a more elaborate and accurate representation
of user preferences and item features. In such cases, a
rigid association between item/user vectors and codewords
may not capture the details of user preferences or item
features effectively. As the performance measures, recall
and running time are proposed in the results section. As
materials, we have used Netflix, Cifar60k, and Audio datasets
to benchmark our method. The method’s parameter setting of
the method in addition to statistical relations of the metrics
will be provided in the next section. Besides, we compare
the fuzzified Norm-Explicit Product Quantization and its
non-fuzzy version to see how much adding a fuzzy approach
to the construction of vector codebooks would impact the
performance of Norm-Explicit PQ. Figure 1 describes the
general stages of the method in a step-wise fashion.

Loading The
Processed Data

Applying PQ
algorithm by

using the Fuzzy
Type-2 Clustering

to Construct
Vector Codebooks

Fusing The
Codebooks By
Taking Sugeno
Integral From

The Result

Computing An
Estimation Of The
Direction Vector
Based On The

Constructed
Codebooks

Constructing The
Norm Codebooks
To Quantize The
Relative Norm

Getting The
Relative Norm

Of The Item ”x”

Returning Both
The Norm and

Vector Codebooks

Fig. 1: The figure above represents the stages of the algorithm

To generate recommendations using the recommender system,
we start by selecting the top-k recommendations—taking,
for example, k = 20 in our case. We utilize encoded
representations created by the codebooks for this purpose.
The next step involves computing the similarity measure (e.g.,
Euclidean distance) between the user’s encoded representation
and the encoded representations of all items. Based on this
measure, we rank the items and select the top-20 items as
recommendations for the user.

V. RESULTS

In this section, we try to provide the result of the method
discussed in the previous chapter based on metrics such as
recall and overall time. Custom Python code was elaborated
for implementing methods and the Fancy-Aggregations Python
library was utilized to compute the Sugeno integral. [43]. We
employed three well-known datasets, namely Netflix, Audio,
and Cifar60k. A summary of their statistics has been provided

in Table 1. The Netflix dataset contains user ratings for items,
and the researchers applied an ALS-based matrix factorization
approach to obtain embeddings for both the items and users.
The item embeddings were used as dataset items, while
the user embeddings were used as queries. The Cifar60k
dataset comprises 6000 32x32 colored images that belong to
10 different categories. The Audio dataset contains recorded
voices of men and women in various qualities that range from
512 to 1024 kbps. Lastly, we will also discuss scenarios where
our method can be suitable.

A. The Metrics of Performance

Running time and recall metrics in the case of our problem
can be treated in the context of information retrieval and a type
of time complexity in computer systems, in which recall is the
number of correct results divided by the number of results that
should have been returned [44]. Recall would be estimated as
follows:

Recall =
|RelevantDocuments ∩RetrievedDocuments|

|RelevantDocuments|
(13)

and as another metric of performance for the algorithm,
precision would be considered which is defined as below:

Precision =
|RelevantDocuments ∩RetrievedDocuments |

|All RelevantDocuments|
(14)

by having precision and recall, F1-score can be easily
computed by the following relation [45]:

F1− score =
2× Precision×Recall

(Precision+Recall)
(15)

To calculate the running time, we used the time difference
between the prior and post-running times of the main function
of the code containing algorithms of study. The hardware
specification of the system running the algorithm has been
added as the footnote.1. In addition, a short explanation of
the asymptotic analysis and comparison of vector quantization
methods with other methods is delivered in the following
subsections. The relation can be written as:

RunningT ime = |Start T ime−Termination T ime| (16)

Cifar60k, Audio, and Netflix datasets have been used as the
experiment material to measure the method’s performance by
the recommended metrics above [46]. An overview of these
datasets has been provided in a table further in this section.

B. Fuzzy-2 NEQ vs. Baseline Models

To have a more analytical evaluation of our model,
comparing it to similar models is informative. A more detailed
discussion of the some baseline methods, including PQ, OPQ,
and RQ, has been delivered in related work as a part of the
literature review. However, a short description each baseline
methods is proposed further in this section. In detail, each
model was tested by keeping the number of codebooks as low
as possible(e.g., 8) and several clusters 16, 64 to see how
efficiently productive these models could be in comparison to
Fuzzy-2 NEQ based on their recall/item values. Figure 3,

1Intel Core i7-8750H 2,2GHz RAM: 8GB DDR4-SDRAM
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Fig. 2: Time comparison of proposed the fuzzy method vs
Other Baseline methods

4, and 5 presents a graphical comparison between methods
PQ, AQ, OptimizedPQ, RQ, APQ, NormRQ, Simple Hash,
and Fuzzy-2 NEQ (proposed) for 3 benchmark datasets:
Cifar60k, Netflix, and Audio, which are placed left, middle,
and right side respectively. In addition, figure 2 presents a time
performance comparison.

C. Fuzzy-2 NEQ vs. NEQ

In order to allow an easier discussion of the results, detailing
the dimensions of datasets used in the experimentation would
be useful. Table I indicates the number of records used for
the purpose of training as well as the dimension of each
dataset. The source of variation in our method would be the
number of codebooks, the number of clusters, and the number
of items. For each dataset, we used random sampling with
replacement (e.g. bootstrapping) to select training items. To
obtain a statistically unbiased result, we repeated this process
10 times for each dataset, using a fixed set of parameters.
Table IV shows the average running time and average standard
deviation of recall for each model on different datasets and
parameter settings across the 10 iterations. In recommender
systems, recall (13) is a key performance metric that holds
great importance. This is due to its ability to the degree to
which a model can recognize relevant data. Recall, defined
as the proportion of relevant items that the model correctly
retrieves, serves as a crucial indicator of the effectiveness of
a recommender system [47].

TABLE I: Dataset Dimensions and Size of Training Set

Dataset Dimension Training Size (items)
Cifar60k (512, 60,000) 50,000

Audio (192,53387) 40,000
Netflix (300,17700) 11,700

Prior to providing the analysis of the results, it would be
notable to having a summarized description of the baseline
methods in this study.

• PQ (Product Quantization) involves partitioning the
original dataset into M sub-datasets with d/M features
each, training independent K-means codebooks for
each sub-dataset, and approximating x by fusing its
corresponding d/M -dimensional codewords [15].

• OPQ (Optimized Product Quantization) utilizes an
orthonormal matrix R to rotate dataset items before
applying PQ, resulting in reduced quantization error,
especially for correlated or variably distributed features,
though it involves a more intricate codebook training
phase with multiple rounds of optimizing codebooks and
the rotation matrix R [16].

• RQ (Residual Quantization) involves training codebooks
where each codebook covers all features with d-
dimensional codewords, using K-means on the
original data for the first codebook and residues
for subsequent codebooks in a recursive manner,
improving representation through residual-based training
[17].

• AQ (Additive Quantization) enhances RQ by collectively
optimizing all M codebooks, utilizing Beam search for
efficient encoding and employing a least-square relation
to optimize the codebooks while considering the proposed
encoding for optimal codeword index determination [17].

• NEQ involves separately quantizing the direction and
norm of a signal, demonstrating improved efficiency
for maximum inner product search (MIPS) and reduced
quantization error for large dynamic range data,
representing an advancement in performance compared to
prior methods, but it operates with discrete quantization,
and removing this constraint could enhance codebook
definition and quality [13].

• Norm RQ is the Norm-Explicit version of RQ which uses
the concept of NEQ [13].

• Simple Locality Sensitivity Hash challenges the notion
that asymmetric LSH is necessary for maximum inner
product search (MIPS). They present a symmetric LSH
approach that rivals asymmetric LSH in performance
and theoretical guarantees when considering normalized
queries and bounded data vectors, suggesting that
asymmetry might not be necessary or advantageous for
MIPS [12].

• Additive Product Quantization (APQ) involves splitting
a vector into M1 orthogonal components (similar to
PQ), which are then encoded by AQ into M2 bytes
each. This hybrid compression approach uses M1 ×M2

bytes for encoding each vector, proving to be more
accurate in experiments compared to PQ compression
with M = M1 ×M2 .

To measure the performance of the model on a set of 4
parameters in terms of recall and precision Table VI is served
to fulfil this purpose.
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Fig. 3: Cifar60k dataset comparison plot Fig. 4: Audio dataset comparison plot Fig. 5: Netflix dataset comparison plot

TABLE II: Average Item vs. Recall rate of items in Cifar60k,
Audio and in Netflix dataset for each model with regard to the
4 types of setting in 10 iterations

Model (%) Cifar60k Audio Netflix

#Items 16384 32768 16384 32768 8192 16384

PQ 27.53 57.41 34.57 64.88 44.30 89.83
OPQ 27.56 57.83 31.62 66.23 44.20 91.48
AQ 26.40 56.73 32.22 67.28 42.40 88.23
RQ 21.05 56.67 31.17 65.32 43.20 90.21
NormRQ 24.10 56.33 33.41 66.70 42.94 91.23
Simple Hash 24.42 55.17 33.35 65.12 40.13 88.37
NEQ 27.52 56.83 34.35 66.52 42.97 91.75
Fuzzy-2 NEQ 29.11 59.34 34.84 69.71 49.32 94.65
APQ 25.52 56.60 33.19 64.70 42.95 89.45

Difference Range% [+2,+8] [+2,+4] [+0.3,+4] [+2,+5] [+5,+9] [+3,+6]

Adding a table with Precision and F1-score results as
secondary performance measures would be notable.

TABLE III: Average Precision (Prec) and F1-score (F1-s) of
models on benchmark datasets

Model Cifar60k Audio Netflix

#Items Prec F1-s Prec F1-s Prec F1-s

PQ 23.1 32.95 29.81 40.85 65.30 75.62
OPQ 24.53 34.41 25.14 36.44 59.20 71.88
AQ 21.70 31.39 26.52 38.04 62.68 73.30
RQ 21.05 30.69 25.46 36.64 64.53 75.24
NormRQ 24.10 34.05 28.79 40.22 61.89 73.74
Simple Hash 23.51 32.97 29.11 40.234 63.44 73.86
NEQ 26.43 36.08 28.37 39.78 65.78 76.62
Fuzzy-2 NEQ 30.42 40.22 29.94 41.89 67.75 78.97
APQ 21.54 31.20 27.02 38.12 64.32 74.83

Difference Range% [+4,+9] [+4,+9] [+0.01,+4] [+1,+4] [+2,+6] [+2,+7]

TABLE IV: Average (Std, time) for each model in 10 iterations

Model Cifar60k (Dataset1) Audio (Dataset2) Netflix (Dataset3)

Average Time Std Time Std Time Std

PQ 25.9492 0.2691 4.1151 0.2740 7.5041 0.3234
OPQ 118.1568 0.2654 26.2197 0.2755 44.2201 0.3270
RQ 29.4702 0.2693 5.5542 0.2740 9.0250 0.3240
NormRQ 81.0254 0.2677 18.4240 0.2738 26.1655 0.3242
APQ 38.3903 0.2643 7.7638 0.2740 13.5324 0.3251
Simple Hash 35.4422 0.2682 8.4322 0.2743 12.7213 0.3238
Fuzzy-2 NEQ 26.3943 0.2671 4.2113 0.2733 7.1144 0.3225
AQ 26.1226 0.2691 4.2375 0.2770 7.7088 0.3205

TABLE V: CPU and Memory usage of Fuzzy-2 NEQ with two
other baseline models on Cifar60k as the largest benchmark
dataset

Models CPU(%) Memory(%)

NEQ 19.7% 90.1%
Fuzzy-2 NEQ 11.4% 87.2%
PQ 20.2% 89.5%

TABLE VI: Average recall and precision during 10 iterations
for each setting of Fuzzy-2 NEQ based on the number of items
for different numbers of Codebooks (CB) and Clusters (Cl)

(Netflix Dataset)
#Items vs Average Recall & Precision per Iteration
Settings 2048 4096 8192 16384

4-CB,4-Cl (Recall) 0.1197 0.2227 0.4349 0.9188
8-CB,32-Cl (Recall) 0.1379 0.2548 0.4931 0.9413

16-CB,32-Cl (Recall) 0.1255 0.2542 0.4777 0.9322
32-CB,100-Cl (Recall) 0.1226 0.2440 0.4831 0.9280

128-CB,100-Cl (Recall) 0.1273 0.2354 0.4894 0.9433
4-CB,4-Cl (Precision) 0.0077 0.0163 0.0453 0.6547

8-CB,32-Cl (Precision) 0.0082 0.0178 0.051 0.6631
16-CB,32-Cl (Precision) 0.0082 0.0181 0.050 0.6756

32-CB,100-Cl (Precision) 0.0071 0.0177 0.0492 0.6701
128-CB,100-Cl (Precision) 0.008 0.0182 0.0501 0.6778



9

Fig. 6: This figure presents a graphical comparison of the recall
performance achieved by each comparison method for each
dataset benchmark. Here, it can be graphically appreciated that
Fuzzy-2 NEQ outperforms all methods by a salient margin.

D. Algorithmic Complexity Analysis

A bottleneck in recommender systems is time complexity.
While an accurate result is important, having a quick outcome
with a high recall can still be valuable for many applications.
[48]. The complexity of Product Quantization is O( m

√
k×D+

c) where c is a constant referring to codebook construction
cost. On the other hand, by taking a fuzzy approach and using
a low-cost aggregation method, we improved the recommender
system’s performance in terms of recall with a negligible
difference in running time. There are other techniques like
matrix factorization in which the time complexity of stochastic
gradient descent in these algorithms is mostly O(k) [7].
In addition, Product Quantization is a favored method for
efficaciously compressing high-dimensional vectors to use
around 90 per cent less memory [7].

E. Discussion on Achievements

There are different kinds of methods addressing the problem
of finding the most interesting item or set of items for a user.
However, each method has its cons and pros. Specifically, a
high-performance method of tackling the problem could be
using neural network-based approaches or deep learning. In
this case, choosing which method could best fit the problem
is related to the nature of the problem and use case. We use
that as a basis to extend the notion of product quantization-
based techniques in the phase of codebook construction.
Furthermore, lower time and space complexity, acceptable
performance, and a technique focusing on retrieval efficiency
motivate researchers and practitioners to utilize and extend this
method. In summary, when the complexity of a method would
be essential because of various reasons such as limitations
in computational power, then a product quantization-based
approach could be a suitable choice to solve the problem
with the main focus on time and space complexity rather
than very high expectation of accuracy in results. A table
of results and recall-item curves for norm-explicit product
quantization using K-means to build the codebooks have been

provided to see how Norm-Explicit Quantization and the
approach introduced in this research, Type 2 Fuzzy Norm-
explicit Quantization (e.g. Fuzzy-2 NEQ) perform by keeping
the sources of variation unchanged for both methods. Based on
the comparison provided in Table II, Fuzzy-2 NEQ performs
better than existing methods such as NEQ, PQ, and RQ up
to +6%, +5%, and +8%, respectively. A comparison bar plot,
in this case, would be helpful to indicate the performance of
baseline methods against Fuzzy-2 NEQ. Figure 6 presents a
performance comparison of the Fuzzy-2 NEQ approach with
other existing methods over approximately 15,000 records of
each dataset, with respect to the number of items in the data
and its recall value.

VI. CONCLUSION AND FUTURE WORK

The importance of recommender systems in online markets,
music streaming platforms, subscription streaming services
(e.g., Netflix), and even social media such as YouTube or
Instagram for both users and companies is tangible. To
meet the market demands of every user, a recommender
system with a reasonable time and space complexity and
providing an acceptable percentage of relevant and accurate
recommendations would be a point of interest for any
business. In conclusion, we have provided metrics such
as recall and running time with a recall-item curve to see
how the algorithm works in a different set of parameter
settings, showing an acceptable performance during 10
iterations of each setting. By adding fuzziness to the existing
Norm-Explicit Product Quantization codebook construction
process, we have made progress regarding recall percentage,
reflecting more relevant recommendations in output at
compelling complexity. This is important since human, time,
and financial resources are worth preserving and consuming
carefully, and having relevant recommendations on hand
could result in more success in the business in terms of
finding customers interested in the product or service.
Furthermore, in health recommender systems, extracting
medicine based on other patients’ experience has proved that
applications of recommender systems in the health sector are
well-worth to be researched. Eventually, using the relative
norm, training the remaining codebooks is done, and we
have m trained codebooks. In definition, codebooks are
tables mapping centroid indices (e.g., codes) to centroids
and conversely [49]. The resulting codebooks contain items
that are compressed into pieces and then sorted to give us
the top 20 preferred items. In general, the proposed method
would help us to have a model which is firstly convergent,
secondly considers overlapping clusters situation, and defines
a more precise margin using a fusion model based on the
optimality of weights. The method that was suggested has
shown better results compared to quantization-based methods.
In the experiments conducted on Netflix, Audio, and Cifar60k
datasets, the proposed method achieved a recall of 94%,
69%, and 59% respectively. This means that it was able to
correctly identify a higher percentage of relevant information.
Specifically, when compared to other methods such as NEQ,
PQ, and RQ, the proposed method outperformed them by
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+6%, +5%, and +8%, respectively.

As future works, the codebook construction approach
could be slightly updated, and some may change the
Interval Type-2 Fuzzy Possibilistic C-Means approach, re-
implemented it differently, or try to use another soft clustering
method. These variations can positively impact the method’s
time and space complexity and, even more, may improve
the model’s performance. Besides, by changing the general
logic of the algorithm, we can have fuzzy outputs, and by
providing the user with all the prole outcomes associated
with their proility, we give the user this opportunity to decide
which options could excel others, which could be a source to
study of user behavior patterns. Another possible action with
fuzzy output could be applying some rule-mining techniques
so we can choose a recommendation among the outputs.
Over and above, using neural networks in the phase of
codebook construction or the defuzzification process could be
interesting enough to merit a study. Fuzzification can be used
in a different stage of product quantization and based on that
instead of having a crisp result. As mentioned earlier, in this
paper, the evidence arises that having a set of responses with
a degree of truth (e.g., a fuzzy response) seems appealing
to PQ-based fast recommender systems. Generally speaking,
due to the massively growing number of users and items, a
recommender system with competent sensitiveness, time and
space complexity is a necessity to continue being intensely
investigated.

APPENDIX A
OPTIMAL CODEBOOKS AND CENTORIDS EXISTENCE

PROOF

Definition A.1 (Optimal Codebook): A codebook is called
optimal either globally or locally for distribution function F if
it obtains the minimum value of average distortion function.

Theorem A.1 (Existence of k-level optimal codebooks and
centroid):

Proof A.1: There are two sufficient assumptions on
distortion function d to ensure the existence of the optimal
codebooks and centroids as follows:
A1) d : RD × RD → [0,∞) is continuous.
A2) For each x, d(x̃, y) → ∞ as x̃ → x and ∥y∥2 → ∞.
Hence, for any fixed x, d(x, ·) is continuous on

(
R̄D
)k

by
A1) and A2); hence, by average distortion equation which is

D(C, F ) =

∫
min

1≤j≤k
d (x,aj) dF (x) (A.1)

and Fatou’s lemma the average distortion function D(A,F )
is a lower semi-continuous function of the codebook C
with respect to differential of distribution function F (x). By
the compactness of

(
R̄D)k the minimum value of average

distortion is achieved by some Codebook C+. If C+ has some
∞̄-valued codewords, then by A2) they can be replaced by
real-valued ones. Hence an optimum k-level codebook exists.
Observe that no restrictions need to be placed on F . For

Fig. 7: This figure shows a grid of cost function values for
parameters ξ1 and ξ2 to define the T2FSs via clustering to
form the codebook

the above argument A1) could be generalized to lower semi-
continuity in y for fixed x; A2) could be generalized to

lim
∥ỹ∥→∞

d(x, ỹ) ≥ d(x,y) (A.2)

for each fixed x and y. If d(x,y) satisfies these conditions,
then Is(x)d(x,y) does also for any Borel set S in which Is is
indicator function of the set S. The existence of an optimum
one-level code book for this distortion function means that∫
s
d(x,u)dF (x) is minimized by some u ∈ RD; that is, S

has a centroid. □

APPENDIX B

A genetic algorithm was employed to find the optimal values
for ξ1, and ξ2, utilizing an initial population size of 10, with
a mutation rate of 0.5 and a recombination rate of 0.7. The
tolerance level was set at 0.01, and the implementation was
conducted using the Scipy library. A scatter heat-map of grid
values for parameters ξ1 and ξ2 could be intuitively used to
find the optimal values for the fuzzy parameters (the colder
the color, the smaller the value of the cost function). This is
shown graphically in fig. 7.
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